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Spin-functional renormalization group for the J1J2J3 quantum Heisenberg model
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We use our recently developed functional renormalization group (FRG) approach for quantum spin systems
to investigate the phase diagram of the frustrated J1J2J3 quantum Heisenberg model on a cubic lattice. From a
simple truncation of the hierarchy of FRG flow equations for the irreducible spin vertices, which retains only
static spin fluctuations and neglects the flow of the four-spin interaction, we can estimate the critical temperature
with a similar accuracy as the numerically more expensive pseudofermion FRG. In the regime where the
ground state exhibits either ferromagnetic or antiferromagnetic order, a more sophisticated truncation including
the renormalization of the four-spin interaction as well as dynamic spin fluctuations reveals the underlying
renormalization group fixed point and yields critical temperatures which deviate from the accepted values by
at most 4%.
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I. INTRODUCTION

Frustrated spin systems continue to be of great interest in
modern condensed matter physics because they can exhibit
intriguing complexity which can be explored experimentally
and poses a challenge to theory [1]. While in reduced di-
mensions spin systems can be investigated with the help of
powerful numerical methods such as the density matrix renor-
malization group [2,3], controlled methods for realistic three
dimensional systems are not available. It is therefore impor-
tant to develop approximate methods for studying frustrated
spin systems in an unbiased way. A promising method is the
functional renormalization group (FRG) [4–9], which is one
of the few unbiased quantitative methods for investigating
the dominant instabilities of interacting fermions on a lat-
tice [8–10]. Given the fact that with the help of Abrikosov’s
pseudofermion representation of spin 1/2 operators [11] any
spin 1/2 Hamiltonian can be mapped onto an interacting
fermion Hamiltonian acting on a projected Hilbert space,
it is clear that the established FRG machinery for interact-
ing fermions can also be applied to quantum spin systems.
This strategy, called pseudofermion FRG, was pioneered by
Reuther and Wölfle [12] in 2010; since then it has been used
to investigate the phase diagrams and static correlation func-
tions of many different spin models [13–21]. However, the
pseudofermion FRG has some disadvantages: (1) the Hilbert
space projection can only be implemented approximately, (2)
the calculation of the spin dynamics has so far not been
possible, (3) available truncations are not sufficient to obtain
proper renormalization group fixed points and the associated
critical behavior, and (4) explicit solutions of even severely
truncated flow equations require heavy numerical calcula-
tions. At this point, we should mention that an alternative
representation of the spin 1/2 operators in terms of Majo-
rana fermions [22,23] has recently been used to develop a
pseudo-Majorana FRG [24,25], which does not suffer from
the problem (1) and can also reproduce the nontrivial scal-
ing characteristic for a proper renormalization group fixed

point [25]. However, the other problems mentioned above
remain also for the pseudo-Majorana FRG. Motivated by the
desire to avoid at least some of these problems, in Ref. [26]
an alternative FRG approach to quantum spin systems has
been proposed which does not rely on any representation of
spin operators in terms of fermionic or bosonic auxiliary op-
erators. The crucial insight of Ref. [26] is that the generating
functional G[h] of the imaginary time ordered spin correlation
functions satisfies an exact flow equation which can be di-
rectly obtained by differentiating the representation of G[h] as
a trace of a time-ordered exponential over the physical Hilbert
space of the spin system. For recent applications of this spin
FRG approach see Refs. [27–32]; in particular, this approach
has been used to calculate the dynamic structure factor of
Heisenberg magnets at infinite temperature [30], to investigate
the critical spin dynamics of Heisenberg ferromagnets [31],
and to study dimerized spin systems [32].

In this work we use the spin FRG to investigate the phase
diagram and the critical temperature of a frustrated quantum
spin model in three dimensions. Specifically, we consider the
Hamiltonian of the J1J2J3 quantum Heisenberg model

H = J1

∑
〈i j〉1

Si · S j + J2

∑
〈i j〉2

Si · S j + J3

∑
〈i j〉3

Si · S j, (1)

where the spin S operators Si are localized at the sites Ri of
a simple cubic lattice and 〈i j〉n denotes summation over all
distinct pairs of nth nearest-neighbor spins. This model has
recently been used as a benchmark to test the accuracy of dif-
ferent implementations of the pseudofermion FRG [16,20,21].
In this work we will apply our spin FRG approach to the
J1J2J3 model and compare the results to the pseudofermion
FRG. Our main result is that the simplest possible truncation
of the spin FRG produces results which are consistent with the
numerically more expensive pseudofermion FRG. Moreover,
using more sophisticated truncations of the spin FRG flow
equations, we can obtain renormalization group fixed points,
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improve our estimates for the critical temperatures, and calcu-
late the spin dynamics.

The rest of this work is organized as follows. In Sec. II we
briefly discuss the classical zero temperature phase diagram
of our model. In Sec. III, we investigate the effect of classical
spin fluctuations on the critical temperature using simple static
approximations of the spin FRG flow equations, with and
without taking into account the renormalization of the four-
spin interaction. We improve our static estimates in Sec. IV
by including the effect of dynamic spin fluctuations due to the
quantum dynamics of the spin operators. In Sec. V we sum-
marize our main results and point out necessary modifications
of our approach to deal with strongly frustrated spin systems.
Finally, in four Appendixes we give additional technical de-
tails: in Appendix A we write down FRG flow equations in
static approximation, Appendix B provides a discussion of
the renormalization group flow and fixed point in the static ap-
proximation, while in Appendix C we derive initial conditions
for the relevant dynamical five- and six-point vertices. The
last Appendix D investigates an alternative parametrization of
the dynamic spin fluctuations which serves as an input for the
FRG calculation of the thermodynamics and static correlation
function.

II. CLASSICAL PHASE DIAGRAM

In the classical limit where the spin operators are replaced
by three-component vectors with length S the ground state
phase diagram can be obtained by minimizing the classical
Hamiltonian subject to the constraints S2

i = S2. The classical
ground state energy of the J1J2J3 model (1) on a cubic lattice
can then be written as

E0 = N

2
JQS2, (2)

where Q is the ordering wave vector and N is the total number
of lattice sites. For a simple cubic lattice the Fourier transform
of the exchange couplings is

Jk = 6J1γ
(1)

k + 12J2γ
(2)

k + 8J3γ
(3)

k , (3)

where we have introduced the normalized form factors

γ
(1)

k = 1
3 (cos kx + cos ky + cos kz ), (4a)

γ
(2)

k = 1
3 (cos kx cos ky + cos ky cos kz + cos kz cos kx ), (4b)

γ
(3)

k = cos kx cos ky cos kz. (4c)

We measure wave vectors in units of the inverse lattice
spacing. According to Ref. [16], in the classical limit one
of the following four ground states is realized in the J1J2J3

model on a cubic lattice: antiferromagnet (AF) with ordering
wave vector Q = R = (π, π, π ); striped AF with Q = M =
(0, π, π ) (we call this “spaghetti order”); layered AF with
Q = X = (0, 0, π ) (“lasagne order”); ferromagnet with Q =
� = (0, 0, 0). From the condition that the physical ground
state minimizes E0 we obtain the classical zero temperature
phase diagram shown in Fig. 1.

At finite temperature T the boundaries between the para-
magnetic phase and the magnetically ordered phases can be
obtained from the momentum-dependent static susceptibility
G(k). Assuming that the phase transition to the magnetically

FIG. 1. Classical ground state phase diagram of the J1J2J3 model
on a simple cubic lattice for J1 > 0 (left panel) and J1 < 0 (right
panel). Depending on the values of J2/J1 and J3/J1 one of the
following four states has the lowest energy: antiferromagnet (AF)
with ordering wave vector Q = R = (π, π, π ), striped antiferro-
magnet SP (“spaghetti order”) with Q = M = (0, π, π ), layered
antiferromagnet LA (“lasagne order”) with Q = X = (0, 0, π ), and
ferromagnet (F) with Q = � = (0, 0, 0).

ordered phase is continuous, we can determine the phase
boundaries from the condition that G(Q) diverges at the transi-
tion to a magnetically ordered state with ordering wave vector
Q. Within a simple mean-field approximation (see below) the
static susceptibility is

G0(k) = 1

Jk + T/b1
, (5)

where the Fourier transform Jk of the exchange coupling is
given in Eq. (3), and

b1 = (2S + 1)2 − 1

12
= S(S + 1)

3
(6)

is the first coefficient in the expansion of the Brillouin function

b(y) =
(

S + 1

2

)
coth

[(
S + 1

2

)
y

]
− 1

2
coth

( y

2

)

= b1y + b3

3!
y3 + b5

5!
y5 + O

(
y7). (7)

In this approximation the critical temperature for a transition
to a state with magnetic ordering wave vector Q is given by
the mean-field result

T MF
c = −b1JQ. (8)

Because JQ is the global minimum of Jk, the magnetic order in
the classical ground state can also be identified with the state
with the highest critical temperature.

As a quantitative measure for the degree of frustration
in the system, it is useful to consider the energy-dependent
density of states

ν(ε) = 1

N

∑
k

δ(ε − Jk), (9)

where the momentum sum is over the first Brillouin zone. In
Figs. 2 and 3 we show a numerical evaluation of ν(ε) for
N → ∞ for representative values of the exchange couplings.
The momentum of the state at the lower band edge determines
the magnetic order in the classical ground state. If the ground
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FIG. 2. Dimensionless density of states J1ν(ε) as a function of
ε/J1, at exemplifying values of the coupling strengths J2/J1 and J3/J1

corresponding to weak frustration.

state is separated by a large energy interval from the other
candidate states the system is weakly frustrated; see Fig. 2.
The corresponding points in the phase diagram shown in
Fig. 1 are far away from any of the phase boundaries. On
the other hand, if the exchange couplings are chosen such
that the corresponding points in the phase diagram are at or
close to phase boundaries, the state at the lower edge of the
band is energetically very close to the other candidate states
as illustrated in Fig. 3. Hence the frustration is strong in these
cases. Additionally, one can see that competing states have an
enhanced density of states. In the extreme cases where sev-
eral ground states are actually degenerate, we expect reduced
critical temperatures and possibly spin-liquid behavior. In the
following section we will investigate this possibility within a
simple static truncation of the spin FRG flow equations.

III. STATIC SPIN FRG

To go beyond the mean-field approximation, we use the
spin FRG approach proposed in Ref. [26] and further devel-
oped in Refs. [27–32]. For our purpose the hybrid approach
developed in Ref. [30] (see also Appendix B of Ref. [32])
is most convenient. Let us briefly outline the main ideas of
this implementation of the spin FRG. First of all, we replace

FIG. 3. Dimensionless density of states J1ν(ε) as a function of
ε/J1 near the triborder point J1 > 0, J2/J1 = 1/2, and J3/J1 = 1/4;
in this case the frustration is strong, in contrast to the parameter
regime shown in Fig. 2.

the bare exchange coupling Jk by a deformed coupling J�(k)
parametrized by a continuous scale parameter � ∈ [0, 1]. The
deformation scheme is chosen such that the exchange cou-
pling J�=0(k) is sufficiently simple so that the correlation
functions of the deformed system can be calculated exactly,
whereas J�=1(k) = Jk corresponds to the undeformed system.
In this work we use two different deformation schemes: a
simple interaction switch [26],

J�(k) = �Jk, (10)

that linearly switches on the exchange couplings, and a Litim
regulator [32–37],

J�(k) = Jk − �(Jk)(Jk − Jmax�)�(Jk − Jmax�)

+ �(−Jk)(−Jk + Jmin�)�(−Jk + Jmin�), (11)

that gradually increases the bandwidth of the exchange cou-
plings, where Jmax(min) are the maximum (minimum) value of
Jk. In both schemes we have J�=0(k) = 0, such that the spin
correlations at � = 0 are site diagonal and are determined
by the dynamics of a single spin. The corresponding time-
ordered correlation functions are highly nontrivial and can
be obtained diagrammatically by means of the generalized
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Wick theorem for spin operators developed by Vaks, Larkin,
and Pikin [38,39]; see also Ref. [40]. Note that recently [28]
a purely algebraic form of the generalized Wick theorem
for spin operators has been derived which does not rely
on the rather complicated diagrammatic rules introduced in
Refs. [38–40]. As shown in Ref. [26], the deformed generat-
ing functional of the imaginary time-ordered spin correlation
function satisfies a formally exact FRG flow equation. It fol-
lows that the subtracted Legendre transform 	�[M] of G�[h]
satisfies the usual Wetterich equation [4]. Unfortunately, at
the initial scale � = 0 where the deformed exchange coupling
vanishes, the Legendre transform 	0[M] does not exist due to
the vanishing of dynamic two-spin correlations of an isolated
spin [26,36]. For this reason the lattice FRG proposed by
Machado and Dupuis [41] for classical spin systems cannot
be straightforwardly generalized to quantum spin systems.
In Ref. [30] we have solved this problem by decomposing
spin fluctuations into static and dynamic components and
performing a Legendre transformation only in the static sec-
tor. Dynamic fluctuations are treated differently by working
with “hybrid vertices,” which are interaction irreducible in the
dynamic sector. These vertices are generated by the hybrid
functional 	�[m, η] introduced in Ref. [30], which depends
on the static (classical) magnetization m and on a dynamic
auxiliary field η that can be interpreted as the frequency-
dependent part of an internal magnetic field generated by the
exchange interaction.

In the paramagnetic phase, the scale-dependent static spin
susceptibility can then be written as

G�(k) = 1

J�(k) + 
�(k)
, (12)

where 
�(k) is the scale-dependent spin self-energy with
initial condition


0(k) = T/b1. (13)

The mean-field result (5) corresponds to neglecting the flow
of this self-energy. Assuming that a possible phase transition
to a magnetically ordered state is continuous, the critical tem-
perature can be determined from the condition that the spin
susceptibility (12) at the ordering wave vector k = Q diverges
at the end of the flow.

To go beyond the mean-field approximation, let us now
consider the flow of the static spin self-energy 
�(k). In this
section we use the static approximation, where all vertices
involving external legs with finite frequencies are neglected.
Formally, this amounts to setting 	�[m, η] ≈ 	�[m, η = 0].
Given the fact that finite-temperature critical behavior is com-
pletely determined by classical fluctuations, we expect that
the static approximation is sufficient to obtain the fixed point
of the renormalization group flow associated with a finite
temperature phase transition. The spin self-energy defined via
Eq. (12) then satisfies the flow equation

∂�
�(k) = T

N

∑
q

Ġ�(q)	(4)
� (−q, q,−k, k), (14)

where the single-scale propagator is defined by

Ġ�(k) = −G2
�(k)∂�J�(k) (15)

and the irreducible four-point vertex 	
(4)
� (−q, q,−k, k) de-

scribes the interaction between four spins in the static limit.
Note that the three-point vertex 	

(3)
� vanishes because we

consider the paramagnetic phase where there is no sponta-
neous magnetization. With our deformation scheme where the
deformed exchange interaction initially vanishes, the initial
value of the four-point vertex is determined by the irreducible
part of a rotationally invariant combination of four-spin corre-
lation functions of an isolated spin in the static limit [28,30].
In Appendix A we show that

	
(4)
0 (−q, q,−k, k) = 5

6
U0, U0 = −T

b3

b4
1

> 0, (16)

where

b3 = − (2S + 1)4 − 1

120
= −6

5
b1

(
b1 + 1

6

)
(17)

is the third order coefficient in the Taylor expansion (7) of the
Brillouin function.

A. Level-1 truncation

In the simplest level-1 truncation [8] we approximate the
four-point vertex by its initial value given in Eq. (16). A sim-
ilar level-1 truncation of the hierarchy of FRG flow equations
has been used to calculate the renormalization of impurity
potentials in mesoscopic Luttinger liquids [8,42]. The spin
self-energy 
�(k) = 
� is then independent of the momen-
tum k and its flow equation (14) reduces to

∂�
� = −5

6
U0

T

N

∑
q

∂�J�(q)

[J�(q) + 
�]2 , (18)

which can be straightforwardly integrated numerically with
the initial condition (13).

In Fig. 4 we show our numerical results for the inverse
susceptibility G−1

�=1(Q) = G−1(Q) at the end of the FRG flow
as a function of the dimensionless temperature T/T MF

c for
three different sets of exchange couplings. Note that for the
nearest-neighbor exchange (J1 �= 0, J2 = J3 = 0) displayed in
Fig. 4(a), our flow equation (18) is independent of the sign
of the nearest-neighbor coupling J1. Therefore, we obtain the
same temperature dependence of the susceptibility for ferro-
and antiferromagnets, which is only correct in the classical
S → ∞ limit [43,44]. Remedying this for finite S requires the
inclusion of dynamical quantum fluctuations, which will be
addressed in Sec. IV. Obviously, within the level-1 truncation
used in this section the inverse susceptibility approaches zero
only asymptotically for T → 0, implying a paramagnetic state
at finite temperature. This is of course an artifact of the level-1
truncation, which neglects the renormalization of the four-
point vertex. We show in Appendix B that a true fixed point
of the renormalization group flow can only be obtained if the
flow of the four-point vertex is taken into account. Neverthe-
less, the existence of a kink in the temperature dependence of
the inverse susceptibility shown in Figs. 4(a) and 4(b) suggests
that a large part of the renormalization group flow in the
level-1 truncation still “feels” the influence of an underlying
critical fixed point for these parameters. We therefore estimate
the critical temperature by the position of the associated max-
imum in the second derivative of the inverse susceptibility
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FIG. 4. Temperature dependence of the inverse spin susceptibil-
ity G−1(Q) and its second derivative in level-1 truncation. (a) Nearest
neighbor Heisenberg magnet, J1 �= 0, J2 = 0 = J3, for S = 1/2
(solid lines) and in the classical limit S → ∞ (dashed lines) [43],
calculated with the Litim deformation scheme (11). (b) J1 > 0, J2 =
0, J3/J1 = 0.8, and S = 1/2, calculated with the Litim deformation
scheme (11). (c) J1 > 0, J2/J1 = 0.6, J3/J1 = 0.25, and S = 1/2,
calculated with the interaction-switch deformation scheme (10).

with respect to temperature. In Table I, we have collected
the critical temperatures obtained in this manner, using both
deformation schemes discussed above, and compare them to
the accepted benchmark values from quantum Monte Carlo
simulations [16,45,46] and high-temperature expansions [44].
The overall agreement is rather good, with the largest devia-
tion for the S = 1/2 nearest-neighbor case, where the static
approximation does not distinguish between ferro- and anti-
ferromagnetic nearest-neighbor couplings.

Next, let us consider Fig. 4(c) in more detail. For J1 > 0,
J2/J1 = 0.6, and J3/J1 = 0.25, the classical ground states
with spaghetti order [Q = (0, π, π )] and lasagne order [Q =
(0, 0, π )] are degenerate at the mean-field level; see Figs. 1
and 3. For this specific set of parameters an older one-loop
pseudofermion FRG study [16] reported evidence for a param-
agnetic ground state, whereas a more sophisticated multiloop

TABLE I. Level-1 critical temperatures for the J1J3 model
with J2 = 0, extracted from the maximum of d2G−1(Q)/dT 2, both
with the interaction switch and the Litim deformation scheme,
Eqs. (10) and (11), respectively. For comparison, we also show
the accepted benchmark values from quantum Monte Carlo simu-
lations [16,45,46] and high-temperature expansions [44], as well as
the relative error of the level-1 results. Note that the Litim scheme
always predicts a lower Tc than the interaction switch.

Tc/T MF
c Rel. error/%

S J1 J3/J1 Switch Litim Benchmark Switch Litim

1/2 <0 0 0.651 0.568 0.559 16.5 1.6
1/2 >0 0 0.651 0.568 0.629 3.5 9.7
1 <0 0 0.726 0.668 0.650 11.7 2.8
1 >0 0 0.726 0.668 0.684 6.1 2.3
3/2 <0 0 0.745 0.695 0.685 8.8 1.5
3/2 >0 0 0.745 0.695 0.702 6.1 1.0
1/2 >0 0.2 0.746 0.701 0.722 3.3 2.9
1/2 >0 0.4 0.782 0.753 0.768 1.8 2.0
1/2 >0 0.6 0.800 0.776 0.794 0.8 2.3
1/2 >0 0.8 0.807 0.787 0.808 0.1 2.6
∞ �= 0 0 0.766 0.725 0.722 6.1 0.4

pseudofermion FRG [21] found that eventually the system
exhibits spaghetti order (striped AF) at low temperatures. As
our spin FRG results do not exhibit any kink as a function
of temperature for these parameters, our calculation suggests
a paramagnetic ground state, in agreement with the older
pseudofermion FRG results by Iqbal et al. [16].

We conclude that, at least for the three-dimensional J1J2J3

model on a cubic lattice, a simple static level-1 truncation of
the spin FRG flow equations (where the frequency depen-
dence of all vertices as well as the renormalization of the
four-point vertex are neglected) gives results for the critical
temperature of similar accuracy as the numerically more ex-
pensive multiloop pseudofermion FRG. On the other hand, the
fact that our static level-1 truncation of the spin FRG flow
equations does not reproduce the magnetic order found in a
recent multiloop pseudofermion FRG [21] in a regime where
classically the system exhibits degenerate ground states might
indicate that in this regime our level-1 truncation possibly
tends to overestimate the role of spin fluctuations.

B. Level-2 truncation

The absence of a sharp phase transition in the level-1 trun-
cation is due to the fact that within this truncation the flow of
the four-point vertex is neglected. As shown in Appendix B,
this leads to a runaway flow of the rescaled couplings. In
the parameter regime where the classical ground state is not
degenerate, it is however straightforward to recover a fixed
point within our spin FRG approach in a level-2 truncation
which takes the renormalization of the four-spin interaction
into account. Note that within the pseudofermion FRG the
four-spin interaction is encoded in the fermionic eight-point
vertex which is usually neglected [12–21]. On the other hand,
within the pseudo-Majorana FRG [24,25] the renormalization
of the four-spin interaction can at least partially be taken into
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account due to an operator identity relating products involving
different numbers of Majorana fermions [47,48].

The FRG flow equation for the momentum-dependent
static four-point vertex 	

(4)
� (k1, k2, k3, k4) that determines

the flow of the spin self-energy via Eq. (14) is given in
Appendix A. In practice, additional approximations are nec-
essary. For simplicity, let us focus here on nondegenerate
classical ground states. Then we can adopt the truncation
strategy of Ref. [26], where the critical temperature of the
three-dimensional Ising model has been obtained to an ac-
curacy of about 1% using a truncation where the momentum
dependence of the renormalized four-point vertex is neglected
and the six-point vertex is approximated by its initial value.
A similar truncation strategy for the Heisenberg model leads
to the following flow equation for the renormalized four-point
vertex 	

(4)
� (k1, k2, k3, k4) ≈ 5

6U�:

∂�U� = T

N

∑
q

Ġ�(q)

[
7

10
V0 − 11

3
U 2

�G�(q)

]
, (19)

where

V0 = T

(
10

b2
3

b7
1

− b5

b6
1

)
(20)

is the initial value of the longitudinal six-point vertex defined
in Appendix A. Here b1 and b3 are defined in Eqs. (6) and (17),
respectively, and

b5 = (2S + 1)6 − 1

252
(21)

is the fifth-order coefficient in the expansion (7) of the
Brillouin function. The corresponding flow of the static self-
energy is obtained by replacing U0 → U� in Eq. (18),

∂�
� = −5

6
U�

T

N

∑
q

∂�J�(q)

[J�(q) + 
�]2 . (22)

Our numerical results for the inverse susceptibility and
the four-point vertex U�=1 = U at the end of the flow are
displayed in Fig. 5 as a function of the dimensionless tem-
perature T/T MF

c . In contrast to the level-1 truncation, the
inverse susceptibility as well as the four-point vertex now
vanish at a critical temperature Tc, signaling a phase tran-
sition. We explicitly show in Appendix B how this phase
transition is governed by the Wilson-Fisher fixed point for the
nearest-neighbor Heisenberg magnet. The associated values
for Tc are listed in Table II. Note the striking agreement
with the accepted benchmark values, in particular for the
interaction-switch deformation scheme. In contrast, the ten-
dency of the Litim scheme to underestimate the value of Tc

even worsens compared to the level-1 results displayed in
Table I. A possible explanation for the better performance of
the interaction-switch deformation for the calculation of Tc is
that with this deformation scheme our truncation is pertur-
batively controlled in �|J (k)|/T , which is small as long as
the deformation parameter � is sufficiently small or the tem-
perature is large. Note furthermore that the interaction-switch
deformation does not modify the momentum dependence of
J�(k), in contrast to the Litim cutoff. We also remark that
the accuracy of the static truncation quickly increases with

FIG. 5. Level-2 temperature dependence of (a) the inverse spin
susceptibility G−1(Q) and (b) the four-point vertex U , for the
J1J3 model with J2 = 0 and the interaction-switch deformation
scheme (10).

increasing S, reflecting the decreasing relevance of dynamic
fluctuations in this case; see the following Sec. IV.

IV. INCLUDING DYNAMIC SPIN FLUCTUATIONS

While the static approximation of the previous Sec. III
already yields reasonable results for Tc for various quantum
magnets, it fails to distinguish between the nearest-neighbor
ferro- and antiferromagnets at finite S. To remedy this defi-
ciency, we include also dynamic fluctuations at finite frequen-
cies in this section. Within the hybrid approach developed

TABLE II. Same as Table I, but for the level-2 truncation where
there is a fixed point in the FRG flow.

Tc/T MF
c Rel. error/%

S J1 J3/J1 Switch Litim Benchmark Switch Litim

1/2 <0 0 0.578 0.525 0.559 3.4 6.1
1/2 >0 0 0.578 0.525 0.629 8.1 16.5
1 <0 0 0.672 0.625 0.650 3.4 3.8
1 >0 0 0.672 0.625 0.684 1.8 8.6
3/2 <0 0 0.701 0.658 0.685 2.3 3.9
3/2 >0 0 0.701 0.658 0.702 0.1 6.3
1/2 >0 0.2 0.712 0.676 0.722 1.4 6.4
1/2 >0 0.4 0.768 0.740 0.768 0.0 3.7
1/2 >0 0.6 0.795 0.771 0.794 0.1 2.9
1/2 >0 0.8 0.808 0.787 0.808 0.0 2.6
∞ �= 0 0 0.736 0.700 0.722 1.9 3.0
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FIG. 6. Graphical representation of the frequency-dependent terms on the right-hand side of the flow equations (24) (a) and (26) (b). A
directed wavy internal line represents the propagator F�(K ) at finite frequency. An additional slash means the associated single-scale propagator
Ḟ�(K ). The cross inside of each loop means that each propagator is successively replaced by the corresponding single-scale propagator.

in Ref. [30], such quantum fluctuations are described by
dynamic vertices involving at least one finite-frequency leg
associated with the auxiliary field η that represents the dy-
namic internal exchange field. To leading order, these vertices
can be approximated by their initial values describing the
dynamic correlations of an isolated spin. The leading dynamic
modification of the flow of the static spin self-energy is then
given by the diagram shown in Fig. 6(a), where the green
triangle represents the dynamic chiral three-point vertex [30],

	
zη−η+
0 (0,−ω,ω) = 1

iω
, ω �= 0, (23)

where the superscripts denote the type of external legs:
z represents a static fluctuation of the longitudinal mag-
netic field, while η+ = (ηx + iηy)/

√
2 and η− = (ηx −

iηy)/
√

2 represent the spherical components of the dy-
namic exchange field η. Note that in a Cartesian basis
this vertex is determined by the chiral on-site expecta-
tion value

∫ β

0 dτ3〈Sx
i (τ1)Sy

i (τ2)Sz
i (τ3)〉. For a nondegenerate

ground state, we should then evaluate the flow of the static
self-energy 
� and the static four-point vertex 	

(4)
� at the

ordering wave vector Q. In this case the flow equation (22)
for the static self-energy is replaced by

∂�
� = 5

6
U�

T

N

∑
q

Ġ�(q)

+ T

N

∑
ω �=0

∑
q

2

ω2
Ḟ�(q, iω)F�(q + Q, iω), (24)

where the dynamical propagator F�(K ) and its single-scale
counterpart Ḟ�(K ) are defined by

F�(K ) = − G−1
� (k)

1 + G−1
� (k)�̃�(K )

, (25a)

Ḟ�(K ) = − ∂�J�(k)

[1 + G−1
� (k)�̃�(K )]2

. (25b)

Here, �̃�(K ) is the irreducible dynamic spin suscep-
tibility [30]. Note that in the classical S → ∞ limit, the
contribution of dynamic spin fluctuations to the flow of 
�

vanishes as 1/S2 after appropriate rescaling [43]. Hence the
classical limit corresponds to the static truncation of the flow
equations, whereas the dynamical terms describe the effect of
quantum fluctuations at finite S.

For consistency, we should also take the effect of chiral
dynamic fluctuations in the flow of the four-point vertex into
account. Approximating the relevant higher-order dynamic
vertices by their initial values, we find that the flow equa-
tion (19) for the static four-point vertex is modified as follows:

∂�U� = T

N

∑
q

Ġ�(q)

[
7

10
V0 − 11

3
U 2

�G�(q)

]

+ T

N

∑
ω �=0

∑
q

Ḟ�(q, iω)	zzzzη−η+
0 (0, 0, 0, 0,−ω,ω)

− 4
T

N

∑
ω �=0

∑
q

2Ḟ�(q, iω)F�(q + Q, iω)

× 	
zzzη−η+
0 (0, 0, 0,−ω,ω)	zη−η+

0 (0,−ω,ω)

− 6
T

N

∑
ω �=0

∑
q

4Ḟ�(q, iω)F�(q, iω)F 2
�(q + Q, iω)

× [
	

zη−η+
0 (0,−ω,ω)

]4
. (26)

The frequency-dependent terms in Eq. (26) are shown di-
agrammatically in Fig. 6(b). As in Sec. III, there is no
momentum transfer in the static part of the flow because
Q ± Q is always a reciprocal lattice vector. For the explicit
evaluation of the flow equation (26) of the static four-point
vertex, we also need the initial values of the higher-order
dynamic vertices. As shown in Appendix C the relevant initial
values of the higher-order vertices are

	
zzzη−η+
0 (0, 0, 0,−ω,ω) = 6

β2b2
1(iω)3

, (27)

	
zzzzη−η+
0 (0, 0, 0, 0,−ω,ω) = −4[6b1 + b3(βω)2]

β3b4
1ω

4
. (28)

Also note that all four-point vertices with two legs at finite
frequency, e.g., 	

zzη−η+
� (0, 0,−ω,ω), are initially zero [30]
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and therefore diagrams containing them do not contribute to
the flow equations. To close the system of flow equations (24)
and (26), we still need an expression for the dynamic irre-
ducible susceptibility �̃�(K ). In principle, we can also write
down a flow equation for this function which has been derived
in Ref. [30]. In this work, we instead opt to use the leading
term in the high-temperature expansion,

�̃�(k, iω) = 2b2
1

T ω2

∫
q

J�(q)[J�(q) − J�(q + k)]

+ O
(
J3
�/T 4

)
, (29)

which, for instance, can be obtained by iterating the flow
of �̃�(k, iω) up to second order in J� [49]. Such a high-
temperature approximation is of course only valid for T 

|J�(q)|. As Tc ∼ |JQ|, we thus expect that this approximation
always breaks down in the vicinity of the phase transition.

However, the situation is not as bad as it seems because during
the flow we actually have to compare T with the deformed
exchange interaction J�(q). Since this deformed coupling
only gradually increases from zero to its physical value, the
high-temperature expansion is valid for most of the flow. Only
in the final stage of the flow, for � → 1, can corrections to
the high-temperature approximation (29) become important
for T ∼ Tc, which we neglect. In Appendix D, we discuss a
more sophisticated ansatz for �̃(K ) that is based on a solution
of the flow equation in the high-temperature limit [30].

An advantage of the high-temperature approximation (29)
is that we can use the calculus of residues to explicitly evaluate
all Matsubara sums in the flow equations (24) and (26). To that
end, we set

G−1
� (k)�̃�(k, iω) = �̃�(k)

(βω)2 . (30)

The flow equations (24) and (26) then reduce to

∂�
� = 5

6
U�

T

N

∑
q

Ġ�(q) + 2

NT

∑
q

∂�J�(q)

G�(q)
S1(�̃�(q), �̃�(q + Q)), (31a)

∂�U� = T

N

∑
q

Ġ�(q)

[
7

10
V0 − 11

3
U 2

�G�(q)

]
+ 4

NT

∑
q

[∂�J�(q)]

[
b3

b4
1

S2(�̃�(q)) + 6

b3
1

S3(�̃�(q))

]

− 48

NT b2
1

∑
q

∂�J�(q)

G�(q + Q)
S4(�̃�(q), �̃�(q + Q)) − 24

NT 3b4
1

∑
q

∂�J�(q)

G�(q)G2
�(q + Q)

S5(�̃�(q), �̃�(q + Q)). (31b)

The five distinct Matsubara sums appearing in this expression are for x, y � 0 given by

S1(x, y) =
∑
ω �=0

(βω)4

[(βω)2 + x]2[(βω)2 + y]

= 1

8(x − y)2 [2
√

x(x − 3y) coth
(√

x/2
) − x(x − y)csch2

(√
x/2

) + 4y3/2 coth (
√

y/2)], (32a)

S2(x) =
∑
ω �=0

(βω)2

[(βω)2 + x]2
=

√
x − sinh (

√
x)

4
√

x[1 − cosh (
√

x)]
, (32b)

S3(x) =
∑
ω �=0

1

[(βω)2 + x]2
= 2

√
x coth (

√
x/2) + x csch2(

√
x/2) − 8

8x2
, (32c)

S4(x, y) =
∑
ω �=0

(βω)2

[(βω)2 + x]2[(βω)2 + y]

= 1

8
√

x(x − y)2 [2(x + y) coth
(√

x/2
) + √

x(x − y)csch2
(√

x/2
) − 4

√
xy coth (

√
y/2)], (32d)

S5(x, y) =
∑
ω �=0

(βω)6

[(βω)2 + x]3[(βω)2 + y]2
= S4(x, y) + x

2
∂xS4(x, y) + y∂yS4(x, y) + xy

2
∂x∂yS4(x, y). (32e)

In Fig. 7 we show our numerical results for G−1(Q) as a
function of T/T MF

c for nearest-neighbor Heisenberg models
with spin S = 1/2 and S = 1 using the interaction-switch de-
formation scheme. We clearly observe a different effect of the
finite-frequency diagrams with momentum transfer Q = � =
(0, 0, 0) and Q = R = (π, π, π ): While for the ferromagnet
(J1 < 0) quantum fluctuations enhance the spin self-energy

and hence increase Tc, in the case of an antiferromagnet
(J1 > 0) these fluctuations reduce the spin self-energy and
thus lower Tc. This should be contrasted with the static trun-
cation of Sec. III, which could not distinguish between these
two cases.

The transition temperatures of various quantum spin mod-
els are collected and compared to their benchmark values
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FIG. 7. Temperature dependence of the inverse spin suscepti-
bility G−1(Q) including dynamic spin fluctuations, for quantum
Heisenberg models with only nearest-neighbor interaction J1 and
S = 1/2, 1, using the interaction-switch deformation scheme (10).

in Table III. We focus on the interaction-switch deformation
scheme in this section since it has proven more accurate in
the static truncation (Sec. III) and is numerically cheaper to
implement when finite momentum transfer is involved. We
note that for quantum magnets which order at finite Tc, our
spin FRG results have a similar or even higher accuracy than
the pseudofermion FRG [16,25], with far less numerical over-
head. At the same time, the spin FRG flow equations depend
only on correlation functions of the physical spins and there-
fore enable us to devise physically motivated approximation
schemes.

V. SUMMARY AND OUTLOOK

In this work we have used a particular implementation [30]
of the functional renormalization group approach to quantum
spin systems [26] to calculate the phase diagram and the
critical temperatures of the J1J2J3 quantum Heisenberg model
on a cubic lattice. Recently this model has been used as a
benchmark to test different implementations of the pseud-
ofermion FRG [21]. Within a rather simple static level-1

TABLE III. Same as Tables I and II, but including dynamical
(quantum) spin fluctuations. Note that we do not list the classical
magnet with S → ∞, because quantum fluctuations vanish in this
case. Hence it reduces to the static level-2 truncation discussed in
Sec. III B.

Tc/T MF
c Rel. error/%

S J1 J3/J1 Switch Benchmark Switch

1/2 <0 0 0.544 0.559 2.7
1/2 >0 0 0.638 0.629 1.4
1 <0 0 0.651 0.650 0.2
1 >0 0 0.696 0.684 1.8
3/2 <0 0 0.689 0.685 0.6
3/2 >0 0 0.714 0.702 1.7
1/2 >0 0.2 0.751 0.722 4.0
1/2 >0 0.4 0.798 0.768 3.9
1/2 >0 0.6 0.821 0.794 3.4
1/2 >0 0.8 0.834 0.808 3.2

truncation of the hierarchy of the spin FRG flow equations,
we have obtained the critical temperature with a similar ac-
curacy as the numerically more expensive pseudofermion
FRG for all values of the exchange couplings for which we
have found controlled benchmark values in the literature.
Furthermore, our spin FRG allows us to consider quantum
spin systems at arbitrary spin quantum number S � 1/2 with-
out any additional technical or numerical cost, unlike the
pseudofermion [17] or pseudo-Majorana [24] FRG implemen-
tations.

Away from the classical phase boundaries where the
ground states become degenerate, we have developed more
sophisticated truncations that include the flow of the four-
point vertex as well as dynamic (quantum) fluctuations to
obtain improved estimates for the critical temperature. A
comparison with available Monte Carlo and high-temperature
expansion results shows that our estimates for Tc deviate at
most by a few percent from the correct results. Moreover,
our spin FRG approach allows us to explicitly construct the
renormalization group fixed point which controls the critical
behavior in the vicinity of the magnetic phase transition.

In the parameter regime where classically the energies of
two or more ordered states are (almost) degenerate we ex-
pect that the momentum dependence of the spin self-energy
and of the effective four-spin interaction cannot be neglected.
In this context, the vertex expansion with momentum- and
frequency-dependent vertices should be contrasted with ap-
proximations based on the derivative expansion [5,7], such
as the local potential approximation. While the derivative ex-
pansion can nonperturbatively describe the field dependence
of the average effective action, it does not provide easily
accessible information about the momentum dependence of
vertices. Moreover, a possible nontrivial frequency depen-
dence of quantum vertices, which is expected to be crucial
for the formation of a quantum spin liquid in frustrated sys-
tems, is also not readily available within truncations based on
the derivative expansion. We therefore believe that a vertex
expansion which treats both the momentum and frequency
dependence of the vertices on equal footing and in an unbiased
manner is better suited for frustrated quantum spin systems
than the derivative expansion.

In order to go beyond the static level-1 truncation and
to reveal the renormalization group fixed points controlling
the critical behavior of such strongly frustrated systems, we
should divide the Brillouin zone into a large number of sectors
and solve the resulting system of coupled differential equa-
tions resulting from the discretization of the FRG flow equa-
tions for the spin self-energy and the effective interactions
given in Eqs. (14) and (A6). In such a highly frustrated pa-
rameter regime we expect that at low temperatures (T � |Ji|)
the additional dynamic diagrams will generate positive contri-
butions of order |Ji| to the spin self-energy and the four-point
vertex which stabilize a paramagnetic state. In fact, in three
dimensions and for small T/|Ji| the magnitude of all terms
containing only the bare three-point vertex may be estimated
as such, with all residual diagrams being of subleading order
in T/|Ji|. However, as we saw for the nonfrustrated antiferro-
magnet, a positive net sign of these terms is not guaranteed at
the relevant ordering vectors, so that the precise mechanism
which stabilizes a paramagnetic state at low temperatures
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remains somewhat intransparent in our approach. This also
suggests that a generic formula for the flowing dynamic spin
susceptibility �̃�(K ) like a high-frequency limit may not suf-
fice and that a more prudent ansatz or a proper flow equation
for the momentum and frequency dependence of �̃�(K ) is
required. The numerical solution of these equations is beyond
the scope of this work.

Our approach can also be used to study frustrated spin
systems in two dimensions. In this case, we expect that the
chiral dynamic spin fluctuations discussed in Sec. IV will play
an important role to destabilize magnetic order and possibly
lead to a spin-liquid phase at zero temperature. In fact, the
calculation of the spin dynamics using our spin FRG approach
is a challenging problem on its own because in this case the
proper implementation of conservation laws is essential. In
the high temperature limit (T 
 |Ji|) this problem has been
solved in Ref. [30] where the spin FRG has been used to derive
an integral equation for the dynamic spin susceptibility. The
feedback of the spin dynamics onto the thermodynamics of
frustrated magnets deserves further attention.
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APPENDIX A: FLOW EQUATIONS
IN STATIC APPROXIMATION

In this Appendix we give the spin FRG flow equations for
the irreducible vertices defined via the hybrid functional
	�[m, η] introduced in Sec. III in static approximation, where
the dynamical field η is set equal to zero. For a formal defini-
tion of the functional 	�[m, η] see Ref. [30]. Below we give
the flow equations for a general spin S Heisenberg model in a
magnetic field h with Hamiltonian

H = 1

2

∑
i j

Ji jSi · S j − h
∑

i

Sz
i . (A1)

To obtain the flow equations for the J1J2J3 Hamiltonian given
in Eq. (1) we should set h = 0 and specify the exchange
couplings Ji j . Since the external magnetic field breaks the
spin-rotational invariance, it is convenient to decompose the
magnetization field into a longitudinal component mz and into
two spherical transverse components m± = (mx ± imy)/

√
2.

In static approximation the vertex expansion of our deformed
hybrid functional is then [30]

	�[m, η = 0] = 	�[0, 0] + β

∫
k

{
[Jk + 
−+

� (k)]m−
−km+

k + 1

2!
[Jk + 
zz

� (k)]mz
−kmz

k

}

+ β

∫
k1

∫
k2

∫
k3

∫
k4

δ(k1 + k2 + k3 + k4)

{
1

(2!)2
	−−++

� (k1, k2, k3, k4)m−
k1

m−
k2

m+
k3

m+
k4

+ 1

2!
	−+zz

� (k1, k2, k3, k4)m−
k1

m+
k2

mz
k3

mz
k4

+ 1

4!
	zzzz

� (k1, k2, k3, k4)mz
k1

mz
k2

mz
k3

mz
k4

}

+ β

∫
k1

. . .

∫
k6

δ(k1 + · · · + k6)

{
1

(3!)2
	−−−+++

� (k1, k2, k3, k4, k5, k6)m−
k1

m−
k2

m−
k3

m+
k4

m+
k5

m+
k6

+ 1

(2!)3
	−−++zz

� (k1, k2, k3, k4, k5, k6)m−
k1

m−
k2

m+
k3

m+
k4

mz
k5

mz
k6

+ 1

4!
	−+zzzz

� (k1, k2, k3, k4, k5, k6)m−
k1

m+
k2

mz
k3

mz
k4

mz
k5

mz
k6

+ 1

6!
	zzzzzz

� (k1, k2, k3, k4, k5, k6)mz
k1

mz
k2

mz
k3

mz
k4

mz
k5

mz
k6

}
+ · · · (A2)

where
∫

k = 1
N

∑
k. Within this static truncation the transverse spin self-energy 
−+

� (k) satisfies

∂�
−+
� (k) = T

N

∑
q

[
Ġ+−

� (q)	−−++
� (−k,−q, q, k) + 1

2!
Ġzz

�(q)	−+zz
� (−k, k,−q, q)

]
, (A3)

while the flow of the longitudinal self-energy is

∂�
zz
� (k) = T

N

∑
q

[
Ġ+−

� (q)	−+zz
� (−q, q,−k, k) + 1

2!
Ġzz

�(q)	zzzz
� (−q, q,−k, k)

]
. (A4)

Graphical representation of the flow equations (A3) and (A4) are shown in Fig. 8. For vanishing magnetic field and in the absence
of a spontaneous magnetization, the longitudinal spin self-energy agrees with the transverse one, 
zz

� (k) = 
−+
� (k) = 
�(k), so

that Eqs. (A3) and (A4) both reduce to the flow equation (14) given in the main text. The relevant combinations of the four-point
vertices are given by

	
(4)
� (−q, q,−k, k) = 	−−++

� (−k,−q, q, k) + 1

2!
	−+zz

� (−k, k,−q, q) = 	−+zz
� (−q, q,−k, k) + 1

2!
	zzzz

� (−q, q,−k, k). (A5)
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The flow equations for the three types of static four-point vertices in an external magnetic field are shown graphically in
Fig. 9. Let us explicitly write down the flow equation for the longitudinal four-point vertex,

∂�	zzzz
� (k1, k2, k3, k4) = T

N

∑
q

[
Ġ+−

� (q)	−+zzzz
� (−q, q, k1, k2, k3, k4) + 1

2!
Ġzz

�(q)	zzzzzz
� (−q, q, k1, k2, k3, k4)

]

− T

N

∑
q

{
Ġzz

�(q)Gzz
�(q + k1 + k2)	zzzz

� (q,−q − k1 − k2, k1, k2)	zzzz
� (−q, q + k1 + k2, k3, k4)

+ (k2 ↔ k3) + (k2 ↔ k4)
}

− T

N

∑
q

{
[G+−

� (q)G+−
� (q + k1 + k2)]•	−+zz

� (q,−q − k1 − k2, k1, k2)	−+zz
� (−q, q + k1 + k2, k3, k4)

+ (k2 ↔ k3) + (k2 ↔ k4)
}
, (A6)

where we introduced the abbreviation

[G+−
� (q)G+−

� (q + k)]• = Ġ+−
� (q)G+−

� (q + k)

+ G+−
� (q)Ġ+−

� (q + k). (A7)

For h = 0, spin-rotational symmetry implies that for vanish-
ing external momenta, all four-point vertices can be expressed
in terms of a single scale-dependent coupling U� as follows:

	zzzz
� (0, 0, 0, 0) = U�, (A8a)

	−+zz
� (0, 0, 0, 0) = 1

3U�, (A8b)

	−−++
� (0, 0, 0, 0) = 2

3U�. (A8c)

Neglecting the momentum dependence of all vertices and
keeping in mind that for vanishing external magnetic field and
in the absence of spontaneous symmetry breaking G+−

� (k) =
Gzz

�(k) = G�(k), the flow equation (A6) for the longitudinal
four-point vertex reduces to

∂�U� = T

N

∑
q

Ġ�(q)

[
	−+zzzz

� (0) + 1

2
	zzzzzz

� (0)

]

− 11

3
U 2

�

T

N

∑
q

Ġ�(q)G�(q). (A9)

FIG. 8. Graphical representation of the flow equations (A3)
(a) and (A4) (b) for the static spin self-energies. Arrows indicate
transverse fluctuations +, −, a straight line represents a longitudinal
degree of freedom z, and a slashed internal line is a static single-scale
propagator Ġ�(q). The dots above the left-hand sides denote the scale
derivative.

Similarly, the flow equation for the transverse four-point ver-
tex shown in Fig. 9(b) reduces to

∂�U� = T

N

∑
q

Ġ�(q)
3

2

[
	−−−+++

� (0) + 1

2
	−−++zz

� (0)

]

− 11

3
U 2

�

T

N

∑
q

Ġ�(q)G�(q), (A10)

while the flow equation for the mixed four-point vertex in
Fig. 9(c) reduces to

∂�U� = T

N

∑
q

Ġ�(q)3

[
	−−++zz

� (0) + 1

2
	−+zzzz

� (0)

]

− 11

3
U 2

�

T

N

∑
q

Ġ�(q)G�(q). (A11)

Compatibility of Eqs. (A9), (A10), and (A11) implies that for
h = 0 the six-point vertices for vanishing momenta satisfy

	−+zzzz
� (0) + 1

2	zzzzzz
� (0)

= 3
2

[
	−−−+++

� (0) + 1
2	−−++zz

� (0)
]

= 3
[
	−−++zz

� (0) + 1
2	−+zzzz

� (0)
]
. (A12)

These are two independent relations between the four different
types of six-point vertices. Thus two of these vertices, for ex-
ample the mixed vertices 	−−++zz

� (0) and 	−+zzzz
� (0), can be

expressed in terms of the purely longitudinal vertex 	zzzzzz
� (0)

and the transverse vertex 	−−−+++
� (0). We obtain

	−−++zz
� (0) = 2

9	zzzzzz
� (0) − 2

9	−−−+++
� (0), (A13a)

	−+zzzz
� (0) = − 1

3	zzzzzz
� (0) + 4

3	−−−+++
� (0). (A13b)

The initial value of the purely longitudinal part of the six-point
vertex can be expressed in terms of the derivatives of the
Brillouin function as follows [49]:

	zzzzzz
0 (0) = T

(
−b5

b6
1

+ 10
b2

3

b7
1

)
≡ V0. (A14)

Using the generalized Wick theorem for spin operators de-
rived in Ref. [28], we find that the transverse connected
six-spin correlation function in a finite magnetic field h is for
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FIG. 9. Graphical representation of the flow equations for the four-point vertices (a) 	zzzz
� , (b) 	++−−

� , and and (c) 	+−zz
� in the static limit.

The notation is the same as in Figs. 6 and 8.

vanishing frequencies given by

G+++−−−
0 (0) = 6

h5
[3b(y) − 3yb′(y) + y2b′′(y)], (A15)

where y = βh. For h → 0 the term in the brackets vanishes
as y5, so that G+++−−−

0 (0) reduces to a finite constant in this
limit,

G+++−−−
0 (0) = 2

5 b5β
5, (A16)

where b5 is given in Eq. (21). Using the tree expansion [7]
that relates connected correlation functions to the irreducible
vertices, we then obtain

	−−−+++
0 (0) = T

(
−2

5

b5

b6
1

+ 4
b2

3

b7
1

)
= 2

5
	zzzzzz

0 (0) = 2

5
V0.

(A17)

Substituting our results (A14) and (A17) for the initial val-
ues of the longitudinal and transverse six-point vertices into
Eq. (A13) we obtain for the mixed six-point vertices at the
initial scale,

	−−++zz
0 (0) = 2

15V0, (A18)

	−+zzzz
0 (0) = 1

5V0. (A19)

The initial value of the combination of the six-point vertices
that appears in the flow equation (A9) of the four-point vertex

is therefore

	−+zzzz
0 (0) + 1

2
	zzzzzz

0 (0) = 7

10
V0 = 7T

b6
1

(
b2

3

b1
− b5

10

)
> 0.

(A20)

Note that relations between different types of n-point ver-
tices for vanishing momenta can be generalized for finite
momenta {ki} using spin-rotational invariance. As a con-
sequence we have only one independent combination of
spin components, for example, 	++−−

� (k1, k2, k3, k4) for the
four-legged vertex. Using this type of relations will become
important in the study of systems with frustrating interactions,
where the momentum dependence of the self-energy and the
four-point vertices cannot be neglected.

APPENDIX B: FIXED POINT

Any finite-temperature continuous phase transition in the
Heisenberg model can be associated with a critical fixed point
of the renormalization group. When the classical ground state
is not degenerate, we furthermore expect that the critical
fixed point can be identified with the usual Wilson-Fisher
fixed point. In this Appendix, we show how to recover
this fixed point from the static spin FRG within the level-2
truncation. To that end, we focus for simplicity on the nearest-
neighbor Heisenberg model, such that J2 = 0 = J3. In this
case JQ = Jmin = −Jmax = −2D|J1| in D dimensions, and it
is convenient to introduce dimensionless vertex functions as
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follows:

r� = 
�

2D|J1| − 1, u� = 5

6

U�T

(2D|J1|)2 , v0 = 7

6

V0T 2

(2D|J1|)3 .

(B1)

With the Litim deformation scheme (11), the level-2 flow
equations (22) and (19) then read

∂�r� = −u�I (�)

[
1

(1 + � + r�)2 − 1

(1 − � + r�)2

]
,

(B2a)

∂�u� = −1

2
v0I (�)

[
1

(1 + � + r�)2 − 1

(1 − � + r�)2

]

+ 22

5
u2

�I (�)

[
1

(1 + � + r�)3 − 1

(1 − � + r�)3

]
,

(B2b)

where

I (�) = 2D|J1|
∫ 1

�

dε ν(2D|J1|ε) = 1

N

∑
q

�(Jq − 2D|J1|�)

(B3)

counts the number of states between the band edge and the
deformation scale �. To investigate the existence of a fixed
point of the renormalization group flow, we approximate I (�)
by its asymptotic behavior for � → 1,

I (�) ∼ ID(1 − �)D/2, 1 − � � 1, (B4)

where

ID = KD

D
(2D)D/2 (B5)

and

KD = 1

2D−1πD/2	(D/2)
(B6)

is the surface area of the unit sphere divided by (2π )D. Setting
� = 1 − e−2l and defining the rescaled couplings

rl = e2l r�, ul = e(4−D)l u�, vl = e(6−2D)lv0, (B7)

we find that the flow equations (B2) are equivalent to the
following system of equations:

∂l rl = 2rl − 2ul ID

[
1

(2el − 1 + rl )
2 − 1

(1 + rl )2

]
, (B8a)

∂l ul = (4 − D)ul − vl ID

[
1

(2el − 1 + rl )
2 − 1

(1 + rl )2

]

+ 44

5
u2

l ID

[
1

(2el − 1 + rl )
3 − 1

(1 + rl )3

]
, (B8b)

∂lvl = (6 − 2D)vl . (B8c)

FIG. 10. Flow (B8) of the rescaled couplings for l → ∞ in
D = 3 dimensions, for S = 1/2 and temperature T = 0.2 TMF. The
black and red points denote the Gaussian and Wilson-Fisher fixed
points, respectively.

The first terms in the square brackets on the right-hand
sides of the above flow equations originate from the high-
energy modes at the upper band edge and vanish for
l → ∞. These terms do not affect the fixed point. The
resulting flow at l → ∞ is shown in Fig. 10, where
one clearly sees the Wilson-Fisher fixed point in addi-
tion to the Gaussian one. As expected, these equations are
equivalent to the one-loop RG flow equations for the cor-
responding φ4 model, belonging to the O(3)-universality
class [7].

From the flow equations (B8), we see that neglecting the
flow of the four-point vertex results in a runaway flow of the
rescaled coupling ul for D < 4. This is the reason why we
do not obtain a true fixed point in the level-1 truncation of
Sec. III A. On the other hand, for D = 3 the rescaled six-point
vertex vl is marginal and does not flow within our approxima-
tion, vl = v0, thereby justifying the level-2 truncation used in
Sec. III B. Note that the presence of a marginal coupling may
introduce additional fixed points besides the Wilson-Fisher
fixed point [50].

APPENDIX C: TIME-ORDERED CORRELATION
FUNCTIONS AND IRREDUCIBLE VERTICES

OF A SINGLE SPIN

In this Appendix we derive the irreducible mixed five-point
and six-point vertices of a single spin given in Eqs. (27)
and (28). Therefore, we first calculate the imaginary-time
ordered spin correlation functions and then construct the
corresponding irreducible vertices using the tree expansion.
In principle, all correlation functions of a single spin can
be obtained by means of the generalized Wick theorem for
spin operators [30,38]. In our case we only need correlation

174412-13



DMYTRO TARASEVYCH et al. PHYSICAL REVIEW B 106, 174412 (2022)

FIG. 11. Tree expansion of the mixed five-spin and six-spin correlation functions Gzzz+−
0 (0, 0, 0, ω,−ω) and Gzzzz+−

0 (0, 0, 0, 0, ω,−ω) in
terms of irreducible vertices.

functions of the type

G

n︷ ︸︸ ︷
z . . . z+−
0 (0, . . . , 0, ω,−ω)

involving n operators Sz at vanishing frequency and one op-
erator pair S+ and S− at finite frequencies. These correlation
functions can be obtained by taking n derivatives of the mag-
netic field dependent transverse two-point function

G+−
0 (ω,−ω) = b

h − iω
(C1)

with respect to the external magnetic field h using the recur-
sion relation [32]

G

n+1︷ ︸︸ ︷
zz . . . z+−
0 (0, 0, . . . , 0, ω,−ω)

= ∂

∂h
G

n︷ ︸︸ ︷
z . . . z+−
0 (0, . . . , 0, ω,−ω). (C2)

In particular,

Gz+−
0 (0, ω,−ω) = ∂

∂h
G+−

0 (ω,−ω)

= − b

(h − iω)2
+ βb′

h − iω
(C3)

and

Gzz+−
0 (0, 0, ω,−ω) = ∂

∂h
Gz+−

0 (0, ω,−ω)

= 2b

(h − iω)3
− 2βb′

(h − iω)2
+ β2b′′

h − iω
.

(C4)

Taking one more h derivative and then setting h = 0 we obtain
for vanishing magnetic field

Gzzz+−
0 (0, 0, 0, ω,−ω) = 6βb1

(−iω)3
+ β3b3

−iω

= − β

(iω)3
[6b1 − b3(βω)2]. (C5)

In this work we also need the mixed six-spin correlation
function, which is for h → 0 given by

Gzzzz+−
0 (0, 0, 0, 0, ω,−ω) = 4

iω
Gzzz+−

0 (0, 0, 0, ω,−ω)

= −4β

ω4
[6b1 − b3(βω)2]. (C6)

The corresponding irreducible vertices can be obtained
from the tree expansion of connected correlation functions in
terms of irreducible vertices [7]. For the relevant five-point
function in zero magnetic field the tree expansion is

Gzzz+−
0 (0, 0, 0, ω,−ω)

= −G3
0[	zzzη−η+

0 (0, 0, 0,−ω,ω)

− 	zzzz
0 (0, 0, 0, 0)G0	

zη−η+
0 (0,−ω,ω)], (C7)

where G0 = βb1 is the static spin susceptibility of an isolated
spin. A graphical representation of this relation is shown in
Fig. 11. Solving Eq. (C7) for the mixed five-point vertex, we
obtain

	
zzzη−η+
0 (0, 0, 0,−ω,ω)

= −G−3
0 Gzzz+−

0 (0, 0, 0, ω,−ω)

+ 	zzzz
0 (0, 0, 0, 0)G0	

zη−η+
0 (0,−ω,ω). (C8)

Next, we substitute our result given in Eq. (C5) for
Gzzz+−

0 (0, 0, 0, ω,−ω) and use

	zzzz
0 (0, 0, 0, 0) = − b3

βb4
1

(C9)

and

	
zη−η+
0 (0,−ω,ω) = 1

iω
. (C10)

Then we find that the two terms involving b3 cancel so that

	
zzzη−η+
0 (0, 0, 0,−ω,ω) = 6

β2b2
1(iω)3

, (C11)

which is Eq. (27) of the main text.
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Finally, consider the tree expansion of the initial value of
the mixed six-point vertex

Gzzzz+−
0 (0, 0, 0, 0, ω,−ω)

= −G4
0

[
	

zzzzη−η+
0 (0, 0, 0, 0,−ω,ω)

− 8	
zzzη−η+
0 (0, 0, 0,−ω,ω)Gη

0	
zη−η+
0 (0,−ω,ω)

]
,

(C12)

where Gη

0 = −G−1
0 . Solving for the mixed six-point vertex

yields

	
zzzzη−η+
0 (0, 0, 0, 0,−ω,ω)

= −G−4
0 Gzzzz+−

0 (0, 0, 0, 0, ω,−ω)

− 8G3
0	

zzzη−η+
0 (0, 0, 0,−ω,ω)	zη−η+

0 (0,−ω,ω).
(C13)

Substituting our result (C6) for Gzzzz+−
0 (0, 0, 0, 0, ω,−ω) as

well as Eqs. (27) and (C10) for the lower order vertices, we
obtain for the mixed six-point vertex

	
zzzzη−η+
0 (0, 0, 0, 0,−ω,ω) = 4[−6b1 − b3(βω)2]

β3b4
1ω

4
, (C14)

which is Eq. (28) of the main text.

APPENDIX D: INTEGRAL EQUATION
FOR THE DYNAMIC SUSCEPTIBILITY

In the main text, we have used the leading term (29) of
the high-temperature expansion to estimate the irreducible
dynamic spin susceptibility �̃�(K ). In this Appendix, we
explore a more sophisticated ansatz, given by

�̃(k, iω) = G(k)
�(k, iω)

|ω| , (D1)

where �(k, iω) is the dissipation energy introduced in
Ref. [30]. In the high-temperature limit the dissipation energy
satisfies the approximate integral equation [30]

�(k, iω) = 1

N

∑
q

V (k, q)

�(k, iω) + |ω| . (D2)

Here, the kernel is given by

V (k, q) = b1

4
[(Jq − Jq+k)2 + (Jq − Jq−k)2]

+ 2
2(q) − 
2(q + k) − 
2(q − k), (D3)

where


2(k) = 1

N

∑
q

(
JqJq+k

12
− 5

6

b3

b1
J2

q

)
(D4)

is the momentum-dependent part of the static spin self-energy
to leading order in a high-temperature expansion. The flowing
�̃�(k, iω) is then obtained by replacing the exchange cou-
pling by its deformed counterpart, Jk → J�(k). Compared to
the high-temperature approximation (29) used in the main
text, this ansatz implies a nontrivial frequency dependence
of �̃�(k, iω) that deviates from the ω−2 behavior for suffi-
ciently small ω. For instance, in three dimensions one finds
�̃�(k, iω) ∝ k2/|ω| implying spin diffusion [30]. Another

FIG. 12. Temperature dependence of the inverse spin susceptibil-
ity G−1(Q) using the integral equation (D2) to estimate the dynamic
spin susceptibility �̃�(K ). The plot is for Heisenberg models with
spin S = 1/2 and S = 1 and nearest neighbor interaction J1 using
the interaction-switch deformation scheme (10).

advantage of the ansatz (D1) is that it remains finite in the limit
T → 0 for any constant frequency. Thus it may prove useful
for the investigation of possible spin-liquid phases. However,
one should keep in mind that similar to the outright high-
temperature approximation (29), a high-temperature limit also
underlies the validity of the integral equation (D2) [30].
Therefore, we likewise expect it to break down at the end of
the flow for � → 1 in the regime T � |JQ|. A downside of
this ansatz is furthermore that the Matsubara sums in the flow
equations (24) and (26) can no longer be performed analyti-
cally. For the explicit numerical evaluation, we therefore used
a cutoff |ωmax| = 50πT beyond which all terms are neglected.
Convergence of the sums was confirmed by comparing with
results computed with twice that cutoff, |ωmax| = 100πT .

The inverse spin susceptibility G−1(Q) obtained with
the integral equation (D2) is displayed in Fig. 12 using
the interaction-switch deformation scheme to integrate the
flow equations. For simplicity we focus on nearest-neighbor
Heisenberg magnets with spin S = 1/2 and S = 1. The
respective critical temperatures and their relative deviations
from the benchmark values are shown in Table IV. Compared
to the result of Sec. IV that employed the high-temperature
approximation (29) for the dynamic spin susceptibility, the
results are quantitatively comparable. The only major devi-
ation is the S = 1/2 nearest-neighbor ferromagnet, where the
self-consistent ansatz (D1) actually performs worse.

TABLE IV. Same as Table III, but now the self-consistent ansatz
for �̃�(K ) based on the integral equation (D2) is employed. Values
are listed only for the cases shown in Fig. 12.

Tc/T MF
c Rel. error/%

S J1 J3/J1 Switch Benchmark Switch

1/2 <0 0 0.521 0.559 6.8
1/2 >0 0 0.640 0.629 1.7
1 <0 0 0.649 0.650 0.2
1 >0 0 0.697 0.684 1.9
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