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We investigate the critical behavior and magnetocaloric effects of the Gd-Au-Si (GAS) ferromagnetic qua-
sicrystal approximants, Gd13.7Au72.7Si13.6 [referred to as GAS(0)] and Gd15.4Au68.6Si16.0 [GAS(100)]. The former
is a conventional Tsai-type 1/1 approximant crystal, while the latter has a slightly different atomic decoration
from the Tsai type (thus referred to as “pseudo-Tsai” type). Their critical exponents at the ferromagnetic
transitions are close to those of the mean-field theory. Both GAS systems exhibit an interesting magnetic-field
dependence of the specific heat, which is reflected in the behavior of their magnetocaloric effect (MCE). The
MCE is characterized by an adiabatic cooling (heating) effect over a relatively broad temperature range below
∼30 K, which stems from a broad feature in the specific heat.
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I. INTRODUCTION

Quasicrystals (QCs) and their approximant crystals (ACs)
[1] are potential playgrounds for novel physical phenomena
due to their unique atomic arrangement and crystal structures.
For example, the discovery of unusual quantum criticality
[2,3] and a theoretical prediction of unconventional super-
conductivity [4] have attracted a great deal of attention.
Furthermore, long-range magnetic order in QCs was recently
reported [5], which provides opportunities to investigate the
physics of long-range quasiperiodic magnetic order. Despite
these intriguing discoveries and predictions, some fundamen-
tal physical phenomena of QC and AC systems have not yet
been thoroughly investigated. Missing tasks are, e.g., studies
of critical exponents and the magnetocaloric effect (MCE)
of ferromagnetic ACs. As far as we know, reports about the
critical behavior of ferromagnetic ACs (and QCs) are lacking,
while Ref. [6], which investigates the Au-Al-RE (RE = Gd,
Tb, Dy) AC system, is the only report about the MCE of AC
systems we could find at present.

Here, we investigate the critical behavior and MCE of two
compositionally different Gd-Au-Si (GAS) 1/1 AC systems,
Gd13.7Au72.7Si13.6 and Gd15.4Au68.6Si16.0, which are named
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GAS(0) and GAS(100), respectively. Note that “1/1” refers
to the (first) rational approximation of the golden ratio τ =
(1 + √

5)/2, which is linked to QCs [1]. The former GAS(0)
is a Tsai-type [7] AC, which is the most common type of
ACs. Their building units are clusters made of four concentric
polyhedral shells followed by a tetrahedral unit at the cluster
center [see Fig. 1(a)]. Rare-earth (RE) atoms reside on the
icosahedral shells; here, RE = Gd (magnetic). The clusters
are arranged periodically in ACs and aperiodically in QCs.
Figure 1(b) displays the body-centered-cubic (bcc) arrange-
ment of the RE icosahedral shells for 1/1 ACs. The latter
GAS(100) is a second type of Tsai-type 1/1 AC (referred
to as “pseudo-Tsai” type) in which the orientationally dis-
ordered (Au/Si)4 central tetrahedron is replaced by a single
RE atom [8]. Note that the number in the parentheses indi-
cates the percentage of pseudo-Tsai clusters, i.e., GAS(0) is a
conventional Tsai-type AC, while GAS(100) is a pseudo-Tsai-
type AC. The bcc arrangement of the RE icosahedral shells
with pseudo-Tsai cluster-center RE atoms is displayed in
Fig. 1(c).

In this study, we performed detailed magnetization and
heat-capacity measurements. We find that there is no signif-
icant difference between GAS(0) and GAS(100) with respect
to their critical behavior. The values of their critical exponents
β and γ are close to those expected from the mean-field theory
(β = 0.5, γ = 1), yet the values of δ are different from the
mean-field value. On the other hand, we observe an interesting
broad bump in specific heat divided by temperature (C/T )
below the magnetic ordering temperatures, which is more
significant in GAS(100). The specific heat exhibits significant
magnetic-field dependence. These behaviors result in adia-
batic temperature change over a relatively wide temperature
range at low temperatures.
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FIG. 1. (a) A Tsai-type cluster unit: From left to right, a dis-
ordered tetrahedron (plotted as a cuboctahedron), dodecahedron,
RE-icosahedron (here, RE = Gd), icosidodecahedron, and rhombic-
triacontahedron, respectively. The plotted polyhedra are reproduced
from Ref. [8]: The refined structure model of a Gd-Au-Si stan-
dard Tsai-type 1/1 AC (space group Im3̄). Atomic positions are
displayed by thermal ellipsoids at the 70% probability level. (b),
(c) Schematic illustration of the body-centered periodic arrangement
of RE (=Gd) atoms. (b) Tsai-type clusters: Icosahedral RE atoms
(blue). (c) Pseudo-Tsai-type clusters: Icosahedral RE atoms (blue)
with cluster-center RE atoms (red).

II. EXPERIMENTAL METHODS

Samples were synthesized by a self-flux method as de-
scribed in detail in Ref. [8]. We use two samples of
Ref. [8], namely GAS(0) and GAS(100) [denoted GAS(IT)
and GAS(CC) in Ref. [8]]. For the dc magnetization
measurements, we used a magnetic property measurement
system superconducting quantum interference device (MPMS
XL SQUID) magnetometer and a physical property measure-
ment system (PPMS) with a vibrating sample magnetometer
option, both of which are from Quantum Design, Inc. Heat-
capacity measurements were performed using a Bluefors
dilution refrigerator equipped with a superconducting mag-
net. The heat-capacity data were collected using a differential
membrane-based nanocalorimeter [9]; the conversion of the
values in molar units was done by comparing the experimental
data with the Debye model [10,11]. In this study, we used
polycrystalline samples for the physical property measure-
ments.

III. RESULTS AND DISCUSSION

The GAS systems exhibit a ferromagnetic transition at
Tc = 21.8 K for GAS(0) and Tc = 16.8 K for GAS(100)
[8]. Figure 2(a) shows the temperature dependence of the
magnetization M of GAS(0) for various values of magnetic
fields μ0H . Figure 2(b) displays the M vs μ0H (T = 2 K)
of GAS(0). The pseudo-Tsai-type GAS(100) also exhibits
similar magnetization behavior as shown in Figs. 2(c) and
2(d). Note that demagnetization effects have been taken into

FIG. 2. (a), (b) Magnetization of GAS(0). (c), (d) Magnetization
of GAS(100). (a), (c) M vs T for different magnetic fields μ0H =
0.01, 0.1, 1, 3, and 7 T. (b), (d) M vs H at T = 2 K.

account in the following analyses (see Fig. S1 in Supplemen-
tal Material [12]).

Figures 3(a) and 3(b) show M vs H curves at several
temperatures in the vicinity of the transition temperatures.
Figures 3(c) and 3(d) show the “modified” Arrott plots
M1/βA vs (Hint/M )1/γA [13], where (βA, γA) = (0.47, 1.12)

FIG. 3. (a), (b) M vs H curves at several temperatures (in 0.5 K
steps) around the magnetic transition temperatures for (a) GAS(0)
and (b) GAS(100). (c), (d) Arrott plot [i.e., M1/βA vs (Hint/M )1/γA ]
for (c) GAS(0) and (d) GAS(100). Note that (βA, γA ) = (0.47, 1.12)
for GAS(0) and (0.51, 1.01) for GAS(100).
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FIG. 4. (a), (b) Ms(dMs/dT )−1 vs T for T < Tc. (c),
(d) χ−1

0 (dχ−1
0 /dT )−1 vs T for T > Tc. (e), (f) Log-log plot of

M vs Hint near the transition temperature.

for GAS(0) and (0.51, 1.01) for GAS(100). Note that Hint is
the internal effective magnetic field Hint = H − NM where H
is an external magnetic field and N is the demagnetization
factor. Here, the value of N is estimated to be N = 0.06 for
GAS(0) and N = 0.18 for GAS(100). Note that the parallel
linear behavior is observed for 0.1 � μ0H � 1.5 T [the region
between the two white markers in Figs. 3(c) and 3(d)]; the line
defining Tc passes through (near) the origin.

We estimate spontaneous magnetization Ms (T < Tc) and
inverse susceptibility χ−1

0 (T > Tc) from the linear extrapola-
tion of the Arrott-plot curves [see the solid lines in Figs. 3(c)
and 3(d) and Fig. S2 in Supplemental Material [12]]. Here,
we employ the Kouvel-Fisher (KF) method [14] to estimate
the critical exponents β and γ . According to the KF method,
Ms(T )[dMs(T )/dT ]−1 vs T (T < Tc) [see Figs. 4(a) and 4(b)]
and χ−1

0 (T )[dχ−1
0 (T )/dT ]−1 vs T (T > Tc) [see Figs. 4(c)

and 4(d)] exhibit straight lines, whose slopes give the values
of 1/β and 1/γ , respectively. From the intercepts on the T
axes, the value of Tc can also be obtained. Note that this
method is based on the following equations, which are good

FIG. 5. Scaling plot t−βM vs t−βδHint with t = (T − Tc )∗/T ∗
c for

(a) GAS(0) and (b) GAS(100), where T ∗
c = 21.4 K for GAS(0) and

T ∗
c = 16.4 K for GAS(100). The range of the external field H is 32 �

H � 3200 kA/m. Note that the color distinguishes the isotherms,
which correspond to that of the data set in Fig. 3.

approximations near the critical region [14,15],

Ms(T )

[
dMs(T )

dT

]−1

= T − Tc

β
(for T < Tc) (1)

and

χ−1
0 (T )

[
dχ−1

0 (T )

dT

]−1

= T − Tc

γ
(for T > Tc). (2)

The values of β, γ , and Tc obtained from linear fitting are
presented in Figs. 4(a)–4(d) and Table I. Note that the average
values of Tc (from T < Tc and T > Tc) are presented in Ta-
ble I. In this analysis, we iterated the above process from the
modified Arrott plot to the KF analysis by substituting (β, γ )
for (βA, γA) to determine the values of β and γ . From these
critical values, we use Widom’s identity to derive δW = 1 +
γ /β and Rushbrooke’s identity to derive αR = 2 − 2β − γ ;
the obtained values are presented in Table I.

Figures 4(e) and 4(f) show log-log plots of M vs Hint at two
temperatures close to the estimated transition temperature Tc.
The interpolated data (open symbols) at T ∗

c (which is slightly
different from Tc determined from the KF method) exhibit a
linear behavior (see the solid line), which gives the value of δ

(see Table I). Note that M ∼ H1/δ at T = T ∗
c . The obtained δ

values are slightly different from those of δW.
We check the scaling hypothesis M/|t |β = f±(H/|t |β+γ )

where f+ and f− are scaling functions for above and below
T ∗

c , respectively, and t = (T − T ∗
c )/T ∗

c is a normalized tem-
perature. Figures 5(a) and 5(b) show the scaling plot of t−βM
vs t−βδHint with the critical exponents β and δ obtained above
(see Table I). We observe clear scaling behavior for T < Tc

and T > Tc in both systems. Note that if we adopt Tc (deter-
mined from the KF method) instead of T ∗

c for t , the scaling
becomes worse for GAS(100) (see Fig. S3 in Supplemental
Material [12]).

Figures 6(a) and 6(b) show the temperature dependence of
the specific heat divided by temperature (C/T ) of GAS(0) and
GAS(100). We observe clear anomalies at their magnetic or-
dering temperatures, which are significantly suppressed by the
application of external magnetic fields. Interestingly, there is a
broad bump below Tc, which is more significant in GAS(100)
than GAS(0). Similar broad bumps appear in other Gd-based
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TABLE I. Critical exponents of GAS(0) and GAS(100). δW and αR are calculated from the obtained values of β and γ using Widom’s
identity δW = 1 + γ /β and Rushbrooke’s identity αR = 2 − 2β − γ . Note that the approximate errors are ±0.05 for β, ±0.1 for γ , ±0.3 for
δ, and ±0.5 K for Tc in the present Arrott-plot and Kouvel-Fisher analyses. Theoretical values of the exponents (α, β, γ , and δ) for mean field
and three-dimensional Ising, XY, and Heisenberg are also included [16].

System β γ δ Tc (T ∗
c ) (K) δW αR or α

GAS(0) 0.47 1.12 3.60 21.6 (21.4) 3.4 −0.06
t or H range −0.24 � t � −0.01 for T < Tc 24 � H � 2400 kA/m

0.02 � t � 0.23 for T > Tc for T = T ∗
c

GAS(100) 0.51 1.00 3.38 16.9 (16.4) 3.0 −0.02
t or H range −0.32 � t � −0.02 for T < Tc 24 � H � 2400 kA/m

0.01 � t � 0.27 for T > Tc for T = T ∗
c

Mean field 0.5 1.0 3.0 0
3D Ising 0.324 1.24 4.82 0.110
3D XY 0.346 1.32 4.81 −0.007
3D Heisenberg 0.362 1.39 4.82 −0.115

ACs [17] and QCs [5]. We calculate the magnetic entropy as
follows. We estimate the magnetic contribution to the spe-
cific heat (CM) by subtracting the nonmagnetic (phonon and
electronic) contributions. We use the nonmagnetic compounds
Y-Au-Si (YAS) 1/1 ACs, i.e., YAS(0) and YAS(100) [10]
(which are isostructural to the GAS systems) to estimate the

FIG. 6. (a), (b) Temperature dependence of C/T under different
magnetic fields μ0H = 0, 0.5 [only for GAS(100)], 1, 2, 4, 6, 8,
10, and 12 T. (c), (d) Temperature dependence of CM/T . (e), (f)
Temperature dependence of SM.

nonmagnetic part (CNM) of the GAS compounds [see the
insets of Figs. 6(a) and 6(b)]. Note that we estimate CNM

by multiplying the temperature values by a scaling factor in
the C vs T curve of the YAS compounds, according to the
method described by Bouvier et al. [18], and normalizing it
(see Fig. S4 in Supplemental Material for more details [12]).
In Figs. 6(c) and 6(d), we plot CM/T vs T . We note that the
broad bumps below Tc appear to be more enhanced than the
anomalies at Tc: Most of the magnetic entropy stems from
the broad bumps rather than the transition at Tc. From the
CM/T curve, we calculate the magnetic entropy above the
base temperature of the measurement (Tbase ≈ 0.2 K), i.e.,

SM(T ) ≡ S∗
M(T ) − S∗

M(Tbase ) =
∫ T

Tbase

CM

T
dT, (3)

where S∗
M(T ) = ∫ T

0 CM/T dT is a magnetic entropy measured
from absolute zero. Figures 6(e) and 6(f) display the calcu-
lated magnetic entropy SM(T ) as a function of temperature.
The zero-field magnetic entropy SM(T ) saturates near R ln 8
(where R is the gas constant) above Tc, in agreement with the
Gd3+ magnetism: Note that a free Gd3+ ion has the total angu-
lar momentum of J = S = 7/2 and thus it is 8(= 2J + 1)-fold
degenerate. In the case of GAS(100), approximately half of
the magnetic entropy is from the bump anomaly: Nearly half
of full magnetic entropy is gained at T = Tc/2 (which is above
the onset of the bump anomaly). It is also found that magnetic
fields suppress the magnetic anomalies at and below Tc; SM

(for 12 T) at T = 40 K is equivalent to the 64% of the full
saturation magnetic entropy.

From the specific heat data, we calculate the total entropy
above the base temperature of the measurement (Tbase) using
the following equation,

S(T ) ≡ S∗(T ) − S∗(Tbase ) =
∫ T

Tbase

C

T
dT, (4)

where S∗(T ) = ∫ T
0 C/T dT is an entropy measured from

absolute zero. Figures 7(a) and 7(b) show the temperature
dependence of the total entropy (S) of GAS(0) and GAS(100)
for various values of external magnetic fields. We calculate
the magnetic entropy change [19] from S [Figs. 7(a) and 7(b)]
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FIG. 7. Adiabatic magnetization heating. (a), (b) Temperature
dependence of the total entropy under different magnetic fields es-
timated from the heat-capacity data. The inset in (b) explains the
magnetic entropy change −�SM and adiabatic temperature change
�T h

ad by magnetization heating. (c), (d) Temperature dependence of
the magnetic entropy change −�SM. (e), (f) Adiabatic temperature
change �T h

ad against the initial temperature Tini. Data estimated con-
sidering the −�SM extracted from magnetic measurements are added
using solid open markers (see main text).

or SM [Figs. 6(c) and 6(d)] as follows:

�SM(T, H ) = S(T, H ) − S(T, 0) = SM(T, H ) − SM(T, 0).
(5)

Figures 7(c) and 7(d) show the temperature dependence of
−�SM for different H values (solid lines). The open symbols
are the magnetic entropy change (for isothermal magne-
tization) estimated from the magnetization data (near the
transition temperatures) using the following equation:

�S′
M(T, H ) =

∫ H

0

∂M

∂T
dH. (6)

The magnetic entropy changes estimated from the specific
heat (−�SM) and that from the magnetization (−�S′

M) are
consistent. The magnetic-field dependence of −�Smax

M (where
−�Smax

M is the maximum value of −�SM at the transition) for
both GAS(0) and GAS(100) exhibits the following power-law

dependence,

−�Smax
M ∝ Hn, (7)

with n ≈ 0.6 (see Fig. S5 in Supplemental Material [12]). The
exponent n ≈ 0.6 is close to n = 2/3 expected for systems
with well-localized moments [20], which is reasonable for the
present Gd-based systems.

From the total entropy data (S) [Figs. 7(a) and 7(b)], we
estimate the adiabatic temperature change (increase) by the
application of an external magnetic field Hfin from the initial
zero-field state Hini = 0,

�T h
ad = Tfin(Hfin) − Tini(Hini = 0), (8)

where Tini and Tfin are the initial (Hini = 0) and final (Hfin 	=
0) temperatures, respectively [see the inset of Fig. 7(b)]. In
Figs. 7(e) and 7(f), we plot the obtained �T h

ad as a function
of the initial temperature Tini for different Hfin values. We
confirm that the following approximate equation explains the
�T h

ad behavior (obtained from the specific heat) well near the
transition temperature,

�T ′h
ad ≈ −T

C
�S′

M, (9)

where C is a specific heat for H = 0. Note that Eq. (9) is a
good approximation near a transition where T/C varies much
slower with H than (∂M/∂T )H [21]: See the open symbols
in Figs. 7(e) and 7(f) for �T ′h

ad . Equation (9) also works for
C(H = 0) and �SM data obtained solely from specific heat
near the magnetic transition by replacing �S′

M with �SM

in Eq. (9): See Fig. S6 in Supplemental Material [12]. We
observe large discrepancies between �T h

ad and �T ′h
ad for large

H values near the low-temperature broad bump. Such a dis-
crepancy between the direct (here �T h

ad) and indirect (�T ′h
ad )

methods can be observed at transitions where the heat capacity
changes significantly with both T and H [19]. On the other
hand, the quantity of −H (dM/dT ), which may be used as a
simple estimate of −�SM [22], exhibits a significant deviation
near the transition temperature (near the peak of −�SM), yet
its overall temperature dependence is roughly similar to that
of −�SM (see Fig. S7 in Supplemental Material [12]).

Considering the temperature range investigated here, we
are interested in the adiabatic demagnetization cooling effect.
From the total entropy (S) [Figs. 7(a) and 7(b)], we estimate
the adiabatic temperature change (decrease) by the switch off
of an external magnetic field Hfin = 0 from the initial state
Hini 	= 0:

�T c
ad = Tfin(Hfin = 0) − Tini(Hini ). (10)

In Figs. 8(a) and 8(b), we plot the final temperature after
adiabatic cooling (Tfin) as a function of the initial temperature
(Tini). See the inset of Fig. 8(a) for Tini and Tfin for adiabatic
cooling. Figures 8(c) and 8(d) display the adiabatic tempera-
ture change −�T c

ad as a function of Tini.
Most cryostats based on 4He can cool samples as low as

just below 2 K. Adiabatic cooling is one of the methods to cool
the systems further. The cooling performance of the present
systems is not as large as the top performing Gd-based metals
[23], and other materials used for adiabatic demagnetization
[24–26], however, we have estimated their magnetocaloric
efficiency. We estimate the adiabatic temperature change by
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FIG. 8. Adiabatic demagnetization cooling. (a), (b) Final tem-
perature Tfin vs initial temperature Tini. The inset in (a) explains the
adiabatic temperature change �T c

ad by demagnetization cooling. (c),
(d) Adiabatic temperature change −�T c

ad against the initial tempera-
ture Tini.

demagnetization cooling (−�T c
ad) at Tini = 2 K. Figure 9

shows −�T c
ad vs μ0Hini (at Tini = 2 K). In the case of GAS(0),

for example, −�T c
ad ≈ 1.2 K (Tfin ≈ 0.8 K) for μ0Hini = 6 T,

and −�T c
ad ≈ 1.6 K (Tfin ≈ 0.4 K) for μ0Hini = 12 T. This

indicates that by the demagnetization cooling (12 T → 0), the
system temperature can be decreased by the 80% of the initial
temperature (2 K). In the case of GAS(100), the value of

FIG. 9. Adiabatic temperature change −�T c
ad by demagnetiza-

tion cooling onset at Tini = 2 K as a function of the initial field
μ0Hini. The inset displays the low-temperature (T � 2 K) part of
the S vs T curves of GAS(0) [see Fig. 7(a)] for μ0H = 0, 6, and
12 T. The dashed curves indicate those for estimated S∗ with linear
extrapolation data below Tbase ≈ 0.2 K.

FIG. 10. RCP as a function of an applied magnetic field.

−�T c
ad becomes lower than that of GAS(0) for 2 � μ0Hini �

12 T, yet it becomes comparable to GAS(0) again at 12 T. We
note that the value of −�T c

ad estimated here is underestimated
[21] due to the lack of specific heat data below Tbase ≈ 0.2 K.
We roughly estimate possible deviations from actual values
as follows. First, we estimate the value of the offset S∗

base by
linearly extrapolating the S vs T curve toward T = 0 (the
absolute value of the intercept at T = 0 becomes S∗

base). By
adding S∗

base to S, we obtain estimated S∗ vs T curves (see
the dashed curves in the inset of Fig. 9). Then, we obtain the
values of −�T c

ad based on the S∗ vs T curves and check their
deviation from those calculated based on the S vs T curves.
The deviation becomes significant as μ0Hini becomes greater.
The largest deviation (estimated here for μ0Hini = 12 T) is
∼0.08 K for GAS(0) and ∼0.13 K for GAS(100) (indicated
by the error bars at μ0Hini = 12 T in Fig. 9). Note that the
deviation estimated at μ0Hini = 6 T is ∼0.03 K for GAS(0)
and ∼0.02 K for GAS(100); the corresponding error bar is
smaller than the symbol size.

In order to compare the present system with other MCE
systems quantitatively, we calculate the relative cooling power
(RCP) using the following equation,

RCP = −�Smax
M × δTFWHM, (11)

where δTFWHM is the full width at half maximum of the
−�SM curve. Figure 10 shows the RCP values as a func-
tion of an applied magnetic field μ0H . Note that we could
not obtain δTFWHM (thus the RCP value) for μ0H = 10 and
12 T in GAS(0) due to the lack of data above 40 K. The
value of −�Smax amounts to about 8 J/K kg at μ0H =
10 T [see Figs. 7(c) and 7(d)], which means approximately
10 J/K mol Gd [∼0.6R log(2J + 1)] for GAS(0) and 8.5
J/K mol Gd [∼0.5R log(2J + 1)] for GAS(100). The RCP
values at μ0H = 5 T (estimated by linear interpolation) are
145 J/kg (178 J/mol Gd) for GAS(0) and 132 J/kg (140
J/mol Gd) for GAS(100). These values are slightly larger than
those of another MCE AC system, Au-Al-RE (RE = Gd, Tb,
Dy) [6].

Other members of the RE-Au-Si family with RE = Tb and
Ho were found to display glassiness in addition to long-range
magnetism [27], which may stem from magnetic frustration
effects. Since there is no frequency dependence in the ac
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susceptibility of GAS(0) and GAS(100) [8], it seems that there
is no glassy behavior in the present Gd-based system. Thus
the present GAS system is different from the other RE-Au-Si
family members; this might be attributed to the specificity
of Gd (compared to Tb and Ho atoms), which exhibits dif-
ferent behavior against, e.g., crystal electric fields owing to
the half-filled nature of the 4 f shell. The broad bump in the
specific heat below Tc may stem from the specific geometry
of the present magnetic system having icosahedral/octahedral
networks [11,27]. Further detailed investigations are needed
to clarify its origin.

IV. CONCLUSION

In conclusion, we have investigated the critical behavior
and MCE of the GAS systems. The values of the critical
exponents β and γ at the ferromagnetic transitions are close to
those of the mean-field theory (β = 0.5, γ = 1), while the val-
ues of δ are somewhat different from the mean-field value. The
behavior of CM(T )/T and SM(T ) presented in Figs. 6(c)–6(f)

suggests critical magnetic fluctuation in a very limited temper-
ature range above Tc. The obtained mean-field-like values of
the exponents γ and β may hence be related to the temperature
ranges considered for their derivation, which may be out of
the critical regime. We confirm scaling behavior with the ex-
ponents β and δ. From the specific heat results, we have found
that most of the magnetic entropy does not stem from the mag-
netic transitions at Tc but from unique broad-bump anomalies
existing below Tc. These magnetic behaviors at Tc and below
Tc result in moderate MCE in a relatively wide temperature
range. There is no significant qualitative difference between
GAS(0) (Tsai type) and GAS(100) (pseudo-Tsai type) in our
results.

ACKNOWLEDGMENTS

We thank the Knut and Alice Wallenberg Foundation
(Grant No. KAW 2018.0019) and the Carl Tryggers Stiftelse
för Vetenskaplig Forskning (Grant No. CTS 19:235), and the
Swedish Research Council (VR), including dnr 2021-04360.

[1] T. Fujiwara and Y. Ishii, Quasicrystals, Vol. 3 (Elsevier,
Amsterdam, 2007).

[2] K. Deguchi, S. Matsukawa, N. K. Sato, T. Hattori, K. Ishida, H.
Takakura, and T. Ishimasa, Quantum critical state in a magnetic
quasicrystal, Nat. Mater. 11, 1013 (2012).

[3] S. Matsukawa, K. Deguchi, K. Imura, T. Ishimasa, and N. K.
Sato, Pressure-driven quantum criticality and T/H scaling in
the icosahedral Au–Al–Yb approximant, J. Phys. Soc. Jpn. 85,
063706 (2016).

[4] S. Sakai, N. Takemori, A. Koga, and R. Arita, Superconductiv-
ity on a quasiperiodic lattice: Extended-to-localized crossover
of Cooper pairs, Phys. Rev. B 95, 024509 (2017).

[5] R. Tamura, A. Ishikawa, S. Suzuki, T. Kotajima, Y. Tanaka, T.
Seki, N. Shibata, T. Yamada, T. Fujii, C.-W. Wang, M. Avdeev,
K. Nawa, D. Okuyama, and T. J. Sato, Experimental observation
of long-range magnetic order in icosahedral quasicrystals, J.
Am. Chem. Soc. 143, 19938 (2021).

[6] N. Kikugawa, T. Hiroto, A. Ishikawa, S. Suzuki, H. Sakurai,
and R. Tamura, Magnetocaloric effect in ferromagnetic 1/1
quasicrystal approximants Au64Al22R14 (R = Gd, Tb, and Dy),
J. Alloys Compd. 882, 160669 (2021).

[7] A. P. Tsai, J. Q. Guo, E. Abe, H. Takakura, and T. J.
Sato, A stable binary quasicrystal, Nature (London) 408, 537
(2000).

[8] G. Gebresenbut, T. Shiino, D. Eklöf, D. C. Joshi, F. Denoel,
R. Mathieu, U. Häussermann, and C. Pay Gómez, Atomic-scale
tuning of Tsai-type clusters in RE–Au–Si systems (RE=Gd, Tb,
Ho), Inorg. Chem. 59, 9152 (2020).

[9] S. Tagliati, V. M. Krasnov, and A. Rydh, Differential
membrane-based nanocalorimeter for high-resolution measure-
ments of low-temperature specific heat, Rev. Sci. Instrum. 83,
055107 (2012).

[10] T. Shiino, G. H. Gebresenbut, F. Denoel, R. Mathieu, U.
Häussermann, and A. Rydh, Superconductivity at 1 K in Y-Au-
Si quasicrystal approximants, Phys. Rev. B 103, 054510 (2021).

[11] T. Shiino, F. Denoel, G. H. Gebresenbut, D. C. Joshi, Y.-
C. Huang, C. P. Gómez, U. Häussermann, A. Rydh, and R.
Mathieu, Singular magnetic dilution behavior in a quasicrystal
approximant, Phys. Rev. B 104, 224411 (2021).

[12] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106.174405 for more detailed information.

[13] D. Kim, B. L. Zink, F. Hellman, and J. M. D. Coey, Crit-
ical behavior of La0.75Sr0.25MnO3, Phys. Rev. B 65, 214424
(2002).

[14] J. S. Kouvel and M. E. Fisher, Detailed magnetic behavior of
nickel near its Curie point, Phys. Rev. 136, A1626 (1964).

[15] C. Mohan, M. Seeger, H. Kronmüller, P. Murugaraj, and J.
Maier, Critical behaviour near the ferromagnetic–paramagnetic
phase transition in La0.8Sr0.2MnO3, J. Magn. Magn. Mater. 183,
348 (1998).

[16] J. M. Coey, Magnetism and Magnetic Materials (Cambridge
University Press, Cambridge, UK, 2010).

[17] A. Ishikawa, T. Fujii, T. Takeuchi, T. Yamada, Y. Matsushita,
and R. Tamura, Antiferromagnetic order is possible in ternary
quasicrystal approximants, Phys. Rev. B 98, 220403(R)
(2018).

[18] M. Bouvier, P. Lethuillier, and D. Schmitt, Specific heat in
some gadolinium compounds. I. Experimental, Phys. Rev. B 43,
13137 (1991).

[19] V. K. Pecharsky and K. A. Gschneidner, Magnetocaloric effect
from indirect measurements: Magnetization and heat capacity,
J. Appl. Phys. 86, 565 (1999).

[20] H. Oesterreicher and F. T. Parker, Magnetic cooling near Curie
temperatures above 300 K, J. Appl. Phys. 55, 4334 (1984).

[21] M. Foldeaki, W. Schnelle, E. Gmelin, P. Benard, B. Koszegi, A.
Giguere, R. Chahine, and T. K. Bose, Comparison of magne-
tocaloric properties from magnetic and thermal measurements,
J. Appl. Phys. 82, 309 (1997).

[22] M. Hudl, R. Mathieu, P. Nordblad, S. Ivanov, G. Bazuev, and
P. Lazor, Investigation of the magnetic phase transition and

174405-7

https://doi.org/10.1038/nmat3432
https://doi.org/10.7566/JPSJ.85.063706
https://doi.org/10.1103/PhysRevB.95.024509
https://doi.org/10.1021/jacs.1c09954
https://doi.org/10.1016/j.jallcom.2021.160669
https://doi.org/10.1038/35046202
https://doi.org/10.1021/acs.inorgchem.0c01023
https://doi.org/10.1063/1.4717676
https://doi.org/10.1103/PhysRevB.103.054510
https://doi.org/10.1103/PhysRevB.104.224411
http://link.aps.org/supplemental/10.1103/PhysRevB.106.174405
https://doi.org/10.1103/PhysRevB.65.214424
https://doi.org/10.1103/PhysRev.136.A1626
https://doi.org/10.1016/S0304-8853(97)01095-0
https://doi.org/10.1103/PhysRevB.98.220403
https://doi.org/10.1103/PhysRevB.43.13137
https://doi.org/10.1063/1.370767
https://doi.org/10.1063/1.333046
https://doi.org/10.1063/1.365813


TAKAYUKI SHIINO et al. PHYSICAL REVIEW B 106, 174405 (2022)

magnetocaloric properties of the Mn2FeSbO6 ilmenite, J. Magn.
Magn. Mater. 331, 193 (2013).

[23] E. C. Koskelo, C. Liu, P. Mukherjee, N. D. Kelly, and S. E.
Dutton, Free-spin dominated magnetocaloric effect in dense
Gd3+ double perovskites, Chem. Mater. 34, 3440 (2022).

[24] O. E. Vilches and J. C. Wheatley, Measurements of the Specific
Heats of Three Magnetic Salts at Low Temperatures, Phys. Rev.
148, 509 (1966).

[25] D. Jang, T. Gruner, A. Steppke, K. Mitsumoto, C. Geibel,
and M. Brando, Large magnetocaloric effect and adiabatic

demagnetization refrigeration with YbPt2Sn, Nat. Commun. 6,
8680 (2015).

[26] Y. Tokiwa, S. Bachus, K. Kavita, A. Jesche, A. A. Tsirlin, and
P. Gegenwart, Frustrated magnet for adiabatic demagnetization
cooling to milli-Kelvin temperatures, Commun. Mater. 2, 42
(2021).

[27] T. Shiino, F. Denoel, G. H. Gebresenbut, C. P. Gómez, P.
Nordblad, and R. Mathieu, Nonequilibrium dynamical behavior
in noncoplanar magnets with chiral spin texture, Phys. Rev. B
105, L180409 (2022).

174405-8

https://doi.org/10.1016/j.jmmm.2012.11.040
https://doi.org/10.1021/acs.chemmater.2c00261
https://doi.org/10.1103/PhysRev.148.509
https://doi.org/10.1038/ncomms9680
https://doi.org/10.1038/s43246-021-00142-1
https://doi.org/10.1103/PhysRevB.105.L180409

