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Nonacoustic high-frequency collective excitations in a ZrCuAl metallic glass
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We report a combined theoretical and simulation study of collective excitations in the three-component
metallic glass Zr46Cu46Al8. It is shown in that case how one can combine partial current time correlation
functions to represent them via total mass and mass-concentration currents, which for the long-wavelength region
separately describe hydrodynamic acoustic and nonhydrodynamic opticlike modes. We present dispersions of the
longitudinal and transverse acoustic and optic modes over a wide range of wave numbers. Our theoretical analysis
of dispersion and damping of three transverse short-wavelength modes sets the basis for the interpretation
of already existing experimental data, where the presence of three modes has been disregarded leading to an
overestimation of the alleged transverse mode damping.
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I. INTRODUCTION

Collective excitations in disordered systems such as liquids
and glasses have many specific features not observed in crys-
talline solids [1]. For the case of liquids the long-wavelength
acoustic modes are governed by macroscopic conservation
laws, which results in the hydrodynamic mechanism of prop-
agation of longitudinal sound and the absence of transverse
sound excitations in the long-wavelength region of the spec-
trum [2,3]. For glasses the very specific features of collective
dynamics are the emergence of nonergodicity upon glass tran-
sition and a boson peak feature in the vibrational density of
states. Hence very different theoretical approaches are needed
to predict theoretically dispersion of collective excitations
in the liquid and glassy states, although there are attempts
to suggest a unified approach [4] that causes corresponding
criticism [5]. Theoretical description of excitations in glasses
within the harmonic approximation [6–8], the recently sug-
gested projection formalism accounting for retardation and
nonlocality in sound propagation [9], and estimation of the
role of Ioffe-Regel crossover in dynamics [10,11] form the
basis for the actual understanding of acoustic excitations in
glasses.

Collective dynamics in multicomponent disordered sys-
tems is essentially different from the case of pure ones.
Collective excitations are not limited only to the usual acous-
tic longitudinal and transverse propagating modes as in the
one-component case, but contain also damped opticlike exci-
tations. For binary glasses, in contrast to liquids, the opticlike
collective modes are well defined and were studied by molec-
ular dynamics (MD) simulations [12,13] and by inelastic
neutron scattering [14]. For the case of multi-component
glasses with three and more species, discussion about possible

opticlike excitations observed either in simulation or in exper-
imental studies is very rare. In Ref. [15] the authors simulated
the dynamics of binary Pd82Si18 and ternary Zr50Cu40Al10

metallic glasses in order to obtain the dispersion of acous-
tic longitudinal and transverse excitations. They studied the
frequency spectra of wave-number-dependent total current
autocorrelation functions, while partial quantities (such as
partial dynamic structure factors) were used only to highlight
the dynamics of the lightest component of the binary and
ternary glass. There are many experimental and simulation
papers on the structure, relaxation dynamics, and transport
properties of multi-component glasses [16–23]; however, the
existence of optic modes and their effect on dynamics were
not discussed.

For the case of binary and multi-component liquids the sit-
uation with experimental observation of opticlike modes [24]
is worse because of their essentially stronger damping in
liquids than in glasses. In general, for liquids, optic modes
belong to nonhydrodynamic processes [25], i.e., are not con-
nected to fluctuations of conserved quantities, and therefore
it is impossible to observe the most long-wavelength optic
modes in scattering experiments, while a small overdamped
signal can be extracted from the experimental dynamic
structure factor outside the hydrodynamic region [26,27].
In contrast to the scattering experiments in MD simula-
tions the presence of opticlike modes is clearly manifested
in the shape of mass-concentration current autocorrelation
functions [28,29]. Among the numerous classical and ab
initio simulation studies of binary liquids which one can
find in the literature, some were simulation studies of dy-
namics in three-component liquids or glasses [15,30,31];
however, practically, there were no reports on theoretical anal-
ysis of collective excitations in three-component disordered
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systems and their dispersions and dampings except in
Refs. [32–35].

Very recently [35], in inelastic neutron scattering experi-
ments on a ternary metallic glass, Zr46Cu46Al8, the authors
reported an unexpected feature for transverse excitations in
this multi-component glass. Specifically, they observed that
the damping of the transverse phonon modes plotted as a
function of wave number mirrors the shape of the static
structure factor S(k). The authors’ interpretation is about the
existence of a universal correlation between the transverse
phonon dynamics and the underlying disordered structure.
There is, however, an inherent difficulty in separating, in
the experimental scattering intensity, different contributions
from longitudinal acoustic (LA) and optic (LO) as well as
transverse acoustic (TA) and optic (TO) modes, which was
not discussed. On the other hand, in computer simulation the
optic modes, although overdamped, are well defined in binary
and multicomponent glasses [12,13]. Apparently, from the
experiments, no optical mode could be seen in Zr46Cu46Al8

experimental spectra, which are rather dominated by the
acoustic modes [35]. These controversial results prompt us
to perform a deeper analysis of transverse and longitudinal
excitation in multi-component glasses.

The aim of the present work is to perform MD simulations
of Zr46Cu46Al8 glass with the same embedded-atom model
(EAM) potentials [35] in order to check the spectra of LA,
LO, TA, and TO collective excitations; separate contributions
from optic modes to the time-dependent correlations; and, via
that methodology, check the finding of Ref. [35] concerning
the k dependence of damping for transverse acoustic modes.
The remaining paper is organized as follows: In the next sec-
tion we will provide details of simulations for the Zr46Cu46Al8

metallic glass and corresponding analysis of collective exci-
tations in the three-component system. In Sec. III we report
our results for static structure, analysis of the time-dependent
correlations, dispersions of collective excitations, and wave
number dependence of damping of transverse acoustic modes.
Section IV will present the conclusions of this study.

II. SIMULATIONS AND DETAILS OF ANALYSIS

We performed molecular dynamics simulations for
the Zr46Cu46Al8 metallic glass in the isobaric-isothermal
(NPT ) and isochoric-isothermal (NV T ) ensembles using the
Large-Scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) code [36]. The interatomic interactions were rep-
resented by the EAM potentials [37]; using two system sizes,
namely, N = 2000 and N = 11 664 atoms, we checked that
the smaller system did not display size effects and was suf-
ficient for sampling of various partial dynamic variables of
density, mass currents, components of the stress tensor, etc.,
with different directions of k vectors along the phase-space
trajectory. The atoms of different species were placed ran-
domly on a grid in a cubic simulation box of volume V
subject to the standard periodic boundary conditions (PBCs).
The initial configuration of atoms was kept for 100 ps at
T = 2000 K in order to obtain the equilibrated liquid phase.
The equations of motion are solved using Verlet’s algorithm
in the velocity form with a time step of 1 fs. Quenching
at zero pressure from the melt at 2000 K to 300 K was

carried out at a cooling rate of 1011 K/s. Such a cooling
rate was shown to be appropriate for the glass formation for
this type of alloy [38–40], with negligible influence of the
history of the cooling. The final equilibration in the (NPT )
ensemble resulted in average atomic density of the glass n =
N/V = 0.0574 Å−3. Using this density, the simulation was
subsequently continued for the production of the phase-space
trajectory in the canonical ensemble (NV T ) with a Nosé-
Hoover thermostat, typically during 200 ps at T = 300 K,
from which we computed the structural and dynamic prop-
erties.

The main idea behind the search for nonacoustic ex-
citations is the separation of contributions from different
excitations either to time-dependent correlations or to their
Fourier spectra. The simplest methodology was presented for
the case of binary systems in Ref. [29] for transverse dy-
namics and in Ref. [41] for longitudinal dynamics, where a
combination of two partial mass currents was able to represent
separately the well-defined high-frequency oscillations of the
corresponding autocorrelation function due to opticlike exci-
tations. However, the dynamics of a three-component system
is much more complex than the case of binary disordered
systems. We would need to find three combinations of partial
mass currents, which would represent three different oscil-
lation contributions to time-dependent correlations. We start
from definitions of longitudinal (L) and transverse (T) partial
mass currents

JL/T
α (k, t ) = mα√

Nα

Nα∑
j=1

v
L/T
j,α (t )e−ikr j,α (t ), α = Zr, Cu, Al,

(1)
where v

L/T
j,α (t ) is the longitudinal or transverse component of

the particle velocity and the summation for each partial mass
current is performed over the particles of kind α. The total
mass current is simply

JL/T
tot (k, t ) = √

cZrJ
L/T
Zr (k, t ) + √

cCuJL/T
Cu (k, t )

+ √
cAlJ

L/T
Al (k, t ), (2)

where cα = Nα/N are concentrations. The corresponding
mass concentrations are xα = mαNα/m̄ and m̄ = mZrNZr +
mCuNCu + mAlNAl. We would like to stress that there is a
difference in “number-concentration” (Bhatia-Thornton) and
“total mass–mass-concentration” representations of collective
dynamics in many-component systems [42]. Since the con-
served quantity is the total momentum of the system, we
will proceed further within the total mass–mass-concentration
representation. Our task now is to find two more combinations
of the partial mass currents, which would be orthogonal to the
total mass current; that is, the averaged instantaneous cross
correlations are zero:〈

JL/T
tot (k)JL/T

x (−k)
〉 = 0. (3)

The standard averages 〈· · · 〉 are over the ensemble of con-
figurations in the NV T ensemble, and for time correlation
functions this means the average over the ensemble of func-
tions with different origins too. Since two heavier components
(Zr and Cu) are present in the studied glass with equivalent
and much higher concentrations than for the third, light com-
ponent (Al), we will try a mutual mass-concentration current
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involving just heavier A and B components:

JL/T
x1 (k, t ) = xCu

√
cZrJ

L/T
Zr (k, t ) − xZr

√
cCuJL/T

Cu (k, t ), (4)

which describes the motion of two partial mass currents of
heavier components with opposite directions. One can make
sure that the dynamic variables JL/T

tot (k, t ) and JL/T
x1 (k, t ) sat-

isfy condition (3) taking into account the relation〈
JL/T
α (k)JL/T

β (−k)
〉 = mαkBT δαβ, α, β = Zr, Cu, Al,

where δαβ is the Kronecker symbol, kB is the Boltzmann
constant, and T is the temperature. The third dynamic variable
we can compose from the partial mass currents as a mutual
current of two heavier components against the mass current
of the light component:

JL/T
x2 (k, t ) = xAl

[√
cZrJ

L/T
Zr (k, t ) + √

cCuJL/T
Cu (k, t )

]
− [xZr + xCu]

√
cAlJ

L/T
Al (k, t ), (5)

and, again, one can check that this dynamic variable is orthog-
onal to both JL/T

tot (k, t ) and JL/T
x1 (k, t ). Hence we have three

mutually orthogonal dynamic variables (2), (4), and (5), which
in contrast to partial mass currents describe one total and two
mutual mass currents in the system. In the next section we will
apply these dynamic variables to analysis of current-current
time correlation functions

F L/T
JαJβ

(k, t ) = 〈
JL/T
α (k, t )JL/T

β (−k, 0)
〉

(6)

and corresponding spectral functions in the studied three-
component metallic glass. We define the longitudinal (L) and
transverse (T) current spectral functions as follows:

CL/T
JαJβ

(k, ω) = 1

m̄kBT

∫ ∞

0
F L/T

JαJβ
(k, t )dt . (7)

Another method of analysis of collective dynamics in dis-
ordered systems is the approach of generalized collective
modes (GCMs) [43,44], which has been many times success-
fully applied analytically and numerically to various liquids
for estimation of nonhydrodynamic effects such as “positive
sound dispersion” [13], heat waves [45], short-wavelength
shear waves [46–49], and opticlike modes in binary liq-
uids [29,41,50]. It works very well for exponentially decaying
time correlations in liquids, while for supercooled states and
glasses it needs a modification in order to account for slow
dynamic processes at supercooling and the emergence of non-
ergodicity in the glassy state. These slow dynamic processes
cannot be reproduced by the standard GCM scheme based
on systematic improvement of short-time behavior (frequency
moments) in the description of time correlations due to exact
sum rules (extension of the set of dynamic variables by their
time derivatives). In Ref. [13] such an extended scheme was
proposed for the case of glasses, when additional sum rules
for time moments of corresponding time correlation functions
were taken into account. The same scheme appeared to be
very useful for the case of transverse dynamics of highly
compressed metallic liquids [51], when in addition to shear
waves another contribution from propagating modes emerged
in the transverse current spectral functions outside the first
pseudo-Brillouin zone. In the next section we will apply the
modification of GCM [51] to estimation of the k-dependent
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FIG. 1. Partial pair distribution functions for the ternary
Zr46Cu46Al8 metallic glass at 300 K.

damping of transverse acoustic modes in the studied three-
component glass in order to verify the finding of Ref. [35].

III. RESULTS AND DISCUSSION

A. Static properties and vibrational density of states

We start from the partial pair distribution functions gi j (r)
and static structure factor S(k). In Fig. 1 we show six partials,
gi j (r), i, j = Zr, Cu, Al, which give evidence that the first
coordination shell around Zr or Cu is preferably formed by
the other component and the large effective size of Zr atoms
plays a role too. Atoms of Al are mostly surrounded by Zr
and Cu atoms. The specific-for-glasses splitting of the second
maximum of gi j (r) is well observed for all six partial func-
tions.

We are interested in the total static structure factor, defined
in the standard way as S(k) = 〈ntot (k)ntot (−k)〉, where ntot (k)
are the spatial-Fourier components of the total number density
of particles. However, in order to compare the static structure
factor with x-ray experiments [35], we need to use x-ray
weighting of partial structure factors because of the different
electron densities of Zr, Cu, and Al atoms, hence resulting in
the SX (k) shown in Fig. 2. The main peak of SX (k) is located
at kp = 2.71 Å−1, and kp/2 defines the boundary of the first
pseudo-Brillouin zone. The static structure factor obtained
from our simulations is in good agreement with the total
structure factor of Ref. [35] and especially with the measured
first peak position of kp = 2.74 Å−1. The slight shift towards
small k of the MD curve might be attributed to a slightly lower
density from the NPT simulations.
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FIG. 2. Structure factor SX (k) from x-ray diffraction for the
ternary Zr46Cu46Al8 metallic glass at 300 K. The MD curve cal-
culated from the Debye formula is compared with the experiment
of Ref. [35]. The main peak of the total structure factor is located
at kp = 2.71 Å−1, which defines the boundary of the first pseudo-
Brillouin zone at kp/2.

From the velocity autocorrelation functions we can esti-
mate the vibrational density of states (VDOS), which will be
helpful for analysis of the calculated dispersion curves. The
VDOS for the three-component glass was defined as

g(ω) = m̄

NkBT

N∑
i=1

∫ ∞

0
〈vi(t )vi(0)〉eiωt dt, (8)

which is practically the same expression as in Ref. [52] but
with the dimension of inverse frequency. One can see in Fig. 3
that the main maximum of the VDOS is observed at frequen-
cies of ∼16 ps−1, then for higher frequencies of ∼20 ps−1 one
observes a shoulder, and in the very high frequency region a
well-defined smeared peak at ∼35–40 ps−1 is present. Let us
calculate the dispersion curves of longitudinal and transverse
acoustic and nonacoustic modes in order to clarify the features
of the VDOS.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  20  40  60  80  100

g(
�

) 
[m

eV
-1

]

Frequency � [meV]

FIG. 3. Vibrational density of states (VDOS) g(ω) for the ternary
Zr46Cu46Al8 metallic glass at 300 K. The VDOS was obtained from
velocity autocorrelation functions via Eq. (8).
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(k, t ), α = Zr, Cu, Al, at wave number k = 0.1069 Å−1.

Fast oscillations at short times in the Zr and Cu partial current
autocorrelations do not coincide with the frequency of damped oscil-
lations in Al partial current autocorrelations and provide evidence of
specific short-time dynamic correlations between two heavier species
of the studied ternary glass. The time scale τ is 5.074 16 ps.

B. Current-current time correlation functions
in different representations

In order to calculate dispersion curves from current spec-
tral functions in the case of multi-component systems, it is
not sufficient to study only total current fluctuations. A very
specific feature of collective dynamics in multi-component
disordered systems is the intrinsic collective nature of prop-
agating modes, when all the species take part in collective
motion, while in the short-wavelength region the dynamics
mainly represents single-particle vibrations, and can easily be
represented by partial currents (see Ref. [29] for this crossover
in the case of transverse dynamics of binary systems). For the
three-component glass we show in Fig. 4 how the three partial
current-current time correlation functions contain information
about different high- and low-frequency excitations.

Using the suggested linear combinations of partial cur-
rents (2), (4), and (5), we are able to obtain in the low-k region
three current-current time correlation functions, each of which
reflects a single damped oscillation (Fig. 5) with very different
frequencies. Note that L and T time correlation functions for
the combinations (4) and (5) are practically identical, which
is absolutely correct when these time correlation functions
reflect opticlike excitations in metallic systems, because for
metallic systems LO and TO modes do not show a frequency
gap at the � point.

The current spectral functions corresponding to partial cur-
rents and linear combinations (2), (4), and (5) are shown in
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long-wavelength total mass-current autocorrelation functions do not
contain short-time fast oscillations like the partial mass-current auto-
correlation functions in Fig. 4. The time scale τ is 5.074 16 ps.

Fig. 6, and one can see that the partial spectral functions for
small wave numbers contain a combination of several smeared
peaks, while the current spectral functions of (2), (4), and (5)
have just a single-mode contribution. This tendency is general
for the long-wavelength region, which allows us to clearly
estimate the dispersion of nonacoustic modes.

C. Dispersion of longitudinal and transverse collective modes

Using the peak positions in spectral functions of linear
combinations (2), (4), and (5), we easily estimate the disper-
sion curves of collective excitations, shown in Fig. 7. One
should note that the single-peak shape of collective current
spectral functions using combinations (2) and (4) gradu-
ally changed with increasing k into a two-peak shape with
contributions from two lower-frequency excitations, which
is reflected in Fig. 7. The low-frequency excitations in the

FIG. 6. Longitudinal current spectral functions corresponding
to the mass-current autocorrelation functions at wave number k =
0.1069 Å−1 shown in (top) Fig. 3 and (bottom) Fig. 4. The sharp
low-frequency peak corresponding to acoustic excitations is present
in all the partial spectral functions, while it is not present in long-
wavelength spectral functions representing optic modes in the bottom
panel.

long-wavelength region have almost linear dispersion laws
with the speeds of L sound and T sound cL = 4329.9 m/s
and cT = 2148.5 m/s, respectively. One can see the L and
T branches of two types of optic modes: The LO1 and TO1
branches in the long-wavelength region having the flat region
∼21–23 ps−1 are due to the mutual motion of Zr and Cu atoms
with opposite phases, and the LO2 and TO2 branches are due
to the mutual motion of the light Al atoms in opposite phase
to the motion of the heavy Zr and Cu atoms. Note that for
k > 2.5 Å−1 the frequencies of the three L and T branches
are practically the same. Hence there is no reason to claim as
in Ref. [35] that at k ∼ 3.8 Å−1, transverse excitations were
detected in the scattering experiments.

Now we proceed with theoretical GCM analysis of trans-
verse dynamics in the ternary ZrCuAl glass. The GCM
theory for longitudinal dynamics in glasses [13] is based on
subtraction of nonergodicity factors from the partial density-
density time correlation functions and systematic accounting
for the exact sum rules for the short-time behavior (frequency
moments) and low-frequency behavior (time moments) of
density-density correlations. Even for a two-component glass
it is a sophisticated task of calculation of a 10 × 10 general-
ized k-dependent kinetic matrix T(k) and subsequent analysis
of ten dynamic eigenmodes and their eigenvectors.

In order to rationalize the transverse dispersions and cor-
responding dampings of acoustic and nonacoustic collective
modes shown in Fig. 7 via the observed peak positions
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Eqs. (2), (4), (5), and (6) (as shown in Fig. 6). For k > 0.7 Å−1 the
spectral functions contain more than one peak. The estimated speed
of longitudinal sound is cL = 4329.9 m/s, and that of transverse
sound is cT = 2148.5 m/s. The macroscopic linear dispersion laws
are shown by the orange lines.

of CT
α (k, ω), α = tot, x1, x2, we will apply more sophisti-

cated extended dynamic models for transverse dynamics. It
is known that the further extension of the viscoelastic (VE)
model with “fast” dynamic variables generated via the higher
(second and third) time derivatives of the transverse current,
as was done in Refs. [29,45], leads to systematic improvement
in the short-time behavior of the transverse current-current
time correlation functions. However, this improvement in
the short-time behavior does not allow one to improve the
long-time behavior of F T

JJ (k, t ) as well. Therefore a further di-
rection for generalized hydrodynamic treatment is to improve
the low-frequency behavior of current spectral functions by
adding into the GCM scheme some “slow” dynamic variables
which are statistically uncorrelated with the hydrodynamic
ones [53]. This generalization was successfully applied in
the study of low-frequency dynamics in a binary metallic
glass [13] and for transverse dynamics in highly compressed
liquid Li [51].

In our case, for the transverse dynamics in a three-
component glass, one can extend the standard transverse VE
model [25] by several slow dynamic variables in a manner
similar to that followed in Ref. [51]. It appears that one can
introduce a transverse analogy for the regular density-density
time correlation functions, which can be a time correlation
function constructed on the simplest slow extended transverse

dynamic variables

F T
II (k, t ) = 〈IJT ∗(k, 0)IJT (k, t )〉, (9)

where the integral operator I [13] was defined as

IJT (k, t ) =
∫ t

C1

JT (k, t ′)dt ′

with C1 being an arbitrary constant [53]. It is obvious that the
time correlation function (9) is connected via the second time
derivative to the standard transverse current autocorrelation
function

− ∂2

∂t2
F T

II (k, t ) ≡ F T
JJ (k, t ),

and the time Fourier transform of F T
II (k, t ) is rightly the trans-

verse analogy of dynamic structure factor ST (k, ω) suggested
in Ref. [54].

We applied the extended viscoelastic scheme (EVE) with
12 (Nv = 12) dynamic variables

A(12T )(k, t ) =
∑

α=tot,x1,x2

{
I2JT

α (k, t ), IJT
α (k, t ), JT

α (k, t ), J̇T
α (k, t )

}

(10)
for calculations of the dynamic eigenmodes contributing to
the shape of each partial or collective current-current time
correlation function F T

JJ (k, t ). The generalized hydrodynamic
matrix T(12T )(k) generated for the transverse 12-variable dy-
namic model (10) for the three-component glass was used in
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and damping (real parts) of transverse dynamic eigenmodes, ob-
tained from the extended GCM theory (10). The dispersion of the
theoretical three branches of eigenmodes corresponds to the purely
numerical dispersions obtained via peak positions of MD-derived
current spectral functions in Fig. 7. The linear dispersion law with
cT = 2148.5 m/s is shown by the solid line.
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the analysis of dynamic eigenvalues and eigenvectors con-
tributing to the corresponding time correlation functions. In
Fig. 8 we show the dispersion ω(k) and damping σ (k) of
theoretical transverse collective excitations, obtained from
the GCM theory using the set (10). It is important that the
GCM eigenvalues do not depend on the partial or total mass–
mass-concentration representation of the dynamic variables
in multi-component systems. Since the dynamic variables
of the total mass–mass-concentration representation (2), (4),
and (5) are linear combinations of the partial currents, the
GCM eigenvalues will be exactly the same for all the sets
of dynamic variables related by linear transformations. The
theoretical GCM dispersions in Fig. 8 very well correspond
to the dispersions of transverse excitations derived from peak
positions of the transverse total and mass-concentration cur-
rents (Fig. 7), which is another support for the correctness
of representation of collective dynamics in many-component
disordered systems via acoustic and opticlike excitations. It is
seen from the frequencies and damping of theoretical trans-
verse eigenmodes (Fig. 8) that none of the collective modes
has the damping with the sharp increase at the kp that was
proposed in Ref. [35]. Hence our theoretical dispersion curves
and k-dependent damping of acoustic and nonacoustic collec-
tive modes do not show a damping proportional to S(k) in the
region close to kp, the first sharp diffraction peak of S(k).

IV. CONCLUSION

We conclude with the following results.
(i) We have shown the existence of nonacoustic collec-

tive modes in a three-component glass by suggesting several
orthogonal linear combinations of partial currents, whose
spectral functions in the long-wavelength region have a single-
peak shape at distinct frequencies.

(ii) Our analysis for the metallic glass Zr46Cu46Al8 shows
the origin of the long-wavelength optic modes: LO1 and TO1
modes at ω ∼ 21–23 ps−1 are due to the motion of Zr and Cu

atoms with opposite phases, and LO2 and TO2 modes are due
to the motion of the light Al atoms with opposite phase to the
motion of the Zr and Cu atoms.

(iii) The longitudinal and transverse optic modes are in the
same frequency range. Moreover, for wave numbers k > 2.5
Å−1 the frequencies of all three branches of L and T modes
practically coincide; hence, in Ref. [35], the signal from scat-
tering experiments ascribed to the observation of a T mode is
perhaps the signal from a nonacoustic L mode.

(iv) Our theoretical analysis of the frequencies and damp-
ing of acoustic and nonacoustic propagating modes within the
extended viscoelastic model does not support the finding in
Ref. [35] that the k-dependent damping of short-wavelength
collective modes follows the shape of the total structure factor
S(k). None of our three propagating eigenmodes shows such
specific k dependence of its damping. We hypothesize that the
damping of the transverse mode observed in Ref. [35] is an
artifact of the data analysis. Having neglected the existence of
opticlike modes in the spectrum, the authors strongly overes-
timated the width of the TA modes, lumping together different
excitations.
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