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Electron removal spectral function of a polaron coupled to dispersive optical phonons

J. Bonča1,2,* and S. A. Trugman3

1J. Stefan Institute, 1000 Ljubljana, Slovenia
2Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

3Theoretical Division, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA

(Received 11 July 2022; revised 6 October 2022; accepted 9 November 2022; published 17 November 2022)

We explore the ground state and thermodynamic properties of the polaron coupled to quantum dispersive opti-
cal phonons in one spatial dimension. Calculations are performed using the finite–temperature Lanczos method
augmented by a highly efficient construction of the variational Hilbert space. We focus on the electron removal
spectral function as relevant for the angle-resolved photoemission experiments. We show that photoemission
spectroscopy can be used to measure the phonon dispersion relation in a dilute system of polarons. The spectral
weight of observed phonon bands is proportional to the phonon contribution to the wavefunction at finite phonon
momentum. In addition, we demonstrate that when removing an electron from a polaron ground state, the polaron
band does not appear in the spectral function. The latter becomes observable only at elevated temperatures.
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I. INTRODUCTION

Electron-phonon interaction represents one of the most
studied phenomena in solid-state physics. The Holstein model
(HM) [1] symbolizes one of the simplest, and possibly the
most studied, prototype microscopic models describing elec-
tron coupling to quantum lattice degrees of freedom. Despite
its apparent simplicity, the model has no exact solution, even
in the most straightforward single-electron case. For this
reason, many numerical methods have been applied and de-
veloped to tackle the ground state and dynamic properties of
the HM. The most straightforward are exact diagonalization
approaches on finite lattices [2–8] followed by slightly more
sophisticated variational approaches [9–22].

Other techniques rely on diagrammatic approaches
[23–25] with extensions to momentum-averaged approxima-
tions [26–30] that allow for the computation of static as
well as dynamic properties of the model. The recently de-
veloped hierarchical equations of motion approach allows
for computation of spectral functions at finite tempera-
ture [31,32]. Further improvements within the context of
momentum-averaged approximations led to the development
of the generalized Green’s function cluster expansion [33] that
allows reliable computations in the extreme adiabatic limit of
different charge-boson coupled models.

Other successful methods include various Monte Carlo
methods [34–40]. The diagrammatic and world line Monte
Carlo methods [25,41,42] have recently been applied to
determine the mobility of an electron subject to local lat-
tice vibrations. In this class of approaches, density-matrix
renormalization-group techniques [43–45] represent yet an-
other class of advanced techniques most successful in tackling
the HM in one spatial dimension, which can be easily
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extended to the finite electron doping regime. Recently, this
approach has been generalized to obtain spectral properties of
the HM at finite temperatures [46]. In the limit of infinite di-
mensions, dynamical mean-field theory (DMFT) approaches
[47,48] provide exact results, while it has recently been shown
that DMFT can also provide a reasonably accurate solu-
tion for the spectral function for the one-dimensional (1D)
problem [32].

In comparison with multitudes of past research based on
the HM, only a few recent works incorporate a more realistic
phonon dispersion among the optical Einstein modes. One of
the early approaches to include the phonon dispersion in the
adiabatic limit has been reported in Ref. [49]. In Ref. [50], au-
thors have investigated the influence of the dispersion among
optical phonons on the polaron effective mass. Recently, the
electron-addition spectral function and the optical response
have been studied in the HM with dispersive optical phonons
[51]. The coupling of the electron to acoustic phonons seems
to be the most challenging when using various numerical
approaches. In such cases, perturbative approaches seem to
be more applicable [52,53].

Authors of most previous works on the polaron spectral
function have investigated cases of adding an electron (or
hole) to the vacuum [5,7,17,26–29,46,51,52,54]. We are in
contrast removing an electron from the 1 electron sector. Note
that, after the removal of an electron from the system of
dispersionless Einstein phonons, there is no dynamics left in
the system; the phonon degrees of freedom remain frozen.
This is possibly why not much attention has been devoted
to the electron removal spectral function in the context of
the Holstein polaron. The introduction of dispersion renders
the HM more physically relevant, allowing phonon degrees
of freedom to evolve even in the absence of the electron.
Here, we note that, in most materials, the bandwidth of optical
phonons is much smaller than the position of the middle of the
optical band. Nevertheless, a substantial dispersion of optical
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phonons appears in systems where intracellular interactions
are comparable with those between cells and where the masses
of atoms in the unit cell are similar. A few examples of
systems with large dispersions of optical phonons are GaLaAs
superlattice systems [55] and hexagonal nitride AlN semicon-
ductors [56].

Our calculation is limited to computation of a single elec-
tron coupled to dispersive optical phonons on a 1D chain
[57]. Our findings are thus relevant to systems in the low-
carrier doping limit with nondegenerate polarons. Recently,
angle-resolved photoemission spectroscopy (ARPES) stud-
ies have been applied to systems with low electron density,
such as doped transition metal oxides [58,59], graphene het-
erostructures [60], multilayer FeSe thin films [61], and oxide
heterostructures [62], where polaronic effects have been ob-
served.

In this paper, we explore the physical properties of the
polaron in two directions. We introduce phonon dispersion
among optical phonons and examine the electron removal
spectral function as relevant for angle-resolved photoemission
experiments. We show that photoemission spectroscopy can
be used to measure the phonon bands in a dilute system of
polarons. In addition, we demonstrate that, when removing an
electron from a polaron ground state, the polaron band does
not appear in the spectral function. The latter is observed only
at elevated temperatures.

II. MODEL AND METHOD

We study a single electron coupled to dispersive optical
phonons on a 1D system:

H = −tel

∑
j

(c†
j c j+1 + H.c.) + g

∑
j

n̂ j (a
†
j + a j )

+ tph

∑
j

(a†
j a j+1 + H.c.) + ω0

∑
j

a†
j a j, (1)

where c†
j and a†

j are electron and phonon creation operators
at site j, respectively, n̂ j = c†

j c j represents the electron den-
sity operator and tel the nearest-neighbor hopping amplitude.
Here, ω0 denotes the position of the center of the dispersive
optical phonon band ω(q) = ω0 + 2tph cos(q). We introduce
the dimensionless effective electron-phonon coupling strength
λ = εp/2tel = g2/2tel

√
ω2

0 − 4t2
ph , where εp is the polaron en-

ergy in the limit tel = 0 [50]. From here on, we set tel = 1.
We have used the numerical method described in detail in

Refs. [12,13,51]. The method generates the variational Hilbert
space starting from the initial single-electron Bloch state
c†

k |∅〉, where c†
k = 1√

L

∑
j exp(ik j)c†

j , with no phonons on a
finite lattice with L sites and periodic boundary conditions.
The variational Hilbert space is then generated by applying
the first two off-diagonal terms of the Hamiltonian in Eq. (1)
Nh times considering the full translational symmetry. In the
intermediate coupling regime, the method provides computa-
tion of the ground state energy in the thermodynamic limit to
extremely high accuracy. The constructed variational Hilbert
space allows only a finite maximal distance of phonon quanta
from the electron position Lmax = Nh − 1. This limitation is in
turn responsible for a discrete phonon dispersion ω(q). Note
that Lmax can be chosen to be smaller than, equal to, or larger

than L. Furthermore, the maximal amount of phonon quanta
at the electron position is given by Nphmax = Nh, while on the
Mth neighboring site to the electron, it is reduced to Nphmax =
Nh − M. We have used a standard Lanczos procedure [63] to
obtain static as well as dynamic properties of the model.

III. ZERO TEMPERATURE RESULTS

Our main focus is on the electron removal spectral function
defined as

A(ω, q) =
M0∑

n=0

∣∣〈ψ (n,0)
−q

∣∣cq

∣∣ψ (0,1)
0

〉∣∣2

× δ
[
ω − E (n,0)

q + E (0,1)
0

]
, (2)

where |ψ (n,Nel )
q 〉 represents the nth translationally invariant

state with Nel = 0, 1 electrons and wave vector q. Specifically,
|ψ (0,1)

k=0 〉 represents the polaron ground state obtained using
the Lanczos procedure. Typically, M1 = 50 Lanczos steps
was sufficient to obtain accurate ground state energies and
wave functions for the polaron case. Furthermore, we have
computed M0 = 200 excited states |ψ (n,0)

q 〉 for each q. To
ensure orthogonality of |ψ (n,0)

q 〉, we have also employed the
Gram-Schmid reorthogonalization procedure. We have used a
Lorentzian form of the delta functions with the half width at
half maximum η for graphic representations of A(q, ω). The
integral over ω yields the sum rule:∫ +∞

−∞
dωA(ω, q) = 〈

ψ
(0,1)
0

∣∣c†
qcq

∣∣ψ (0,1)
0

〉 = n̄q, (3)

which further gives
∑

q n̄q = 1 for the case of the polaron.
Furthermore, n̄q contains the information of the expectation
value of the kinetic energy via

−2tel

∑
q

n̄q cos(q) = Ekin, (4)

where Ekin = 〈ψ (0,1)
0 |Hkin|ψ (0,1)

0 〉, and Hkin represents the first
term in Eq. (1). Equation (4) can serve as a consistency check
on the computation of A(ω, q).

In Fig. 1, we present n̄q computed in the polaron ground
state |ψ (0,1)

q=0 〉. In the case of the free electron, i.e., at λ = 0,
n̄q = δq,0. Increasing values of n̄q �=0 at λ > 0 indicate that the
electron obtains finite momenta qel as the phonon cloud picks
up the difference qph so that the total q = qel + qph = 0. In the
limit of very large λ (not shown), one expects n̄q ∼ 1/L that
would yield, according to Eq. (4), Ekin → 0. In the vicinity of
q ∼ 0, a negative value of tph has a more pronounced effect
on the increase of n̄q than tph > 0. For tph = −0.2, nq has the
largest amplitude of the curves for small q and the smallest
amplitude for large q, as one would expect from the energy
denominator in the perturbation theory. This effect is more
pronounced in the weak coupling regime λ � 1, see Fig. 1(a).

In Fig. 2(a), we display Ekin vs λ for different values of
phonon dispersion. In contrast to n̄q, there is very little effect
of different values of tph on Ekin in the weak to intermediate
coupling regime, i.e., λ � 1. For larger λ > 1, tph > 0 has
a more pronounced effect on Ekin than for tph < 0. It is the
amplitude of states with large electron momentum q that cause
the biggest change in Ekin. In the first order of the perturbation
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FIG. 1. n̄q for different values of λ as denoted in insets and for
different values of the phonon dispersion tph, computed in the polaron
ground state. In this and in all subsequent figures, unless otherwise
specified, we have used ω0 = tel = 1, Nh = 16, and the size of the
system L = 32.

theory, the large momentum states have a bigger amplitude for
tph > 0 than in the opposite case because the energy denomi-
nators are smaller when tph > 0. Note that full lines represent
Ekin computed as an expectation value of Hkin in the polaron
ground state, while circles represent Ekin obtained from n̄q via
Eqs. (3) and (4).
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FIG. 2. Full lines in (a) represent Ekin of the polaron ground state
at various tph and the total wave vector q = 0, open circles represent
the same quantity computed using Ekin = −2tel

∑
q n̄q cos(q). The

quasiparticle weight Zq=0 vs λ in (b) and (c) represents Zq at fixed
λ = 1.

Investigating further the effects of tph on the properties
of the polaron, we computed the quasiparticle weight Zq =
|〈ψ (0,1)

q |c†
q|∅〉|2, which measures the weight of the free elec-

tron in the polaron ground state. As shown in Fig. 2(b), Zq=0

decreases faster with λ when tph < 0. This is a consequence
of the smaller phonon excitation energy ωq=0 = ω0 + 2tph for
tph < 0. At large λ � 1.5, we observe a crossing of Zq=0 at
tph = 0.2 below those computed at smaller values of tph. This
seemingly unusual effect can be explained by the coupling
of an electron to two phonon excitations, each at q1 = q2 =
π , which yields total momentum q = 0 and total excitation
energy ω2ph = 2ω0 − 4tph. The latter, providing that tph >

ω0/6, lies below the single-phonon excitation energy at q = 0,
ω1ph = ω0 + 2tph, see also Ref. [51]. A monotonic decrease of
Zq vs q at fixed λ = 1 is shown in Fig. 2(c), which indicates
diminishing weight of the free electron wave function at given
q in the polaron ground state as q departs from the middle of
the Brillouin zone (BZ).

We now turn to the analysis of A(ω, q), presented as den-
sity plots for different values of λ and two different values of
tph in Fig. 3. The lowest frequency peaks (lowest |ω|) at q = 0
are at the polaron energy ω = −E (0,1)

0 . They are represented
by the broadened delta functions in the ω and q directions.
It is important to emphasize that there is no signature of a
polaron band, which is typically observed in the electron-
addition spectral function [25–29,31,46,51,52,54]. The reason
is that, as the electron is ejected from the polaron ground
state, the system has no information about the polaron state
at finite momentum. The well-defined dispersive bands seen
just below the single polaron peak in all cases represent the
single-phonon dispersion given by ω1ph(q) = −E (0,1)

0 + ω0 +
2tph cos(q), shown in Figs. 3(a)–3(f) as blue dashed lines.
While their positions are given by the phonon dispersion rela-
tion ω1ph(q), their spectral weights are nonuniform and largest
around q = 0, irrespective of the sign of tph. This finding
is particularly relevant. By measuring the abovementioned
spectral weight of phonon bands, one can extract the weight of
the phonon contribution to the wave function at finite phonon
momentum q, or more quantitatively, in the weak-coupling
regime, the polaron wave function at total k = 0 can be written
as |ψ (0,1)

k=0 〉 ∼ c†
k=0|∅〉 + ∑

q vqc†
−qa†

q|∅〉. Then the q-dependent
intensity of phonon bands is proportional to |vq|2.

In addition to the single-phonon band, two- and even
three-phonon continuums are clearly seen for λ � 1.0. The
two-phonon continuum is located in the interval given
by ω±

2ph = −E (0,1)
0 + 2ω0 ± 4tph cos(q/2), as indicated by

the yellow dot-dashed lines. The three-phonon one ap-
pears between ω−

3ph = −E (0,1)
0 + 3ω0 − 4tph cos[(q ± π )/3]

and ω+
3ph = −E (0,1)

0 + 3ω0 + 4tph cos(q/3) for tph > 0 [indi-
cated by red dashed lines in Figs. 3(e) and 3(f)]. The upper
and lower bounds are reversed for tph < 0.

While the polaron dispersion does not appear in the elec-
tron removal spectral function A(ω, q), the dispersion can be
detected by removing an electron from a polaron state with a
given total momentum k, ψ

(0,1)
k :

A(ω, q, k) =
∑

n

∣∣〈ψ (n,0)
k−q

∣∣cq

∣∣ψ (0,1)
k

〉∣∣2

× δ
[
ω − E (n,0)

k−q + E (0,1)
k

]
, (5)
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FIG. 3. A(ω, q) for different λ and tph as denoted in the insets.
In (a)–(f), blue dashed lines follow single-phonon excitation and are
obtained from ω1ph = −E (0,1)

q=0 + ω0 + 2tph cos(q), yellow dot-dashed
lines enclose the continuum of two-phonon excitations below the
polaron ground state energy: ω±

2ph = −E (0,1)
q=0 + 2ω0 ± 4tph cos(q/2).

In addition, red dashed lines indicate the regime of three-phonon
excitation continuum ω±

3ph, as given in the text. We have used arti-
ficial broadening η = 0.05. Note that the lowest frequency (lowest
|ω|) peaks at q = 0 are represented by the Lorentzian forms of the
delta functions in q and ω. Identical color coding has been used in all
panels.

In Fig. 4, we present A(ω, q, k) for k > 0, while in
Figs. 3(c) and 3(d), results for the same set of parameters are
presented for k = 0. With increasing k the lowest |ω| peak
follows the polaron dispersion relation ωpol(q) = −E (0,1)

q , as
denoted by the white dashed lines, while its spectral weight
decreases. This is consistent with the notion that the spectral
weight of this peak corresponds to the quasiparticle weight
given by Zq = |〈ψ (0,1)

q |c†
q|ψ (0,0)

q=0 〉|2, where the state |ψ (0,0)
q=0 〉

represents the electron and phonon vacuum. Also, Zq is dis-
played in Fig. 2(c). At higher ω single- and multiple phonon
bands shifted by q → q − k remain clearly visible, while most
of their spectral weight remains around q = 0. One way to
think about this is that, at weak coupling, the polaron ground
state at large k is mainly composed of an electron at (near)
zero momentum and a phonon of momentum (near) k, when
this is the lowest energy state of total momentum k. That is
why the spectral weight peaks near q = 0. At larger k, we
observe a shift of the spectral weight from the polaron peak to
phonon bands.

FIG. 4. A(ω, q, k) computed at (a)–(d) tph = 0.1 and (e)–(h)
tph = −0.1, for different values of k as denoted in the insets. In
(a)–(e), blue dashed lines follow single-phonon excitation and are
obtained from ω1ph = −E (0,1)

k + ω0 + 2tph cos(q − k), yellow dot-
dashed lines enclose the continuum of two-phonon excitations
below the polaron ground state energy: ω±

2ph = −E (0,1)
k + 2ω0 ±

4tph cos[(q − k)/2]. White dashed lines represent the polaron dis-
persion relation given by ωpol = −E (0,1)

q . We have used artificial
broadening η = 0.05. Note that the lowest frequency (lowest |ω|)
peaks at q = 0 are represented by the Lorentzian forms of the delta
functions in q and ω. Identical color coding has been used in all
panels.

IV. THERMODYNAMIC PROPERTIES

Computation of static quantities was done using the finite
temperature Lanczos method (FTLM) [54,64]. The central
proposition of the method is that the summation over all
states in a given sector can be replaced by the summation
over normalized random states |rk〉 = ∑N1

j=1 α j |φ( j,1)
k 〉, where

α j are distributed randomly from a uniform distribution, and
|φ( j,1)

k 〉 represents N1 translationally invariant basis states in
the one-electron and multiphonon subspace. The expectation
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value of a given operator B is obtained from

〈B〉 = Z−1
∑

k

R∑
r=1

M1∑
m=1

exp
[−βE (m,1)

k

]〈
rk

∣∣ψ (m,1)
k

〉

× 〈
ψ

(m,1)
k

∣∣B|rk〉, (6)

where |ψ (m,1)
k 〉 and E (m,1)

k are Lanczos wave functions and cor-
responding energies in the 1 electron subspace and β = 1/T .
Lanczos states are generated using M1 iterations starting from
|rk〉 states, respectively. Furthermore, R represents the number
of different random states, and the first summation is over all
nonequivalent k states in the first BZ. The statistical sum Z is
in the framework of the FTLM method [54,64] given by

Z =
∑

k

R∑
r=1

M1∑
m=1

exp
[−βE (m,1)

k

]∣∣〈rk

∣∣ψ (m,1)
k

〉∣∣2
. (7)

For computation of static properties, we have sampled over
R = 200 random states and performed M0 = 100 Lanczos
iterations.

Computation of dynamic properties at finite temperature,
such as the electron-removal spectral function A(ω, q, T ),
requires additional summation over the zero electron states.
Here, A(ω, q, T ) is expressed as

A(ω, q, T ) = Z−1
∑

k

R∑
r=1

M1∑
m=1

M0∑
n=1

exp
[−βE (m,1)

k

]

× 〈
rk

∣∣ψ (m,1)
k

〉〈
ψ

(m,1)
k

∣∣c†
q

∣∣ψ (n,0)
k−q

〉
× 〈

ψ
(n,0)
k−q

∣∣cq|rk〉
× δ

[
ω − E (n,0)

k−q + E (m,1)
k

]
, (8)

where |ψ (m,l )
k 〉 and E (m,l )

k are Lanczos wave functions and
corresponding energies in the l = 0 and 1 electron subspace.
Lanczos states in the l = 0 and 1 sectors are generated
using M0 and M1 iterations starting from cq|rk〉 and |rk〉
states, respectively. We have typically used R = 200, M1 =
50, and M0 = 100 Lanczos iterations combined with the
Gram-Schmidt reorthogonalization procedure to avoid spuri-
ous nonorthogonal states that appear due to roundoff errors,
introduced by the finite-precision arithmetic when using large
values of Mi.

As a consistency check, we note that the frequency sum
rule yields ∫ +∞

−∞
dωA(ω, q, T ) = 〈c†

qcq〉, (9)

〈Hkin〉 = −2tel

∑
q

〈c†
qcq〉 cos(q), (10)

which in turn also defines the thermodynamic average of the
kinetic energy 〈Hkin〉. In Fig. 5(d), we compare results of
〈Hkin〉 computed using Eq. (6) with those obtained from sum
rules following Eqs. (9) and (10).

We first discuss selected T -dependent static properties. We
separate the Hamiltonian in Eq. (1) into three parts: Hkin,
which represents the first term in Eq. (1), Hep the second, and
Hph the sum of the last two terms. In Fig. 5, we show thermo-
dynamic averages of the total energy 〈H〉 and the three parts of
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FIG. 5. Temperature dependence of 〈H〉, 〈Hph〉, 〈Hep〉, and 〈Hkin〉
in (a)–(d) for different values of tph, as indicated in the inset. In (d),
circles present results obtained from spectral function frequency sum
rules using Eqs. (9) and (10).

H for different strengths of the optical dispersion tph. The total
energy 〈H〉 remains nearly T independent for T � 0.1ω0,
followed by a monotonic increase at higher T . In contrast,
we observe a noticeable redistribution of energies between
different parts of H even for T � 0.1ω0. Here, 〈Hkin〉 and
〈Hph〉 show pronounced increase with T in the low-T regime.
In contrast, 〈Hep〉 displays a decrease that compensates the
increase of the former two, considering the equality 〈H〉 =
〈Hkin〉 + 〈Hph〉 + 〈Hep〉. The lowering of the electron-phonon
coupling term 〈Hep〉 results from the thermal population of
polaron states at finite k that possess lower electron-phonon
energy and higher kinetic energy. A more detailed analysis
is given in the Appendix. Note that, in the high-T limit as
T → ∞, 〈Hkin〉 → 0.

We conclude with the analysis of spectral functions at finite
T . At small T = 0.1ω0, we compare A(ω, q, T ) in Figs. 6(a)
and 6(e) with their T = 0 counterparts in Figs. 3(c) and 3(d).
The lowest |ω| peak represented with a single delta function
in ω and q at T = 0 obtains finite widths, first along the q axis,
then at higher T also along the ω axis. The spread along the
q direction is most pronounced along the polaron dispersion
relation ωpol(q) = −E (0,1)

q , as marked by white dashed lines,
and becomes even more evident at higher T . The spread is
due to processes where an electron with finite q is ejected
from the thermally excited polaron state |ψ (0,1)

k 〉 at q = k. The
increased spectral weight in the ω > ωpol(q) direction is most
evident around q = 0. It is a consequence of transitions where
an electron with q = 0 is ejected from the same thermally
excited state of the polaron at finite k as in the previous case.

Next, we analyze the well-defined single-phonon exci-
tation relation ω1ph(q). In contrast to the T = 0 case, as
shown in Figs. 3(c) and 3(d), at finite T , for the same
set of parameters presented in Fig. 6, a continuum of
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FIG. 6. A(ω, q, T ) computed at (a)–(d) tph = 0.1 and (e)–(h)
tph = −0.1, for different values of T , as denoted in the insets. Blue
dashed lines follow the single-phonon excitation and are obtained
from ω1ph(q) = −E (0,1)

q=0 + ω0 + 2tph cos(q), yellow dot-dashed lines
enclose the continuum of two-phonon excitations below the po-
laron ground state energy: ω±

2ph = −E (0,1)
q=0 + 2ω0 ± 4tph cos[(q)/2].

White dashed lines represent the polaron dispersion relation given
by ωpol(q) = −E (0,1)

q . We have used artificial broadening η = 0.05.
Identical color coding has been used in all panels.

excitations appears above the single-phonon excitation band,
i.e., at |ω| < |ω1ph(q)|, while ω1ph(q) now defines the lower
limit of the continuum of single-phonon excitations. The
continuum is most clearly observed in the interval 0.2 �
T/ω0 � 0.3. Additional spectral weight also appears below
and above the boundaries of the two-phonon continuum al-
ready at T � 0.1ω0. At T � 0.4ω0, the boundaries of single-
and multiple phonon excitations become indistinguishable
from the background, while additional spectral weight appears
around q = 0 above ωpol(q). The latter is a consequence of
an electron ejected from an excited polaron state at around

q = 0 composed of a polaron with an additional phonon ex-
citation to a final state with no (or, more generally, fewer)
phonons.

V. CONCLUSIONS

We computed selected static and dynamic properties of
the electron coupled to dispersive optical phonons in the
framework of the HM at zero and finite temperature. The
introduction of phonon dispersion has a nearly undetectable
effect on the kinetic energy in the weak to intermediate cou-
pling regime. In contrast, we find a substantial variation of the
quasiparticle weight with varying phonon bandwidth already
in the weak coupling regime. The upward dispersion (tph < 0)
has a more decisive influence on the quasiparticle weight than
the downward one.

We have computed the electron-removal spectral function
of a polaron coupled to dispersive quantum optical phonons.
In contrast to the most commonly computed electron-addition
spectral function that yields unity for the frequency sum rule,
the sum rule of the electron-removal spectral function from
the polaron state is given by the expectation value of the
density operator nq. Moreover, using Eq. (4), nq yields the
expectation value of the kinetic energy operator.

The spectral function computed in the ground polaron state
consists of a single peak positioned at the polaron frequency
with its weight given by Zq=0 and well-defined single- and
multiple phonon bands that precisely follow single- and multi-
ple phonon dispersion relations shifted by the polaron energy.
Their spectral weight is not uniform but predominantly con-
centrated near the middle of the BZ.

At finite temperatures, the total energy remains nearly T
independent up to T � 0.1ω0, followed by a monotononic
increase at higher T . In contrast, in the same temperature
regime, we observe a noticeable redistribution of ener-
gies between different parts of H . While the kinetic and
phonon energy show a pronounced increase with T , the
electron-phonon coupling energy decreases with increasing
T . The latter results from the thermal population of po-
laron states at finite q that possess lower electron-phonon
energy.

The electron-removal spectral function undergoes distinct
changes at finite temperatures. The low-frequency peak ob-
tains a finite width and disperses along the direction of the
polaron band. Additional spectral weight appears as a satellite
peak above the zero-T low-frequency peak in the middle of
the BZ. The latter is a consequence of an electron ejected
from an excited polaron state composed of a polaron with an
additional phonon excitation. Extra spectral weight develops
also above the phonon excitation band, which remains dis-
tinguishable from the rest of the spectra up to T � 0.3ω0.
The electron-removal spectral function frequency sum rule is
consistent with the prediction of Eq. (10) down to T ∼ 0.1ω0

and serves as a consistency check of the numerical method at
finite T .

We have shown that photoemission spectroscopy can be
used to measure the phonon dispersion relation in a dilute
system of polarons. We have demonstrated that the polaron
band does not appear in the spectral function when removing
an electron from a polaron ground state. The latter becomes
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observable only at elevated temperatures. We have also shown
that the spectral weight of observed phonon bands is propor-
tional to the phonon contribution to the wave function at finite
phonon momentum q.

We conclude by comparing our results in Figs. 3 and 6 with
ARPES measurements [58] in the low-doped transition metal
oxide TiO2, where at least one satellite has been observed be-
low a polaron peak. Both signals are limited to the proximity
of the center of the BZ. The separation of the satellite peak
from the polaron one corresponds to the longitudinal-optical
phonon.

Before comparing our findings with ARPES data, we note
that our calculations are based on a single electron. Our results
predict that, in the extremely low-doping regime, only a single
polaron peak located in the middle of the BZ should be ob-
served at extremely low T . Still, at finite T , even a calculation
considering a single electron predicts the observation of a
polaron band around the center of the BZ that appears due
to thermal excitations of polaron states at the finite center of
mass wave vector. Concerning the satellite peak in Ref. [58],
our results obtained at T = 0 predict the observation of a
dispersive phonon band with the largest intensity around the
center of the BZ. With increasing T , the phonon band spreads
out and loses intensity.
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APPENDIX: WHY DOES 〈Hep〉 DECREASE WITH T?

1. Numerical argument

We give further insight into the seemingly unexpected
initial decrease of the electron-phonon coupling energy with
T , as observed in Fig. 5(c). With increasing T , the states
with nonzero total momentum k become thermally populated
at much lower T than ω0 since the entire polaron energy
band E (k) is narrower than ω0, see also Fig. 7(a), while
states at small k are even much closer to the ground state
energy. It is instructive to analyze results obtained at zero
T as functions of k. In Fig. 7(d), we show that, with in-
creasing k, the electron-phonon energy Eep decreases as the
electron becomes more strongly coupled to the phonon cloud.
This trend is also explained using the second-order perturba-
tion theory in Appendix A 2. Consequently, the number of
phonons in the system Nph increases. We conclude that the
decrease of 〈Hep〉 is a consequence of the thermal population
of states with finite k that are more strongly coupled to the
electron.

The thermal population of states with finite k can also
explain why the total number of phonons in the systems,
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FIG. 7. Zero-T results vs k: (a) the polaron dispersion re-
lation E (k) = 〈ψ (0,1)

k |H |ψ (0,1)
k 〉, (b) the kinetic energy Ekin(k) =

〈ψ (0,1)
k |Hkin|ψ (0,1)

k 〉, (c) the total number of phonons in the system
Nph(k) = 〈ψ (0,1)

k | ∑ j a†
j a j |ψ (0,1)

k 〉, and (d) the electron-phonon cou-

pling Eep(k) = 〈ψ (0,1)
k |g∑

j n j (aj + a†
j )|ψ (0,1)

k 〉.

approximately given by Nph(T ) = 〈Hph〉/ω0, as seen in
Fig. 5(b), increases by Nph(T ) − Nph(0) ∼ 2 at relatively
small temperatures T ∼ 0.2ω0.

2. Analytical argument

Consider E (k) in leading order perturbation theory for the
polaron ground state at total momentum k, for dispersionless
optical phonons at weak coupling.

Here, �E (k) in the second order in g is given by

�E (k) =
∑

q

|〈∅|ck+qa−q|Hepc†
k |∅〉|2

ε0(k) − [ε0(k + q) + ω0]
, (A1)

where Hep is the electron-phonon Hamiltonian in the recip-
rocal space, ε0(k) = −2t cos(k) is the unperturbed electron
energy at momentum k, while the energies of the unper-
turbed excited states with one phonon and one electron lie
above −2t + ω0. As the polaron momentum k increases,
ε0(k) increases, but the set of unperturbed excited states
−2t cos(k + q) + ω0 are at the same energies as for k = 0
since q spans the entire BZ. (Whatever the total momentum,
there is always an unperturbed excited state with the electron
at zero momentum and the phonon taking the rest of the
momentum.) It therefore follows that �E (k) at nonzero k is
the same as �E (k) at k = 0 but with a reduced phonon energy
ω̃ = ω0 − [ε0(k) − ε0(0)]. As k increases, the dimensionless
coupling g/ω̃ increases, and �E (k) becomes larger in magni-
tude (more negative). Since �E (k) = �Eep(k) + �Ekin(k) +
�Eph(k), and the last two terms are positive, �Eep(k) �
�E (k).

Thus, as the temperature increases from zero and thermally
populates nonzero polaron states, 〈Hep〉 becomes more nega-
tive (in weak coupling).
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