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First-principles calculations enable accurate predictions of electronic interactions and dynamics. However,
computing the electron spin dynamics remains challenging. The spin-orbit interaction causes various dynamical
phenomena that couple with phonons, such as spin precession and spin-flip e-ph scattering, which are difficult
to describe with current first-principles calculations. In this work, we show a rigorous framework to study
phonon-induced spin relaxation and decoherence, by computing the spin-spin correlation function and its vertex
corrections due to e-ph interactions. We apply this approach to a model system and develop corresponding
first-principles calculations of spin relaxation in GaAs. Our vertex-correction formalism is shown to capture
the Elliott-Yafet, Dyakonov-Perel, and strong-precession mechanisms—three independent spin decoherence
regimes with distinct physical origins—thereby unifying their theoretical treatment and calculation. Our method
is general and enables quantitative studies of spin relaxation, decoherence, and transport in a wide range of
materials and devices.
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I. INTRODUCTION

Linear response theory provides a microscopic understand-
ing of the response of a system to external perturbations
and computes the associated correlation functions [1–6].
First-principles calculations of electronic interactions [7–14]
complement this formalism, enabling precise predictions of
materials properties and transport coefficients without resort-
ing to empirical models or fitting parameters. In this context,
electron-phonon (e-ph) interactions are particularly important
as they govern a wide range of phenomena such as charge
transport [15], superconductivity [16], spin transport [17–20],
and spin decoherence [21–23].

The Boltzmann transport equation (BTE) is widely used to
study the response to an external electric field [24,25]. The
field drives the electronic populations fnk, for states with band
n and crystal momentum k, away from the equilibrium Fermi-
Dirac distribution f 0

nk, while the e-ph interactions dissipate
electron energy and act to restore equilibrium, resulting in a
steady-state current e( fnk − f 0

nk)vnk, where e is the electron
charge and vnk is the band velocity [24]. In the many-body
formalism, the BTE at low electric field is formally equiv-
alent to the ladder vertex-correction to the dc conductivity
[4]. In that framework, one determines the current-current
correlation function, with vertex corrections from the e-ph
interactions obtained by summing over ladder diagrams, and
computes the conductivity from the dissipative part of the
susceptibility. A key factor making this approach equivalent
to the BTE is that the electron velocity is band-diagonal in the
Bloch basis, 〈mk| v̂ |nk〉 = δnm∂kEnk/h̄ [4].

*Corresponding author: bmarco@caltech.edu

However, studying the response to an external field of an
arbitrary operator that couples with phonons is more diffi-
cult. The matrix representation of an operator Â is in general
nondiagonal in the Bloch basis, Ânmk =〈mk| Â |nk〉, and can
mix states in different bands. The BTE cannot be applied in
this case because due to its population-based formalism it
neglects such off-diagonal (inter-band) components. A frame-
work treating the response of nondiagonal operators coupled
with e-ph interactions is still missing.

An important example is spin relaxation and decoherence,
where spin-orbit coupling (SOC) makes the spin operators
nondiagonal in the band index, and phonons can change the
electron spin through e-ph interactions [19]. Theories of spin
decoherence focus on two distinct models—the Elliott-Yafet
(EY) mechanism [26,27], where e-ph collisions rotate the
spin direction, and the Dyakonov-Perel (DP) mechanism [28],
where spin precession in the SOC field induces a motional
narrowing of the spin. The dominant mechanism depends on
the system—typically, EY dominates in centrosymmetric and
DP in noncentrosymmetric materials. Spin relaxation exhibits
opposite trends in these two mechanisms, with spin relaxation
times proportional to the e-ph relaxation times in EY, and
inversely proportional in DP. We have recently shown that
EY spin relaxation can be computed from first-principles in
the spin relaxation time approximation (sRTA) [29]−the spin
counterpart of the transport RTA for charge transport [1,4]—
but spin precession and the DP mechanism are neglected in
the sRTA.

Here we show a many-body approach to compute the sus-
ceptibility for an arbitrary nondiagonal operator coupled to
e-ph interactions. Our diagrammatic approach, based on the
Kubo formula with vertex corrections to the susceptibility
in an external injection field, calculates an effective phonon-
dressed operator and its renormalized dynamics. We derive a
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Bethe-Salpeter equation (BSE) for the vertex corrections, and
specializing to the spin operator, we use the vertex corrections
to compute spin relaxation and precession. We show that the
vertex corrections can capture spin decoherence due to both
the EY and DP mechanisms and can also model the strong-
precession regime, a third mechanism distinct from EY and
DP. We find these three mechanisms in the exact solution of
a two-level system, and also identify them in a real material,
GaAs, using first-principles calculations. Combined with first-
principles e-ph calculations, our method is poised to advance
microscopic understanding of phonon-induced spin decoher-
ence [30], with applications ranging from solid-state qubits
to quantum materials with spin Hall effect, valley-dependent
spin physics, and Rashba effect.

The paper is organized as follows. In Sec. II, we derive
the BSE for the phonon-dressed vertex, discuss its physical
interpretation, and calculate the susceptibility in response to
an injection field. In Secs. III−IV, we apply this formalism to
study spin dynamics in a model two-level system and in a real
material, GaAs, discussing spin relaxation due to the EY, DP,
and strong-precession mechanisms.

II. THEORY

We derive a self-consistent BSE for the vertex correction
to the susceptibility due to e-ph interactions, focusing on
a general vector observable Â. We then present a physical
interpretation of the vertex corrections and the renormalized
dynamics of the operator. We employ atomic units and set
h̄ = 1.

A. Interacting Green’s function

We consider an unperturbed Hamiltonian H0 diagonal
in the Bloch basis, 〈n′k| H0 |nk〉 = εnkδnn′ . The interacting
imaginary-time Green’s function G(iωa) is written using the
Dyson equation as [1]

G(iωa)−1 = G (0)(iωa)−1 − �(iωa), (1)

where ωa are fermionic Matsubara frequencies, G (0)(iωa) is
the noninteracting Green’s function, and �(iωa) is the lowest
order (Fan-Migdal) e-ph self-energy [1,15,31], whose band-
and k-dependent expression is

�nn′k(iωa) = − 1

βNqVuc

∑
mm′qν,iqc

[gn′m′ν (k, q)]∗gnmν (k, q)

×Dνq(iqc)Gmm′k+q(iωa + iqc). (2)

Here, β = 1/kBT at temperature T , Nq is the number of q-
points in the summation, Vuc is the unit cell volume, qc is the
bosonic Matsubara frequency of the phonon, and Dνq(iqc) =
2ωνq/((iqc)2 − ω2

νq) is the noninteracting phonon Green’s
function for a phonon with mode index ν, wave vector q, and
energy ωνq. The e-ph matrix elements gnmν (k, q) quantify the
probability amplitude for an electron in a Bloch state |ψnk〉,
with band index n and crystal momentum k, to scatter into a
final state |ψmk+q〉 by emitting or absorbing a phonon [15,32],

gnmν (k, q)=〈ψmk+q| ∂νqV̂ |ψnk〉, (3)

FIG. 1. (a) Bare bubble diagram without the vertex correction.
(b) Bubble diagram including the vertex correction. (c) Bethe-
Salpeter equation for the vertex corrections 
 from electron-phonon
interactions within the ladder approximation. The wavy line is the
phonon propagator and the red dots are the e-ph matrix elements
gnmν (k, q).

where ∂νqV̂ is the perturbation to the potential acting on an
electron due to a given phonon mode (ν, q).

B. Kubo formula and correlation function

We consider a complex vector operator Â, with matrix
elements in the direction α written as Aα

nmk = 〈mk| Âα |nk〉.
We derive the Â − Â correlation function with a procedure
analogous to the derivation of the dc conductivity in the ladder
approximation [4]. Here, the operator Â is in general nondi-
agonal in the band index, leading to matrix elements Aα

nmk, so
the derivation for the diagonal case given in Ref. [4] needs to
be extended to nondiagonal operators and vertex corrections.

We first derive the correlation function in imaginary time
and frequency, and then extend it to real frequencies via an-
alytic continuation. The retarded correlation function for the
operator Â can be obtained from the Kubo formula [1]

χαβ (p, iνb) =
∫ β

0
dτeiνbτ 〈Tτ Âα (p, τ )Âβ (−p, 0)〉, (4)

where p is a wave-vector, νb is a bosonic Matsubara frequency,
τ is imaginary time ranging from 0 to β = 1/kBT at temper-
ature T , and Tτ is the imaginary time-ordering operator. Here
we focus on the p → 0 limit, so we drop p from the equations.
This correlation function can be expressed as a sum of bubble
diagrams P as [1]

χαβ (iνb) = 1

β

∑
iωa

P(iωa, iωa + iνb). (5)

Let us consider the bare bubble diagram that includes the elec-
tron self-energy only in the electron propagator G, as shown
in Fig. 1(a):

χαβ (iνb) = 1

βVuc

∑
iωa

Tr[G(iωa)ÂαG(iωa + iνb)Âβ], (6)

where the trace is evaluated over the band and momentum
indices. In this expression, the operator Â can be regarded as
the bare vertex of the correlation function. For the velocity
operator, Eq. (6) leads to the well-known Drude conductivity
[1,4].

In this work, the corrections to the vertex originate from the
e-ph interactions, which couple electronic states with different
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band and crystal momenta. Figure 1(b) shows the correlation
function including the vertex correction 
,

χαβ (iνb) = 1

βVuc

∑
iωa

Tr[G(iωa)ÂαG(iωa + iνb)

× Âβ
β (iωa, iωa + iνb)], (7)

where Âβ
β (iωa, iωa + iνb) is the phonon-dressed vertex for
the operator Â in the Cartesian direction β. Note that the ver-
tex correction 
β (iωa, iωa + iνb) is a complex-valued vector
that contains information about the operator dynamics renor-
malized by the e-ph interactions.

C. Bethe-Salpeter equation for the phonon-dressed vertex

The leading correction to the vertex is obtained by sum-
ming over ladder diagrams, which can be viewed as an
abstract form of charge conservation in the presence of e-
ph scattering [1,4]. The vertex correction 
α

nn′k satisfies the
self-consistent BSE, shown diagrammatically in Fig. 1(c) and
written as

Aα
nn′k


α
nn′k(iωa, iωa + iνb)

= Aα
nn′k

− 1

βNqVuc

∑
mm′ll ′qν,iqc

[gn′m′ν (k, q)]∗gnmν (k, q)Dνq(iqc)

×Gmlk+q(iωa + iqc)Gl ′m′k+q(iωa + iνb + iqc)

× Aα
ll ′k+q


α
ll ′k+q(iωa + iqc, iωa + iνb + iqc). (8)

The kernel of this BSE [33] is the e-ph interaction
[gn′m′ν (k, q)]∗gnmν (k, q)Dνq(iqc).

Following Mahan [1] and Ref. [4], we first sum over the
bosonic Matsubara frequency iqc in Eq. (8). This summation,
defined as Sα

mm′ll ′kqν
(iωa, iωa + iνb), reads

Sα
mm′ll ′kqν (iωa, iωa + iνb)

≡ 1

β

∑
iqc

Dνq(iqc) 
α
ll ′k+q(iωa + iqc, iωa + iνb + iqc)

×Gmlk+q(iωa + iqc)Gl ′m′k+q(iωa + iνb + iqc). (9)

As usual, the summation is done by constructing a contour
integral along a circle at infinity:∮

dz

2π i
nB(z)Dνq(z) 
α

ll ′k+q(iωa + z, iωa + iνb + z)

×Gmlk+q(iωa + z)Gl ′m′k+q(iωa + iνb + z), (10)

where nB are Bose-Einstein occupations. The integrand has
poles at z = iqc, z = ±ωνq, and branch cuts along z = −iωa

and z = −iωa − iνb [1,4]. Employing Cauchy’s residue theo-
rem, we obtain

Sα
mm′ll ′kqν (iωa, iωa + iνb)

= −Nνq

α
ll ′k+q(iωa + ωνq, iωa + iνb + ωνq)

×Gmlk+q(iωa + ωνq)Gl ′m′k+q(iωa + iνb + ωνq)

− [Nνq + 1]
α
ll ′k+q(iωa − ωνq, iωa + iνb − ωνq)

×Gmlk+q(iωa − ωνq)Gl ′m′k+q(iωa + iνb − ωνq)

−
∫

dε′

2π i
f (ε′)

2ωνq

(ε′ − iωa)2 − ω2
νq
Gl ′m′k+q(ε′ + iνb)

× [
α
ll ′k+q(ε′ + iη, ε′ + iνb)Gmlk+q(ε′ + iη)

−
α
ll ′k+q(ε′ − iη, ε′ + iνb)Gmlk+q(ε′ − iη)]

−
∫

dε′

2π i
f (ε′)

2ωνq

(ε′ − iωa − iνb)2 − ω2
νq
Gmlk + q(ε′ − iνb)

× [
α
ll ′k+q(ε′ − iνb, ε

′ + iη)Gl ′m′k+q(ε′ + iη)

−
α
ll ′k+q(ε′ − iνb, ε

′ − iη)Gl ′m′k+q(ε′ − iη)], (11)

where Nνq =nB(ωνq) are temperature dependent phonon oc-
cupations, f (ε) is the Fermi-Dirac distribution function, and
η is a positive infinitesimal.

The leading contribution to Sα
mm′ll ′kqν

(iωa, iωa + iνb)
comes from the combination of retarded and advanced
Green’s functions, GR and GA, while terms of O([GR]2, [GA]2)
can be neglected in the weak scattering regime [1,4].
Therefore, after the analytic continuations iωa → ε − iη and
iωa + iνb → ε + ν + iη, and using the identity 1

x+iη = P 1
x −

iπδ(x), we obtain Sα
mm′ll ′kqν

(ε − iη, ε + iη) in limit of ν → 0,

Sα
mm′ll ′kqν (ε − iη, ε + iη)

= −[Nνq + f (ε + ωνq)]
α
ll ′k+q(ε + ωνq)

× GR
mlk+q(ε + ωνq)GA

l ′m′k+q(ε + ωνq)

− [Nνq + 1 − f (ε − ωνq)]
α
ll ′k+q(ε − ωνq)

× GR
mlk+q(ε − ωνq)GA

l ′m′k+q(ε − ωνq), (12)

where the index A (R) stands for advanced (retarded) function,
and 
α

ll ′k+q(ε) ≡ 
α
ll ′k+q(ε − iη, ε + iη).

Using this result, we write the self-consistent BSE for the
phonon-dressed vertex Â
 at energy ε as

Aα
nn′k


α
nn′k(ε)

= Aα
nn′k

+ 1

NqVuc

∑
mm′ll ′qν

[gn′m′ν (k, q)]∗gnmν (k, q)Aα
ll ′k+q

× [
(Nνq + f (ε + ωνq))
α

ll ′k+q(ε + ωνq)

× GR
mlk+q(ε + ωνq)GA

l ′m′k+q(ε + ωνq)

+ (Nνq + 1 − f (ε − ωνq))
α
ll ′k+q(ε − ωνq)

× GR
mlk+q(ε − ωνq)GA

l ′m′k+q(ε − ωνq)
]
. (13)

By solving Eq. (13), we obtain the phonon-dressed vertex
Aα

nn′k

α
nn′k(ε) and its dependence on band, crystal momentum

and energy.
In the weak scattering regime, where the electron spec-

tral function has a well-defined quasiparticle peak [5] and
the off-diagonal self-energy can be neglected [34,35], the
Green’s function becomes band-diagonal and the self-energies
can be evaluated on-shell. Then the product of the retarded
and advanced Green’s functions, GRGA, can be approximated
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as [36]

GR
mk+q(ε)GA

m′k+q(ε) = GA
m′k+q(ε) − GR

mk+q(ε)

GR
mk+q(ε)−1 − GA

m′k+q(ε)−1
≈

πδ(ε − εm′k+q) + πδ(ε − εmk+q) − iP 1
ε−εm′k+q

+ iP 1
ε−εmk+q

i
(
�R

mk+q − �A
m′k+q

) + i(εmk+q − εm′k+q)
, (14)

a function that is strongly peaked at electron energies ε=εmk+q and ε=εm′k+q. Therefore we can further simplify the full-
frequency BSE in Eq. (13) to a double-pole ansatz, which evaluates the vertex corrections only at these two energies:

Aα
nn′k


α
nn′k(ε)

= Aα
nn′k + 2π

NqVuc

∑
mm′qν

[gn′m′ν (k, q)]∗gnmν (k, q)

× 1

2

[{
(Nνq + fmk+q)

(
δ(ε + ωνq − εmk+q) − i

π
P

1

ε + ωνq − εm′k+q

)

+ (Nνq + 1 − fmk+q)

(
δ(ε − ωνq − εmk+q) − i

π
P

1

ε − ωνq − εm′k+q

)}
× Aα

mm′k+q

α
mm′k+q(εmk+q)

i
(
�R

mk+q − �A
m′k+q

) + i(εmk+q − εm′k+q)

+
{

(Nνq + fm′k+q)

(
δ(ε + ωνq − εm′k+q) + i

π
P

1

ε + ωνq − εmk+q

)

+ (Nνq + 1 − fm′k+q)

(
δ(ε − ωνq − εm′k+q) + i

π
P

1

ε − ωνq − εmk+q

)}
× Aα

mm′k+q

α
mm′k+q(εm′k+q)

i
(
�R

mk+q − �A
m′k+q

) + i(εmk+q − εm′k+q)

]
, (15)

where ε equals εnk or εn′k, and fmk+q ≡ f (εmk+q).

We have tested the consistency of this theory by deriving
a Ward identity [1,4,37] relating the self-energy and vertex
corrections (see Appendix A). This result guarantees that e-ph
diagrams are taken into account consistently in the self-energy
and in our BSE.

D. The dressed vertex and its interpretation

We focus on the dressed operator divided by the band
energy difference, a key term in Eq. (15):

Aα
mm′k+q


α
mm′k+q(εm′k+q)

i
(
�R

mk+q−�A
m′k+q

)+i
(
εmk+q−εm′k+q

) . (16)

This ratio describes the renormalized dynamics associated
with the operator Â in the presence of e-ph interactions. This
dynamics is obtained by dividing Eq. (16) by the bare operator
expectation value Aα

mm′k+q, obtaining


α
mm′k+q(εm′k+q)

i
(
�R

mk+q−�A
m′k+q

)+i(εmk+q−εm′k+q)
. (17)

The physical meaning of this ratio can be understood by ana-
lyzing the simple case of the velocity operator. As the velocity
operator is band-diagonal and satisfies vα

mm′k+q = vα
mk+qδmm′ ,

the band energy difference in the denominator vanishes, so
the denominator is purely real because �A

m′k+q = (�R
m′k+q)∗.

Thus Eq. (16) for the velocity operator becomes

vα
mk+q


α
mmk+q(εmk+q)

i
(
�R

mk+q − �A
mk+q

) = vα
mk+qτ

e-ph
mk+q


α
mmk+q(εmk+q), (18)

where we used τ
e-ph
mk+q = 1/|2	�mk+q| for the e-ph colli-

sion time. This equation gives the renormalized e-ph mean
free path, and dividing by the bare velocity we obtain the
renormalized relaxation time, also known as the transport

relaxation time [4],

τ
α(tr)
mk+q ≡ τ

e-ph
mk+q 
α

mmk+q(εmk+q) = 
α
mmk+q(εmk+q)

i
(
�R

mk+q − �A
mk+q

) . (19)

For a nondiagonal operator, both the vertex correction and
the operator expectation value are complex, so the ratio in
Eq. (17) cannot be represented by a single real quantity
with units of time as in Eq. (19). To extend the vertex
correction to nondiagonal operators, we generalize this for-
malism by defining the renormalized microscopic relaxation
times τα

mm′k+q(ε) and introducing the precession frequencies
ωα

mm′k+q(ε):

1
1

τα
mm′k+q

(ε) + iωα
mm′k+q(ε)

≡ 
α
mm′k+q(ε)

i
(
�R

mk+q−�A
m′k+q

)+i
(
εmk+q−εm′k+q

) , (20)

where ε equals εmk+q or εm′k+q. This way, without the
vertex correction, the renormalized relaxation time re-
duces to the (nondiagonal) e-ph collision time, τ

e-ph
mm′k+q =

1/|	�mk+q + 	�m′k+q|, and the renormalized precession fre-
quency reduces to the bare operator rotation frequency, ωB =
(εmk+q + 
�mk+q) − (εm′k+q + 
�m′k+q), with Aα

mm′k+q(t ) ∝
ei ωBt .

E. Vertex correction to the susceptibility

We derive the vertex-corrected susceptibility in response
to an external field for the generic observable Â. Suppose that
the complex operator Âα couples to a vector field Fα , with
perturbation Hamiltonian H ′ = −ÂαFα . The susceptibility is
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defined as the response function in

〈Âα (ν)〉 = χαβ (ν)Fβ (ν), (21)

where F is the external field along the direction β, and
〈Âα (ν)〉 is the response of the system along α at frequency
ν due to the applied field.

To study relaxation and dissipation, we rewrite the re-
sponse of the system as

〈Âα (ν)〉 = σαβ (ν)Ḟβ (ν), (22)

thus expressing it in terms of the susceptibility σαβ to the
“injection field” at frequency ν, and Ḟβ (ν) = −iνFβ (ν).
The injection field produces a nonequilibrium elec-
tron distribution with an injection rate equal to the
inverse relaxation time of Â [38]. From Eqs. (21) and

(22), we obtain

σαβ (ν) = χαβ (ν)

−iν
. (23)

When F is the vector potential A, the injection field be-
comes the electric field E(ν) = −iνA(ν), the observable of
interest is the current operator Aα

nmk = eδnmvα
nk, and σαβ (ν)

is the frequency-dependent conductivity tensor. When F is
the magnetic field B, the injection field is its time derivative,
Ḃ(ν) = −iνB(ν), and the observable is the electron magnetic
moment Aα

nmk = gμBsα
nmk, which is proportional to the spin

matrix sα
nmk [38,39]. These results are summarized in Table I.

We write the correlation function with vertex correction
[see Eq. (7)] as a contour integral along a circle at infinity
[1,4],

χαβ (iνb) = − 1

Vuc

∮
dz

2π i
f (z)Tr[G(z)ÂαG(z + iνb)Âβ
β (z, z + iνb)], (24)

which has branch cuts along z = −iνb and z = 0, and poles at z = iωa, and thus

χαβ (iνb) = 1

Vuc

∫
dε

2π i
f (ε)Tr[−G(ε + iη)ÂαG(ε + iνb)Âβ
β (ε + iη, ε + iνb) + G(ε − iη)ÂαG(ε + iνb)Âβ
β (ε − iη, ε + iνb)

−G(ε − iνb)ÂαG(ε + iη)Âβ
β (ε − iνb, ε + iη) + G(ε − iνb)ÂαG(ε − iη)Âβ
β (ε − iνb, ε − iη)]. (25)

After the analytic continuation iνb → ν + iη, we obtain the retarded correlation function to leading order by neglecting the terms
GRGR and GAGA [1,4]:

χαβ (ν) = 1

Vuc

∫
dε

2π i
( f (ε) − f (ε + ν))Tr[GR(ε)ÂαGA(ε + ν)Âβ
β (iωa − iη, iωa + iνb + iη)]

≈ 1

NkVuc

∑
nmk

∫
dε

2π i
( f (ε) − f (ε + ν))Aα

nmkAβ

mnk

β

mnk(ε−iη, ε+ν+iη)
πδ(ε−εnk)+πδ(ε+ν−εmk )

i
(
�R

mk−�A
nk

)+i(εmk+ν−εnk )
, (26)

where Nk is the number of k-points, and we used Eq. (14) in the last equality. This equation characterizes the frequency-dependent
response of the system [40].

We focus on the dc limit ν → 0, where the driving field is static. The susceptibility with respect to the injection field becomes

lim
ν→0

σαβ (ν) = − lim
ν→0

1

ν
	χαβ (ν) = 1

NkVuc



∑
nmk

Aα
nmkAβ

mnk

1
2

[(− dfnk

dε

)



β

mnk(εnk) + (− dfmk

dε

)



β

mnk(εmk)
]

i
(
�R

mk − �A
nk

) + i(εmk − εnk)
. (27)

This static susceptibility has both band-diagonal (n = m) and
off-diagonal (n �= m) contributions. The band-diagonal con-
tribution

σ
(d)
αβ (0) = 1

NkVuc

∑
nk

Aα
nnkAβ

nnkτ
e-ph
nk 


β

nnk(εnk)

(
−dfnk

dε

)
(28)

is the only contribution to the static susceptibility for
a band-diagonal operator. For example, for the velocity
operator, Eq. (28) becomes the well-known electrical con-
ductivity tensor within the BTE, which has been studied
extensively using both empirical and first-principles calcu-
lations [24,25,32,41,42] (note that solving exactly the BTE
is equivalent to computing the velocity vertex correction
[4]). For nondiagonal operators, our formalism introduces an

off-diagonal contribution in Eq. (27):

σ
(nd)
αβ (0) = 1

NkVuc



∑
n �=mk

Aα
nmkAβ

mnk

×
1
2

[(− dfnk
dε

)



β

mnk(εnk) + (− dfmk
dε

)



β

mnk(εmk)
]

i
(
�R

mk − �A
nk

) + i
(
εmk − εnk

) .

(29)

For the velocity operator, this term enables studies of charge
transport in the presence of inter-band coherence [43]; for the
spin operator, this contribution is essential to describe how
e-ph interactions modify spin precession.

F. Renormalized relaxation time

We derive an expression for the renormalized macroscopic
relaxation time of an operator Â due to e-ph interactions.
Using Eq. (28), the average relaxation time for the band-
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TABLE I. Summary of the formalism for charge transport and spin decoherence.

Charge transport (Ref. [4]) Spin decoherence

Operator vnk (diagonal) snmk (nondiagonal)
External field F Vector potential (A) Magnetic field (B)
Injection field Ḟ E(ν ) = −iνA(ν ) Ḃ(ν ) = −iνB(ν )
Vertex correction 
 
α

nk(εnk ) 
α
nn′k(εnk ),
α

nn′k(εn′k )

Renormalized dynamics τ , ω τ
(tr)α
nk = τ

e-ph
nk 
α

nk(εnk ) 1
1

τα
nn′k (εnk )

+iωα
nn′k (εnk )

= 
α
nn′k (εnk )

i(�R
nk−�A

n′k )+i(εnk−εn′k )

diagonal components Aα
nnk is

ταβ =
∑

nk Aα
nnkAβ

nnkτ
e-ph
nk 


β

nnk(εnk)
(− dfnk

dε

)
∑

nk Aα
nnkAβ

nnk

(− dfnk
dε

) . (30)

For the velocity operator, this equation gives the well-known
Drude dc electrical conductivity, while for the spin operator
one obtains the phonon-dressed macroscopic spin relaxation
time, as discussed below. These results generalize the linear
response treatment for band-diagonal operators presented in
Ref. [4] and extend it to nondiagonal operators.

III. SPIN RELAXATION AND DECOHERENCE

We now specialize to the nondiagonal spin operator, and
apply our formalism to study phonon-induced spin relax-
ation and decoherence. The BSE for the phonon-dressed spin
vertex—called hereafter spin-phonon BSE—is a key result

obtained from Eq. (13) by replacing Aα
nn′k with the spin op-

erator sα
nn′k. In matrix form and using a compact notation, the

spin-phonon BSE can be written in a way that clearly matches
the diagram in Fig. 1(c):

s�k(ε) = sk + 1

NqVuc

∑
νq±

g†
νkq[GAs�GR]k + q,

ε ± ωνq

gνkq F±(T ),

(31)

where s�k(ε) = snn′k�nn′k(ε) is the phonon-dressed spin
vertex, F±(T ) = Nνq + 1

2 ± [ f (ε ± ωνq) − 1
2 ] is a thermal oc-

cupation factor at temperature T , and [gνkq]nm = gnmν (k, q)
are e-ph matrix elements [32].

In the weak scattering regime, this spin-phonon BSE can be
rewritten using the double-pole ansatz discussed above (where
ε equals εnk or εn′k):

sα
nn′k


α
nn′k(ε)

= sα
nn′k + 2π

NqVuc

∑
mm′qν

[gn′m′ν (k, q)]∗gnmν (k, q)
1

2

[{
(Nνq + fmk+q)

(
δ(ε + ωνq − εmk+q) − i

π
P

1

ε + ωνq − εm′k+q

)

+ (Nνq + 1 − fmk+q)

(
δ(ε − ωνq − εmk+q) − i

π
P

1

ε − ωνq − εm′k+q

)}
× sα

mm′k+q

α
mm′k+q(εmk+q)

i
(
�R

mk+q − �A
m′k+q

) + i
(
εmk+q − εm′k+q

)

+
{

(Nνq + fm′k+q)

(
δ
(
ε + ωνq − εm′k+q

) + i

π
P

1

ε + ωνq − εmk+q

)

+ (Nνq + 1 − fm′k+q)

(
δ
(
ε − ωνq − εm′k+q

) + i

π
P

1

ε − ωνq − εmk+q

)}
× sα

mm′k+q

α
mm′k+q(εm′k+q)

i
(
�R

mk+q − �A
m′k+q

) + i(εmk+q − εm′k+q)

]
. (32)

This BSE for the phonon-dressed spin vertex, used in this
work to study spin dynamics, should not be confused with the
widely used BSE for excitons and optical spectra [2], which
is entirely unrelated.

The vertex corrections 
α
nn′k obtained by solving the BSE

govern spin dynamics as they renormalize spin relaxation and
precession [30]. The macroscopic spin relaxation times are
obtained using the thermal average in Eq. (30),

τ
(s)
αβ =

∑
nk sα

nnksβ

nnkτ
e-ph
nk 


β

nnk(εnk)
(− dfnk

dε

)
∑

nk sα
nnksβ

nnk

(− dfnk
dε

) . (33)

For α = β along the external magnetic field, Eq. (33) gives
the longitudinal spin relaxation time, usually called T1, along

the direction α, while for a perpendicular magnetic field one
obtains the transverse spin relaxation time T2 [44]. The renor-
malized microscopic spin relaxation times (τα

nn′k) and spin
precession rates (ωα

nn′k), which are matrices in Bloch basis,
are computed from the vertex corrections 
α

nn′k using

1
1

τα
nn′k (ε) + iωα

nn′k(ε)
≡ 
α

nn′k(ε)

i
(
�R

nk − �A
n′k

) + i(εnk − εn′k)
. (34)

The diagonal components with n=n′ give the renormalized
microscopic spin relaxation times, τ

β

nnk = τ
e-ph
nk 


β

nnk(εnk), en-
tering Eq. (33).
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FIG. 2. Schematic of the energy levels, scattering rates, and spin
orientations of the four Bloch states in our model.

IV. RESULTS

We apply our formalism to study spin relaxation and deco-
herence. We first present analytic results for a two-level model
system, and then focus on first-principles calculations on a
real material, GaAs. Application to a wider range of materials
is presented in our companion paper [30].

A. Two-level system with optical phonon scattering

We study spin dynamics in a two-level system to under-
stand different phonon-induced spin relaxation mechanisms.
In our model, the electron spins undergo phonon-induced
spin-flip transitions together with spin precession in the SOC
field modified by the e-ph interactions. We solve the spin-
phonon BSE for this system and derive analytic expressions
for the vertex corrections and spin relaxation times. Our
analysis sheds light on phonon-dressed operators and their
renormalized dynamics, providing a starting point to under-
stand phonon-induced spin relaxation in real materials with
complex band structures, phonon dispersions, and e-ph inter-
actions.

Consider a periodic two-level system where each level is
spin degenerate (see Fig. 2). The Hilbert space consists of four
Bloch states, which are eigenstates of the Hamiltonian:

H |n〉 = εn|n〉 , (35)

where |n〉 is the nth energy eigenstate. The two lowest-energy
states |1〉 and |2〉 are degenerate (ε1 = ε2) and differ only in
their spin part. The other two states, |3〉 and |4〉, are higher
in energy by ωO and are perturbed by an internal magnetic
field along x̂ due to SOC. This field causes a small Zeeman
splitting, � 
 ωO, such that ε3,4 = ε1 + ωO ± �

2 .
We separate the space-dependent part |ψn〉 and the spin-

dependent part |χn〉 of the two eigenstates as |n〉 = |ψn〉 ⊗
|χn〉. The two lowest states have an identical space-dependent
part |ψ〉 and are spin polarized along ẑ:

|1〉 = |ψ〉 ⊗
(

1
0

)
, |2〉 = |ψ〉 ⊗

(
0
1

)
, (36)

with the following spin matrix elements along z:

〈1| ŝz |1〉 = − 〈2| ŝz |2〉 = 1
2 , 〈1| ŝz |2〉 = 0. (37)

Above, ŝ = σ̂ /2 is the spin operator and σ̂ are Pauli matrices.
The two upper bands have an identical space-dependent part

|φ〉 and are spin polarized along x̂:

|3〉 = |φ〉 ⊗ 1√
2

(
1
1

)
, |4〉 = |φ〉 ⊗ 1√

2

(
1

−1

)
, (38)

with spin matrix elements

〈3| ŝz |3〉 = 〈4| ŝz |4〉 = 0, 〈3| ŝz |4〉 = 1
2 . (39)

The space-dependent part of the two lower states is orthogo-
nal to that of the upper states, and the spin matrix elements
between the two sets of states are zero.

In our model, an electron can scatter between the lower
and upper levels by emitting or absorbing an optical phonon.
These transitions are associated with e-ph matrix elements
gnm = 〈m| �V̂ |n〉, where �V̂ is the perturbation potential
due to the optical phonon. We assume that this perturbation
potential has the form

�V̂ = �V̂ (r) ⊗
(

a b
b a

)
, (40)

where V̂ (r) is the space-dependent part and the matrix is the
spin-dependent part of the perturbation, with a and b real
numbers. Due to the presence of SOC, the spin-dependent
part is different from the identity matrix. We consider a
small spin-mixing b, where a2 + b2 = 1, so that each phonon
collision has a small probability b2 
 1 to flip the z-
component of the spin [26]. The e-ph matrix elements become

gnm = g0 〈χm| (a b
b a

) |χn〉, where g0 = 〈φ| �V̂ (r) |ψ〉. Thus

the spin-dependent e-ph matrix elements are

g13 = g23 = 1√
2

g0(a + b), g14 = −g24 = 1√
2

g0(a − b).

(41)

B. Spin-phonon BSE and spin relaxation times

We construct the spin-phonon BSE for our two-level sys-
tem. There are four nonzero spin matrix elements in our
model: sz

11, sz
22, sz

34, and sz
43, where sz

nm = 〈m| ŝz |n〉. Using
Eq. (32), the diagonal matrix elements have only one vertex
correction, while the off-diagonal matrix elements have two
energy-dependent vertex corrections. Assuming a small Zee-
man splitting �, we can neglect the energy dependence of the
off-diagonal vertex corrections, and define 
z

nm = 
z
nm(εn).

We thus have four unknown vertex corrections: 
z
11, 
z

22, 
z
34,

and 
z
43. Taking the e-ph scattering rates of the two lower and

upper states to be �1 and �3, respectively, the spin-phonon
BSE becomes


z
11 = 1 +

(
1

2
− b2

)(
�1


z
34

−i� + �3
+ �1


z
43

i� + �3

)
,

−
z
22 = −1 −

(
1

2
− b2

)(
�1


z
34

−i� + �3
+ �1


z
43

i� + �3

)
,


z
34 = 1 +

(
1

2
− b2

)(
�3


z
11

�1
+ �3


z
22

�1

)
,


z
43 = 1 +

(
1

2
− b2

)(
�3


z
11

�1
+ �3


z
22

�1

)
. (42)

Note that this equation treats the phonon-induced spin flips
and the spin precessional dynamics self-consistently.
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The first two lines in Eq. (42) give 
z
11 = 
z

22, while from
the third and fourth lines we obtain 
z

34 = 
z
43. Therefore the

solution of the spin-phonon BSE is


z
11 = 
z

22 = �2
3 + �2 + �3�1(1 − 2b2)

�2
34b2(1 − b2) + �2

,


z
34 = 
z

43 =
(
�2

3 + �2
)
(�1 + �3(1 − 2b2))(

�2
34b2(1 − b2) + �2

)
�1

. (43)

The state-dependent spin relaxation times τ z
11, τ z

22, τ z
34, and τ z

43
are obtained using Eq. (20):

τ z
11 = τ z

22 = �2
3 + �2 + �3�1(1 − 2b2)(
�2

34b2(1 − b2) + �2
)
�1

,

τ z
34 = τ z

43 =
(
�2

3 + �2
)
(�1 + �3(1 − 2b2))(

�2
34b2(1 − b2) + �2

)
�1�3

. (44)

Figure 3(a) shows the vertex correction for the lowest state,

z

11 in Eq. (43), and Fig. 3(b) shows the spin relaxation time
τ z

11 from Eq. (44), both plotted as a function of the e-ph
collision time τ1 = 1/�1. These quantities show three distinct
regimes with a qualitatively different dependence on the e-ph
collision time, which correspond to the EY, DP and strong-
precession regimes. Our formalism encompasses these three
regimes [30] because it can capture both spin-flip scattering
and spin precession. The physics of these regimes is discussed
below.

C. Elliott-Yafet regime

We first focus on the EY regime, where spin relaxation oc-
curs primarily through spin-flip transitions. In this regime, the
spin-flip probability is small since b 
 1, and the spin preces-
sion rate is much smaller than the scattering rate, � 
 2�3b.
Using these conditions in Eq. (43), we obtain the following
vertex corrections in the EY regime:


z
11 = 
z

22 = τ1 + τ3

4b2

1

τ1
, 
z

34 = 
z
43 = τ1 + τ3

4b2

1

τ3
, (45)

where τ1 = 1/�1 and τ3 = 1/�3 are state-dependent e-ph
collision times. These vertex corrections determine the spin
relaxation times via Eq. (34):

τ z
11 = τ z

22 = τ z
34 = τ z

43 = τ1 + τ3

4b2
. (46)

These results, shown in Fig. 3, approximate well the solution
of the spin-phonon BSE in the EY regime.

In the conventional theory of EY spin relaxation, the spin
relaxation times are proportional to 1/b2 and to the e-ph
collision times (here, τ1 and τ3) [29,45,46]. Our results in
Eq. (46) are consistent with that trend, although the spin
relaxation times are proportional to the average of the e-ph
collision times of the two levels, (τ1 + τ3)/2, and not to their
individual values. This difference is a result of considering
both forward- and back-scattering processes between the two
electronic levels in the spin-phonon BSE [4], different from

FIG. 3. (a) The vertex correction 
z
11 as a function of the e-ph

collision time τ1 for the model system in Fig. 2. (b) Spin relaxation
time as a function of the e-ph collision time τ1 for our model system.
We show the full solution of the spin-phonon BSE in Eqs. (43) and
(44) (black curve) and approximate results for the Elliott-Yafet [blue,
Eqs. (45) and (46)], Dyakonov-Perel [red, Eqs. (49) and (50)], and
strong-precession regimes [green, Eqs. (51) and (52)]. These results
are obtained by setting τ3 = τ1 and b = 0.02.

the simpler sRTA [29,45,46] which neglects electron back-
scattering.

D. Dyakonov-Perel regime

Next, we discuss the regime where spin precession is
important and governs spin relaxation. Here, the spin-flip
probability is still small (b 
 1) but the internal magnetic
field due to SOC is significant, such that � � 2�3b. Inserting
these conditions in Eqs. (43) and (44), the vertex corrections
become


z
11 = 
z

22 = �2
3 + �3�1 + �2

�2
,


z
34 = 
z

43 =
(
�2

3 + �2
)
(�1 + �3)

�2�1
, (47)

174404-8



MANY-BODY THEORY OF PHONON-INDUCED SPIN … PHYSICAL REVIEW B 106, 174404 (2022)

and for the spin relaxation times we obtain

τ z
11 = τ z

22 = �2
3 + �3�1 + �2

�2�1
,

τ z
34 = τ z

43 =
(
�2

3 + �2
)
(�1 + �3)

�2�1�3
. (48)

These results describe spin relaxation governed by spin pre-
cession and renormalized by the e-ph interactions.

In the DP regime, the e-ph scattering rates are much greater
than the bare spin precession rate �, and thus �1,3 � �. The
vertex corrections in the DP regime become


z
11 = 
z

22 = �2
3 + �3�1

�2�1
�1,


z
34 = 
z

43 = �2
3 + �3�1

�2�1
�3,

(49)

while for the spin relaxation times, we obtain

τ z
11 = τ z

22 = τ z
34 = τ z

43 = �2
3 + �3�1

�2�1
. (50)

These results, shown in Fig. 3, are an excellent approximation
to the BSE solution in the DP regime.

A hallmark of DP relaxation is the inverse proportionality
between the spin relaxation and e-ph collision times [19],
a trend captured by our treatment of the DP regime [see
Eq. (50)]. Our formalism shows in Eq. (49) that this trend orig-
inates from the inverse-square scaling of the vertex corrections
with the e-ph collision times, 
 ∼ �2

1,3 ∼ 1/τ 2
1,3. Note that in

the EY regime, rescaling the e-ph collision times by a constant
factor has no effect on the vertex corrections, which depend
only on the ratio τ1/τ3, and thus the EY spin relaxation times
are proportional to the e-ph collision times. The situation is
different in the DP regime, where rescaling the e-ph collision
times changes the vertex corrections. These scaling trends
can be employed in real materials to identify the dominant
microscopic mechanisms for spin relaxation and decoherence
[30].

E. Strong-precession regime

A third, distinct regime is realized when the Zeeman split-
ting is much greater than the e-ph scattering rates, � � �1,3,
such that the spins precess much faster than the rate of e-ph
collisions. In this strong-precession regime [44,47,48], the
vertex corrections become


z
11 = 
z

22 = 1, 
z
34 = 
z

43 = 1 + �3

�1
(51)

and can be approximated as 
 ≈ 1. Therefore the vertex cor-
rections are less important than in the EY or DP regimes. It
follows that in the strong-precession regime the spin relax-
ation times are proportional to the e-ph collision times:

τ z
11 = τ z

22 = 1

�1
, τ z

34 = τ z
43 = 1

�1
+ 1

�3
. (52)

These results, shown in Fig. 3, approximate well the BSE
solution in the strong-precession regime. Their physical inter-
pretation is interesting: in the strong-precession regime, the
spins precess for many full cycles between phonon collisions,

randomizing the spin direction. Consequently, the spin relax-
ation times become equal to the e-ph collision times, and thus
the vertex corrections 
 ≈ 1 can be neglected.

F. Uncovering the three regimes in GaAs

To identify the three spin relaxation mechanisms in a real
material, we study spin relaxation in GaAs using our first-
principles implementation of the spin-phonon BSE [30]. We
focus on spin relaxation for conduction band electrons in
GaAs at room temperature (300 K), and investigate how the
spin relaxation times depend on the e-ph collision times.

We compute the ground state and band structures of GaAs
with density functional theory (DFT), using a plane-wave
basis in the QUANTUM ESPRESSO code [49] and employing
the HSE06 hybrid functional [50] to obtain an accurate band
gap and electronic structure. We use fully relativistic norm-
conserving pseudopotentials, generated in the local-density
approximation (LDA) with PSEUDO DOJO [51], together with
a kinetic energy cutoff of 72 Ry and a relaxed lattice constant
of 5.60 Å. The phonon energies and perturbation potentials
are computed using density functional perturbation theory
(DFPT) [7]. Using our PERTURBO code [32], we compute
the e-ph matrix elements on coarse Brillouin zone grids with
8×8×8 k and q points, following which we generate spinor
Wannier functions with the WANNIER90 code [52] and use
them in PERTURBO [32], with a method we developed in
Ref. [29], to jointly interpolate the e-ph matrix elements
and spin matrices. The long-range quadrupole e-ph interac-
tions [10,11,53,54] are included to fully account for e-ph
coupling with long-wavelength phonons. We interpolate the
e-ph matrix elements to fine Brillouin zone grids with up to
200×200×200 k and q points, and a 10 meV Gaussian broad-
ening for the energy-conserving delta functions in the e-ph
scattering rates [42]. The spin relaxation times in Eq. (30) are
computed using the tetrahedron integration method [55], as-
suming a nondegenerate electron concentration of 1016 cm−3.
The spin-phonon BSE in Eq. (32) is solved with an augmented
iterative approach described in Ref. [30].

Using our first-principles spin-phonon BSE, we compute
the spin relaxation time for electron spins in GaAs, and obtain
a value 51 ps at 300 K in excellent agreement with the exper-
imental value of 42 ps [56]. We also obtain an average e-ph
collision time of 410 fs, computing using

〈τ e-ph〉 =
∑

nk τ
e-ph
nnk (εnk)

(− dfnk
dε

)
∑

nk

(− dfnk
dε

) (53)

and an average vertex correction 〈
z〉≈171, computed from

〈
z〉 =
∑

nk |sz
nnk|2
z

nnk(εnk)
(− dfnk

dε

)
∑

nk |sz
nnk|2

(− dfnk
dε

) . (54)

These “real-material” values for GaAs are shown with a dot
in Figs. 4(a) and 4(b), where we also show spin relaxation
times and vertex corrections obtained by artificially varying
the average e-ph collision time (by rescaling the e-ph matrix
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FIG. 4. First-principles calculations of (a) vertex corrections and
(b) spin relaxation times for electron spins in GaAs, computed at
room temperature and plotted as a function of the average e-ph
collision time. The arrows indicate the values for the real material,
GaAs (black dot), while the other values are obtained by rescaling
the e-ph interaction strength, as explained in the text. The vertical
dotted lines are placed at the inflection points of the spin relaxation
times, and separate the EY, DP, and strong-precession regimes.

elements). The resulting trends show that the spin relaxation
times are inversely proportional to the e-ph collision time,
placing GaAs in the DP spin-relaxation regime.

Upon decreasing the average e-ph collision time 〈τ e-ph〉 in
Fig. 4(a), the system evolves from the DP to the EY regime,
and the vertex correction first increases and then saturates
to a maximal value of ∼1900 in the short e-ph collision
time limit. As a consequence, the spin relaxation time in
Fig. 4(b) peaks at 〈τ e-ph〉≈0.09 ps and then decreases linearly
at shorter e-ph collision times. This crossover from the DP
to the EY mechanism, obtained here by artificially tuning
the e-ph collision time in GaAs, is consistent with the results
from our model system.

Conversely, when the e-ph collision time is increased,
the system transitions from the DP to the strong-precession
regime: Fig. 4(a) shows that the vertex correction first de-

TABLE II. Summary of the Elliott-Yafet, Dyakonov-Perel, and
strong-precession regimes.

EY DP Strong-precession
Spin-flip Spin precession Spin precession


 ∼ 1

b2
∼ 1

�2(τ e-ph)2
∼1

τ s ∼ τ e-ph

b2
∼ 1

�2τ e-ph
∼ τ e-ph

creases as 〈τ e-ph〉−2 and then plateaus to a minimal value close
to unity for long e-ph collision times. Accordingly, the spin
relaxation time in Fig. 4(b) reaches a minimum for 〈τ e-ph〉 ≈ 3
ps and then increases linearly at longer e-ph collision times.

In summary, real materials exhibit the same spin relaxation
mechanisms and vertex correction trends as our two-level
system. These regimes for phonon-induced spin dynamics are
summarized in Table II. The presence of three distinct spin-
relaxation regimes is general, and we expect it to be valid be-
yond the case of a simple semiconductor (GaAs) studied here.

V. DISCUSSION

Our formalism can capture all three of the EY, DP and
strong-precession regimes in a unified framework. The reason
can be inferred from the diagrammatic representation of
the spin-phonon BSE in Fig. 1(c). In the diagrams, the
EY relaxation is due to e-ph scattering in the presence of
spin mixing, which originates from the e-ph interactions
[gn′m′ν (k, q)]∗ and gnmν (k, q) and the wiggly line in the kernel
of the BSE. The DP and strong-precession mechanisms
are included by virtue of the electron propagators with two
different band indices, Gmlk+qGl ′m′k+q, placed between the
wiggly line and the spin vertex. These propagators take into
account spin precession (due to the SOC field) between e-ph
collisions. This elegant formalism captures a wide range of
spin physics in a single diagram.

Although our discussion has focused on T1 spin relaxation
times, the spin decoherence times T2 at finite magnetic
fields can also be computed, as we plan to show in future
work. Finally, the approach presented in this work for the
phonon-dressed vertex is general and goes beyond spin
relaxation. It can be employed to study the dynamics of any
observable that couples with phonons, for which we also
expect to find the three phonon-induced relaxation regimes
discussed above for spin dynamics.

VI. CONCLUSION

We have formulated a theory for the vertex corrections
from e-ph interactions to the susceptibility of a nondiagonal
operator. The key result is a self-consistent BSE to calculate
the phonon-dressed vertex, which encodes the dynamics of the
operator coupling with phonons. When applied to spin, this
approach enables quantitative calculations of spin relaxation
and decoherence [30]. We have shown that our spin-phonon
BSE captures both spin-flip transitions and spin precession,
unifying the treatment of three spin decoherence mechanisms
(EY, DP, and strong-precession) conventionally treated with

174404-10



MANY-BODY THEORY OF PHONON-INDUCED SPIN … PHYSICAL REVIEW B 106, 174404 (2022)

separate heuristic models. By leveraging efficient workflows
for first-principles e-ph calculations [32], our method enables
quantitative studies of spin relaxation and decoherence in a
wide range of bulk and two-dimensional materials, as we
show in the companion paper [30]. These advances open new
avenues for understanding spin relaxation and decoherence in
spintronics, magnetism, multiferroics, quantum materials and
quantum technologies.
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APPENDIX: WARD IDENTITY

We derive a Ward identity for our BSE in Eq. (13). The
Ward identity relates the vertex corrections with the electron
self-energy [1,4,37], and guarantees that diagrams are taken
into account consistently in the self-energy and in the BSE for
the vertex [1,4,37].

For a system with Hamiltonian H , the operator Â is related
to the negative derivative of the Hamiltonian with respect to
the external field F , Â = −∇FH . We compute the change of
the Fan-Migdal self-energy in Eq. (2) with respect to F , by
taking the derivative

∇F�nn′k(iωa)

= − 1

βNqVuc

∑
mm′ll ′qν,iqc

[gn′m′ν (k, q)]∗gnmν (k, q)

× Dνq(iqc)(∇FGmm′k(iωa + iqc)). (A1)

Employing the matrix identity

∇FGmm′k = −
∑

ll ′
Gmlk[∇F (G−1)]ll ′kGl ′m′k

= −
∑

ll ′
Gmlk(−∇FHll ′k − ∇F�ll ′k)Gl ′m′k, (A2)

we obtain a self-consistent equation for the self-energy deriva-
tives:

∇F�nn′k(iωa)

= − 1

βNqVuc

∑
mm′ll ′qν,iqc

[gn′m′ν (k, q)]∗gnmν (k, q)

× Dνq(iqc)Gmlk+q(iωa + iqc)Gl ′m′k+q(iωa + iqc)

× (∇FHll ′k + ∇F�ll ′k(iωa + iqc)). (A3)

Comparing Eqs. (A3) and (8) in the iνb → 0 limit, we dis-
cover the Ward identity expressed in terms of the Hamiltonian,
vertex corrections, and self-energy:

(∇FH )�(iωa, iωa) = ∇FH + ∇F�(iωa), (A4)

where (∇FH )�(iωa, iωa) ≡ ( ∂Hnn′k
∂Fα )
α

nn′k(iωa, iωa). Equa-
tion (A4) can be equivalently expressed in terms of the
operator matrix elements Aα

nn′k,

Aα
nn′k


α
nn′k(iωa, iωa) = Aα

nn′k − ∂�nn′k(iωa)

∂Fα
. (A5)

Our expression for the Ward identity in Eqs. (A4) and (A5)
is consistent with the Ward identity for the velocity operator
derived in Ref. [4]:

vα
nnk


α
nnk(iωa, iωa) = vα

nnk + ∂�nnk(iωa)

∂kα
, (A6)

as the velocity operator is defined as v̂ = ∇FH with F = k.
This result further validates our BSE for the phonon-dressed
vertex.
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