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Dynamics of entangled domain walls in the PXP model under driving:
Crossover from prethermalization to localization
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Based on the PXP model adapted for Rydberg-blockaded chains, we investigate the dynamics of topological
domain walls between different quantum many-body scar states of Z2 symmetry. It is found that the domain
walls not only possess oscillating features of scars but also manifest longstanding bipartite entanglement with
exactly unchanged flip-flop phase difference, suggesting their potential as a quantum information resource. A
periodically driven field is exerted and the high-frequency drive gives rise to a crossover from prethermalization
to Floquet localization. In order to investigate the stability of domain walls acting as information carriers, we
further simulate the collision between them and find negligible influence on each other. Subsequently, the quench
dynamics with domain walls reveals exotic physics and applicable potentials of nonthermalized scar states.
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I. INTRODUCTION

The eigenstate thermalization hypothesis (ETH) governs
most isolated quantum many-body systems [1–3]. According
to ETH, systems in an instable state will rapidly lose their
initial memories and become ergodic, and expectation values
of any local observable can be then calculated by the canonical
ensemble. It is thus quite interesting whether ETH can be vio-
lated or at least slowed down, so that quantum coherence can
be alive long term. Many-body localization (MBL) serves as a
general mechanism for the breaking of thermalization [4–7].
Alternatively, there are some many-body systems that are
neither thermalized nor completely nonthermalized [8,9]. For
instance, a special coherent oscillation has been observed in
an experiment of the Rydberg atoms chain [10]. Such partially
nonthermalized phenomenon is called a quantum many-body
scar (QMBS) [11]. QMBS refers to those eigenstates that
possess large overlap with initial states and do not strictly
obey ETH, so it is clear that the emergence of QMBS strongly
depends on the initial states [11–13].

In the experiment of Rydberg atoms, the prohibition of
adjacent excitation in the chain is called the Rydberg block-
ade [14], which activates the mechanism of weak ergodicity
breaking. The PXP model, an abstract and effective model
derived from the transverse Ising model, was then proposed
to describe this novel kind of blockade [12]. During the
past several years, extensive and interdisciplinary physical
subjects have been discussed in the framework of the PXP
model, including the Ising quantum phase transition [15],
time-crystalline order [16], and moderately disordered quan-
tum simulators [17]. In spite of an extremely simple form, the
PXP model preserves many profound features. Given some
intuitively designed initial states, such as the so-called Z2 and
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Z3 states, the oscillations of some local observables persist
over a long time and the quantum fidelity even shows periodic
revivals [12]. Z2 states, e.g., refer to two degenerate configu-
rations of alternating ground and Rydberg states of Rydberg
atoms, which are also called charge density wave or Néel
states.

There must emerge a topological domain wall (DW) be-
tween the two degenerate configurations labeled by |Z2〉 and
|Z′

2〉. Different from those DWs introduced by Iadecola and
Schecter [18], which is the domain between a single ground
and Rydberg state in a spin-1/2 chain, here the DW is a
topological charge similar to the soliton between two ground-
state configurations of trans-polyacetylene described by the
Su-Schrieffer-Heeger (SSH) model [19]. As elementary ex-
citations, the vortex and magnetic skyrmion are also DW
structures with exotic topological properties, especially the
Néel skyrmion found in a ferromagnet and heavy-metal bi-
layer, which has 2D topological domain wall similar to our
topological charge [20–22]. DW is even believed to emerge in
high-Tc superconductors with stripe phases [23]. In all these
cases, the DWs are regarded as stable quasiparticles that can
be utilized as a resource of information carriers in quantum
computations [24,25]. We are then strongly motivated by the
question of whether the DW in the PXP model is also stable
and preserves longstanding quantum coherence.

In this work, we focus on the dynamics of single and
double DWs among Z2 states. In the single-DW case, we
analyze the dissociation and quantum diffusion of the DW
and show profound features of coherence and entanglement,
different from that in the normal PXP model, which may help
us further comprehend the ergodicity-breaking mechanism of
QMBS. Via introducing a time-dependent phase difference
between even and odd sites, we establish a Floquet system
based on the PXP model. With low driven frequency, the
system is found to be in a regime between thermalization
and nonthermalization, which is so-called prethermalization
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[8], while with high enough driven frequency, the system
enters into a disorder-free localized regime which is called
DW localization. A similar transition occurred in the quantum
link model (QLM) to study the gauge theories as well [26].
Double DWs and their collision are also investigated, pointing
out the potential for being the quantum information carriers.

The remainder of this paper is organized as follows. In
Sec. II we briefly review the PXP model and introduce
the modified formulation with the forward-scattering approx-
imation (FSA) [11]. We define an observable named Z2

inhomogeneity to describe the explicit configuration of DW
and the relevant diffusion process. In Sec. III, via the dy-
namic evolution, we investigate the PXP model with DWs.
By adding a periodically driven field, the crossover between
prethermalization and DW localization is observed. The sys-
tem with a double DW is explored as well. Concluding
remarks and outlook are presented in Sec. IV.

II. MODEL

The original PXP model for describing the Rydberg block-
ade can be established as follows. As in the normal treatment
that the blockade radius is solely one lattice spacing, so in
a one-dimensional chain, a single atom is allowed to be in
the Rydberg state only if its two nearest-neighbor atoms are
simultaneously in the ground state [11,12]. We then set |0〉 and
|1〉 to be the ground state and the excited Rydberg state, re-
spectively. The two Z2 states, i.e., charge density wave states,
can be written as |Z2〉 = |1010 . . .〉 and |Z′

2〉 = |0101 . . .〉.
The Rydberg blockade can be thus described by the model
Hamiltonian

HPXP =
L∑

i=1

Pi−1XiPi+1, (1)

where Xi, Zi are the usual Pauli operators on the ith site
and Pi = (1 − Zi )/2 = |0〉〈0|i is the ground state projector.
Throughout this paper, we assume the open boundary con-
dition (OBC) and the boundary terms take the form X1P2 and
PL−1XL, respectively. As we merely calculate the dynamics
before DWs touch the ends of the chain, the boundary condi-
tions are not important.

As observed in the experiment of Rydberg atoms, while
quenching from |Z2〉, the system manifests a coherent and
persistent oscillation [10]. Relevant numerical calculations of
entanglement entropy and correlation function on the basis
of the PXP model rebuilt the same oscillation frequency as
measured in experiment. This oscillation survives in |Z3〉 but
vanishes for |Z4〉 [11]. The survival of long-term oscilla-
tion is justified as prethermalization sensitive to the initial
density of Rydberg states, just like that in the spin-glass
model [27].

Furthermore, FSA was introduced as an approximation
method in calculating the PXP model [11,12]. The Hamilto-
nian (1) is divided into two parts, namely HPXP = H+ + H−,
where the forward and backward propagators are defined as

H± =
∑

i∈even

Pi−1σ
±
i Pi+1 +

∑

i∈odd

Pi−1σ
∓
i Pi+1, (2)

with σ+
i = |1〉〈0|i and σ−

i = |0〉〈1|i. When the initial state is
|Z2〉, the H+ always increases the Hamming distance while
H− decreases it, with the Hamming distance defined as the
minimum number of spin flips required from any given state
to the |Z2〉 [11,12]. By calculating the overlap between the
eigenstates of Hamiltonian (1) and |Z2〉, FSA gives a result in
good agreement with exact results [11].

In order to study the time crystals in the MBL phase, one
normally has to split a period of time evolution into at least
two sessions dominated by different Hamiltonians [28,29].
Here in this work, we consider another approach by noticing
that H+ is nothing but the annihilator of |Z′

2〉, and accordingly
H− annihilates |Z2〉. Similar to that in the gauge theory of
electrons in the SSH model [30], we try to make a phase differ-
ence between these two degenerate states, instead of making
two sessions of the Hamiltonian. Without loss of generality,
we rewrite Hamiltonian (1) to be

H = eiγ t H+ + e−iγ t H−, (3)

by adding a time-dependent phase difference between H+ and
H− with a period of 2π/γ , which is equal to discriminating
the even and odd sites.

Considering the PXP model was proposed to describe
the Rydberg atom chain, it is of course not difficult to ex-
perimentally realize this phase difference by just adding a
space-dependent phase modulated microwave as the driven
field. In lattice gauge theories (LGTs), by mapping between
Rydberg atoms and spin-1/2 QLM, a position-dependent θ -
angle term leads to confinement of particle-antiparticle pairs,
which can be realized by an ac Stark shift or a detuning on the
transition between ground and Rydberg states [26].

In order to investigate the dynamics of DW, the initial state
is no longer the usual |Z2〉. In the single-DW case, e.g., the
chain is divided into two parts: the left half is in |Z2〉 and the
right half in |Z′

2〉. As a result, there is an interface between the
two parts which can be represented as | . . . 1010

... 0101 . . .〉,
with

... denoting the DW.
Different from other topological charges with stable shape,

the DW in our model possesses the oscillating feature of
QMBS, so we have to explicitly define a featured quantity
to clearly observe the position and motion of this DW. It is
intuitive to define the staggered difference between 〈Zi〉 of
nearest sites, like that in the antiferromagnetic chain. Here,
however, we have two configurations |Z2〉 and |Z′

2〉, so this
normal definition will make the patterns shaky. Alternatively,
we notice that there is a spatial inversion symmetry between
the two halves of the chain; that is, the even and odd sites are
exactly symmetric by spatial inversion during the evolution.
We can then define a staggered difference between odd sites
only, which we call Z2 inhomogeneity. Namely, the definition
writes

�k = 〈Z2k−1〉 − 〈Z2k+1〉. (4)

For both Z2 configurations, this Z2 inhomogeneity remains
zero except for some unimportant boundary effects. It is
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FIG. 1. Simulated process of single-DW dissociation and diffusion in PXP model for L = 96 sites with OBC. The boundaries are not
important, so the 12 sites close to each boundary are not shown. (a) Original observable 〈Zi〉 up to time t ∼ 50. DW begins to diffuse from
the middle of the chain. The amplitude of DW fluctuates between 0.5 and −0.5 periodically. (b) The corresponding absolute value of Z2

inhomogeneity |�k |. DW of (a) and (b) have the same envelop lines. But different from 〈Zi〉, an oscillation like a pendulum between two
generated DWs is observed. (c) The Z2 inhomogeneity �k at eight typical time points. In the beginning, there is only one nonvanishing point,
namely �24 = 1. As time evolves, the DW is dissociated into two DWs and both of them spread out to the ends of the chain. It is also found
that two peaks of dissociated DWs continuously flip and flop.

nonvanishing only when there is a DW in the chain. Taking an
8-site state |10100101〉 for instance, only �2 = 1 and others
are vanishing, i.e., �1 = �3 = �4 = 0, implying this newly
defined inhomogeneity can be used to effectively describe the
bipartition state DW.

III. RESULTS

In the following, we numerically calculate the dynamical
evolution of the system size L = 96 for observing these DWs
by time-evolving block decimation [31,32]. The computa-
tional accuracy depends on the maximal bond dimension of
the resulting matrix product state. The PXP model needs more
computational expense due to the lack of symmetry and 3-site
Hamiltonian. Hence we choose OBC and moderate truncation
dimension (maximum dimension ∼70) based on the trade-off
between the accuracy and efficiency. Two initial states are

considered. The first is a single DW in the chain and the
second goes to two DWs initially.

A. Entangled domain walls

We first analyze the dynamical evolution of a single initial
DW in the chain with γ = 0, i.e., the normal PXP model. The
initial DW is set at the center of the chain between i = 48 and
49. In Fig. 1, we show the diffusion of DW up to t = 50 in
three ways. The first is the diffusion process of 〈Zi〉 displayed
in Fig. 1(a). One can see that from the middle point of the
chain the DW starts to dissociate and diffuse linearly with
time. For pure |Z2〉 or |Z′

2〉 initial state, 〈Zi〉 of each site has
a persistent oscillation, which is the property of QMBS [12].
The DW in the chain is like a defect that breaks the perfect
translational symmetry of the system. We further find that
| ∑L

i=1 Zi| is decreasing due to the diffusion, corresponding
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to lighter and lighter pattern in the figure. This is because
some |010〉 state will become |000〉 due to the PXP opera-
tions. We can also observe this situation for Z2 inhomogeneity
displayed in Fig. 1(b); that is, the red pattern becomes lighter
while diffusing. These indicate that the amplitude of DW
decays slowly and the system will subsequently thermalize
which is nothing but the prethermalization of QMBS. Fig-
ure 1(c) shows the evolution of �k at eight typical time points.
The first peak appearing at k = 24 figures out the initial po-
sition of DW. Then, the DW dissociates into two that roughly
preserve the line shape of wave packets and move toward two
ends of the chain.

The most interesting point turns out to be that there is a
pendulum-like oscillation between two generated DWs which
can only be observed by Z2 inhomogeneity. This implies that
while almost keeping the shape of wave packets after disso-
ciation of the original DW, the two generated DWs seem to
keep quantum-mechanically communicating with each other.
Just like we spatially separate an Einstein-Podolsky-Rosen
pair that will preserve quantum entanglement [33], one would
then intuitively ask if the two DWs are persistently entangled.
Or equivalently, we want to know if the two DWs are in some
sense like a singlet spin pair, in which if one spin is up, the
other is down.

To this end, we have to divide the chain into bipartition
systems and treat the data of inhomogeneity to be smoother.
We then first calculate the velocity v of the two DWs by the
peak values at each time point. From Fig. 1(b), we can obtain
v � 0.26. Next, we define two envelope functions which are
time-dependent and normalized Gaussians:

f±(t, k) = g±(t )e−(k−k0±vt )2
, (5)

where g± are the normalization coefficients and k0 is the initial
position of DW. These two Gaussians are peaked at k = k0 ±
vt so that we can make the left and right DWs individually
outstanding. Finally, we define �± to signify the DWs as

�±(t ) =
∑

k

f±(t, k)|�k|. (6)

Figure 2 displays the results of �±, from which we can
observe a very significant result. That is, the oscillations of
two DWs after the first two periods are within exactly opposite
phase, as indicated by the blue and purple lines. This exotic
flip-flop effect of two DWs with unchanged phase difference
well agrees with expectations in terms of QMBS, so it turns
out to be the first significant result of this work. It is clearly
exhibited that the two generated DWs after dissociation from
the initial single DW preserve the phase coherence even if
their spatial distance has become sufficiently long. More im-
portantly, different from the soliton in SSH model which does
not oscillate at all [30], the oscillations of DWs here can
be controlled by external driven field, suggesting they can
be potential candidates as resources of quantum information
processing.

More straightforward quantities are obviously the correla-
tion function and entanglement entropy. Figure 3(a) shows
the evolution of correlation function 〈ZiZi+1〉 averaging on
all i. An almost persistent oscillation is observed, just like
the quench from the Néel state in the 〈ZiZi+1〉 decay process

FIG. 2. Using �k and Gaussian envelop functions f±(t, k) to
obtain (a) �− and (b) �+, which exhibit the evolution of the two
generated DWs. The corresponding �k are from Fig. 1 for t ∼ 40.
Vertical blue (purple) lines label the time point of the valleys (peaks)
of �− and opposites of �+. It is shown that the two DWs persistently
possess fixed phase differences.

[11]. Up to t = 50, the oscillation is not damped implying
the quantum coherence is preserved long term. The oscillation
period is the same with that of �k shown in Fig. 1.

Moreover, we calculate the von Neumann entanglement
entropy S shown in Fig. 3(b), which is defined as S =
−Tr(ρlnρ) with ρ being the reduced density matrix for the
left half of the chain. The long-time evolution of the entropy
is just like that in the normal PXP model which manifests an
oscillation and reaches maximum while quantum thermaliz-
ing. An interesting finding is that there is a significant drop
at t = 3. Compared with later subtle variation about 0.1, this
drop is more than 0.4. To explain this phenomenon, we can
image the DW as a single particle on the initial stage and then
it dissociates into two particles. The sudden spatial separation
between two particles leads to the lift of initial degeneracy. In
terms of the Holevo asymmetry measure, the asymmetry of
the system decreases [34,35]. As a result, the entanglement
between the two states declines abruptly at around t = 3.
Afterward, as the system continues evolving, two particles
leave away from each other and become separate substances.
The entanglement of them is however preserved making each
half of the chain into a completely mixed state, and the entropy
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FIG. 3. Dynamics of PXP model with single-DW for t ∼ 40.
(a) Averaged local spin correlation function 〈ZiZi+1〉. Coherent
oscillation is damped very slowly figuring out the feature of prether-
malization. (b) Bipartition entanglement entropy S between two
halves of the chain. It is worth noting that there is a sudden drop
at around t = 3.

of the left half is then decided by ergodicity of the canonical
ensemble, which leads to subsequent entropy increase.

B. Localization

It is intriguing to consider whether we can manipulate the
diffusion of DW, so we perform the simulations for finite
γ > 0 cases. Figure 4 shows the evolution of |�k| with γ =
0.5, γ = 1, and γ = 4, respectively. These three values of γ

result in completely different behaviors of Floquet character,
changing from weak breakdown of ergodicity to localization.
The first two cases, Figs. 4(a) and 4(b), display obscure dis-
persive patterns, while for γ = 4 shown in Fig. 4(c), the DW
completely stays in the middle of the chain without any dis-
sociation. This localization of DW implies the initial memory
of system remains for a sufficiently long time duration and
thus the ETH is perfectly violated. We then conclude here that
the gaugelike phase γ indeed induces the localization in the
system of QMBS as expected.

One may be wondering whether this localization has prop-
erties of MBL. Namely, the periodically driven field e±iγ t

FIG. 4. Absolute value of Z2 inhomogeneity |�k | with (a) γ =
0.5, (b) γ = 1, (c) γ = 4. As γ increases, the diffusion of DW
becomes slower and slower. When γ = 4, the DW is localized at
the center of the chain. Insets show the von Neumann entanglement
entropy. From γ = 0.5 to γ = 4, the value and increase rate of
entropy get smaller.

may give rise to a transition from prethermalization to DW
localization. In the inset of Fig. 4, we show the relevant von
Neumann entanglement entropy of the left half of the chain. It
is clear that with increasing γ , the magnitude of entanglement
entropy decreases by around two orders. More importantly,
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FIG. 5. Evolution of entanglement entropy S up to t ∼ 800 for
the left half of the chain with γ = 4. The horizontal axis is in
logarithmic scale, and the red dashed line represents a fitting. The
subsequent deviation of logarithmic relation is due to the finite-size
effect.

for small γ the entropy saturates very quickly, but for large γ

it keeps increasing for a long time.
In order to see the line shape of the entanglement en-

tropy at longer time duration, Fig. 5 displays the evolution
of entropy for γ = 4 up to t = 800. It is found that, after
t = 100, the dependence of entropy on time becomes nearly
logarithmic. At longer time, the entropy will be saturated due
to the finite-size effect. It is well known that [36–38] the
entropy continuously grows logarithmically in the MBL phase
due to the Lieb-Robinson velocity of information communi-
cation between local integrals of motion. This suggests it is
the quantum correlation between |Z2〉 and |Z′

2〉 on opposite
sides of the localized DW, due to the periodic external driven
field.

To get insight into the role of γ , the evolution of entangle-
ment entropy with γ being from 0 to 4 is shown in Fig. 6(a).
The unusual drop appearing at t = 3 discussed above becomes
smoother as γ increases and disappears at around γ = 0.8.
More remarkably, we can clearly see a significantly high en-
tropy region from γ = 0 to γ = 1. That is, as γ increases,
S grows at first and then falls down. The entropies at sev-
eral time points are averaged and shown in Fig. 6(b). For
t = 50, entropy is kept stabilized and the maximum at γ =
0.6 reveals a crossover between prethermalization and DW
localization.

We then analyze H± in Eq. (2) in greater detail. For mixed
initial state, H+ solely acts on the part of |Z2〉, because H+
annihilates the whole |Z′

2〉. For example, with a four-site |Z2〉
state, the map of H+ writes

|1010〉 → |0010〉 + |1000〉. (7)

Conversely, H− annihilates |Z2〉 so the map is

|0101〉 → |0001〉 + |0100〉. (8)

FIG. 6. Transition process of single DW. (a) The entanglement
entropy S as a function of γ (0 ∼ 4) and time (0 ∼ 50). It is found
that S grows rapidly around γ = 0.5 and is slowed down with in-
creasing γ . (b) S at t = 3 (black), t = 10 (red line), t = 25 (blue),
and t = 50 (yellow), which increases at first then decreases.

Therefore, at the heterojunction between two states, H+ + H−
results in the dissociation of DW:

| . . . 1001 . . . 〉 → | . . . 0001 . . . 〉 + | . . . 1000 . . . 〉. (9)

Subsequently the evolution results in

| . . . 1000 . . . 〉 → | . . . 1010 . . . 〉 + · · ·
| . . . 0001 . . . 〉 → | . . . 0101 . . . 〉 + · · ·

· · ·
(10)

With sufficiently long time, we can observe the diffusion
of DW. Considering only the left half of the chain, for any
bipartition state on sites i and i + 1 (i ∈ odd), H+ is inclined
to turn it into |01〉. The periodically driven field in H+ causes
a periodic phase flip. As long as the driven frequency is large
enough, the left part remains in |10〉. A similar situation oc-
curs for |Z′

2〉 in the right half. The crossover discussed above
corresponds to the minimum frequency to trigger localization.
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In consequence, the DW tends to diffuse under the PXP model
and the periodic driven field holds it back, which exhibits a
competitive relation depending on the driven frequency.

Different from a similar model of hard-core bosons with
driven force and disorder [39], our model is in a clean system
without disorder. As we know, sufficiently strong disorder
always leads to the localization regime in one dimension.
Therefore, in a deterministic manner, disorder-free localiza-
tion should be more fascinating [40–42]. To achieve it, models
such as exerting uniform force [41] or mixing two interacting
hard-core particles [42] are proposed. In contrast, the modified
PXP model only take into consideration the Rydberg blockade
among sites stemming from intrinsic interactions. As a result,
realization of localization in this system turns out to be an
essential result of this work.

C. Collision of two domain walls

We now turn to discuss the interaction and collision of two
DWs, which will manifest whether they are influenced by each
other while acting as information resource. To this end, we set
double DWs

|DW2〉 = |10 . . . 10
... 01 . . . 010

... 01 . . . 10〉 (11)

at k = 20 and k = 27, respectively. To avoid the nearest-
neighbor Rydberg blockade, the number of sites in the second
and third regions has to be odd, so two additional zeros are
inserted to form the right DW. The spatial inversion symmetry
still holds.

Figure 7(a) shows the Z2 inhomogeneity with γ = 0. The
diffusion of two DWs is perfectly symmetric in the spatial
inversion manner. The velocity of the two DWs is also the
same with that in Fig. 1. At around t = 13.5, they meet,
collide, and then continue moving as before. When setting
γ = 4, the result in Fig. 7(b) is as expected; that is, two DWs
are locally static for sufficiently long time, which corresponds
to the localization regime.

If regarding these diffused DWs as information carriers, the
collision between them could be recognized as information
communication. Intuitively, as seen in Fig. 7(a), they only pass
and have no influence on each other. For the sake of demon-
strating the superstability of their shape, we measure the trace
distance between initial and evolving states [24,43,44]. The
trace distance, quantitatively describing the closeness between
two states, is defined as Dtr (ρ, σ ) = 1

2 ||ρ − σ ||1, where the

trace norm is ||X ||1 = Tr
√

X †X . Herein, time-dependent trace
distance thus writes

D(t ) = 1
2 ||ρ(t ) − ρ(0)||1, (12)

where ρ is the reduced density matrix of sites from 42 to 46
in the chain.

For a comparison, we calculate two cases, namely single
DW and double DW, as shown in Fig. 8. Both of them grad-
ually decrease as time is evolving and behave with periodic
oscillations like the quantum fidelity of |Z2〉. Two trace dis-
tances have similar fluctuation modes with a slight difference
of amplitude. Even if two DWs encounter at t = 13.5, the red
line does not manifest any specific changes. This implies that
two diffused DWs just solely go through each other without
any effective interactions. This result is totally different from

FIG. 7. The Z2 inhomogeneity |�k | of double-DW system for
t ∼ 40. Initially, the first DW is between i = 40 and i = 41 and the
second DW is between i = 53 and i = 54. (a) For γ = 0, two DWs
collide with each other at around t = 13.5. (b) For γ = 4, two DWs
remain localized.

the paired soliton and antisoliton in the SSH model [45]. There
is no interaction if they are far apart. When they get close,
different interactions that depend on their charges emerge.
Recalling the �± discussed above, the entanglement shows
up between two separate parts of a single DW, while for two
distinct DWs, the collision does not make a visible correlation.
This result is perfectly positive, such that we can indeed regard
the DWs as a resource of quantum information.

IV. SUMMARY AND OUTLOOK

In this work, we explored the dynamics of several atypical
initial states with DWs instead of normal charge density wave
states. These DWs are located between |Z2〉 and |Z′

2〉, which
spontaneously dissociate and diffuse under the PXP Hamil-
tonian. To observe the motion of DW, we introduce a novel
quantity, i.e., the Z2 inhomogeneity �k . The system with DW
shows features of QMBS and the dissociation of DW leads
to sufficiently long-term phase coherence and entanglement
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FIG. 8. The trace distance D(t ) for t ∼ 40, between the initial
and evolving state. We focus on the collision of the two DWs so
merely calculate the central 5 sites from i = 42 to i = 46. For a
comparison, two cases are displayed, namely the single DW (black;
DW located between i = 40 and i = 41) and double DW (red; DWs
are the same as in Fig. 7).

between generated DWs, suggesting they can be resources
of quantum information carriers. We have also investigated
the transition between prethermalization and localization. By
means of FSA formulation, we construct Hamiltonian (3) with
periodic driven field. This time-dependent phase difference
between odd and even sites possibly hinders the diffusion of
DW. High-frequency drive results in the totally disorder-free
Floquet localization. Moreover, the Floquet-Magnus expan-
sion [46] works to our system and the expansion coefficient
depends on the γ . For one period, the first order of expansion
is zero and the higher orders are composed of commutators of
H+ and H−.

It is also interesting to consider the collision and interac-
tion of DWs. We thus set two DWs and find they have little
influence on each other after collision. This further allows
us to make an analogy with the propagation of information
carriers. From quantum resource theories, these DW states
may serve as the resource state. Whether the operation is free
depends on the frequency of periodically driven field.

Throughout this work, we merely discuss the DW between
Z2 degenerate states. For Z3 states such as |100〉, |010〉, and
|001〉, the research should be more interesting but more dif-
ficult, as we have to properly adapt the periodic drive and
quantity of inhomogeneity for the more complicated config-
urations. At the very least, the DW dynamics investigated
here suggest an appealing direction to study QMBS and other
ETH-breaking phenomena. Preparing the Rydberg atom sys-
tem with more DW configurations will be the scope of our
future work.

As an additional remark, the |10〉 and |01〉 bipartition states
remind us of the Affleck-Kennedy-Lieb-Tasaki (AKLT) spin
chains [47,48]. The spin-1 AKLT model can be thought to
consist of spin-1/2 Schwinger bosons. Here, if the Rydberg
and ground states are regarded as ±1/2 spin, our model can
also be regarded as an extension from spin-1/2 to spin-1 [49].
The DW is therefore an interface between 1 and −1 spin. In
addition, QMBS in 2D Rydberg atom arrays has also been in-
troduced [50]. Constructing DWs in the 2D PXP model refers
to the DWs between different stripe phases of the 2D Hubbard
model [51], which will be even more attractive subjects.
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