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Quantum fidelity of the Aubry-André model and the exponential orthogonality catastrophe
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Advances in experimental tools allow to study quantum fidelity in unprecedented controlled settings. While the
fidelity in metals, when adding a local impurity, is well known to show the Anderson orthogonality catastrophe
(AOC), there remain outstanding questions in other quantum phases and settings. Here, we aim to tackle these
by exploring systematically the ground-state fidelity of the Fermi liquid in the (extended) Aubry-André (AA)
model, which allows to explore the AOC in both localized extended and critical phases. We discover that the
AOC is typically exponential in the critical regime of the AA model and at the mobility edge of the extended
AA model for an extended impurity, while it decays in the AA model with a power law for a weak single-site
impurity. We explain this in terms of critical correlations and multipoint correlations. The OC is found to be
exponential in the insulating regime, due to a fundamentally different, statistical mechanism, which is explained
in detail. Furthermore, we consider a parametric perturbation to the AA model, and find an exponential OC
numerically, in agreement with an analytical derivation which we provide here.
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I. INTRODUCTION

The quantum fidelity F , the absolute value of the scalar
product between the ground state of a quantum system |ψ〉
and the ground state after a perturbation |ψ ′〉, at fixed density
of fermions n = N/Ld , F = |〈ψ |ψ ′〉| is known to vanish with
a power law of the system size L in a metallic phase, the
celebrated Anderson orthogonality catastrophe [1]. Anderson
showed in Ref. [1] that the fidelity has a strict upper bound

F = |〈ψ | ψ ′〉| < exp (−IA), (1)

where the Anderson integral IA is for noninteracting electrons
given in terms of the single-particle eigenstates of the original
system |n〉 and the new system |n′〉 by

IA = 1

2

N∑
n=1

∑
n′>N

|〈n|n′〉|2. (2)

If the added impurity is short ranged of strength V0, Ander-
son found for a clean metal IA = (1/2)ρ2

0V 2
0 ln N, diverging

with the number of fermions N , where ρ0 is the density of
states at the Fermi energy. Therefore, F decays in metals as a
power law of N = nLd , the so-called Anderson orthogonality
catastrophe (AOC). According to Eq. (2) this suppression is a
consequence of the fact that the local perturbation connects
the Fermi liquid to the continuum of excited states in the
metal. This has important experimental consequences like the
singularities in x-ray absorption and emission of metals [3],
the zero-bias anomaly in disordered metals [4], and anomalies
in the tunneling density of states in quantum Hall systems
[5,6]. In particular, for compressible quantum Hall states,
where there are edge channels propagating in both directions,
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there are AOC-type corrections to the tunneling density of
states [6]. The concept of fidelity can be generalized to any
parametric perturbation and be used to characterize quantum
phase transitions [7], which have been applied to identify
topologically different quantum phases in fractional quantum
Hall phases [8]. A relationship between the orthogonality
catastrophe and the adiabaticity breakdown in a driven many-
body system has been shown in Ref. [9]. We note that, in
general, the study of quantum quench dynamics requires to
study the effect of the perturbation on all states [10], while
we focus in this paper on the fidelity of the ground state.
This AOC in the fidelity of the ground state can be studied
in ensembles of ultracold atoms in a controlled way [11].

Recently, it has been found that the AOC with a local impu-
rity can be exponential, meaning an exponential dependence
of the typical fidelity on the number of fermions N at any
quantum-critical point, as obtained in an analytical derivation
[12]. There, the coupling to a continuum of excited states
due to the impurity was found to be enhanced by quantum-
critical power-law correlations. On the other hand, it has been
argued in Refs. [13] and [12] that in an Anderson insulator
the fidelity with a local impurity remains typically finite since
the impurity can couple only to a discrete number of states.
In Refs. [14,15], however, an exponential AOC was found
numerically in Anderson-localized Fermi systems, when the
perturbation is turned on adiabatically slowly.

In order to clarify the existence of an exponential AOC,
here we aim to study the fidelity in the (extended) quasicrys-
talline Aubry-André (AA) model [2,16,17]. The AA model
has a quantum phase transition from a metal to a localized
phase as function of parameter λ and a quantum-critical point
λ = 2 [see Fig. 1 (left) where all eigenstates are known to be
multifractal [17]]. In contrast to the Anderson metal-insulator
transition in disordered systems, the model has a fractal en-
ergy spectrum, where the level spacing � scales with system
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FIG. 1. The inverse participation ratio IPR = ∑
i |ψi|4 as func-

tion of energy (in units of hopping parameter J) and quasiperiodicity
parameter λ for the AA model (left) and EAA model with b = 0.2
(right). For the system size L = 610 a crossover is seen in the IPR
between an extended phase IPR → 0 (red) and a localized phase
IPR → a/ξ , with localization length ξ and lattice spacing a. In
the AA model (left) that occurs at λ = 2 for all energies, while
in the EAA model it depends on energy. There, the analytical result
for the mobility edge Emb = (2Jlambda)/b [2] (black solid line) is
plotted, separating the extended phase from the localized phase.

size L with a fractal dimenison z �= 1. In a recent study [18]
the AOC at the critical point of this model has been studied
and found numerically to follow a power law. This is another
motivation for us to reconsider the fidelity in this model and to
examine whether the exponential AOC predicted in Ref. [12]
at a quantum-critical point exists in the critical AA model.
Moreover, this model and its extensions can be realized in
ultracold atoms, allowing the tuning of parameters and per-
turbations in a controlled way [11]. We summarize all results
for the fidelity in Table I.

The paper is organized as follows. In Sec. II we introduce
the (extended) AA model. In Sec. III we review the definition
of ground-state fidelity F in the presence of an impurity and
its upper bound provided by the exponential of the Anderson
integral (AI). In Sec. IV we define the AI with an extended
impurity. In Sec. V we review the spectrum of the AA model
and study how it is modified by an impurity. In Sec. VI we
present all results for the fidelity of a single-site impurity in
the AA model. We begin with presenting the numerical results
in Sec. VI A. The analytical results in the approximation used

in Ref. [12] are reviewed and applied for the AA model with
a single-site impurity in Sec. V B yielding an exponential
AOC in the critical phase. As this is in some disagreement
with the numerical results presented in Sec. VI A, we consider
corrections to the AI in Sec. VI C beyond the approximation
used in Sec. VI B. We thereby identify a mechanism which
yields a power-law AOC in the critical phase, in agreement
with the numerical results. In Sec. VI D we show that in the
insulator regime there is a statistical mechanism which yields
an exponential OC in agreement with the numerical results. In
Sec. VII we present results for the fidelity with an extended
impurity and provide evidence for an exponential AOC in the
critical regime, when the impurity extends over more than one
site. By analyzing the Anderson integral for an extended im-
purity we suggest a mechanism which explains this discovery
of an exponential AOC in the critical phase. In Sec. VIII we
present numerical results for the ground-state fidelity with a
parametric perturbation giving evidence for an exponential
AOC in the critical regime, and a weak exponential AOC
in the metallic regime. Analyzing the Anderson integral for
that perturbation we give a derivation which is in agreement
with these numerical results. In Sec. IX we present numerical
results for the ground-state fidelity in the extended AA model.
We give the conclusions in Sec. X. In Appendix A we give
the derivation of an upper bound for the ground-state fidelity
and in Appendix B details of the derivation of the AOC with
a single-site impurity. In Appendix C we present numerical
benchmark results for the fidelity of the one-dimensional (1D)
tight-binding model with an impurity. In Appendix D we
present the averaged numerical results for the energy spectrum
of the AA model with a single-site impurity.

II. THE (EXTENDED) AUBRY-ANDRé-MODEL

The (extended) Aubry-André model (EAA) has the Hamil-
tonian [2,16]

HEAA = −J
L∑

i=1

(c+
i ci+1 + c+

i+1ci )

+λ

L∑
i=1

cos(2πQi + φ)

1 − b cos(2πQi + φ)
c+

i ci, (3)

TABLE I. Summary of results for the length L dependence of fidelity F in loc = localized, ext = extended, crit= critical phase of the AA
= Aubry-André model and the EAA = extended AA model with imp=impurity. c is a constant, exponent γ is numerically found to be γ ≈ 1,
analytically γ = z/2, with z > 1 the fractal dynamical exponent. The exponent β is determined by fitting, as given in the respective figures. In
addition, the average fidelity is found to be independent of L in the localized regime for single-site and extended impurities [see Fig. 8(c)] and
for a parametric perturbation (see Fig. 13).

Fidelity F (L) Exponential ∼ exp(−cLγ ) Power law ∼L−β

loc: Ftyp (Fig. 5) crit: Ftyp (Fig. 5), Fav (Fig. 3)
AA + single-site imp M = 1 ext: Ftyp (Fig. 5), Fav [Fig. 8(a)]

crit: Ftyp [Fig. 11(b)], Fav [Fig. 12(b)]
AA + ext imp M > 1 loc: Ftyp [Fig. 11(c)] ext: Ftyp [Figs. 7(a),11(a)], Fav [Figs. 8(a),12(a)]

AA + parametric perturbation crit, ext: Ftyp, Fav (Fig. 13)

EAA + single-site imp crit: Ftyp [Fig. 14(a)], loc: Ftyp crit: Fav [Fig. 14(a)], ext

EAA + ext imp crit: Ftyp (Fig. 15), loc: Ftyp ext

1D tight-binding model + single-site imp ext: Ftyp Fav (Fig. 17)

1D tight-binding model + ext imp ext: Ftyp, Fav (Figs. 18, 19)
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where J is the hopping amplitude (we set J = 1 as the unit
of energy), c†

i and ci are creation and annihilation operators
of a spinless fermion at site i on a chain of L sites, and λ

presents the amplitude of the quasiperiodic potential. Q is
an irrational number usually chosen to be the golden ratio,
Q = 2/(

√
5 + 1), and φ is a randomly chosen phase interval

[0, 2π ] that is the same for all sites. The open boundary con-
ditions are considered throughout the results presented in the
paper. The parameter b can take values b ∈ [0, 1). For b = 0
we recover the Aubry-André model, which has no mobility
edge in the energy spectrum, but when the parameter λ is
changed all states undergo a transition from localized λ > 2,
critical λ = 2, to extended for λ < 2 [16], as seen in Fig. 1
(left), where the inverse participation ratio (IPR = ∑

i |ψi|4)
is plotted versus energy and parameter λ. At the critical point
λc = 2, all eigenstates are known to be multifractal [17].
Moreover, the model has a fractal energy spectrum, where
the level spacing � scales with system size L as z, � ∼ L−z,
where the dynamical exponent z can be different from the
dimension of the model d = 1.

For b �= 0 the EAA model shows a mobility edge given
by Emb = (2J − λ)/b [2], as seen in Fig. 1 (right), where
the inverse participation ratio (IPR) is plotted as function of
energy and parameter λ. The mobility edge (black solid line)
separates the extended phase IPR → 0 from the localized
IPR → a/ξ, where a is the lattice spacing and ξ the local-
ization length.

III. GROUND-STATE FIDELITY

To derive the ground-state fidelity we first diagonalize the
Hamiltonian as given by Eq. (3). As the model is noninteract-
ing, it can be diagonalized with the basis change as HAA =∑

n εnd†
n dn, with the one-electron energy eigenvalues εn, and

the creation and annihilation operators in the single-particle
eigenstates |n〉 given by dn = ∑

i ψnici, where ψni are com-
plex coefficients. Then, the ground state can be constructed
as |ψ〉 = ∏N

n=1 d†
n |0〉, with fixed number of particles N and

fixed particle filling n = N/L. When adding a perturbation the
filling n remains fixed, while the Fermi energy can change.

Next, we introduce an impurity, which extends over a
finite subset SM of M neighbored lattice sites with SM =
i, i + 1, . . . , i + M − 1 with

Himp = 1

M
V0

∑
i∈SM

c+
i ci. (4)

In the numerical implementation we choose the center of
the impurity to be located at the lattice center L/2. The
noninteracting Hamiltonian perturbed by the impurity H ′ =
HAA + Himp has the new eigenstates |n′〉, yielding H ′ =∑

n′ ε′
n′d†

n′dn′ , where dn′ = ∑
i ψn′ici, with complex coeffi-

cients ψn′i. Thereby, the new ground state is given by |ψ ′〉 =∏N
n′=1 d†

n′ |0〉. Thus, the fidelity is given by F = |〈ψ ′|ψ〉| =
|det(A)|, where A is the N × N matrix where the matrix el-
ements are the scalar products of the eigenstates before and
after the perturbation Ann′ = 〈n|n′〉 (see Appendix A for more
details).

IV. ANDERSON INTEGRAL

Before presenting the numerical results, let us first review
the rigorous upper limit of the fidelity, as given by the right-
hand side of Eq. (1), whose derivation is given in Appendix A.
The Anderson integral (2) can be rewritten for the impurity
perturbation (4) without approximation as

IA = 1

2

N∑
n=1

∑
n′>N

1

(En′ − En)2
|〈n|Himp|n′〉|2

= V 2
0

2M2

N∑
n=1

∑
n′>N

| ∑i∈SM
ψ∗

niψn′i|2
(En′ − En)2

, (5)

where ψni = 〈n|i〉, ψn′i = 〈n′|i〉 is the local amplitude with
and without the additional impurity at site i. Equation (5)
can be rewritten by replacing the summation over energy
eigenvalues En′ , En by an integral over energy with density of
states ρ(E ) without the impurity, and ρ ′(E ′) with the impurity.
Thus, we get

IA = V 2
0

2M2

∫
E�εHOMO

dE
∫

E ′�ε′
LUMO

dE ′ ρ(E )ρ ′(E ′)
(En′ − En)2

×
∑

i, j∈SM

ψ∗
EiψE ′iψE jψ

∗
E ′ j, (6)

which depends explicitly both on the density of states (DOS)
with and without impurity, ρ ′(E ′), ρ(E ), and on the wave-
function amplitudes with and without the impurity ψE ′i, ψEi.
We note that, since the number of fermions N is kept fixed, the
Fermi energy of the pure system εF can be different from the
one of the system with the perturbation ε′

F since all energy
levels En′ may change with the perturbation. We therefore
find it convenient to define the highest occupied energy level
without the perturbation as εHOMO and the lowest unoccupied
energy level with the perturbation as ε′

LUMO. We note that
Eq. (6) is still an exact representation of the Anderson integral,
rewritten in terms of the density of states. As the density of
states of the AA model is known to show fractal behavior at
the critical point λc = 2, let us first consider the effect of the
impurity on the energy spectrum.

V. ENERGY SPECTRUM

In Fig. 2(a) we show the energy level spectrum of the AA
model [Eq. (3)] for b = 0 and the critical parameter λc = 2.0
as function of filling factor n. The dashed line indicates the
filling of n = 0.309, corresponding without an impurity to the
Fermi energy EF /J = −1.923. In the inset the zoomed energy
interval close to that filling n = 0.309 is seen to correspond
to a region of large density of states. For a single-site im-
purity the energy level spectrum is plotted for three different
impurity strengths V0 as displayed by the colored symbols,
respectively. Figures 2(b) and 2(c) show a full and zoomed
energy level diagram, with and without impurity. The case
without impurity is drawn in a gray color. While the energy
bands are not shifted, the formation of bound states outside
of the energy bands is seen even for the weakest impu-
rity strength. Figure 2(d) shows the density of state (DOS)
as a function of energy close to Fermi energy. The results
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FIG. 2. (a) Energy spectrum at the critical point λ = 2.0 as function of filling n for a single-impurity case. Results of three different impurity
strengths V0 are displayed in colored symbols. The energy bands are not shifted, but bound states form outside of the energy bands for all V0.
The horizontal dashed line is the Fermi energy. Inset: zoomed energies close to the Fermi energy without the impurity EF /J = −1.922 882,
corresponding to filling n = 0.309. (b), (c) Show the complete energy diagram, and a zoom close to the EF , with and without (gray) impurity.
(d) Density of states (DOS) as function of energy close to EF . The results are randomly chosen from one of the realizations. For calculating
DOS a broadening η = 1.0 × e−5 is utilized. System size L = 1024.

presented here are randomly chosen from one of the real-
izations. For the calculation of the DOS, a broadening η =
1. × e5 has been used.

Figure 20 in Appendix D shows the average density of
states as function of energy E , as averaged over the random
phases φ in the Hamiltonian (3) for b = 0 and λ = 2 of 200
realizations. This supports the observation that the energy
bands are not shifted by more than a level spacing, and that
the formation of bound states outside of the energy bands is
seen even for the weakest impurity strength.

VI. GROUND-STATE FIDELITY OF THE AA MODEL
WITH A SINGLE-SITE IMPURITY

A. Numerical results

Let us first consider the fidelity in the 1D Aubry-André
model with Hamiltonian (3) for b = 0, for a single-site im-
purity M = 1 [Eq. (4)] numerically. Calculating the fidelity,
using its definition F = |〈ψ ′|ψ〉|, we plot in Figs. 3(a) and
3(b) the average fidelity Fave = 〈F 〉 and the typical fidelity
as function of length L for different impurity strengths V0 =
0.1, 0.01. Here, we defined Ftyp = exp 〈log F 〉, where 〈. . . 〉
denotes the average over 1000 realizations of a uniform ran-
dom phase in [0, 2π ). We find that both the average and the
typical fidelity decay with a power law, and not exponen-
tially. The typical fidelity is smaller than the average one
for all system sizes L. This difference becomes more pro-
nounced with stronger impurity strength V0, while the fidelity
becomes smaller with increasing V0 overall. For compari-
son, we also calculated the Anderson integral IA, and plot in
Figs. 3(c) and 3(d) the average of its exponential 〈exp(−IA)〉,
which should give according to Eq. (1) the upper bound of
the average fidelity, and the exponential of the average IA,
exp(−〈IA〉), which corresponds to the upper bound for the
typical fidelity. Indeed, we confirm the inequality (1) for both
impurity strengths V0 = 0.1, 0.01. But, we observe that the
typical fidelity Ftyp is substantially smaller than its upper
bound exp(−〈IA〉).

B. Anderson integral: Analytical results

These numerical results are in contradiction with the pre-
diction of an exponential orthogonality catastrophe, as found
by an analytical derivation in Ref. [12] at a quantum-critical
point, where the coupling to a continuum of excited states
due to the impurity was found to be enhanced by quantum-
critical power-law correlations. Let us therefore reconsider the
derivation of the Anderson integral for critical states.

In fact, in the critical regime all wave functions are
multifractal [19] and the correlation function of intensities

FIG. 3. (a) Average and typical fidelities as function of length L
with a single impurity of strength V0 = 0.1 and (b) for V0 = 0.01,
showing a power-law dependence on L, which is fitted as given in
the legend. (c) Average and typical values of exp(−IA), which is
confirmed to exceed the typical fidelity, where IA is the Anderson
integral (5) for V0 = 0.1 and (d) for V0 = 0.01. Parameter λc = 2.0,

data averaged over 1000 sample realizations.
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associated to two energy levels distant in energy by ωnm =
En − Em is enhanced, as given by [20–22]

C(ωnm = En − Em) = Ld
∫

dd r 〈|ψn(r)|2|ψm(r)|2〉

=
{( Ec

Max(|ωnm|,�)

)η/d
, 0 < |ωnm| < Ec

(Ec/|ωnm|)2, |ωnm| > Ec

(7)

where � is the average level spacing at the Fermi energy. The
power is given by η = 2(α0 − d ), with multifractality parame-
ter α0 and the dimension d . This power-law dependence of the
correlation function is a consequence of multifractality, as can
be seen in the limit when |En − Em| < � where it becomes
Ld times the inverse participation ratio which is known to
scale as L−d2 , where d2 is the fractal dimension of the second
moment of the intensity, given by d2 = d − η. For the critical
AA model, the power is known to be η = 1

2 [23]. Since all
its states are critical, the correlation energy Ec is of order of
the bandwidth D. For |ωnm| < Ec correlations are thus indeed
enhanced in comparison to the plane-wave limit Cnm = 1.
Note that for |ωnm| > Ec it decays below 1.

Mean value of the Anderson integral. If we assume that
the perturbed eigenstates 〈n′| in Eq. (5) can be replaced by an
eigenstate without the impurity 〈n|, we can insert the correla-
tion function (7) into (5) to calculate the mean value of IA, and
find for a single-site impurity M = 1

〈IA〉 = V 2
0

2

∫∫
ε<εHomo,ε′>εLumo

dε dε′ρ(ε)ρ(ε′)
Cε,ε′

(ε − ε′)2
. (8)

This gives an estimate for the upper bound of the typical
average of F, exp(〈ln F 〉) � exp(−〈IA〉). Assuming further-
more that the density of states is only slowly varying ρ(E ) ≈
ρ(EF ) = ρ0, and denoting the level spacing at the Fermi
energy � = εLumo − εHomo, we get at the Anderson metal-
insulator transition (AMIT) with Eq. (7)

〈IA〉|EF =EM = (ρ0V0)2

2γ (1 + γ )

(Ec

�

)γ

, (9)

depending on Ec/� with power γ = η/d . For the critical
phase of the one-dimensional AA model, d = 1, γ = 1

2 [23].
Since all states are critical at λ = 2, we set the correlation

energy to the bandwidth Ec = D. In a metal the average level
spacing is � = 1(ρ0L). Note, however, that for the fractal
spectrum of the AA model, the level spacing at the Fermi
energy scales with L rather as �(L) ∼ L−z, with z > 1 [18].
Thereby, we get

〈IA〉|EF =0 = ρ2
0V 2

0

2γ (1 + γ )
(Dρ0Lz )γ . (10)

Thus, we get with γ = η/d = 1
2 , ρ0 = 1/D, that the Ander-

son integral diverges as a power law with system size L,

〈IA〉|EF =0 = 2V 2
0

3D2
Lz/2, (11)

and thus the typical fidelity decays exponentially with the
system size, the exponential orthogonality catastrophe, in
agreement with Ref. [12].

FIG. 4. Average and typical gap, the difference between HOMO
and LUMO energies [Eq. (13)] of the model before and after
the perturbations were considered for two different single-impurity
strengths (a) V0 = 0.1 and (b) V0 = 0.01 as function of length L. This
confirms the power-law dependence with a power z > 1 exceeding
the dimension d = 1, which is due to the fractality of the spectrum.
In all results, we fix parameter λ = 2.0 and data averaged over 1000
sample realizations.

In the metallic regime λ < 2 one rather gets

〈
IM
A

〉|EF =0 = ρ2
0V 2

0

2
ln(Dρ0L). (12)

Thus, in order to be able to distinguish the exponential decay
of the typical fidelity due to critical correlations, Eq. (11)
in comparison to the noncritical result (12), the system size
L should be so large that 4/3Lz/2 > ln L which is indeed
valid for all L > 1 for z > 1. Thus, according to this result,
the numerical calculations should see the exponential decay,
if the analytical derivation is valid. Therefore, let us reconsider
the approximations yielding to the result (10), in order to find
out the reason for this discrepancy with the numerical results.

C. Anderson integral: Beyond perturbation theory

(1) As the energy levels are modified by the perturbation,
the gap between the lowest unoccupied state with the per-
turbation and the highest occupied level without perturbation
depends itself on the disorder potential V0,

�(V0) = ε′
LUMO − εHOMO. (13)

Since it provides the infrared cutoff to the integrals in the
Anderson integral, substituting Eq. (13) into (14) we thereby
find in the critical phase

〈IA〉|EF =EM = (ρ0V0)2

2γ (1 + γ )

(
Ec

�(V0)

)γ

. (14)

In Fig. 4 the average and typical gap �(V0) [Eq. (13)] is
shown for two different single-impurity strengths, namely, (a)
V0 = 0.1 and (b) V0 = 0.01 for critical parameter λ = 2.0 and
data averaged over 1000 sample realizations. We see that the
magnitude of the gap is not changed by the impurity, so that
this weak dependence of �(V0) on V0 does not change the
result for the Anderson integral (11).

Also, as was observed for the gap of the unperturbed sys-
tem in Ref. [18], the decay with system size L of the gap
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�(V0) is strongly fluctuating with L and does not follow a
clear scaling law, even when averaging over 1000 realizations.
However, it clearly decays with a power z > 1, faster than the
average level spacing of a metal.

(2) The density of states is affected by the presence of the
impurity, as seen in Fig. 2 for a particular realization of the
phase φ. As discussed in Sec. V, the energy bands are hardly
shifted, but the formation of bound states outside of the energy
bands is found even for the weakest impurity strength. Close
to the Fermi energy Fig. 2(d) shows that the density of state
(DOS) is only weakly shifted by the impurity, by the order
of the level spacing �. As we choose an energy region of
large density of states, which is not shifted on average by the
impurity, as seen in Fig. 20, we conclude that the small change
of DOS ρ ′(E ) by the impurity does not result in a change of
the divergence with system size L of the average Anderson
integral in the critical regime, and thus cannot be responsible
for the discrepancy with the numerical results.

(3) We disregarded in the derivation in Sec. VI B the
change of wave-function intensity at the location of the impu-
rity by the addition of the impurity. For a single-site potential
impurity at site x with amplitude V0, the perturbed intensity
|ψn′ (x)|2 can be written exactly as [24]

|ψn′ (x)|2 = lim
E→En′

(E − En′ )
V0

[
G0

E (x, x)
]2

1 − V0G0
E (x, x)

, (15)

where

G0
E (x, x) =

∑
l

|ψl (x)|2 1

E − El + iδ
. (16)

Performing the limit in Eq. (15) with de l’Hospital rule, one
finds

|ψn′ (x)|2 = |ψn(x)|2
(
1 + En′−En

|ψn(x)|2
∑

l �=n
|ψl (x)|2
En′−El

)2

1 + (En′−En )2

|ψn(x)|2
∑

m �=n
|ψm (x)|2

(En′−Em )2

, (17)

where En is the energy level closest in energy to the perturbed
energy En′ . It depends on the disorder potential only implicitly
through the eigenenergy of the perturbed state En′ . Since En′ −
En has a polynomial dependence on the disorder potential V0,
we can approximate it by the leading term, linear in V0, En′ −
En ≈ V0|ψn(x)|2, yielding

|ψn′ (x)|2 ≈ |ψn(x)|2
(
1 + V0

∑
l �=n

|ψl (x)|2
En′−El

)2

1 + V 2
0 |ψn(x)|2 ∑

m �=n
|ψm (x)|2

(En′−Em )2

. (18)

Inserting this approximation into the Anderson integral, we
can check whether these corrections in V0 change the diver-
gence of the Anderson integral. In the metal phase, |ψn(x)|2 ∼
1/L and due to the asymmetry of the summations in the
numerator of Eq. (18), we find only weak corrections, which
do not change the ln L dependence of the Anderson integral
in the metallic regime. In the critical regime, however, all
wave functions are multifractal, so that the local intensity
|ψl (x)|2 is widely distributed and may vary strongly with
energy El . Then, the corrections due to the summations in
Eq. (18) both in the numerator and denominator may yield
finite results, especially when the intensity of the state at the
Fermi energy at the location of the impurity |ψn(x)|2 happens

FIG. 5. Typical fidelity Ftyp ≈ exp 〈log F 〉 of a single impurity
with strength V0/J = 20 for λ = 1 (the metallic phase), λ = 2 (the
critical phase), λ = 3 (the insulator phase) in log-log scale. This
shows the power-law OC in the metallic and the critical phase and an
exponential OC in the insulator phase. Filling is fixed at n = 0.309.
The inset magnifies results of the main panel for λ = 1.0, 2.0. Re-
sults are averaged over 1000 samples. Black dashed lines are fitted
curves.

to be smaller than in other states. Inserting Eq. (18) into the
Anderson integral, we see that multipoint correlations of the
intensity arise even for the average Anderson integral. Thus,
the average Anderson integral can in general not be reduced to
an integral over the pair correlation function (7). The presence
of multipoint correlation may therefore weaken the infrared
divergence compared to Eq. (11). The numerical results shown
in Fig. 3 in fact provide strong evidence that the Anderson
integral depends on system size only logarithmically, resulting
in a fidelity at the critical point which decays with a power law
with system size, albeit decaying faster than in the metallic
regime. Numerical results for the fidelity in the presence of
an impurity in other quantum-critical systems, in particular
in random banded matrices [25] and at the three-dimensional
(3D) Anderson metal-insulator transition [26], did not find
evidence for an exponential AOC either, but rather found
evidence for a power-law AOC. As outlined above, the ex-
planation may be that the corrections to the local intensity at
a single-site impurity (18) result in multipoint correlations,
which weaken the infrared singularity of the Anderson in-
tegral in these quantum-critical systems, thereby explaining
the numerically observed power-law Anderson orthogonality
catastrophe.

D. Fidelity in the insulator phase: Statistical exponential
orthogonality catastrophe

In Fig. 5 the typical fidelity Ftyp = exp 〈log F 〉 of a strong
single impurity with strength V0/J = 20 is shown for the
metallic λ = 1.0, the critical λc = 2.0, and the insulator λ =
3.0 regime. The filling is kept fixed at n = 0.309. All results
are obtained by averaging over 1000 samples. We see that
both in the metallic and the critical regime, the typical fidelity
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FIG. 6. Distribution of the fidelity for a single impurity M = 1 with different strengths V0 for (a) metallic phase, where it has a finite width,
is bimodal, and becomes shifted to smaller values as V0 is increased. (b) Critical phase, where it spreads over all values of F , with more weight
at small fidelity the larger V0 is. (c) Localized phase, where it is bimodal. The peak at vanishing fidelity is increasing with impurity strength
V0, approaching a Bernoulli distribution, with only small weight at intermediate values. System size is L = 1009 and data are collected from
2000 realizations.

decays with system size like a power law, albeit the decay is
faster in the critical regime. This is seen better in the inset
where the dashed lines are fitted curves as indicated.

In the insulator regime λ = 3.0, however, the fidelity is
by orders of magnitude smaller than that in the metallic and
critical regimes. Moreover, it decays with system size L expo-
nentially, as seen by the fitted dashed line, until it decays more
slowly at system sizes exceeding L = 500. In Refs. [14,15], an
exponential orthogonality catastrophe was found numerically
in Anderson-localized Fermi systems, when the perturbation
is turned on adiabatically slowly. In Ref. [14] that has been
explained in terms of a statistical orthogonality catastrophe.

Indeed, in the strongly localized regime, when each eigen-
function is localized on one site only, one obtains a Bernoulli
distribution of the fidelity of fixed particle number N , which
is either 0 or 1 with probability u, 1 − u, respectively. The
reason is, that in this strongly localized regime a local impu-
rity cannot mix eigenstates, but only shift the energy of that
state, which is located at the site of the impurity. Thereby,
for fixed number of particles the impurity may shift an occu-
pied level to higher energies, leaving it unoccupied, while a
state at another site becomes occupied, which is orthogonal
to the state at the site of the impurity, or vice versa. Thus,
by definition of the fidelity at fixed N, the fidelity is then
exactly zero. If, on the other hand, the impurity shifts the
energy such that the level remains occupied when it was
occupied before, or leaving it unoccupied, when it was un-
occupied without the impurity, the fidelity remains exactly
one. Thus, one has a statistical distribution which has only
two possible values, S = 0 with probability u or S = 1 with
probability 1 − u, where u(V0) is the probability that the im-
purity shifts the energy level at the site of the impurity from
occupied to unoccupied states or vice versa. Thus, while the
average fidelity is finite 〈F 〉 = 1 − u, the typical fidelity is
vanishing, exp〈ln F 〉 = exp[−∞u + 0(1 − u)] = 0. This sta-
tistical mechanism for the reduction of the typical fidelity is
thereby completely different from the mechanism for the An-
derson orthogonality catastrophe, where it is the coupling to a

continuum of states in a metal which leads to the power-law
suppression of the fidelity.

In Fig. 6 the distribution of the fidelity is shown in the
metallic, the critical, and the insulator phase for three dif-
ferent impurity strengths. Indeed, in the insulator phase the
distribution is bimodal, and the peak around zero fidelity is
increasing with impurity strength V0, approaching a Bernoulli
distribution, with only small weight at intermediate values of
the fidelity. In contrast, in the critical phase the distribution
of F is very wide, spreading over all values of F, where the
weight of small fidelity increases with V0. The distribution of
F in the metal phase on the other hand has a finite width, is
bimodal, and becomes shifted to smaller F as V0 is increased.

Having understood the distribution of F , let us next try to
explain the exponential suppression of the fidelity with system
size L in the insulator phase. As the filling factor n = N/L is
fixed as the system size L is increased, the number of occupied
levels N increases. However, in the strongly localized regime,
the probability that the single state at the site of the impurity is
shifted from occupied to unoccupied levels or, vice versa, the
probability u does not change with L since it is only a function
of the impurity strength V0, whether the energy level shift is
sufficiently strong and the typical fidelity remains zero for all
sizes. Thus, in the limit of strong single-site localization, the
typical fidelity would be zero for all system sizes L 
 1.

When the localization is not as strong, however, each lo-
calized state is extended over several sites, within the range of
a localization length ξ . Thus, an impurity located within this
range may mix the localized state with a finite number of other
states. According to the Anderson mechanism, that would
yield a finite fidelity on average, since an impurity can only be
coupled to a finite number of states, which does not change as
the system size increases. This is the reason that in Ref. [12] a
finite typical fidelity, independent of the system size, has been
found analytically. However, due to the statistical mechanism,
which was not considered in Ref. [12], the impurity may shift
an occupied state up in energy so that it becomes unoccupied,
or vice versa. Then, another single-particle state becomes

174204-7



J. VAHEDI AND S. KETTEMANN PHYSICAL REVIEW B 106, 174204 (2022)

FIG. 7. Results for the typical fidelity at filling n = 0.309 as function of length L for different extensions of the impurity M are shown in
color at fixed strength of the impurity V0 = 0.1J, sampled over 1000 realizations for (a) the metallic phase λ = 1, where the fidelity is found to
increase with extension M and to decay as a power law with length L, (b) the critical phase λ = 2, where the fidelity is found to rather decrease
with extension M and to decay faster with length L the larger M, and (c) for the insulator phase λ = 3, where the fidelity is found to fluctuate
strongly, being smallest for M = 1, and largest for the largest M = 13 considered and to decay faster with length L the smaller M.

occupied which may be (almost) orthogonal to the previously
occupied state without the impurity. As the system size in-
creases beyond a typical localization length ξ, the fidelity is
decaying exponentially due to this statistical mechanism. As
there are typically exponentially small but finite hybridization
matrix elements between all sites, in reality the impurity may
couple to a larger amount of states even though with expo-
nentially small amplitude. This might explain that the typical
fidelity seems to saturate to a very small but finite value at
large system size L in Fig. 5.

VII. FIDELITY WITH EXTENDED IMPURITY: CRITICAL
EXPONENTIAL AOC

Next, we explore how the fidelity depends on the exten-
sion of the impurity at fixed total strength V0, as defined by
the impurity Hamiltonian (4). Clearly, in the limit when it
extends over the whole system M = L, the eigenstates are
not changed, and only the total energy is shifted by V0/L, so
that the fidelity is equal to one. Thus, one may expect that
the fidelity increases as the the extension of the impurity M
is increased at fixed total strength V0. In fact, this is what
happens for a periodic 1D tight-binding model for a weak
impurity potential V0 = 0.1, as seen in Fig. 18 in Appendix C,
where the typical value of the fidelity and the upper bound
exp(−IA) are plotted as function of chain length L for different
impurity extensions M. The typical fidelity increases with M,
decaying more slowly with a power law of L, the larger M
is. Similarly, in the metallic phase of the AA model for a
weak impurity potential V0 = 0.1J,, the typical and average
fidelity become larger and decay more slowly with L as M
is increased, as seen in Figs. 7(a) and 8(a), respectively, in
accordance with the expectation formulated above. Averaging
Eq. (5) over the phase φ we get the average Anderson integral
for the extended impurity as

IA = V 2
0

2M2

N∑
n=1

∑
n′>N

∑
i, j∈SM

〈
ψ∗

niψn′iψ
∗
n′ jψn j

(En′ − En)2

〉
φ

. (19)

As the phase difference of the wave-function amplitude be-
tween different sites varies with φ, averaging over the phase

φ gives 〈ψniψ
∗
n j〉φ ≈ δi j |ψni|2, so that we find in the metallic

regime, where |ψni|2 ∼ L−1 that IA = 1/(2M )ρ2
0V 2

0 ln N , de-
caying with M, resulting in an increased fidelity with larger
M, in qualitative agreement with the numerical results for the
typical fidelity in the metallic regime [Fig. 7(a)].

In stark contrast to this, we find that in the critical phase
of the AA model the fidelity is diminished more strongly with
increasing extension M of the impurity, as seen in Fig. 7(b)
where the typical fidelity is plotted, as well as in Fig. 8(b),
where average fidelity is plotted, as function of length L for
different extensions M for a fixed, weak impurity strength
V0 = 0.1 at the critical point λ = 2.0, averaged over 1000
sample realizations. Results at the critical point λ = 2.0 are
replotted in a semilogarithmic plot in Fig. 9(a) for the typ-
ical fidelity and in Fig. 9(b) for the Anderson integral as
function of length L for different impurity extension M for
a fixed weak impurity strength V0 = 0.1, averaged over 1000
sample realizations. Fits to power law and exponential depen-
dence on L are plotted as indicated. For the largest extension
M = 7 an exponential decay cannot be excluded. Thus, we
may recover the analytically predicted exponential AOC in
the critical phase [12], albeit only for an extended impurity.
A possible explanation is that the magnitude of multipoint
correlations, which we found to be responsible for masking
the critical two-point correlations, may become diminished,
for the extended impurity, so that the critical enhancement
of two-point correlations dominates the typical fidelity for
extended impurity, resulting in the exponential AOC in the
critical phase. To get a better understanding of the result in
the critical phase let us look at the distribution of the fidelity F
in the critical phase λ = 2.0. For impurity strength V0 = 0.1
averaged over 1000 realizations, for systems size L = 1024
the distribution is shown in Fig. 10(a). The distribution of
the fidelity is found to be wide, as expected in the critical
phase [12]. The probability that the ground state is not affected
by the impurity, that the fidelity is close to one, is found to
decrease with increasing M.

In the insulator phase λ = 3 for a fixed weak impurity
strength V0 = 0.1 the fidelity is decaying more strongly than
in the other phases. With increasing extension M of the
impurity the fidelity becomes larger, as seen in Figs. 7(c)
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FIG. 8. Average value of fidelity 〈F 〉 for the weak impurity with same parameters as in Fig. 7 with data sampled over 1000 realizations.

and 8(c), where the typical fidelity and average fidelity are
plotted, respectively, as function of length L for different
M averaged over 1000 sample realizations. The reason for
that behavior might be that the effect on single-site localized
states is smaller for an extended impurity, thereby diminishing
the probability u that an occupied state becomes shifted to
unoccupied states as the impurity is turned on, enhancing
thereby the fidelity, according to the theory of the statistical
exponential AOC as outlined in Sec. VI D.

For an extended impurity with strong amplitude V0 = 20J,

we find that the AOC is clearly exponential in the critical
phase as seen in Fig. 11(b) for extension M 
 1. We find
that the larger the extension M, the more the fidelity becomes
diminished and the stronger the exponential AOC becomes.
This is confirmed by the distribution of the fidelity for such a
strong impurity in the critical phase, as shown in Fig. 10(b).

In the metallic phase a strong impurity V0 = 20J is found
to reduce the fidelity more strongly with increasing M, but the
typical fidelity [Fig. 11(a)] and average fidelity [Fig. 12(a)]
continue to decay with a power law in L for all M. A similar

FIG. 9. (a) Typical fidelity and (b) exponential of negative An-
derson integral as function of length L for different numbers of
impurity sites M for weak impurity strength V0 = 0.1 for the AA
model at the critical point λ = 2.0 and averaged over 1000 sample
realizations in a semilogarithmic plot. Fits to power law and ex-
ponential dependence on L are plotted as indicated. For the largest
extension M = 7 an exponential decay cannot be excluded.

behavior is found for a strong impurity in the tight-binding
model as shown in Appendix C, Fig. 19.

In the insulator phase Figs. 11(c) and 12(c) show a strong
exponential AOC for the typical and average fidelity, respec-
tively, which becomes stronger with the extension M of the
impurity.

VIII. FIDELITY WITH PARAMETRIC PERTURBATION:
PARAMETRIC EXPONENTIAL AOC

The concept of fidelity has been generalized to parametric
perturbations of a quantum system. It has been successfully
used to characterize quantum phase transitions [7]. Therefore,
let us next study a perturbation which shifts the parameter λ

for the AA model (b = 0) by a small amount δλ:

HPert = δλ

L∑
i=1

cos(2πQi + φ)c+
i ci. (20)

The effect of such a parametric perturbation has been recently
studied in the AA model in Ref. [27] by calculating the so-
called fidelity susceptibility χF (λ) = limδλ→0 −2 log F/δλ2.
We note that an upper bound for the fidelity susceptibility

FIG. 10. The distribution of the fidelity F in the critical phase
λ = 2.0 for impurity strength (a) V0 = 0.1 and (b) V0 = 20, averaged
over 1000 realizations, for system size L = 1024 is shown for differ-
ent extensions of the impurity M. The distribution is wide and more
weight is shifted to small fidelity for increasing impurity strength and
increasing M.
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FIG. 11. Typical fidelity at filling n = 0.309 as function of lattice length for large impurity amplitude V0 = 20J, for different extension
M, each sampled over 1000 realizations. (a) In the metallic phase the fidelity decreases with increasing extension M and decays with a power
law in L for all M. (b) In the critical phase the fidelity decays exponentially for M > 1. (c) In the insulator phase the fidelity decreases with
increasing extension M and decays initially exponentially with L, saturating to a constant value at large L. The dashed lines are the fits to an
exponential decay.

χF (λ) is given by the Anderson integral

χF (λ) � lim
δλ→0

2IA/δλ2

= lim
δλ→0

1

δλ2

N∑
n=1

∑
n′>N

|〈n|HPert|n′〉|2
(En′ − En)2

=
N∑

n=1

∑
l>N

∑
i, j

cos(2πQi + φ) cos(2πQ j + φ)ψ∗
niψn jψliψ

∗
l j

(El − En)2
,

(21)

where the indices n, l denote the unperturbed eigenstates.
In the critical phase, noting that local intensities are power-

law correlated in energy, the dominating contributions come
from the terms at the same locations i = j. Thus, we find

χF (λ) �
N∑

n=1

∑
l>N

∑
i

cos(2πQi + φ)2|ψni|2|ψli|2
(El − En)2

. (22)

Averaging over the phase φ we thereby find approximating
ρ(E ) ≈ ρ0, and using � = �0L−z

χF (λ) � 1

2

ρ2
0

γ (1 + γ )

( D

�0
Lz

)γ

∼ Lzγ , (23)

where for the AA model in the critical phase λc = 2, γ = 1
2 .

Figure 13 shows the results for average (upper figure) and
typical (lower figure) fidelity of a parametric perturbation with
δλ = 0.1. As shown, in the metallic phase λ < 2 we find a
slow decay in the average and typical fidelity which fits a slow
exponential decay.

At the critical point λc = 2 the average and typical fidelity
are clearly found to decay exponentially. The average fidelity
is found to decay as Fave ∼ e−0.002L and the typical as Ftyp ∼
e−0.003L. Thus, this gives for the typical fidelity susceptibil-
ity χF ≈ 0.6L, in good agreement with the analytical upper
bound (23), which gives with γ = 1

2 , χF < 2Lz/2/3, where z
is the dynamical exponent, which we found numerically to be
close to z ≈ 2.

Using another approach near the quantum-critical point
λc = 2, it was recently argued that the fidelity susceptibility
scales with system size as χF (λc) ∼ N2/ν [27], where ν is
the correlation length critical exponent, given by ν ≈ 0.89
according to Ref. [28] and by ν ≈ 0.95 according to Ref. [29],
which is also in some agreement with our numerical results.

In the localized phase λ = 3, both the average and typical
fidelity show a very weak and strongly fluctuating dependence
on L.

FIG. 12. Average fidelity 〈F 〉 with same parameters as in Fig. 11. It is tentatively smaller than the typical value in Fig. 11 but shows the
same trends with M and L, except that in the insulating phase the saturation value is orders of magnitude larger.
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FIG. 13. Average (top) and typical (bottom) fidelities after a
parametric perturbation in Eq. (3) with change δλ = 0.1, at fixed
filling factor n = 0.309, and averaged over how 1000 samples. For
the metallic phase λ = 1, both the average and the typical fidelities
decay slowly, in the critical phase λ = 2 the decay is clearly expo-
nential, as the fit shows (dashed line). In the insulator phase λ = 3
both typical and average the variation with L does not exceed its
standard deviation.

IX. FIDELITY IN THE EXTENDED AA MODEL

The extended AA (EAA) model with Hamiltonian (3) for
b > 0 has a mobility edge, as seen in Fig. 1 (right) where the
inverse participation ratio IPR = ∑

i |ψi|4 is plotted in a heat
map as function of energy and quasiperiodicity parameter λ

for the EAA model. The analytical formula for the mobility
edge Emb = (2Jλ)/b [2] (black solid line) is plotted in Fig. 1

(right), separating the extended phase with IPR → 0 from the
localized IPR → a/ξ, where ξ is the localization length and a
the lattice spacing. Since it was found analytically in Ref. [12]
there is a critical exponential AOC at a mobility edge, let us
explore whether it exists in the EAA model.

First, let us consider a single-site impurity M = 1 with
weak potential V0 = 0.1. In our calculation we set b = 0.2
and λ = 2.0J . We choose half-filling n = N/L = 0.5 so that
the Fermi energy is at the mobility edge Emb = 0 (see Fig. 1).
In Fig. 14 we plot both the average and typical fidelity. The
fit with a power law in system size L (black line) is good
for the average fidelity. The typical fidelity shows a much
smaller value for all system sizes with a stronger decay with
L. The decay becomes stronger at larger L, deviating a power
law, and possibly indicating an exponential AOC, as the fit
to the stretched exponential exp(−cL1/2) as predicted by the
analytical theory (the gray dashed line, where c is fitted as
indicated in the legend) becomes better for large L.

Compared with the single-site impurity with weak poten-
tial V0 = 0.1J in the AA model, b = 0, in the critical phase
λc = 2, shown in Fig. 3(a), the average fidelity is of similar
magnitude in the EAA model at the mobility edge (Fig. 14),
while the typical fidelity is smaller and decays faster in the
EAA model at the mobility edge (Fig. 14), indicating an
exponential AOC.

We depicted the average and typical value of exp(−IA) in
Fig. 14(b) and find that it gives, as expected, an upper bound
for the fidelity for the whole range of system sizes explored.
But, we note that the difference between the average and
typical values is not as profound as for the fidelity itself.

We also plot the average and typical gap, the difference
between HOMO and LUMO energies �(V0) [Eq. (13)] for
the extended AA model at the mobility edge in Fig. 14(c). For
both average and typical, we find a power-law decay with L
with dynamical exponent z > 1. Interestingly, the decay of the
gap is stronger for the typical than the average gap, indicating
a wide distribution of that gap. This is in contrast to the result
for the gap (13) in the critical regime in the AA model, where
the average and typical gaps showed a similar magnitude and
decay (see Fig. 4).

FIG. 14. For a single-site impurity M = 1 in the extended AA model at the mobility edge for λc = 2.0, b = 0.2, at half-filling n = 0.5,

so that the energy is at the mobility edge Emb = 0, (a) average and typical fidelity as function of length L with a single impurity of strength
V0 = 0.1. The black solid and dashed lines are fits to power laws, the gray dashed line a fit to an exponential function, as given in the legend.
(b) Average and typical value of exp(−IA), where IA is the Anderson integral (5). (c) Average and typical value of the gap �(V0 ) [Eq. (13)] as
function of system size L. The dashed and solid lines are fits to power laws, as given in the legend. All results are averaged over 1000 sample
realizations.
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FIG. 15. Typical fidelity for an extended impurity for the ex-
tended AA model at the mobility edge for λc = 2.0, corresponding
to half-filling n = 0.5, versus length L for different extension M.
Impurity strength (a) V0 = 0.1 and (b) V0 = 10. All data averaged
over 1000 sample realizations. Fitted curves are shown in solid or
dashed black lines

Finally, let us consider the fidelity in the EAA model at
its mobility edge with an impurity extended over M sites. In
Figs. 15(a) and 15(b) we present the typical fidelity for a weak
impurity strength V0 = 0.1 and a strong one V0 = 10, respec-
tively. For the weak impurity [Fig. 15(a)] the typical fidelity is
found to decay with system size L to smaller values, the larger
the extension of the impurity M is, with deviations from a fit
to a power law (black line, as given in the legend) at large
L, where a fit to a stretched exponential (gray dashed line, as
given in the legend), becomes better with larger extension M.
For the strong impurity we observe in Fig. 15(b) a smaller
typical fidelity is found, decaying exponentially with system
size, as fitted by the dashed lines (as given in the legend),
similarly as for a strong impurity in the critical AA model
in Fig. 11(b).

X. CONCLUSION

While we do not find evidence for the predicted exponen-
tial AOC in the critical regime of the AA model for a weak
single-site impurity, but rather find that the fidelity decays
with a power law in the critical phase, we find indications for

a stretched exponential decay of the fidelity at the mobility
edge of the EAA model. The decay of the fidelity becomes
stronger with stronger impurity strength, and the deviations
from power-law behaviors more pronounced. For an extended
impurity, we find clear evidence for an exponential AOC both
at the quantum-critical point of the AA model and at the
mobility edge of the extended AA model and suggest an ex-
planation for this finding. By reexamination of the analytical
derivation we identify nonperturbative corrections due to the
impurity potential and multipoint correlations among wave
functions as possible causes for the absence of the exponential
AOC in the critical phase for a weak impurity in the AA
model.

We find a different kind of exponential AOC in the insula-
tor phase for which we give a statistical explanation, similar
to that which was given in Ref. [14] for an adiabatic perturba-
tion in an insulator phase, a mechanism which is profoundly
different from the AOC in metals, where it is the coupling to
a continuum of states which yields to the power-law suppres-
sion of the fidelity.

Furthermore we consider a parametric perturbation to the
AA model, and find an exponential AOC numerically, in
agreement with an analytical derivation which we provide
here.

It has been suggested that the orthogonality catastrophe can
be studied in ensembles of ultracold atoms in a controlled
way [11]. Indeed, since the extended AA model was intro-
duced and suggested to be experimentally realized in atomic
optical lattices and photonic wave guides [2], it was recently
realized in synthetic lattices of laser-coupled atomic momen-
tum modes, and demonstrated to have a mobility edge [30].
We therefore hope that our analysis will provide guidance for
the experimental study of the fidelity and the AOC in these
systems. Furthermore, this opens new pathways for the study
of nonequilibrium quantum dynamics. We note that our results
can be extended to interacting disordered fermion systems, as
multifractality exists even in strongly interacting disordered
systems [31].
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APPENDIX A: DERIVATION OF THE UPPER BOUND FOR
QUANTUM FIDELITY

When the single-particle states of a Fermi system are
|n〉 = c+

n |0〉, the ground state of N fermions is given by
|ψ〉 = ∏N

n=1 c+
n |0〉. Adding an impurity, the single-particle

states are changed to |n′〉 = c+
n′ |0〉, so that the ground

state becomes |ψ ′〉 = ∏N
n′=1 c+

n′ |0〉. The fidelity is given by
the absolute value of the scalar product F = |〈ψ |ψ ′〉| =
|〈0| ∏N

n=1 cn
∏N

n′=1 c+
n′ |0〉|. Defining the scalar product of

single-particle states of the pure system and the system with
perturbation Ann′ = 〈n|n′〉 and applying the anticommutation
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FIG. 16. (a) Energy level spectrum as function of filling factor n for a single impurity M = 1 with three different strengths V0 (as displayed
by the colored symbols). The dashed line indicates the filling of n = 0.5, corresponding without an impurity to Fermi energy EF /J = 0. Inset:
zoom close to the Fermi energy. (b), (c) Show a full and zoomed energy level diagram, with (colored) and without (gray) impurity. For V0 = 1.0
and for V0 = 10.0 the formation of a bound state outside of the band can be seen in (b). (d) Shows the density of states (DOS) as a function of
energy close to Fermi energy with broadening η = 1.0 × e−5.

relations for cn, c+
n , we can write the fidelity as

F = |detn,n′�N A|. (A1)

Ann′ is for fixed n a normalized vector with
∑

n′ |Ann′ |2 = 1,

However, since the summation in the fidelity F is restricted,
and |n′〉 = ∑

n�N Ann′ |n〉 + ∑
n>N Ann′ |n〉, only those vector

components with n � N contribute to the fidelity F . This
means that the determinant is taken of a square matrix with
column vectors which are not normalized. However, we can
normalize each column vector by multiplying it with kn′ =
(1 − ∑

n>N |Ann′ |)−1/2 and get the identity

F =
∏

n′�N

(
1 −

∑
n>N

|Ann′ |2
)1/2

det

(
A

∏
n′�N

kn′

)
. (A2)

Since the second factor is now a determinant with normalized
column vectors, it cannot exceed one, but can be smaller, so
that det(A

∏
n′�N kn′ ) < 1, and therefore

F <
∏

n′�N

(
1 −

∑
n>N

|Ann′ |2
)1/2

< exp

(
−1

2

∑
n′�N

∑
n>N

|Ann′ |2
)

. (A3)

APPENDIX B: THE ANDERSON SUM

When the unperturbed system has the Hamiltonian oper-
ator H0 with eigenstates |n〉 determined by the Schrödinger
equation H0|n〉 = En|n〉, adding an impurity with Hamil-
tonian Himp [Eq. (4)] with potential strength V0 changes
the eigenstates to |n′〉 as determined by (H0 + Himp)|n′〉 =
En′ |n′〉. Multiplying the left with 〈n| we thus get the
identity

〈n|n′〉 = 1

En′ − En
〈n|Himp|n′〉. (B1)

Thus, for a local impurity V = V0δ(r − x), we find

IA = 1

2

∑
n�N,n′>N

|〈n|n′〉|2

= 1

2

∑
n�N,n′>N

1

(En′ − En)2
|〈n|V |n′〉|2

= V 2
0

2

∑
n�N,n′>N

|ψn(x)|2|ψn′ (x)|2
(En′ − En)2

, (B2)

where |ψn(x)|2 = |〈n|x〉|2, |ψn′ (x)|2 = |〈n′|x〉|2 is the in-
tensity with and without the additional impurity at
postion x.

APPENDIX C: BENCHMARK MODEL

In this Appendix, the tight-binding model is revisited nu-
merically as a benchmark. We consider Hamiltonian H =
J

∑
i(c

†
i ci + H.c.) and introduce the impurity as is defined in

the main text in Eq. (4).
Figure 16(a) shows the energy level spectrum as function

of filling factor n for a single impurity M = 1 with three
different strengths V0 (as displayed by the colored symbols).
The dashed line indicates the filling of n = 0.5, corresponding
without an impurity to the Fermi energy EF /J = 0. Inset
shows a zoom close to the Fermi energy. Figures 16(b)
and 16(c) show a full and zoomed energy level diagram, with
and without impurity. The case without impurity is drawn in
a gray color. It can be seen that a bigger impurity strength re-
sults in stronger shifts of the energy close to the Fermi energy,
which do not exceed the magnitude of the level spacing. For
V0 = 1.0, and for V0 = 10.0 the formation of a bound state
outside of the band can be seen in Fig. 16(b). Figure 16(d)
shows the density of states (DOS) as a function of energy close
to Fermi energy.
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FIG. 17. (a), (d) Average and typical fidelity, (b),(e) Anderson integral and (c), (f) level spacing as a function of chain length, for the
tight-binding model with a single impurity M = 1 positioned randomly on the chain for two impurity strengths V0 = 0.1, 10. Data averaged
over 1000 realizations. Black dashed lines are fitted curves as given in the figure legends. For impurity strength V0 = 0.1, we find a power-law
decay (L−0.0001) for both fidelity and exp(−IA). For the strong impurity case V0 = 10, the fidelity decays much faster with system size (L−0.1)
and is smaller than exp(−IA) for all system sizes considered. For both weak and strong impurities the gap � is independent of the impurity
strength and decays as L−1.

In Fig. 17 we show the numerical results for the typical and
average fidelity F , the Anderson integral IA, and the energy
level spacing � as function of system size L for two impu-
rity strengths V0 = 0.1, 10. We considered a single impurity
and averaged over its randomly chosen position. The typical
and average fidelities are found to be indistinguishable, as
expected for this clean model. For impurity strength V0 = 0.1,
we find a power-law decay fitted with L−0.0001 for both fideli-

FIG. 18. Typical value of (a) the fidelity and (b) the upper bound
exp(−IA) for a 1D tight-binding model plotted with added impurity
(4) as function of chain length L for different impurity extensions
M for fixed impurity strength V0 = 0.1. Data averaged over 1000
realizations.

ties and exp(−IA) as function of system size L. We noticed
that fidelity indeed never exceeds exp(−IA), confirming that it
provides an upper bound for the fidelity. For the strong impu-
rity case V0 = 10, the fidelity decays much faster with system
size, fitted with L−0.1. For both weak and strong impurities
the level spacing � is independent of the impurity strength
and decays as L−1.

In Figs. 18 and 19 we show the results for an extended
impurity for weak and strong potential, respectively. For the
weak strength V0 = 0.1, we observe that the fidelity decays

FIG. 19. Same as Fig. 18, but for impurity strength V0 = 10.
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FIG. 20. Same as Fig. 2 but with averaging over 200 realizations.

with a power law with system size. It decays more slowly
the more extended the impurity is. This is in agreement with
the fidelity behavior in the metallic phase of the (extended)
AA model reported in the main text. For the strong impurity,
however, as shown in Fig. 19, the typical fidelity is smaller for
large extension M > 1, and deviations from power-law decay
are observable.

APPENDIX D: AVERAGE ENERGY SPECTRUM

In this Appendix, we present the average numerical results
of energy spectrum of the AA model reported in the main text.
Figure 20 shows the energy diagram and density of states as
function of energy E , as averaged over the random phases φ in
the Hamiltonian (3) for b = 0 and λ = 2 of 200 realizations.
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