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Nonparaxiality-triggered Landau-Zener transition in spoof plasmonic waveguides
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Photonic lattices have been widely used for simulating quantum physics, owing to the similar evolutions of
paraxial waves and quantum particles. However, nonparaxial wave propagations in photonic lattices break the
paradigm of the quantum-optical analogy. Here we reveal that nonparaxiality exerts stretched and compressed
forces on the energy spectrum in the celebrated Aubry-André-Harper model. By exploring the minigaps induced
by the finite size of the different effects of nonparaxiality, we experimentally present that the expansion of
one band gap supports the adiabatic transfer of boundary states while Landau-Zener transition occurs at the
narrowing of the other gap, whereas identical transport behaviors are expected for the two gaps under paraxial
approximation. Our results not only leverage nonparaxial transitions as a new degree of freedom, but also serve
as a foundation for future studies of dynamic state transfer.
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I. INTRODUCTION

Photonic lattices such as waveguide arrays provide a ver-
satile platform for investigating fundamental physics [1–9].
Over the past two decades, many intriguing phenomena have
been demonstrated in evanescently coupled waveguide arrays,
including Landau-Zener (LZ) transition [10,11], topological
end modes [12–16], Anderson localization [17–20] in dis-
ordered lattices, etc. The underlying principle relies on the
analogy between the paraxial Helmholtz equation for elec-
tromagnetic waves and the Schrödinger equation describing
quantum particles. However, the nonparaxial approximation
cannot be always strictly satisfied, e.g., in waveguide sys-
tems conducting microwaves with long wavelengths, where
the spatial evolution of the field envelope is comparable to
the variation of the structural parameters. In fact, nonparaxial
light is quite ubiquitous in natural photonic systems, such as
spin-orbit interaction of nonparaxial light [21,22], nonparaxial
Airy beams [23–28] and other nonparaxial accelerating beams
[29–31], etc. Recently, nonparaxiality has attracted growing
interests, which has been shown to play an important role in
third-harmonic generation [32] and asymmetric topological
pumping [33]. Nevertheless, the study of nonparaxial wave
propagation and related phenomena is still in its infancy, and it
still remains elusive how nonparaxiality can benefit the field of
photonics. To this end, demonstrating the largely overlooked
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functionality of nonparaxility by well-known fundamental
physical phenomena would be highly desired.

As a typical fundamental dynamics, LZ transition, a tran-
sition between two states in a quantum system driven under a
time-dependent Hamiltonian, is frequently encountered in dif-
ferent physical fields. Classical analogs of LZ transitions have
also been investigated in platforms such as atomic-optical
system [34–36], coupled cavities [37,38], and other two-state
systems [39–41]. Interestingly, LZ transition in topological
transport of edge states has recently been demonstrated in
driven acoustic cavity systems, where an on-site term is im-
plemented with the frequency in each waveguide cavity of
varying height [42]. In addition, since an adiabatic condition is
usually required in topological photonics, such as the topolog-
ical pumping in periodically modulated lattice systems [6,43–
51], the nonadiabatic LZ transition is expected to break the
topological transport [52,53]. It is thus highly appealing to
study the LZ transition in nonparaxial topological photonic
systems, where the interplay between topology, adiabaticity,
and nonparaxiality could give rise to interesting phenomena.

In this work we study the LZ transition in a spatially mod-
ulated waveguide array designed according to the celebrated
topological Aubry-André-Harper (AAH) model, which con-
ducts microwaves in a nonparaxial way. The two topological
boundary states (TBSs) localized at opposite boundaries in
each of the bulk gap act as two avoided-crossing levels due
to the finite-size effect. The time-dependent linear driving
through the avoided-crossing points was realized by tuning
the structural configurations of the microwave waveguide. It is
found that when taking the paraxial approximation, the TBSs
in the two bulk gaps have nearly equivalent minigaps, and
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FIG. 1. Schematic diagram of a finite Aubry-André-Harper
(AAH) lattice realized by well-designed periodically modulated ul-
trathin metallic waveguides. (a) The constant nearest-neighboring
(NN) hopping comes from NN coupling between equally spaced
waveguides, while the modulation of on-site potential (propagation
constant) can be realized by changing the girder width w of the
H-shape unit of each waveguide. (b) Propagation constant β as a
function of girder width w.

exhibit identical behaviors, namely, LZ transition or adiabatic
pumping between TBSs, depending on the energy gap and
driving frequency. Intriguingly, when the realistic nonparaxial
modifications are considered, one TBS minigap gets enlarged,
while the other is reduced. Remarkably, LZ transition was
observed around the significantly reduced minigap induced
by nonparaxiality, instead of both gaps behaving identi-
cally under the paraxial approximation. Our experimental
results are nicely consistent with both numerical simulations
and theoretical analysis of the exact Helmholtz wave equa-
tion. Our work may provide further insights for the study
of unexplored dynamics triggered by the nonparaxiality of
light.

II. PHOTONIC AAH MODEL

We start from the one-dimensional AAH model [43,45,54]
with a periodic spatial modulation of the on-site potential,
which is described by the tight-binding Hamiltonian

HA =
N∑

m=1

βmĉ†
mĉm +

N−1∑
m=1

[κ ĉ†
mĉm+1 + H.c.]. (1)

Here m labels the lattice site with a total number of N ,
ĉ†

m (ĉm) creates (annihilates) a particle at the mth site, κ

is the nearest-neighbor (NN) hopping coefficient, and βm =
β0 + �β cos(2πbm + φ) represents the spatially modulated
potential of the mth site. In the modulation term, �β is the
modulation amplitude, b controls the periodicity, which is set
representatively as b = 1/3 throughout the paper, resulting in
a supercell structure with three sublattices. φ ∈ [0, 2π ] is the
modulation phase, which plays a similar role as a momentum
variable.

To realize a photonic counterpart of the above AAH model,
we have experimentally fabricated well-designed ultrathin
metallic waveguides composed of the “H-shape” structural
unit [55,56], as schematically shown in Fig. 1(a), where the
x direction denotes the spatial dimension and the propagation
direction z acts as the synthetic time dimension. Through
the coupled-mode theory, the constant NN hopping κ can be
simulated by the coupling between equally spaced NN waveg-
uides in the whole array (see Fig. S1 in the Supplemental
Material (SM) [57]). For the later realization of LZ transition,
a time-dependent modulation of phase along the propagation

FIG. 2. The band structures in the two-dimensional momentum
space (q, φ) under (a) paraxial approximation and (b) nonparaxial
modification. The calculated eigenvalue as a function of modula-
tion phase φ under (c) paraxial approximation and (d) nonparaxial
correction. The parameters are N = 9, β0 = 0.501 mm−1 (w0 =
0.8 mm), κ = 0.0316 mm−1 (G = 1.8 mm), �β = 0.0493 mm−1

(�w = 0.35 mm), and κNNN = −0.00632 mm−1 (2kn0 ∼ 0.158). (e)
The lower and upper gaps as a function of the number of lattice
sites.

direction is introduced as φ = φ0 + �z, where φ0 represents
the initial phase and the “frequency” � is defined as the ratio
between the total change of the phase �φ and the waveguide
length L. The desired instantaneous on-site potential profile
can then be obtained by modulating the propagation constant
of each waveguide along both the spatial dimension x and
propagation direction z, which is achieved by changing the
girder width w of the H-shape unit; see in Fig. 1(b).

By carrying out the Fourier transform ĉm =
(1/

√
N )

∑
q eiqmĉq under periodic boundary conditions

and treating φ as a momentum dimension, the band structure
in the two-dimensional (2D) (q, φ) momentum space can be
obtained [58,59]; see Fig. 2(a). The topological properties of
the three bands can be characterized by the Chern number of
C = 1,−2, and 1, respectively, guaranteeing the emergence
of chiral edge states (henceforth referred to as TBSs) within
both bulk band gaps in the open boundary condition. The
TBSs are localized at the boundary waveguides, exhibiting
a nearly exponential decay into the bulk. Consequently, for
sufficiently large lattices, the TBSs from opposite boundaries
within the same gap have negligible spatial overlap and
coupling, thus forming a gapless crossing in each gap (see the
SM for details [57]). However, when reducing the lattice size,
the spatial overlap between the TBSs gradually increases,
and becomes non-negligible for small lattice sizes. This
will cause considerable coupling and level repulsion with a
minigap between the two TBSs.

Interestingly, when treating the TBSs in each bulk gap
as a two-level system, the potential modulation along the z
direction practically acts as a time-dependent driving of the
two-level system [60,61]. When the modulation frequency
� is comparable to the minigap between the two TBSs, LZ
transition may happen between them. In the following we will
go beyond the coupled-mode theory, and consider how the
nonparaxiality of microwave modifies the energy spectrum
and affects the LZ transition.
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III. NONPARAXIAL MODIFICATIONS

In the derivation of the above photonic AAH model
from the coupled-mode theory, paraxial approximation has
been assumed, which requires the condition of |∂2ψ/∂z2| �
2k|∂ψ/∂z| with the wave vector k. Specially, since our waveg-
uide system conducts microwaves with much smaller wave
vectors, the above condition will not be fully satisfied, and
thus we need to go beyond the coupled-mode theory and turn
back to the original Helmholtz equation for the waveguide
system,

i
∂ψ

∂z
− 1

2kn0

∂2ψ

∂z2
= Hψ. (2)

Here H = 1
2kn0

∇2
x + k

2 ( n2−n2
0

n0
) is the Helmholtz-Hamiltonian

operator which can be replaced by the above structurally mod-
eled tight-binding AAH Hamiltonian HA, n0 is the reference
refractive index, and the wave vector is given as k = ω/c for
monochronic electromagnetic wave E = �{ψeiωt−ikn0z}. To
achieve an intuitive understanding of the nonparaxial effect,
we can rewrite Eq. (2) in an effective Schrödinger-type form
that absorbs the second derivative of z in a self-consistent way
[33]:

i
∂ψ

∂z
= HA

1 + i 1
2kn0∂z

ψ = Heffψ, (3)

where the effective Hamiltonian under Padé approximation is
approximately given by

H (1,1)
eff ≈ HA − 1

2kn0
H2

A . (4)

Interestingly, apart from the paraxial Hamiltonian HA, the
consideration of nonparaxiality leads to an additional term
proportional to H2

A (see the SM for details [57]). Based
on the previous work [33], we could conclude that the
nonparaxial term − 1

2kn0
H2

A contributes a negative next-
nearest-neighboring (NNN) coupling, accordingly, κNNN ≈
−κ2/(2kn0). For our microwave system with a very small
wave vector k, such negative NNN couplings cannot be ne-
glected and reshape the energy spectrum. For a much smaller
vector, we need to take the higher-order approximant into
account, in which longer-range couplings appear and the cou-
pling matrix becomes more complex. In contrast, for larger
wave vector (e.g., the optical region), the negative NNN
couplings can be ignored, and the effective Hamiltonian is
reduced to the paraxial one.

Next, we study how the nonparaxial term modifies the band
structure. Thanks to the commutation relation [H (1,1)

eff , HA] =
0, the eigenstate |φ〉 of HA with eigenvalue ε is also an eigen-
state of Heff, but the effective energy is shifted to ε − 1

2kn0
ε2.

This modification results in a deformation of the original band
structure; see Fig. 2(b).

However, the Chern number for each band also keeps in-
variant because of the same eigenstates as the original one. It
should be noted that for the experimentally relevant parame-
ter regime with a small but non-negligible fitting parameter

1/(2kn0), the first (third) band obviously gets compressed
(stretched) with significantly enlarged (reduced) band disper-
sion and bandwidth; see Fig. 2(b).

IV. LZ TRANSITION BETWEEN TBSS

The realization of LZ transition relies on two conditions,
one is a two-level system with an avoided energy crossing
determined by a control parameter, and the other is a z-
dependent driving to sweep the parameter across the avoided
crossing point, where the changing rate of the energy should
be comparable to the minimum gap at the avoided crossing.
To achieve LZ transition, we resort to z-dependent driving of
a small-size system at a finite rate. As a concrete example
we consider a small system with N = 9 lattices and calcu-
late the energy spectra as a function of modulation phase
φ for both the paraxial Hamiltonian HA (without NNN hop-
ping terms) and nonparaxial effective Hamiltonian Heff (with
NNN hopping terms κNNN = −0.00632 mm−1); see Figs. 2(c)
and 2(d), respectively. The other parameters are chosen as
β0 = 0.501 mm−1 (w0 = 0.8 mm), κ = 0.0316 mm−1, and
�β = 0.0493 mm−1 (�w = 0.35 mm). In the paraxial case
[Fig. 2(c)], two nearly equivalent minigaps between two TBSs
are opened at the crossing points around φ = 2π/3 and φ =
5π/3, respectively, which results from almost the same en-
ergy dispersion and hence the group velocity of the first and
third bulk bands. In the nonparaxial case, however, the upper
(lower) minigap is reduced (enlarged).

The different minigap can be understood in the follow-
ing way. Assume the energy spacing around ε is δε for the
paraxial case. According to the effective energy ε − 1

2kn0
ε2,

the energy spacing in the nonparaxial case is given by [1 −
1/(kn0)ε]δε, resulting in that the higher energy has smaller
energy spacing. In Fig. 2(e) we show the lower and upper
minigaps of TBSs at the avoided crossing points as a func-
tion of system size. As the system size increases, the general
decrease of two minigaps can be explained by the weaker and
weaker higher-order couplings between TBSs. It means that
the nonparaxial effects on LZ transition are more prominent
in a small-size system.

The time-varying control parameter is engineered by
z-dependent modulation phase φ(z) along the synthetic direc-
tion z in our system. In the vicinity of the avoided crossing
of the TBSs, LZ transition can be modeled by a two-level
effective Hamiltonian [62,63],

HLZ(δφ) =
(

αδφ �
2

�
2 −αδφ

)
. (5)

Here the coupling term � can be obtained by the minimum
gap size at δφ = 0, and α is a fitting parameter charac-
terizing the slope of the crossing. HLZ in Eq. (5) is the
two-level effective Hamiltonian for describing the process
of two edge states coupling. Obviously we naturally con-
sider (|ψT 〉, |ψB〉) as a complete set of basis of HLZ. The
TBSs of |ψT 〉 and |ψB〉 are defined as the top boundary state
and the bottom boundary state. We show the eigenvalues
of HLZ around the two avoided crossings at φ = 2π/3 and
φ = 5π/3 (solid curves) in Figs. 3(a) and 3(c), respectively.
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FIG. 3. Experimental results of topological pumping and LZ transition in a microwave waveguide array. (a) and (c) Energy spectrum
around φ = 2π/3 and φ = 5π/3, respectively. (b) and (d) Schematic diagram of the waveguide array and the observation of pumping process
around φ = 2π/3 and φ = 5π/3, respectively. The other parameters are chosen as N = 9, �φ = 0.1π , G = 1.8 mm, L = 40 cm.

The eigenstates turn out to be hybridized states of |ψT 〉 and
|ψB〉 as a result of the coupling. The degree of hybridization
is characterized by different colors, where the red and blue
colors represent the two unhybridized limits of wave func-
tions |ψT 〉 and |ψB〉 localized at top and bottom boundaries,
respectively.

Intriguingly, by taking advantage of the significantly en-
larged (reduced) gap at φ = 2π/3 (φ = 5π/3) induced from
the nonparaxial effect, we now show that both adiabatic trans-
port behavior and nonadiabatic LZ transition can be realized
in our system under the same modulation frequency �, which
is given by �φ/Zmax. This can be achieved by choosing
� = π/4000 mm−1 in the range smaller than the gap at
φ = 2π/3 but larger than the gap at φ = 5π/3. Such a choice
makes it possible that the state evolves adiabatically along the
eigenstates around φ = 2π/3 while it undergoes LZ transition
around φ = 5π/3 (see the SM for details [57]). In the adia-
batic transport we assume that the initial states at φ0 = 0.62π

are sufficiently far away from the avoided crossing of |ψT 〉
and |ψB〉 at φ = 2π/3. The initial top boundary state (red)
could evolve adiabatically with increasing φ into the final state
(blue) at the bottom boundary, and vice versa; see Fig. 3(a).
In the LZ transition we also consider the initial states of
|ψT 〉 and |ψB〉 at φ0 = 1.62π away from the avoided crossing
at φ = 5π/3. When approaching the avoided crossing with
increasing φ, the top boundary state (red) in the upper energy
level tunnels to the top boundary state in the lower level,
and so does the bottom boundary state (blue); see Fig. 3(c).
This means that the LZ transition renders each boundary state
localized at where they start with negligible transfer to the
other boundary.

In experiments, the samples of microwave waveguides
have the same parameters (N = 9, �φ = 0.1π , G = 1.8 mm,
and L = 400 mm) as the above discussion; see Fig. 3(b) for
φ0 = 0.62π and Fig. 3(d) for φ0 = 1.62π . After injecting the
electric field into the samples, we detect the propagation of
Ez component of electric fields on the microwave near field
platform (see the SM for the case of N = 6 [57]). As expected,
in the case of φ0 = 0.62π , we observe that the electric field
injected from the first (or ninth) boundary waveguide gradu-
ally transfers across the bulk to the ninth (or first) boundary
waveguide. Note that the two pumping processes from the
top-port excitation and bottom-port excitation are symmet-
ric, as a result of the symmetric energy structure around the
avoided-crossing points in Fig. 3(a). The electric fields around
the avoided crossing point are dominated in both the top and

bottom ports, which can be viewed as a effect of beam splitter.
In the case of φ0 = 1.62π , the electric field injected from the
first (or ninth) waveguide keeps rather stable during the pump-
ing process, so that the electric field is still concentrated on the
initial waveguide first (or ninth) at the output end. Our results
already demonstrate the successful transfer of TBS and the
localization of isolated TBS, which is based on the non-
paraxial condition in the LZ model realized in the microwave
system.

V. DISCUSSION

In our system, the nonparaxial effects are significant with
a small number of waveguides. We have already shown that
as the number of waveguides increases, the coupling effect
between the TBSs weakens so that the nonparaxial modifica-
tions at the avoided-crossing point become smaller. For a fixed
modulation frequency, we may observe that the field propaga-
tion changes from adiabatic evolution to LZ transition with
increasing waveguide number N . To confirm our argument,
the CST simulations have been shown in Fig. 4 for the three
cases: N = 6, 12, 18. From the results of simulations, in the
cases of N = 6, 12, the adiabatic tunneling from the right to
left boundaries could be observed, but the coupling between

FIG. 4. CST simulation of pumping processes with different sites
(a) N = 6 and (b) N = 12, and (c) N = 18. The injected light prop-
agates along the input boundary waveguide without scattering. The
other parameters are chosen as L = 60 cm, φ = 2π/3, �φ = 0.1π ,
Spacing G = 1.8 mm between adjacent waveguides.
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TBSs is blocked as the N increases to 18, which demonstrates
the negligible gap and complete LZ transition.

VI. SUMMARY

We have theoretically predicted and experimentally
demonstrated nonparaxiality-triggered LZ transition in mi-
crowave waveguide arrays with spatial modulations. Non-
paraxiality of microwaves plays a crucial role in modifying
spectrum and the adiabatic condition, that is, one gap is en-
larged and supports the adiabatic transfer of boundary states
while the other gap is narrowed to make the LZ transition.
Our approach of microwave nonparaxial engineering can be
extended to higher dimensions and can benefit other physical
systems, such as mechanical vibrations, elastic waves, electri-
cal circuitries, and thermal transfers.
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