
PHYSICAL REVIEW B 106, 174408 (2022)

Small-angle neutron scattering in the fully polarized phase of noncollinear magnets
with interfacial-like Dzyaloshinskii-Moriya interaction

Oleg I. Utesov
The Faculty of Physics of St. Petersburg State University, Ulyanovskaya 1, St. Petersburg 198504, Russia;

Petersburg Nuclear Physics Institute, Gatchina 188300, Russia;
and St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, St. Petersburg 190008, Russia

(Received 1 September 2022; revised 18 October 2022; accepted 24 October 2022; published 4 November 2022)

Spin waves in noncollinear magnets with Cnv symmetry are discussed in the context of inelastic neutron
scattering in small-angle scattering geometry. In the framework of a minimal model including exchange coupling,
Dzyaloshinskii-Moriya interaction (DMI), and single-ion anisotropy, we consider the system properties at
moderate external magnetic fields and in the high-field fully polarized phase. In the latter case, the magnon
spectrum is gapped and nonreciprocal due to DMI with the minimum perpendicular to the field direction for the
in-plane field and is ferromagneticlike for the field along the high-symmetry axis. Inelastic spin-wave small-angle
neutron scattering (SWSANS) in the fully polarized phase is considered in four different geometries. It is shown
that analysis of the field dependence of the SWSANS cutoff feature in these geometries allows determining
all important parameters of the model. The possibility of the proposed method utilization in thin films with
interfacial DMI is also discussed.
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I. INTRODUCTION

It is well known that Dzyaloshinskii-Moriya interaction
[1,2] (DMI) can lead to noncollinear magnetic structures
[1,3]. Despite many years passed since the first observa-
tion of helical structures in noncentrosymmetric magnets [4],
this type of compounds still attracts significant attention. In
particular, it is stimulated by their omnifarious phase dia-
grams, which include regions hosting topologically nontrivial
phases [5–7]. Moreover, isolated skyrmions and their ordered
arrays, skyrmion lattices (SkLs), have several promising tech-
nological applications [8]. These magnetic structures can also
be stabilized in layered nanostructures with interfacial DMI
(iDMI) [9,10].

In this context, the developing of characterization meth-
ods of skyrmion-hosting materials becomes more and more
demanded by material science and magnetism communities.
Recently, the inelastic small-angle neutron scattering (SANS)
on spin waves [11,12] called spin-wave small-angle neutron
scattering (SWSANS) was shown to be fruitful for vari-
ous chiral cubic helimagnets (e.g., MnSi) studies in fully
polarized by the external field phase [13–17]. Using this
method, important information about spin-wave dynamics can
be obtained. The latter is based on the theoretical prediction
by Kataoka [18]. In simple words, the SWSANS intensity
is distributed on a three-dimensional sphere, which results
in a circular spot when projected on a detector plane in
the experiment. The radius of the spot is related to spin-
wave stiffness and energy gap in the spectrum, whereas
the center corresponds to the spiral vector. Moreover, even
magnon damping can be studied using this technique, see
Refs. [17,19].

In another type of noncentrosymmetric systems, so-called
polar magnets, DMI favors cycloidal magnetic structures,
Néel skyrmions, and SkLs, which were indeed observed in
Refs. [20,21]. The same is also true for thin films with iDMI.
The symmetry of such systems is Cnv which is lower than the
cubic one. So, we can expect different inelastic SANS maps
with conventional B20 helimagnets pictures.

In the present research, we show that the SWSANS
technique can be also used for the characterization of the
compounds with interfacial-like DMI. Combining different
experimental geometries gives a possibility for a comprehen-
sive description of the system properties, such as spin-wave
stiffness constants for in- and out-of-plane directions, DMI
constant, and single-ion anisotropy. These parameters are
analytically connected with the SWSANS cutoff curves in
different azimuthal directions (not usually circles, in contrast
to the cubic helimagnets) in four various cases.

The rest of the paper is organized as follows. In Sec. II
we present the model under investigation. Its properties are
briefly summarized in Sec. III. Section IV addresses the
magnon spectrum in the fully polarized by external field
phase for the two cases of in-plane and perpendicular field.
Small-angle neutron scattering in the fully polarized phase
is discussed in Sec. V where four particular geometries
of the experiment are proposed and analyzed theoretically.
Section VI contains a discussion related to thin films and our
conclusions.

II. MODEL

We consider a spin Hamiltonian, which includes exchange
coupling, Dzyaloshinskii-Moriya interaction, single-ion
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FIG. 1. Scheme of the Dzyaloshinskii-Moriya interaction con-
sidered in the present paper. DMI is allowed on the xy plane
perpendicular to the high-symmetry z axis. Vectors of DMI interac-
tions with nearest neighbors for the central magnetic ion are shown
by the arrows. In the thin-film case, the xy plane is parallel to
interfaces, which breaks the inversion symmetry.

anisotropy, and Zeeman energy,

H = HEX + HDMI + HAN + HZ,

HEX = −1

2

∑
R,R′

JR−R′SR · SR′ ,

HDMI = 1

2

∑
R,R′

DR−R′ · [SR × SR′ ],

HAN = −K
∑

R

(
Sz

R

)2
,

HZ = −h ·
(∑

R

SR

)
. (1)

Here R enumerates all spins, which are arranged for definite-
ness in a simple tetragonal lattice with C4v symmetry. We
choose the z axis to be a high-symmetry direction. Accord-
ing to HAN, it is the easy axis for K > 0 and the hard one
for K < 0 (the easy plane case). In Zeeman term, we use
standard description of the magnetic field in energy units,
so h = −gμBH. DMI in the present system deserves more
detailed discussion. In general, Cnv symmetry allows for the
following Lifshitz invariant in energy density [5] (M is the
magnetization),

W = γ

[
Mz

∂Mx

∂x
− Mx

∂Mz

∂x
+ Mz

∂My

∂y
− My

∂Mz

∂y

]
. (2)

Microscopically, this form can be reproduced by the scheme
shown in Fig. 1. Note, that this type of DMI is relevant
to interfacial DMI, which arises due to symmetry breaking
on the boundary between the magnetic material and another
material [9] (usually, heavy metal with large spin-orbit cou-
pling). We also would like to point out that in our model we
neglect magnetodipolar interaction, which can be important
in multilayered systems with iDMI and can lead to a hybrid
Bloch/Néel-type helicoids [22]. However, we focus on the
effect of the iDMI on SWSANS spectra where the dipolar
forces are expected to play a minor role.

The subsequent discussion is much easier in the reciprocal
space, so we introduce the Fourier transform on the lattice,

SR = 1√
N

∑
q

Sqeiq·R, (3)

where N is the number of lattice sites. Then, the counterparts
of various interactions in the Hamiltonian (1) read

HEX = −1

2

∑
q

JqSq · S−q,

HDMI = 1

2

∑
q

Dq · [Sq × S−q],

HAN = −K
∑

q

Sz
qSz

−q,

HZ = −
√

Nh · S0. (4)

Below we assume that the exchange is ferromagnetic, and for
small q, it can be expanded as follows:

Jq ≈ J0 − A⊥
(
q2

x + q2
y

)
S

− A‖q2
z

S
. (5)

Here A⊥ and A‖ are corresponding spin-wave stiffnesses.
Note also that in long-wavelength limit symmetry-allowed
anisotropic exchange terms with sufficient accuracy can
be mimicked by the single-ion anisotropy. However, the
anisotropic exchange can be responsible for some fine ef-
fects, e.g., the modulation vector modulus dependence on the
spin structure orientation. It was directly shown in FeGe in
Ref. [23].

The Fourier transform of DMI in the nearest-neighbors
approximation is given by

Dq = −iD
∑

b

sin q · b[ẑ × b] ≈ −iD
∑

b

q · b[ẑ × b], (6)

where b stands for all the bonds with nearest neighbors of a
certain spin, see Fig. 1. This formula can be further simplified
using the property (α and β stand for vector components
x, y, z), ∑

b

bαbβ = 2δαβ. (7)

So, in the case of a tetragonal lattice, we have Eq. (6) in the
form

Dq = −2iD[ẑ × q]. (8)

Note that for a hexagonal lattice, it also holds but with a
factor of 3 instead of 2, so the discussion above can be easily
applied in this case too. Evidently, the Fourier transform of
DMI is lying on the xy plane and is perpendicular to the
corresponding momentum.

III. MODERATE FIELDS

We start our analysis of the above model from the case
of relatively small fields where at T = 0 noncollinear spin
structures (cycloids or Néel skyrmions) are possible. Here we
neglect the single-ion anisotropy term in Hamiltonian (1) (it
can provide higher harmonics or even destroy noncollinear
structures [24] if it is strong enough). For the description of
single-modulated structures, we use the Kaplan helix repre-
sentation [25],

SR = S(Aeik·R + A∗e−ik·R ) cos α + Sĉ sin α. (9)
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Here α is the cone angle, A = (â − ib̂)/2, A∗ = (â + ib̂)/2,
â, b̂, ĉ is some orthogonal basis. Well-known particular
cases are a screw spiral with modulation vector k ‖ ĉ and
a cycloid with k ⊥ ĉ. Useful properties for calculations
are the following: A2 = 0, A · A∗ = 1/2, ĉ × A = iA, A ×
A∗ = iĉ/2. From Eq. (9), one can deduce

Sk =
√

NSA cos α,

S−k =
√

NSA∗ cos α,

S0 =
√

NSĉ sin α. (10)

All the harmonics with other q’s are zero. Plugging these
formulas into Hamiltonian (4), one can calculate the spin
structure energy per one spin,

E = −S2

2
(Jk cos2 α + J0 sin2 α) − iS2

2
Dk · ĉ cos2 α

− Sh · ĉ sin α. (11)

For small k we can rewrite it using Eqs. (5) and (8) as follows:

E = −S2

2
J0 + S(A⊥k2

⊥ + A‖k2
‖ ) cos2 α

2

−S2Dĉ · [k × ẑ] cos2 α − Sh · ĉ sin α. (12)

Here we divide the modulation vector into two parts, k‖ is
along the z axis and k⊥ lies on the xy plane. Evidently, minimal
E requires k‖ = 0. For in-plane magnetic fields we have ĉ
along h and k along Dẑ × h (its direction is dependent on the
sign of D). So, in general, the solution is the conical cycloid,
which energy (12) can be rewritten as

E = −S2

2
J0 + S cos2 α

2
(Ak2

⊥ − 2Dk⊥) − Sh sin α. (13)

Its minimization with respect to α and k⊥ yields

k⊥ = SD

A⊥
≡ k, (14)

sin α = h

hC2
, h � hC2, (15)

hC2 = A⊥k2. (16)

At fields h � hC2 the system is in the fully polarized phase.
Notation C2 is related to the fact that at very small fields in-
plane anisotropy and higher order in q terms in Eq. (6) play an
important role in the cycloid orientation determination [26],
and the regime ĉ ‖ h is correct for moderate fields h > hC1

only. The field hC1 accurate description requires accounting
for symmetry-allowed in-plane anisotropy (e.g., quadratic or
hexagonal) and the anisotropic exchange, which deserves a
separate study.

In the case of iDMI (e.g., a thin film of a ferromagnet
with neighboring nonmagnetic materials), the equations above
should be modified. Let us consider a system with M layers
of magnetic material and two interfaces with DMI constants
D1 and D2. Due to the opposite directions of perpendicular to
interfaces vectors, the effective DMI reads

Deff = D1 − D2

M
. (17)

which should be used in the energy function (11).

All the layers feel the exchange stiffness and the external
field, but the DMI is only on the interfaces. Then, the param-
eters of the cycloid solution alter according to the following
formulas:

k = SDeff

A⊥
, (18)

sin α = h

hC2
, h < hC2, (19)

hC2 = A⊥k2 = S2D2
eff

A⊥
. (20)

We see that they are identical to the bulk ones (14), (15), and
(16) upon the substitution D → Deff .

IV. FULLY POLARIZED PHASE

A. In-plane field

Here we consider the spin-wave spectrum in a relatively
large in-plane external field h � hC2. We neglect small in-
plane anisotropic terms, so the result is independent of the
magnetic-field orientation on the xy plane. We choose the
x axis along h and use the following approximate Holstein-
Primakoff spin operators representation [27]:

Sx
R = S − a†

RaR,

Sy
R =

√
S

2
(a†

R + aR ), (21)

Sz
R = i

√
S

2
(a†

R − aR ). (22)

The Fourier transform of magnon creation-annihilation oper-
ators reads [cf. Eq. (3)]

aR = 1√
N

∑
q

aqeiq·R, a†
R = 1√

N

∑
q

a†
qe−iq·R. (23)

Using these formulas, we obtain spin operator components in
reciprocal space in the form

Sx
q =

√
NSδq,0 − 1√

N

∑
p

a†
pap+q,

Sy
q =

√
S

2
(a†

−q + aq),

Sz
q = i

√
S

2
(a†

−q − aq). (24)

Next, one can calculate bilinear in Bose-operators part of
Hamiltonian (4), which reads

H(2)
EX = S

∑
q

(J0 − Jq)a†
qaq,

H(2)
DMI = −2SD

∑
q

qya†
qaq,

H(2)
AN = −SK

∑
q

(
a†

qaq + aqa−q + a†
qa†

−q

2

)
,

H(2)
Z = h

∑
q

a†
qaq. (25)
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So, without contribution from the anisotropy, the result is very
simple

H(2) =
∑

q

[S(J0 − Jq) − 2SDqy + h]a†
qaq

≡
∑

q

εqa†
qaq, (26)

where εq is the magnon energy. For small q it can be further
simplified,

εq = A⊥
[
q2

x + (qy − k)2
] + A‖q2

z + h − hC2 ⇐⇒
εq = A⊥(q⊥ − k)2 + A‖q2

z + �. (27)

This result can be compared with the one by Kataoka for B20
helimagnets [18]. The similarity is that the gap � = h − hC2

and the spectrum is nonreciprocal (εq �= ε−q) due to DMI.
However, the spectrum minimum lies perpendicular to h di-
rection (along k—the cycloid modulation vector).

B. The role of magnetic anisotropy in the spin-wave spectrum

Taking into account the H(2)
AN term in Eq. (25), we obtain

the bilinear part of the Hamiltonian for small q in the follow-
ing form [cf. Eq. (26)]:

H(2) =
∑

q

(
Eqa†

qaq + Bq
aqa−q + a†

qa†
−q

2

)
,

Eq = A⊥[q2
x + (qy − k)2] + A‖q2

z + h − hC2 − SK,

Bq = −SK. (28)

Then, the Bogoliubov transformation [27] can be used to
obtain the magnon spectrum,

ε′
q =

√
E2

q − B2
q = √

(εq − 2SK )εq, (29)

where εq is the spectrum without the anisotropy (27). First, we
see, that the anisotropy renormalizes the critical field which is
now given by h′

C2 = A⊥k2 + 2SK . Second, for εq  S|K| (q
is not very close to k or the magnetic field is not very close to
hC2) we obtain

ε′
q ≈ εq − SK, (30)

which can be considered as an effective gap renormalization
� → � − SK .

It is pertinent to note that similar effects can be a conse-
quence of the magnetodipolar interaction. Moreover, strong
(in the units of the characteristic cycloid energy A⊥k2)
anisotropy or dipolar forces can significantly change the spec-
trum making it linear in some range of q. In order to use the
SWSANS technique discussed in Sec. V, spin-wave energy
near the cutoff momenta should be much larger than the
anisotropic interaction energies [in this case, the expansion
(30) of Eq. (29) is correct].

C. Perpendicular field h ‖ ẑ

It is also useful to consider the spectrum of the fully po-
larized phase in the magnetic field along ẑ. In this case, in
spin operators quantization rules (24) one should make the fol-
lowing substitutions x → z, y → x, z → y. It is easy to see

that after these substitutions, DMI includes only terms with
an odd number of Bose operators because the cross product
always includes the Sz component [see Eqs. (4), (8), and (24)].
Moreover, linear terms vanish because D0 = 0. So, in the
linear spin-wave theory DMI does not influence the magnon
spectrum. However, in contrast with usual ferromagnets, there
will be some quantum corrections to the spectrum even at
T = 0 due to DMI.

Next, the contribution from the single-ion anisotropy reads

H(2)
AN = 2SK

∑
q

a†
qaq, (31)

which along with terms from exchange coupling and Zeeman
term [see Eq. (25)] gives the magnon spectrum,

εq = A⊥q2
⊥ + A‖q2

z + h + 2SK

≡ A⊥q2
⊥ + A‖q2

z + �′. (32)

It indicates that even at h = 0 the perpendicular collinear
phase can be observed as metastable for the easy axis
anisotropy, whereas on the easy plane case one needs h �
2S|K|. We denote the gap here as �′ to avoid confusion with
the different one for the in-plane field (�), see Eq. (27).

To conclude this section, we would like to point out that
in the case of structures with iDMI, the Fourier transform
along the z axis can become incorrect. For instance, in a single
thin film of magnetic material, A‖ and qz become meaningless
quantities. So, in Eqs. (27), (30), and (32) the contribution
A‖q2

z should be omitted. Instead, due to the size quantization
effect, some correction to � can be expected, which should
essentially depend on the boundary conditions.

V. SMALL-ANGLE NEUTRON SCATTERING
IN THE FULLY POLARIZED PHASE

Here we discuss how inelastic small-angle neutron scat-
tering on magnons can be used to obtain the corresponding
material parameters from the experiment. In particular, we
derive expressions for the so-called cutoff angle in four var-
ious experimental geometries. Note that the equations below
are written for unpolarized neutrons; however, generalization
to the polarized case is straightforward [28]. The latter can
be important to pinpoint magnetic scattering [11,12]. We also
would like to point out that the sign of D can be only deter-
mined with the polarized neutrons [29,30].

So, in our case, we use the following equation for neutron
scattering cross section (see, e.g., Ref. [28]):

σ (ω, Q) = 1

π

k f

ki

[
1 − exp

(
−ω

T

)]−1
r2|Fm|2

× Im χ
(S)
αβ (ω, Q)(δαβ − Q̂αQ̂β ). (33)

Here ki(k f ) is the incident (scattered) neutron momentum, ω

and Q are transferred energy and momentum, respectively, r
is the classical electron radius, Fm is the magnetic form factor
of the ions, and χ (S) is the symmetric part of magnetic suscep-
tibility. The latter in our case reads (diagonal components of
the transverse susceptibility)

Im χ⊥(ω, Q) = π〈S〉
2

[δ(ω − εQ) − δ(ω + ε−Q)], (34)
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where the terms in brackets correspond to emission and ab-
sorbtion of magnons and 〈S〉 is thermodynamical average of
the spin.

Next, as in Ref. [13], we consider the case ω � T and
replace [1 − exp (−ω/T )]−1 by T/ω in Eq. (33). Moreover,
k f ≈ ki because the momentum transfer is small. Finally, in
the SWSANS experiments, one should average the cross sec-
tion over ω, so we obtain

σ (Q) ∝ 〈S〉T
∫

dω

ω

(
1 + Q̂ · h

h

)
×[δ(ω − εQ) − δ(ω + ε−Q)]. (35)

Here we explicitly use the fact that the sample is magne-
tized along the field. Particular scattering and magnetic-field
geometries are considered separately below. In the obtained
results, three dimensionless parameters are important,

a = A‖
A⊥

, (36)

θ0 = Ei

A‖k2
i

, (37)

θB = k

ki
. (38)

The first one measures the stiffness anisotropy, the second is
the ratio of the incident neutron energy to the certain char-
acteristic magnetic energy, and the third one is the so-called
Bragg angle, indicating the position of the scattering peak
from an incommensurate order on the detector plane.

The findings of the subsections below are summarized in
Fig. 2. Here it is pertinent to note that in cubic helimagnets
with DMI of the bulk type, one cannot observe ferromag-
neticlike scattering patterns shown in Figs. 2(a) and 2(b).
Moreover, the corresponding SWSANS maps are always cir-
cles due to the cubic symmetry, which are shifted along the
magnetic field [13], not perpendicular to the field direction as
for systems with interfacial-like DMI [see Figs. 2(c) and 2(d)].

A. Scattering in the xy plane, h ‖ ẑ

In this case, the transferred momentum can be written in
the following way:

Q = ki

(
θx, θy,

ω

2Ei

)
, (39)

where Ei is the energy of the incident neutron. Under condi-
tions of the SANS experiment, Q � ki and θx, θy measure a
point in a detector (scattering angles).

Next, δ functions in Eq. (35) determine the so-called cutoff
on the detector plane at which the cross section diverges (in an
integrable way) and after which the signal is zero (however,
it lasts beyond the cutoff due to finite magnon lifetime, see
Ref. [17] for the corresponding theory). The cutoff can be
obtained by considering solutions of equation ω = εQ with
respect to ω (equation ω + ε−Q = 0 yields the same physics).
It is convenient to rewrite this equation using the variable
t = ω/2Ei, which after some transformations [we use the
spectrum (32)] reads

t2 − 2θ0t + �′

A‖k2
i

+ θ2
x + θ2

y

a
= 0. (40)

FIG. 2. Sketches of SWSANS maps in four different geometries.
Stiffness anisotropy parameter a = 0.64 [see Eq. (36)] is used. In the
case of H ‖ ẑ [(a) and (b), perpendicular field] the magnon spectrum
is reciprocal and the scattering is ferromagneticlike. Moreover, in
panel (b) ellipticity of the cutoff angle related to a is pronounced.
When H ‖ x̂ (in-plane field) the magnon spectrum is nonreciprocal,
and the SANS signals are centered at the Bragg angles [(c) and (d)].
For the scattering in the yz plane, the ellipticity is also visible. In the
case of polarized neutrons, in panels (c) and (d) contributions cen-
tered at ±θB have unequal intensities; the difference being ∝Q2

x/Q2,
which can be used to determine the sign of D.

So, in this case, the standard ferromagneticlike picture arises:
the scattering is located in a circle centered at (θx, θy) = 0 and
bounded by the cutoff satisfying the condition,

θ2
C

a
= θ2

0 − �′

A‖k2
i

. (41)

Under the magnetic-field growth, θ2
C linearly decreases (gen-

eral property for all geometries considered in the present
paper), which can be used for the experimental data interpre-
tation.

In Eq. (35) the following substitution should be performed:

1 + Q̂ · h
h

→ 1 + (ω/2Ei )2

θ2
x + θ2

y + (ω/2Ei )2
. (42)

Importantly, one can see that it is isotropic on the θxθy plane.

B. Scattering in the xz plane, h ‖ ẑ

In this case, we have [cf. Eq. (39)]

Q = ki

(
θx,

ω

2Ei
, θz

)
, (43)

Equation ω = εQ is equivalent to

t2 − 2aθ0t + �′

A⊥k2
i

+ θ2
x + aθ2

z = 0. (44)
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So, the cutoff line on the θxθz plane here is an ellipse. Explic-
itly,

θ2
x + aθ2

z = a2θ2
0 − �′

A⊥k2
i

. (45)

Importantly, the ratio of this ellipse, semi-axes can be di-
rectly used for the parameter a determination. Furthermore,
the cross-section (35) acquires weak angular dependence,

1 + Q̂ · h
h

→ 1 + θ2
z

θ2
x + (ω/2Ei )2 + θ2

z

. (46)

C. Scattering in the xy plane, h ‖ x̂

In this case, the magnon spectrum becomes nonreciprocal
[see Eq. (27)]. So, the scattering patterns from ω = εQ and
from ω + ε−Q = 0 are centered in (0, θB) and (0,−θB), re-
spectively, for the magnetic field along the x axis. The result is
a superposition of these two contributions, which can overlap.
For brevity, below we consider the contribution from ω = εQ
only; its counterpart can be obtained in a straightforward way.

In this geometry we have

Q = ki

(
θx, θy,

ω

2Ei

)
, (47)

however, the spectrum is given by Eq. (27) or by Eq. (30) if
the single-ion anisotropy contribution is taken into account. It
is convenient to use

θrel =
√

θ2
x + (θy − θB)2, (48)

which is the distance with respect to the Bragg angle on the
detector plane. After some calculation we have the following
equation for t :

t2 − 2θ0t + �

A‖k2
i

+ θ2
rel

a
= 0. (49)

Hence, the cutoff is given by

θ2
relC

a
= θ2

0 − �

A‖k2
i

. (50)

In the cross-section (35) the angle-dependent factor emerges
from 1 + Q̂ · h/h under the integration,

1 + θ2
x

θ2
x + θ2

y + (ω/2Ei )2
. (51)

D. Scattering in the yz plane, h ‖ x̂

Here the transferred momentum is

Q = ki

( ω

2Ei
, θy, θz

)
. (52)

The energy conservation law leads to

t2 − 2aθ0t + �

A⊥k2
i

+ (θy − θB)2 + aθ2
z = 0. (53)

So, the cutoff line is the ellipse centered in (0, θB) and satis-
fying the following equation:

(θy − θB)2 + aθ2
z = a2θ2

0 − �

A⊥k2
i

. (54)

In this case, in Eq. (35) the following substitution is in order:

1 + Q̂ · h
h

→ 1 + (ω/2Ei )2

θ2
y + θ2

z + (ω/2Ei )2
. (55)

E. Connection with real compounds

As an example for some estimations, we take the VOSe2O5

compoundwhere experimentally HC2 ≈ 100 Oe (thus, hC2 ≈
0.001 meV) and k ≈ 0.046 nm−1 (see Ref. [21]). Assum-
ing utilization of neutrons with λ = 10 Å (their energy is
≈0.8 meV) and using the equations above, one can obtain
the following parameters:

θB ≈ 0.007, θ0 ≈ 0.042. (56)

So, when H is close to HC2 the contributions from negative
and positive frequencies ω will overlap [in contrast to sketches
shown in Figs. 2(c) and 2(d)], however, the Bragg angle and
the cutoff curves should be resolvable. Note that the magnon
energy at the cutoff is essentially larger than rather small en-
ergy hC2 (approximately by two orders of magnitude) because
θ0  θB, which justifies utilization of the spectrum derived in
Sec. IV.

In the thin-film case in order to make some estimations, we
take parameters of the system modeled in Ref. [31]. The mod-
ulation vector k ≈ 0.04 nm−1 and the characteristic cycloid
energy A⊥k2 ≈ 0.007 meV. So, one has

θB ≈ 0.006, θ0 ≈ 0.0045. (57)

We conclude that for these parameters, scattering maps should
look such as the one shown in Fig. 2(c) (in that particular
scattering geometry) with well-separated contributions.

Finally, we would like to point out that if the dipolar
interaction or single-ion anisotropy is significant for relevant
magnon momenta (near the cutoff) that is developed in the
present paper approach is inapplicable or applicable only on a
semiquantitative level [see also text after Eq. (30)].

VI. DISCUSSION AND CONCLUSIONS

For thin-film characterization, various methods are usually
used (see Ref. [32] and references therein). As it follows
from the theoretical considerations, their properties in the
fully polarized phase should be almost the same with bulk
systems with the difference that the effective DMI should
be used. However, the problem of weak signals in SWSANS
measurements is expected to be crucial. Presumably, it can be
overcome by stacking these layers with metallic spacers to in-
crease scattering volume or using some off-specular scattering
in reflective geometry (see, e.g., Refs. [33–35]).

Another obstacle in the thin-film case can be a possible
breakdown of the parallel to high-symmetry axis spin-wave
stiffness A‖ and the corresponding momentum qz notation.
For example, in a single film case, magnon states size-
quantization effect can become important. In this case, one
would have (cf. Subsec. V D) transferred momentum in the
form of Eq. (52) and the following energy conservation law:

t2 − 2θ ′
0t + �

A⊥k2
i

+ (θy − θB)2 = 0, (58)
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where θ ′
0 = Ei/A⊥k2

i and the gap � can possibly acquire some
additional contribution due to the size quantization effect.
This equation determines the cutoff along the θy axis on the
detector plane,

|θy − θB|C =
√

(θ ′
0)2 − �

A⊥k2
i

. (59)

At the same time, the signal θz -dependence is expected to
have power-law decaying tails with the characteristic scale
θzC ∼ 1/(kid )2, where d is the magnetic film thickness.

To conclude, inelastic small-angle neutron scattering on
magnons in the fully polarized phase (SWSANS) is pro-
posed as a tool for the determination of various parameters
of ferromagnets with interfacial-like DMI, namely, spin-wave
stiffness along and perpendicular to the high-symmetry axis,
constant in DMI, and single-ion anisotropy. The method re-
lies on the cutoff feature of SWSANS maps. The latter is
theoretically connected with the system parameters in four
various experimental geometries. We show that elliptical scat-
tering patterns can be observed and the ratio between the
corresponding semi-axes yields the ratio between spin-wave

stiffnesses. Furthermore, for the in-plane field, scattering pat-
terns are centered at the so-called Bragg angle, which is
straightly related to DMI magnitude. Finally, variation of the
external magnetic field allows quantifying all the parameters
listed above as well as the single-ion anisotropy.

Important differences with conventional SWSANS maps
in cubic helimagnets can be summarized as follows. (i) In
polar magnets, three various types of scattering patterns are
predicted, namely, ferromagneticlike, circular, and elliptical,
whereas in cubic systems only circular ones can be observed.
(ii) The in-plane magnetic field shifts the signal in the perpen-
dicular direction, not along the field as in cubic helimagnets.
(iii) The out-of-plane field does not produce any shift at all,
and the scattering is ferromagneticlike.
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