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Heat-conserving three-temperature model for ultrafast demagnetization in nickel
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Multireservoir models are widely used for modeling and interpreting ultrafast magnetization dynamics.
Here we introduce an alternative formulation to existing three-temperature models for the treatment of spin,
electron, and lattice temperatures in magnetization dynamics simulations. In contrast to most existing models
of calculations of energy transfer between reservoirs in these types of simulations, the heat distribution of the
spin and lattice subsystems is evaluated during the simulation instead of being calculated a priori. The model is
applied to investigate the demagnetization and remagnetization of fcc Ni, when subjected to a strong laser pulse.
In particular, our model results in a fast interplay between the electron and spin subsystems which reproduces the
main features of experimental data for fcc Ni significantly better than most reported three-temperature models.
We also show that the way in which the electron, spin, and lattice heat capacities are described can have a
significant impact on the simulated ultrafast dynamics. By introducing spin-lattice couplings in the simulation,
it is shown that these explicit interactions only have a marginal impact on the magnetization dynamics of fcc Ni,
albeit it is more pronounced for higher laser pulse powers.
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I. INTRODUCTION

Ultrafast control of magnetism is an intense research field,
with reports on switching times in the subpicosecond regime.
The pioneering work by Beaurepaire et al. [1] demonstrated
dynamics on a picosecond time scale. The experiment re-
ported in Ref. [1] used a high-intensity laser pulse to pump
a nickel sample, and after a time delay a second laser pulse
was used to probe its magnetic state, via the magneto-optical
effect. To describe ultrafast dynamical processes in such ex-
periments, a so-called two- [2,3] or three-temperature model
(3TM) [1,4] has often been used as well as the more recently
proposed microscopic 3TM [5] and modified two-temperature
model (s-TTM) [3]. The two-temperature model is often
applied for a description of nonmagnetic systems, by con-
sidering the lattice and the electrons as two coupled heat
baths. For magnetic systems, it is important to also take into
account the spin reservoir. Therefore, various modifications of
the two-temperature model have been proposed; for example,
s-TTM assumes a common temperature for the electronic and
magnetic systems. In s-TTM, it is assumed that the electron
and spin systems are coupled in an energy-conserving way. In
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this model, the spin temperature is first calculated using atom-
istic spin dynamics simulations and then subtracted from the
electron one. Direct spin-lattice coupling (SLC) is not taken
into account. This modified two-temperature model seems to
capture the main features of energy transfer between the spin
and lattice subsystems. Another model often applied for the
description of ultrafast processes of magnetic materials is a
three-temperature model, where atomic spin moments, ions,
and electrons each have their own temperature/heat reservoir
and heat is allowed to flow between reservoirs via coupled
differential equations. This model is used either to analyze
a particular experimental result, e.g., as done in Ref. [1], or
as a key ingredient in atomistic simulations of magnetization
dynamics [6,7].

In addition to the aforementioned two-temperature model
and 3TM, many other models have been proposed to explain
the underlying mechanisms governing ultrafast demagnetiza-
tion [8] and how angular momentum is transferred between
subsystems. For example, the role of spin-dependent transport
of laser-excited electrons was discussed in Ref. [9], whereas
in Ref. [10] the focus was put on the optical intersite spin
transfer as the main mechanism responsible for the ultrafast
demagnetization. The impact of Elliott-Yafet electron-phonon
spin-flip scattering was investigated in Ref. [11].

Among the shortcomings of 3TM is, first of all, the fact
that it includes several coupling parameters that are unknown
or at least difficult to estimate. This relates in particular
to the parameters describing the electron-lattice, electron-
spin, and spin-lattice coupling. From literature in the field
(see [1,3,12,13] and references therein) it may be noted that
the values of these coupling parameters can vary with more
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than one order of magnitude (see Appendix C), which makes
an accurate description of the experimental observations very
challenging. Reference [13] corroborates this argumentation
and there it has been shown that the value of the electron-
phonon heat transfer parameter extracted from experimental
data using the two-temperature model and that from ab initio
calculations disagree significantly. This clearly calls for a
model that reduces the number of uncertain coupling parame-
ters. Another disadvantage of the 3TM model is that both spin
and lattice heat capacities are often assumed to be independent
of temperature, which clearly is an approximation. The impor-
tance of temperature-dependent spin capacities especially for
temperatures close to the Curie point was discussed in Ref. [5]
in refined microscopic 3TM [5,14]. Combined temperature-
dependent spin and electron capacities were also introduced
for s-TTM in Ref. [3].

The somewhat uncontrolled aspects of the 3TM have lead
to conclusions that atomistic spin dynamics simulations fail to
successfully describe the initial demagnetizing phase (i.e., the
first 500 fs) during ultrafast demagnetization processes (see,
e.g., Ref. [15]). This statement is partially based on physical
insights that the precession frequency of atomic spins in a
ferromagnet is too low to describe the short (subpicosecond)
time scales of pump-probe experiments like the ones pre-
sented in Ref. [1]. This conclusion is also based on a direct
comparison between experiments and simulations that rely on
the 3TM model, e.g., as was done for Co2FeAl [15]. Our goal
is here to identify an improved description of how heat is
transferred between the electron, spin, and lattice reservoirs
in the demagnetization processes of ultrafast pump-probe ex-
periments, and to investigate if it can improve the agreement
between observation and simulation, in particular, the spin
dynamics in the subpicosecond time scale. Of relevance for
this paper, it should be noted that the model based on atomistic
spin dynamics as proposed by Zahn et al. [3,8] also uses
energy-conserving atomistic spin dynamics simulations, and
the authors of Refs. [3,8] considered ultrafast demagnetiza-
tion of nickel [3], iron, and cobalt [8]. However, the model
of Zahn et al. includes an electron-lattice heat transfer co-
efficient and the impact of spin-lattice interaction was not
considered.

The structure of the paper is as follows. First, we briefly
present the details of spin-lattice atomistic spin dynamics sim-
ulations. Then, In Sec. III a heat-conserving three-temperature
model (HC3TM) is introduced. In Sec. IV we demonstrate
how the heat-conserving three-temperature model, in combi-
nation with atomistic spin dynamics simulations, reproduces
the observed, ultrafast magnetization dynamics of fcc Ni. We
also investigate the influence of spin-lattice coupling on the
magnetization dynamics.

II. SPIN-LATTICE DYNAMICS SIMULATIONS

The time evolution of spin and lattice is obtained using
Langevin dynamics simulations, as described in Ref. [16]:

dmi

dt
= − γ

(1 + α2)
mi × (

Bi + B f l
i

) − γ

(1 + α2)

α

mi
mi

× (
mi × [

Bi + B f l
i

])
, (1)

duk

dt
= vk, (2)

dvk

dt
= Fk

Mk
+ F f l

k

Mk
− νvk (3)

where mi is an atomic magnetic moment. Effective magnetic
field Bi = −∂HSLD/∂mi is obtained from spin-lattice Hamil-
tonian HSLD, which in our case includes magnetic, lattice, and
spin-lattice coupling parts similar to Ref. [16]. All parame-
ters necessary for spin-lattice dynamics simulations, such as
exchange interactions, magnetic moments, forces, and spin-
lattice couplings, were obtained from ab initio calculations
(see Appendix B for details). Effective force at site k is deter-
mined by Fk = −∂HSLD/∂uk . Mk is the mass of the atom at
site k, m is the saturation magnetization, γ is the gyromagnetic
ratio, while α and ν are Gilbert and lattice damping con-
stants, respectively. We model stochastic fields B f l

i and F f l
k as

white noise with properties 〈B f l
i,μ(t )B f l

j,ν (t ′)〉 = 2DMδi jδμν (t −
t ′) and 〈F f l

i,μ(t )B f l
j,ν (t ′)〉 = 2DLδklδμν (t − t ′). In our calcula-

tions, we use DM = αkBT/γ m and DL = νMkBT , where T
and kB are temperature and Boltzmann constant correspond-
ingly.

III. HEAT-CONSERVING THREE-TEMPERATURE MODEL

The model proposed here describes the temperature in-
duced fluctuations and dissipation from Langevin dynamics
given by Eqs. (1)–(3), where both the spin and lattice sys-
tems have effective damping terms α (for spin) and ν (for
lattice), unique for each reservoir, and where both systems
are coupled to the electronic system. Both systems are cou-
pled to the electronic heat bath, such that it is the electronic
temperature that governs the magnitude of the fluctuations
that enter the equations of motion of the spin and lattice
systems. The resulting spin and lattice temperatures are then
determined from measurements during the spin-lattice sim-
ulations. If the electronic temperature is driven to be higher
than the lattice and spin temperatures, fluctuations from this
elevated electronic temperature will cause an increase of the
lattice and spin temperature, signaled by transiently increased
fluctuations of these subsystems. For heat conservation to take
place, the electronic temperature then has to decrease and this
is modeled by considering that the same amount of heat that
flows into the spin and lattice reservoirs needs to be removed
from the electronic system. This can be expressed as a time
dependent temperature profile obeying the relation

�Te(t ) = −Cl (Tl )

Ce(Te)
Tl (t ) − Cs(Ts)

Ce(Te)
Ts(t ) + W (t )

Ce(Te)
, (4)

where Tl is calculated from the average kinetic energy of the
lattice vibrations, 〈Ekin

l 〉/kB. Similarly, Ts is obtained as an av-
erage of the exchange energy of the ensemble of atomic spins,
i.e., 〈Exc

s 〉/kB [17]. The definition of an instantaneous measure
of the temperatures in an out-of-equilibrium system is not
obvious [18], but is still typically assumed to hold in these
kinds of models. Introducing a time average of the tempera-
tures, for narrow time windows, does not, however, change
our results significantly. In addition, Eq. (4) contains the
temperature-dependent specific heats of the electron, lattice,
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and spin systems, Ce, Cl , and Cs, respectively. The possibility
for an external stimuli, e.g., a laser, to momentarily increase
the temperature of the electronic subsystem is captured by the
source term W (t ) which is modeled as a Gaussian.

Hence, instead of 3TM equations proposed in Ref. [1] we
introduce the following procedure to calculate spin, electron,
and lattice temperatures.

(i) From Eqs. (1)–(3) at every time step we calculate lattice
and spin temperatures using the expressions Tl = 〈Ekin

l 〉/kB

and Ts = 〈Exc
s 〉/kB.

(ii) The change of electronic temperature from the initial
one (in our case 300 K) is then calculated using Eq. (4) for
every time step t .

Some recent works, for example, Ref. [13], point out that
a single lattice temperature is not sufficient to describe ex-
perimental data. However, the difference between simulations
and experiment observed in Ref. [13] may partly be connected
to the uncertain estimation of Gel (see Appendix C). The
difference between data extracted from experiments, using the
two-temperature model, and calculated values is seen to be
significant. Furthermore, it is shown in Refs. [3,8] that using
atomistic spin dynamics simulations one can successfully de-
scribe magnetization dynamics of iron, cobalt, and nickel with
only single lattice temperature.

In practical calculations of Eq. (4) the common approxima-
tion is made that the electronic heat capacity is proportional
to the electronic temperature; Ce = γeTe, and for fcc Ni we
use γe = 6 × 103 J m−3 K−2 [1]. Furthermore, realistic heat
capacities for the lattice were obtained analytically from the
Debye model [19] (with θD = 475 K [20]), while for the
spin reservoir heat capacity is calculated using Monte Carlo
and atomistic spin dynamics simulations incorporating quan-
tum (Bose-Einstein) statistics and following the procedure
described in detail in Ref. [21] (see Appendix A2 for details).
Usage of Bose-Einstein statistics is beneficial in comparison
with calculations from classical statistics because it allows a
more accurate description of capacities at low temperatures,
although it can overestimate capacities around TC .

IV. RESULTS

A. Ultrafast demagnetization of fcc Ni

In order to distinguish between different models of
heat transfer between subsystems, the conventional three-
temperature model is below referred to as 3TM (please see
Appendix A 1 and Ref. [1] for model details), while the here
suggested model [Eq. (2)] is referred to as the HC3TM. We
focus here on ultrafast demagnetization of fcc Ni, and to
compare outcomes of the conventional 3TM with the HC3TM
model we employ spin-lattice dynamics simulations in the
temperature range of T ∈ [300, 550] K, for simulation cells
with a 60 × 60 × 60 repetition of the fcc unit cell, using
periodic boundary conditions. In addition, Nt = 1 × 106 time
steps of dt = 10−16 s were used in combination with other
parameters presented in Table I. First, we present temperature
profiles (Fig. 1) for spin, lattice, and electron subsystems
for a laser fluence of 5 J/m2. These results were obtained
from conventional 3TM as well as HC3TM, using either
fixed or variable heat capacities. Other parameters relevant

TABLE I. List of the parameters used in the simulations.

Parameter Value

γe 6 × 103 J m−3 K−2

HC3TM parameters
Gilbert damping α 0.024a

Lattice damping ν ≈1.0ps−1 b

3TM parameters
Gel 8 × 1017 W m−3 K−1

Ges 6 × 1017 W m−3 K−1

Gsl 0.3 × 1017 W m−3 K−1

aThe Gilbert damping value was obtained considering the experi-
mental relaxation rate λ = αγ m, in SI units, of 2.9 × 109 s−1 for
fcc Ni in the easy axis ([111]) [22,23], which was converted to the
dimensionless α parameter following Fig. 1 in Ref. [22].
bThis is equivalent to the lattice damping parameter γel = 1 × 10−13

kg/s in the notation of Ref. [24].

for these simulations are listed in Table I. It can be seen from
Fig. 1 that, compared to 3TM, HC3TM results in faster ther-
malization between the three reservoirs, in particular when
variable heat capacities are considered. In addition, the overall
time dependence of the temperature profiles from HC3TM,
especially with variable heat capacities, is faster than the
conventional 3TM. When comparing 3TM and HC3TM one
needs to take into account the relation between the model
parameters. In particular, the relation between the Gel of
3TM and lattice damping was obtained in Ref. [24], which
for Gel = 8 × 1017 W m−3 K−1 gives the value of the lattice
damping ν ≈ 0.2 ps−1. We demonstrated above the results for
the lattice damping value ν ≈ 1.0 ps−1 because temperature
profiles in this case are closer to the experimentally obtained
ones. However, a temperature profile for the damping 0.2 ps−1

can be found in Appendix A1.
In Fig. 2 the magnetization dynamics are shown for 3TM

and HC3TM with either constant or varying heat capacity.
It can be seen from the figure that HC3TM results in faster

FIG. 1. Spin Ts (blue line), lattice Tl (red line), and electron
temperatures Te (yellow line) calculated from 3TM (a, b) or HC3TM
(c, d) with constant (a, c) or variable (b, d) capacities.
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FIG. 2. Normalized magnetization of fcc Ni vs time in 3TM and
HC3TM with constant or variable capacities, for a laser pulse with
fluence of 5 J/m2.

magnetization dynamics during the first picoseconds and
faster recovery of the magnetization, when compared to 3TM.
It can also be seen that the choice of constant or variable
heat capacities does not affect the demagnetization speed in
the first ≈300 fs, for either model of the heat transfer. The
figure also shows that HC3TM and 3TM reaches roughly the
same value of magnetic moment, in the maximally demag-
netized state, albeit at noticeably different times. The faster
demagnetization for the HC3TM case occurs since the heat
bath for the spins is here governed by the electron temper-
ature which rises faster than the a priori determined spin
temperature in the 3TM. As a final remark to the results in
Fig. 2, we note that for both models a constant heat capac-
ity results in a more pronounced demagnetized state (lower
value of the magnetization), something which is most con-
spicuous for the 3TM. The experimental curves published in
Ref. [1] have a minimum value of the magnetization at around
1 ps, and a demagnetized state of M/M0 ≈ 0.53. This can be
compared to the results in Fig. 2, and we note that overall
the here suggested HC3TM captures experimental data with
better precision than the conventional 3TM. For instance, as
Fig. 2 shows, the minimum of the M/M0 curve is for the
HC3TM model with calculated specific heats placed close to
1 ps, in agreement with observations. The direct comparison
of simulation results with experimental data is, however, a
challenging task. Concretely, in Ref. [24] the authors note
that to match experimental data they adjusted both damping
value and pulse fluence. They explain this by the fact that the
fraction of the pulse energy that is transferred to the electrons
in experiments is not clear. Another successful attempt to fit
simulations with experimental data was made in Ref. [25];
however, to reach the agreement the fitting parameter was
used with its physical origin not clear. In Ref. [3] good
agreement with experimental data was obtained for a given
value of laser pulse fluence. Damping and Gel were obtained
from density functional theory (DFT) calculations but Ges was
considered infinitely large. Moreover, the obtained value of
Gel significantly differs from that used in Ref. [1] and some

calculated values, but coincides with some other works (see
Ref. [3] and references therein). This again returns to the point
of difficulty of estimation of Gel and, therefore, the need in
reducing the number of coupling constants in the model. To
some extent this is also true for the model introduced in this
paper where change to either the Gilbert spin damping, the
lattice damping, or the fluence absorption ratio changes the
behavior of the demagnetization process. Comparing the 3TM
and HC3TM models, as is the focus of this paper, for the same
set of equivalent coupling parameters and laser fluence, we do
however always find a distinctively faster demagnetization for
the HC3TM model compared to the 3TM simulations. The
main explanation for the faster demagnetization dynamics in
the case of HC3TM can be traced back to the fact that in
HC3TM it is the electron heat bath that enters the Langevin
term that governs the fluctuations and dissipations of the spin
dynamics in the simulations. The crucial influence of the
electron heat bath indicates that the direct lattice contribution
on the spin system is limited, and that is examined in more
detail in the next section.

B. Impact of spin-lattice coupling

In Ref. [16] it was shown that spin-lattice coupling can be
treated in coupled spin-lattice simulations, by a dependence
of the exchange interaction, Ji j , on atomic displacements uk .
The spin-lattice term in the Hamiltonian can be obtained by
Taylor expanding the magnetic bilinear Hamiltonian with re-
spect to the lattice displacements. This results in a spin-lattice
coupling term that is in general bilinear in spin and linear
in displacements [16]. The components of the spin-lattice
coupling terms were here calculated for fcc Ni, by taking into
account various number of neighbors in the Taylor expansion.
To be specific, we obtained coupling tensor values when tak-
ing into account first, second, third, and fourth neighbors of
the lattice displacement. Calculated values of these param-
eters were used to study the impact of spin-lattice coupling
on fcc Ni, using the same type of simulations as presented in
Figs. 1 and 2. The introduction of these explicit spin-lattice
couplings allows for a direct exchange of heat between the
spin and lattice subsystems. Compared to existing tempera-
ture models these atomistic spin-lattice couplings would be
analogous to a microscopic magnon-phonon coupling which
enters into the regular 3TM.

We have investigated the impact of spin-lattice coupling
in both 3TM and HC3TM, by performing coupled spin and
lattice dynamics simulations [16], a model we refer to here
to as SLD. Our results show that for fcc Ni the introduction
of explicit spin-lattice coupling terms in SLD simulations
only has a marginal impact on the demagnetization (Fig. 3)
compared to when the spin and lattice dynamics are simulated
without the spin-lattice coupling. In Fig. 3 we compare results
from spin dynamics simulations and coupled SLD simula-
tions, using the HC3TM model with variable capacities for
heat transfer between reservoirs. It can be seen from the fig-
ure that spin-lattice coupling treated in SLD simulations only
has a minimal impact on the demagnetization speed of fcc Ni.
Primarily, this can be explained by the fact that the spin-lattice
coupling in fcc Ni is weak. The limited spin-lattice coupling
effect on our simulations could also partially be caused by
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FIG. 3. Impact of spin-lattice coupling on magnetization dynam-
ics in HC3TM with variable capacities following the application of
laser pulse with fluence 8 J/m2.

limitations on the model for the SLD simulations where the
spin-lattice term cannot fully describe the transfer of angular
momentum between the spin and lattice subsystems [16].

V. CONCLUSIONS

We propose a HC3TM to calculate spin, electron, and
lattice temperature in ultrafast demagnetization simulations.
One benefit of the HC3TM model is that it reduces the number
of heat transfer parameters, the values of which are difficult
to define experimentally. The main strength of the model is,
however, that it produces a qualitatively correct time scale
for the demagnetization process, something that most earlier
3TM models have failed to do. The main reason for why
the HC3TM captures the demagnetization so well, despite
previous arguments that atomistic spin dynamics simulations
are inadequate in describing subpicosecond processes, is the
direct coupling between the electron heat bath and the fluc-
tuations in the spin subsystem. This is in line with the recent
findings of Zahn et al. [3], where an infinite coupling between
electrons and spins was assumed.

We have demonstrated by simulating magnetization dy-
namics of fcc Ni after the application of a femtosecond
laser pulse of 5 J/m2 that the HC3TM model reproduces ex-
perimental observations with higher accuracy, compared to
the 3TM. We also investigated the impact of temperature-
dependent spin and lattice capacities on magnetization
dynamics, both in the 3TM and the HC3TM. We find that
for both models a dynamic evaluation of the specific heats
is important. Finally, the impact of spin-lattice coupling on
magnetization dynamics was investigated and it was shown
that for fcc Ni the spin-lattice coupling has almost no impact.

The here suggested HC3TM is expected to be relevant in
general as a tool for simulations of magnetization dynamics in
the ultrafast regime. There are currently significant efforts in
pump-probe experiments [5,26–29], of the nature pioneered
by Ref. [1]. These experimental investigations have been fol-
lowed by equally intense theoretical works [3,12,24,29–32].

In methods based on an atomic description of the dynam-
ics, there is a difficulty in establishing mechanisms for heat
transfers between electron, spin, and lattice reservoirs, and we
believe the method proposed here is a significant step forward.
In this paper we chose to exemplify our method by applying it
to fcc Ni. This choice was primarily motivated by the fact that
the original experimental work of Ref. [1] was for fcc Ni. In
a sense this choice was less optimal, since the treatment here
is based on a classical spin description, and fcc Ni is known
to be less well described as a classical system. Despite this,
agreement between experiments and theory, e.g., as shown
in Fig. 2, is rather good, and we expect that this agreement
would be even better for systems that are naturally described
with an atomic description of the magnetism. Such studies are
underway, and we note that most of the materials investigated
in the field, both from experiments and from theory, are of this
nature.
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APPENDIX A: DETAILS OF 3TM AND HC3TM
CALCULATIONS

1. Three-temperature model

The three-temperature model was proposed by Beaurepaire
et al. in 1996 [1], and it describes transfer of heat between
the spin, electron, and lattice reservoirs. The evolution of the
system is then described by the coupled differential equations:

Ce(Te)
dTe

dt
= −Gel (Te − Tl ) − Ges(Te − Ts) + P(t ),

Cs(Ts)
dTs

dt
= −Ges(Ts − Te) − Gsl (Ts − Tl ),

Cl (Tl )
dTl

dt
= −Gel (Tl − Te) − Gsl (Tl − Ts). (A1)

In these equations, Te, Ts, and Tl represent the temperatures
of electron, spin, and lattice reservoirs, respectively, while
Ce, Cs, and Cl are the corresponding specific heats. Coupling
between the different reservoirs is provided by Ges, Gel , and
Gsl , while P(t ) represents the effect provided by the laser in
the pump process.

2. Heat capacity of the spin subsystem

In our calculations for 3TM and HC3TM, we use
temperature-dependent heat capacity of the spin subsystem.
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FIG. 4. Temperature-dependent spin capacities obtained for fcc
Ni obtained using different statistical approaches.

However, there exist several approaches to calculating it. In
particular, the widely applied classical approach which uses
Boltzmann statistics is known to overestimate heat capacity at
low temperatures leading to the limit 1 kB at T → 0 (see the
red curve in Fig. 4) and this disagrees with experimental data.
On the other hand more recently proposed [21] calculations
from quantum statistics can address the issue at low temper-
atures but overestimate the capacity around Tc as can be seen
from Fig. 4. Finally, one can combine the benefits of these two
methods by using the quantum approach at low temperatures
and then switching back to the classical one. This results in the
heat capacity of the spin system presented by the blue curve
in Fig. 4. A more detailed description of these methods can be
found in Ref. [33].

In our simulations, we used variable capacity obtained
from quantum statistics. In the presented results the spin tem-
perature never reaches the Tc and therefore our results are
not affected by overestimating Cs close to Tc. Moreover, our
tests show that the main results of HC3TM are preserved and
the only thing that is impacted by the change of capacities
is a drop in the magnetization. The difference between the
mixed and quantum approaches is only marginal; however,
the difference in magnetization drop with the classical case
is more significant. The main outcome of the HC3TM—high
demagnetization speed and the position of the magnetization
minimum—remains the same for all three capacities. Finally,
3TM is more sensitive to the change of variable capacities.
When using classical heat capacity demagnetization is much
slower than obtained by HC3TM or observed in Ref. [1].
However, one can obtain a close to experimental demagne-
tization rate by using variable spin capacity from quantum
statistics in 3TM.

3. Benchmark of 3TM and HC3TM

In Fig. 1 the lattice damping value was chosen to ensure
close agreement with experimental data. However, for more
precise comparison between 3TM and HC3TM one can use
the relation between the Gel of 3TM and lattice damping

FIG. 5. Spin, lattice, and electron temperatures obtained in
HC3TM with variable heat capacities, for a lattice damping value
ν ≈ 0.2 ps−1 (or 2 × 10−14 kg/s). The other parameters are the same
as in a previous case.

from Ref. [24], which for Gel = 8 × 1017 W m−3 K−1 gives
the value of the lattice damping ν ≈ 0.2 ps−1 (or 2 × 10−14

kg/s). In Fig. 5 spin, lattice, and electron temperatures are
presented for the lattice damping values corresponding to Gel

given in Table I.
We stress that the change of lattice damping does not

impact the main features of the heat-conserving 3TM, for ex-
ample, higher demagnetization speed. The decrease of lattice
damping leads mostly to longer thermalization of the system.

APPENDIX B: DETAILS OF THE ELECTRONIC
STRUCTURE CALCULATIONS

In order to make the theory material specific, we calculate
all parameters necessary for the coupled spin and lattice dy-
namics simulations from electronic structure theory. This has
been done by means of DFT with the fully self-consistent real-
space linear muffin-tin orbital method in the atomic sphere
approximation (RS-LMTO-ASA) [34,35]. The Ni bulk was
treated in real space, involving in the continued fraction steps
a large cluster of 47 500 atoms in the fcc crystal positions,
with the experimental lattice parameter of a = 3.52 Å [36].
Here, we work in the orthogonal representation of the LMTO-
ASA [37] and expand the Hamiltonian within a tight-binding
basis, where terms of the second order in energy (or higher)

TABLE II. Lattice parameter, spin (mspin), and orbital (morbital) of
fcc Ni.

a (Å) mspin (μB) morbital (μB)

RS-LMTO-ASA
(LSDA) 3.52 0.71 0.04
QE/USPP
(GGA) 3.52 0.67
Expt. [36] 3.524 0.57 0.05

174407-6



HEAT-CONSERVING THREE-TEMPERATURE MODEL FOR … PHYSICAL REVIEW B 106, 174407 (2022)

FIG. 6. (a) Computed phonon dispersion for bulk fcc Ni (blue solid lines) compared to inelastic neutron scattering data (black dots)
from Ref. [51]. (b) Calculated root-mean-square thermal displacements of Ni atoms for each Cartesian direction,

√
u2

γ (T ), as a function of
temperature, in units of a. The vertical dotted line at 350 K is just a mark for the upper bound of the lattice temperature (Tl , see main text)
achieved during the three-temperature model simulations.

are neglected [38,39]. The calculations were carried out con-
sidering the local spin-density approximation (LSDA) with
the exchange and correlation potential of von Barth and
Hedin [40]. The spin-orbit (ls) coupling is included at each
variational step [37,41]. In the recursion method, the Beer-

TABLE III. Absolute values of elements φ
αβ

0 j of the force con-
stant matrices of fcc Ni, in units of mRy/Å2, obtained for a 6 × 6 × 6
supercell and using the same type of notation as in Ref. [52]. Here,
j stands for the neighborhood shell around the reference site. The
atomic positions are given in units of lattice constant, a.

j Atom position Force constant matrix Ab initio values

1 1
2 (1, 1, 0)

⎛
⎝

α1 β1 0
β1 α1 0
0 0 γ1

⎞
⎠

α1 = 77.85
β1 = 86.24
γ1 = 0.07

2 1
2 (2, 0, 0)

⎛
⎝

α2 0 0
0 β2 0
0 0 β2

⎞
⎠ α2 = 8.85

β2 = 3.62

3 1
2 (2, 1, 1)

⎛
⎝

α3 γ3 γ3

γ3 β3 δ3

γ3 δ3 β3

⎞
⎠

α3 = 5.50
β3 = 2.25
γ3 = 3.12
δ3 = 0.28

4 1
2 (2, 2, 0)

⎛
⎝

α4 β4 0
β4 α4 0
0 0 γ4

⎞
⎠

α4 = 1.15
β4 = 0.73
γ4 = 0.23

5 1
2 (3, 1, 0)

⎛
⎝

α5 δ5 0
δ5 β5 0
0 0 γ5

⎞
⎠

α5 = 0.32
β5 = 0.41
γ5 = 0.55
δ5 = 0.28

6 1
2 (2, 2, 2)

⎛
⎝

α6 β6 β6

β6 α6 β6

β6 β6 α6

⎞
⎠ α6 = 0.23

β6 = 0.41

7 1
2 (3, 2, 1)

⎛
⎝

α7 δ7 ε7

δ7 β7 η7

ε7 η7 γ7

⎞
⎠

α7 = 0.78
β7 = 0.09
γ7 = 0.14
δ7 = 0.28
ε7 = 0.55
η7 = 0.46

Pettifor [42] terminator is used, and the recursion chain is
terminated after 31 levels.

The Heisenberg exchange interactions were calcu-
lated using the Liechtenstein-Katsnelson-Antropov-Gubanov
scheme [43] as implemented in the RS-LMTO-ASA
code [39]. We also calculated the spin-lattice parameters, as

described in Ref. [16], i.e., �
αβγ

i jk = ∂J αβ
i j

∂uγ

k
|uγ

k =0 (α, β, γ are
Cartesian indices). These parameters were computed directly,
by considering the changes in the calculated J αβ

i j tensors
when displacements of atomic positions, |uγ

k | � 0.02a in the
γ = {±x,±y,±z} directions, were considered. To represent
the final J αβ

i j (uγ

k ) function, we fitted a first-order polynomial,

from which the calculation of the �
αβγ

i jk parameters is possible.
In our simulations, we considered up to third neighbor spin-
lattice parameters (42 interactions), which will be explicitly
shown in Appendix B1. Here, we note that direct calculations
of the ab initio spin-lattice parameters are also feasible (see,
e.g., Ref. [44]).

The interatomic forces, needed for the lattice dynamics,
were calculated using a combination of QUANTUM ESPRESSO

FIG. 7. Computed (i, j) isotropic exchange interactions in fcc Ni
as a function of the pairwise distance (in units of the lattice parameter
a). Lines are guides for the eyes.
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FIG. 8. Computed nearest-neighbor (i, j) Ni-Ni pairwise
isotropic exchange interactions as a function of the displacement ui

(in units of the lattice parameter a). The yellow solid line represents
a polynomial fit of first order, for which the value of

∂Ji j

∂ui
|ui=0 is given

(in units of mRy/Å). Negative displacements (ui < 0) represent a
reduction of the pairwise distance, in real space.

(QE) [45] and PHONOPY [46] packages. In QE, we used a
scalar-relativistic scheme based on ultrasoft pseudopotentials
(USPP) [47] and the Perdew-Burke-Ernzerhof exchange cor-
relation, for which a standard pseudopotential from the QE
library was used (3s, 3p, 4s, and 3d valence electrons). A
cutoff of 60 (480) Ry was used for the kinetic (charge density)
energy. A Monkhorst-Pack (MP) [48] grid of 18 × 18 × 18 	k
points was set for the first Brillouin zone (BZ). Self-consistent
calculations with 10−10-Ry convergence threshold were car-
ried out using the Marzari-Vanderbilt [49] smearing with a
spreading of 0.01 Ry for BZ integration. The force constants
and phonon frequencies were computed based on a 6 × 6 × 6
supercell (216 atoms), where we considered a 3 × 3 × 3 	k-
points MP mesh.

1. Calculated properties and interactions of fcc Ni

To validate the electronic structure-based parameters that
we have used in the simulations, here we provide a com-
parison between the computed properties and interactions of
fcc Ni with experimental results whenever available. The ob-
tained magnetic moments from both RS-LMTO-ASA and QE

calculations are shown in Table II, with a good agreement with
the experimental measurements [36,50].

From QE, we first optimized the fcc Ni structure in order
to achieve null forces and internal pressure. The resulting
change in the lattice parameter was negligible, i.e., less than
≈0.02% of the experimental one. With this structure, the
computed phonon frequencies with the 6 × 6 × 6 supercell in
PHONOPY are shown in Fig. 6(a) together with inelastic neu-
tron scattering data [51], with which an excellent agreement
can be seen. From these phonon dispersion calculations, the
force constants φ

αβ
i j (see Ref. [16]), important for the lattice

dynamics, were also obtained. The resulting irreducible values
and their respective signs, related to the crystal symmetry, are
shown in Table III considering up to the seventh neighboring
shell of a reference atom at the site i = 0 (134 neighbors). The
force matrices use the same type of notation as in Ref. [52].
They show a good agreement with other ab initio calcula-
tions [53], as well as with fits to the experimental phonon
frequencies [54]. In order to estimate the range of atomic dis-
placements in fcc Ni as a function of temperature, necessary
for the calculation of spin-lattice coupling parameters, we cal-
culated the root-mean-square thermal displacements for each
Cartesian direction,

√
u2

γ (T ), as implemented in PHONOPY. As
the thermal expansion of Ni can be satisfactorily simulated
within the harmonic approximation in the low-temperature
regime [55,56], we did not consider here anharmonic effects
on

√
u2

γ (T ). The obtained values are shown in Fig. 6(b).
Near the greatest obtained lattice temperature (Tl � 350 K,
see main text), the calculated displacements are ≈±0.02a.
This limit is, then, used to guide the maximum displace-
ments of Ni atoms in the RS-LMTO-ASA method, in the
γ = {±x,±y,±z} Cartesian directions, which are equivalent
to each other due to the cubic symmetry of fcc Ni. We note
that this calculated displacement limit is compatible with both
the actual average displacement of individual atoms in the
spin-lattice dynamics (uγ ≈ 0.015a), and the experimental
value (≈0.03a, at 300 K [57]) obtained by fitting to the Debye
model.

Figure 7 shows the obtained isotropic exchange interac-
tions, which result in a random-phase approximation Curie
temperature of TC = 403 K. For the correspondent isotropic

SLCs, �
ααγ

i jk = ∂J αα
i j

∂uγ

k
|uγ

k =0, we find that, when k 
= i, j, �
ααγ

i jk

becomes at least one order of magnitude lower than the

TABLE IV. Diagonal (α = β, or isotropic) and off-diagonal elements |�αβγ

0 j0 | of the SLC matrix of fcc Ni, in units of mRy/Å. Here, j
stands for the neighborhood around the reference site. The distance vectors 	r0 j are given in units of the lattice parameter, a.

j 	r0 j |�ααx
0 j0 | |�ααy

0 j0 | |�ααz
0 j0 | Off diagonals (α 
= β)

1
2 (0,±1, ±1) 0 0.66 0.66

1 1
2 (±1, 0, ±1) 0.66 0 0.66
1
2 (±1,±1, 0) 0.66 0.66 0 <0.7%

1
2 (0, 0, ±2) 0 0 0.013
1
2 (0,±2, 0) 0 0.013 0

2 1
2 (±2, 0, 0) 0.013 0 0 �20%

1
2 (±1, ±1, ±2) 0.018 0.018 0.031

3 1
2 (±1,±2, ±1) 0.018 0.031 0.018
1
2 (±2,±1, ±1) 0.031 0.018 0.018 �3%
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terms in which k = i, j (for instance, we calculated |�ααz
i jk | ≈

0.03 mRy/Å, considering nearest-neighbor i 
= j 
= k sites).
Therefore, we here consider only the 	�i j(i, j) parameters. For
these cases, a first-order polynomial was fitted in the Ji j (ui )
curves in order to extract the SLC parameters. An example
of how the isotropic Ji j interactions change as a function of
atomic displacements for nearest-neighbor Ni-Ni is shown in
Fig. 8. In turn, Table IV exhibits the complete list of SLC
values up to the third neighboring shell of a given reference
site, used as inputs for the heat-conserving three-temperature
model. As can be noticed, the off-diagonal terms account for
a relatively minor part of the effect; the most important ones
are the first neighbor parameters, which vary almost linearly
with the atomic displacements (see Fig. 8). However, it is also
noteworthy that from the second neighbors the SLC slightly
increases, becoming relatively more relevant due to the multi-
plicity of each shell.

APPENDIX C: DIFFERENCES IN MODEL G
COUPLING PARAMETERS

One of the key advantages of the HC3TM over the original
3TM is that the reservoir temperatures are obtained directly

TABLE V. Electron-phonon coupling constants used in literature
for fcc Ni.

Reference Gel (×1018 W m−3 K−1)

Zahn et al. [3] ≈1.7–2
Beaurepaire et al. [1] 0.8
Koopmans et al. [14] 4.05
Dvornik et al. [58] ≈1.4–3
Wellershoff et al. [59] 0.36

from the calculated energies during the dynamics. This elim-
inates the need for the Ges, Gel , and Gsl coupling parameters
used in Eq. (A1), with almost no change in the computational
cost. Usually estimated via indirect ways, the evaluation of
these parameters results in inconsistent data in the literature.
An instructive example can be seen in Table V for Gel , for
which one finds differences of one order of magnitude. These
differences lead to (sometimes significantly) slower or faster
reservoir response to the energy flow, affecting the overall
demagnetization dynamics.
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