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Ising spin glass on random graphs at zero temperature: Not all spins are glassy in the glassy phase
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We investigate the replica symmetry broken (RSB) phase of spin glass (SG) models in a random field defined
on Bethe lattices at zero temperature. From the properties of the RSB solution, we deduce a closed equation for
the extreme values of the cavity fields. This equation turns out not to depend on the parameters defining the RSB,
and it predicts that the spontaneous RSB does not take place homogeneously on the whole system. Indeed, there
exist spins having the same effective local field in all local ground states, exactly as in the replica symmetric
phase, while the spontaneous RSB manifests only on the remaining spins, whose fraction vanishes at criticality.
The characterization in terms of spins having fixed or fluctuating local fields can be extended also to the random
field Ising model (RFIM), in which case the fluctuating spins are the only responsible for the spontaneous
magnetization in the ferromagnetic phase. Close to criticality, we are able to connect the statistics of the local
fields acting on the spins in the RSB phase with the correlation functions measured in the paramagnetic phase.
Identifying the two types of spins on given instances of SG and RFIM, we show that they participate very
differently to avalanches produced by flipping a single spin. From the scaling of the number of spins inducing
RSB effects close to the critical point and using the M-layer expansion, we estimate the upper critical dimension
DU � 8 for SG.
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I. INTRODUCTION

Despite the simplicity of their microscopic definition, spin
glasses (SGs) display such outstandingly complicated behav-
iors that they became the benchmark for complex systems and
the inspiration of a vast literature of models. In general, their
Hamiltonian can be written as follows:

H(σ ) = −
∑

(i j)∈E
Ji jσiσ j −

∑
i∈V

Hiσi, (1)

where σ = (σ1, . . . , σN ) ∈ {−1, 1}N is a spin configuration of
the system, V and E are, respectively, the vertex set and the
edge set of a graph G = (V, E ), and the Ji j’s and the Hi’s are
random independent variables. A paradigmatic example is the
mean-field theory obtained on a fully connected (FC) graph,
namely, the so-called Sherrington-Kirkpatrick (SK) model
[1]. The solution of the SK model requires us to introduce
n independent replicas of the system, that, after the average
over disorder, interact according to an effective Hamiltonian
that is symmetric under replica permutations. It turns out that
for small values of the temperature and external field, there
is a region in which the replica symmetry is spontaneously
broken [2–4]. The critical line in the temperature-field plane
separating the replica symmetric (RS) phase from the replica
symmetry broken (RSB) phase is called the de Almeida-
Thouless (dAT) line [5]. The same mechanism is conjectured
also to rule SGs on Bethe lattices (BLs) [6–11], i.e.,

finite-connectivity random graphs in which the neighborhood
of a site taken at random is typically a tree up to a distance
that is diverging in the thermodynamic limit. Exploiting the
local treelike structure of the graph, it is possible to use an
iterative technique called cavity method that allows us to write
self-consistent equations for the order parameter at any finite
step k of RSB [6,7]. However, such equations are, in general,
extremely complicated to solve; indeed the finite connectivity
implies that the distribution of the local cavity fields, even
within one pure state, cannot be easily parameterized. For this
reason, most of the studies of the RSB solution on the BL rely
on expansions for large connectivities [12–16], expansions
near the critical line [17–19], or on the analysis of the 1RSB
ansatz of the cavity equation [6,7]. It is worth underlining that
already for k = 1, the order parameter is a complicated object,
namely, a probability distribution of probability distributions,
and the cavity equations are usually solved numerically or by
means of variational approximations.

In this paper, we present a study of some properties of the
exact RSB solution, focusing on the case of zero temperature.
The region at T = 0 is particularly interesting because, con-
trarily to the SK model in which the dAT line diverges, on
the BL there is a transition in the external field [20]. A first
question to ask is whether this point has the same critical
properties exhibited at T > 0. At finite temperature one can
show that deviations from the RS phase can be described by
an effective theory for the standard replicated order parameter
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qab [18,19] with coefficients that are expressed in terms of the
RS solution at the critical point [20]. This allows to show that
the critical properties in this case are exactly the same of the
SK model. Surprisingly, as we are going to present here, this is
not true at T = 0 due to the emergence of a different physics.

The paper is organized as follows. In Sec. II, we introduce
the extremes of the cavity field and the distinction between
spins having fixed or fluctuating local fields. The reader is re-
ferred to Appendix A for a discussion about RSB at T = 0 and
to Appendix B for the derivation of the self-consistent equa-
tion for the probability distribution of the extremes. In Sec. III,
we show that, also for the random field Ising model (RFIM),
it is possible to carry out an analogous distinction between
fixed and fluctuating sites, and that they can be studied with
the same formalism of the extremes found for the SG problem.
In Sec. IV, we study the critical behavior of the equation for
the extremes, leaving the derivations to Appendices C–E. In
Sec. V, we show that the properties of the extremes close to
the critical point are the same of the zero-temperature correla-
tions in the paramagnetic (PM) phase, leaving the derivations
to Appendix F. In Sec. VI, we discuss the relation between
extremes and spin avalanches, both in the SG problem and
in the RFIM. In Sec. VII and Appendix G, we derive some
consequences in finite dimension of the results obtained in the
previous sections. In Sec. VIII, we present the conclusions of
our paper.

II. REPLICA SYMMETRY BREAKING AT T = 0 AND
CAVITY FIELD EXTREMES

The breaking of the replica symmetry implies the presence
of many local ground states (LGSs), that at T = 0 corre-
spond to configurations whose energy cannot be decreased
by flipping any finite number of spins [7]. The lowest LGSs
differ from the global GS by an extensive number of spins,
but have energy differences of order one. As a consequence,
the local properties of the system depend on the LGS. An
essential prediction of the cavity method is that each LGS is in
correspondence with a fixed point of the RS cavity equations,
also known as belief propagation (BP) equations [21],

ui→ j = ûJi j

⎛⎝Hi +
∑

k∈∂i\ j

uk→i

⎞⎠, ∀(i → j) ∈ D (2)

ûJ (h) = sgn(Jh) min {|J|, |h|}, (3)

where ∂i \ j represents the set of neighbors of i except j and
D is the set of directed edges induced by the graph edge set E .
The so-called cavity field ui→ j is the effective field induced on
spin j by spin i along the directed edge (i → j) of the graph.
A fixed point {ui→ j}(i→ j)∈D of Eq. (2) determines the global
and local properties of the system in a specific LGS [21]. As
an example, we consider the magnetization mα

i of the spin i
on the LGS α that is given by

mα
i = sgn

(
hα

i

)
, hα

i = Hi +
∑
j∈∂i

uα
j→i. (4)

At finite temperature the second-order nature of the transition
is reflected by the fact that a given local value of the cavity
field in the PM phase is replaced, just below the dAT line,

by a local distribution (population) of fields centered around
that value, with a width that grows continuously from zero
departing from the dAT line. Also in this case, the elements of
these populations correspond to the values taken by the cavity
fields in the different fixed points of the finite-temperature RS
recursion relation [6].

However, at T = 0 we find an essential difference with re-
spect to the finite temperature case: only a finite fraction of the
sites (that we call the RSB cluster) displays a nonzero width
for the population of fields hα

i (we say that the population of
fields opens on these sites). Sites not belonging to the RSB
cluster have the same effective local field hα

i on all LGSs (that
is the population of fields is closed on a single value).

This feature emerges naturally from the RSB cavity equa-
tions (see Appendices A and B): While at finite temperature,
the fields associated with all the spins open and are promoted
to populations of nonzero width upon crossing the dAT line,
at zero temperature only the fields associated with a tiny
fraction of the spins open. Therefore, in the SG phase we can
distinguish between spins with closed populations of fields,
whose support concentrates on a single value (as in the PM
phase), and spins with open populations of fields that can take
more than one value.

The simplest way to quantify this phenomenon is by look-
ing at the extreme values u+, u− taken by the cavity field on a
generic directed edge of the graph

u+ = max
α∈LGS

uα, u− = min
α∈LGS

uα. (5)

With this notation, a site i is closed if for all its neighbors
u+

j→i = u−
j→i. While the complete characterization of the sta-

tistical properties of the local field requires the knowledge of
the whole RSB order parameter (see Appendix A), we find
that the RSB cavity equation can be closed exactly on the
following equation for the extreme values (see Appendix B):

u±
i→ j = f (±)

Ji j
(h+

i→ j, h−
i→ j ),

h±
i→ j = Hi +

∑
k∈∂i\ j

u±
k→i,

(6)

where we have introduced the ordering functions

f (+)
J (h+, h−) = max {ûJ (h+), ûJ (h−)},

f (−)
J (h+, h−) = min {ûJ (h+), ûJ (h−)},

(7)

and ûJ (h) is defined by Eq. (3). A first observation about the
recursive Eqs. (6) is that they do not depend on the number of
RSB steps and on the corresponding RSB parameters. This is
somehow consistent with the fact that a variation of the RSB
parameters corresponds to exploring different LGS [22] and
should not have any influence on sites that are not on the RSB
cluster. Equations (6) can be solved for a given instance of the
disorder, or in the distributional sense, to determine the joint
probability distribution of the couple (u+, u−). By introducing
the median u and the width �,

u+ = u + �/2, u− = u − �/2, (8)

the problem can be equivalently rewritten also in terms of a
distribution Q(u,�). In the PM phase, we have Q(u,�) =
QRS(u) δ(�), corresponding to all populations being closed,
while in the SG phase there is a finite fraction p of populations

174202-2



ISING SPIN GLASS ON RANDOM GRAPHS AT ZERO … PHYSICAL REVIEW B 106, 174202 (2022)

with � > 0. Therefore, we can write the following decompo-
sition:

Q(u,�) = pQo(u,�) + (1 − p)Qc(u) δ(�), (9)

where Qo and Qc are the distributions of the extremes con-
ditioned, respectively, to the open and closed populations. As
anticipated before, we found that at T = 0 in the RSB phase
p < 1 strictly.

It is important to note that, from a technical point of view, a
fundamental ingredient for the existence of closed populations
is that the function ûJ (h) is constant for |h| > |J|. This means
that it acts like a filter, closing an open couple (h+, h−) if
h− > |J| or h+ < −|J|. This property does not follow from
a particular choice of the distribution of the couplings and
the external fields, but it is a consequence of the structure
of the zero-temperature cavity equations. For this reason,
even if for simplicity, in the following we refer to the case
of bimodal couplings Ji j = ±1 and Gaussian external fields
Hi ∼ N (0, σH ), we expect this closure phenomenon to be
more general.

The order parameter Q(u,�) can be numerically found by
means of a population dynamics algorithm [6,7,21,23]. In the
regime of small p, it is particularly convenient to solve the
distributional equation for Q(u,�) by using two populations
for representing separately Qo and Qc. Indeed, by using a
unique vector of couples of size N , close to criticality one
should set N ∝ p−1 to sample a constant number of open
couples. Instead, by separating the closed couples from the
open ones, it is possible to work at fixed resolution without
changing N .

In Fig. 1, we show the marginal distributions

Qo(u) =
∫

d�Qo(u,�), P(�) =
∫

duQo(u,�),

computed on a BL with z = 3 through a population dynamics
algorithm with population size N = 107. Results are shown
for different values of p that correspond to different values of
σH as we are going to explain. At T = 0, the model is PM for
σH > σ̂H and in the SG phase for σH < σ̂H . We call ε = σ̂H −
σH the distance from the critical point. In Fig. 2, we show
numerical data supporting the scaling p ∼ κε1/4 that will be
discussed below (see Sec. IV).

III. RANDOM FIELD ISING MODEL

Interestingly enough, Eqs. (6) also admit a nontrivial so-
lution if we set all the couplings equal to a constant, Ji j =
J > 0, while keeping the disorder only in the external fields,
Hi ∼ N (0, σH ). This case corresponds to another prototyp-
ical disordered system, the RFIM. The RFIM undergoes a
ferromagnetic transition in the T − σH plane [24]. The fer-
romagnetic line, on which the ferromagnetic susceptibility
diverges, coincides with the dAT line at T = 0 [20], and
therefore in this case the critical point is the same for both
problems. Despite the apparent similarity with the SG, for the
RFIM it has been rigorously proven that the SG susceptibility
is always upper bounded by the ferromagnetic susceptibility
[25,26]. Consequently, there cannot be a SG phase out of the
critical ferromagnetic line. Moreover, even if the thermody-
namics of the RFIM is always RS, the free energy landscape

FIG. 1. Probability distribution Qo(u) of the median value u =
(u+ + u−)/2, conditioned to � := u+ − u− > 0 (top panel) and
probability distribution of the rescaled width of the open populations
of fields (bottom panel) for different values of p, corresponding to
different values of σH . The data are obtained on a Bethe lattice with
z = 3, Ji j = ±1, and Hi ∼ N (0, σH ) through a population dynamics
algorithm with population size N = 107. The continuous line in
the top panel represents the theoretical estimate, gd (u), following
Eqs. (13), while the one in the bottom panel below is the exponential
law exp(−x).

close to the critical point is characterized by the presence of
many metastable states that on the BL are associated with the
many solutions of the RS cavity equations [27].

When J > 0, Eqs. (6) simplify to

(u+
i→ j, u−

i→ j ) = (ûJ (h+
i→ j ), ûJ (h−

i→ j )). (10)

It is important to observe in Eq. (10) that the + and – cavity
fields separately satisfy the RS cavity equations, defining two
actual fixed points of BP. Differently, in the general case of
Eqs. (6), the + and – fields are coupled and do not correspond
to two fixed points of BP. In the RFIM, the + and – fixed
points are, respectively, those with maximum and minimum
magnetizations [27]; indeed we can write

m−
i = sign(h−

i ) � sign
(
hα

i

)
� sign(h+

i ) = m+
i , (11)
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FIG. 2. Probability p of drawing an open couple (u+, u−) as
a function of distance from the critical point ε = σ̂H − σH . The
data are obtained on a Bethe lattice with z = 3, Ji j = ±1, and
Hi ∼ N (0, σH ) through a population dynamics algorithm with pop-
ulation size N = 108. The continuous line represents the analytical
prediction close to the critical point p ≈ κε1/4, with κ ≈ 1.90 (see
Appendix E).

where we denoted by h+ and h− the extreme values of the
total local field on a spin, see Eqs. (4).

In the following, we will call frozen a spin i for which
m+

i = m−
i and unfrozen otherwise. In general, the fraction

nunf of unfrozen spins is smaller than the fraction of spins
with open populations. Indeed, due to the sign operation in
Eq. (11), there may exist frozen spins having an open distribu-
tion of the total local field, i.e., h− < h+, but with the extreme
fields of the same sign.

Note that if the external field Hi is not symmetrically
distributed, in the thermodynamic limit the fraction of open
populations should vanish both in the ferromagnetic and in
the PM phase due to the uniqueness of the thermodynamic
state. Conversely, if the disorder is symmetric, in the ferro-
magnetic phase the distribution of the extremes QRFIM(u,�)
is nontrivial, since there are two thermodynamic states with
opposite global magnetization that are associated with two
distinct fixed points of the BP equations. By symmetry, the
unfrozen spins should be the only ones contributing to the
average magnetization

m = 1

N

∑
i∈V

m+
i = − 1

N

∑
i∈V

m−
i = 1

2N

∑
i∈V

(m+
i − m−

i )

= 1

N

∑
i∈V

1(m+
i �= m−

i ) = nunf = 1 − nfr, (12)

where nfr is the fraction of frozen spins.

IV. CRITICAL BEHAVIOR

We discuss now the critical behavior of the extremes. Two
combined effects occur, approaching the dAT line from the
SG phase: both the fraction of open populations and their
width go to zero. This allows us to linearize the equation for
the extremes with respect to Qo close to σ̂H , leading to the

FIG. 3. Average magnetization m in the RFIM as a function of
the distance from the critical point ε. The data are obtained on
a Bethe lattice with z = 3, J = 1 and Hi ∼ N (0, σH ) through a
population dynamics algorithm with population size N = 106. The
continuous line represents a quadratic fit a

√
ε + b ε, where a =

3.70(1) and b = −2.43(6). The dashed line represents the analytical
prediction close to the critical point m ≈ α

√
ε, with α ≈ 3.71 (see

Appendix D).

following asymptotic expression (see Appendix C):

Qo(u,�) ≈ gd (u)
1

�typ
e−�/�typ , �typ ∝ p, (13)

where gd (u) is the eigenvector associated with the maximum
eigenvalue of the linearized operator [see Eq. (26) in Ref. [20]
and Appendix C]. In Fig. 1, we compare the analytical pre-
diction Eqs. (13) with the numerics and indeed, in the limit
p → 0, we find that Qo(u) approaches gd (u) and P(�) con-
verges to the exponential distribution.

An expansion similar to the one leading to Eqs. (13) can
be performed also for the RFIM Eqs. (10) by using the fact
that the global magnetization m is a small parameter in the
proximity of σ̂H (see Appendix D). This allows us to show that
the dependence of m on the distance from the critical point
ε = σ̂H − σH is that of a standard ferromagnetic mean-field
transition ε ∼ m2.

It is interesting to note that if the disorder is symmetric, the
fact that the order parameter is statistically symmetric implies
that the joint distribution of the couples should be the same in
both problems:

QSG(u+, u−) = QRFIM(u+, u−) ≡ Q(u+, u−). (14)

This implies a relation between m and p. Indeed, from
Eqs. (12) and (14), we have

m = nRFIM
unf = nSG

unf. (15)

At this point, from the expansion leading to Eqs. (13), we get
nSG

unf ∼ p2 and therefore (see Appendix E)

ε ∼ m2 ∼ p4. (16)

In Figs. 2 and 3, we compare the analytical predictions in
Eq. (16) with the numerics, obtaining a very accurate agree-
ment.
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FIG. 4. Representation of a cavity chain of length L, in which all
sites have connectivity z = 4 but σ0 and σL , that have one neighbor.

V. CONNECTION TO CORRELATION FUNCTIONS

We now want to show that there is a connection between
the physics of the extremes in the RSB phase and that of the
correlations in the PM phase. The correlation between two
spins σ0, σL at distance L can be studied in the PM phase of
both the SG and the RFIM by characterizing the properties of
the effective two-spin Hamiltonian [28,29]:

HL(σ0, σL ) = −u0σ0 − JLσ0σL − uLσL, (17)

where JL is an effective coupling and u0, uL are effective
fields (see Fig. 4). It turns out that there is always a finite
probability that JL is strictly equal to zero, implying a zero
connected correlation function between σ0 and σL. Further-
more, as discussed in Refs. [28,29], there are two combined
effects leading to a decrease of the connected correlation when
L tends to infinity: the fraction of nonzero effective couplings
goes to zero (exponentially in L) and the average value of
the nonzero couplings goes to zero as 1/L. The analogy with
the physics of the open populations in the SG phase is not
fortuitous. Calling u+

L and u−
L , respectively, the maximum and

the minimum fields acting on σL when fixing σ0 = ±1, we
have that

u±
L = uL ± |JL|. (18)

The iterative cavity equations for u±
L are the following (see

Appendix F):

(u+
L+1, u−

L+1)
d= ( f (+)

J (h+
L , h−

L ), f (−)
J (h+

L , h−
L )),

h±
L

d= H +
z−1∑
i=1

ui + u±
L ,

(19)

where f (±) are the ones defined in Eqs. (7) while the ui’s
are drawn from the RS cavity distribution. Equation (19) is
formally analogous to Eqs. (6) for the extremes in the case in
which only one couple (u+

k→i, u−
k→i ) in Eqs. (6) is open. This

is the most likely case close to the critical point when p → 0,
and so the analogy holds at criticality.

In the large L limit (see Appendix F for the derivations), the
joint distribution of nonzero effective couplings and effective
fields is given by [28,29]

P(L)(u0, JL, uL ) ≈ L λLgd (u0) gd (uL )
1

2 Jtyp
e−|JL |/Jtyp, (20)

where the eigenvalue λ tends to λc = 1/(z − 1) at the critical
point, and

Jtyp ∼ 1

L
. (21)

Note that both the distributions of JL in the PM phase and
that of � in the SG phase [see Eqs. (13)] are exponential. For
JL, this fact comes from the large L limit and it holds for any

distance from the critical point, while for the RSB populations
this is true just close enough to the critical point.

VI. AVALANCHES

Until now, we have discussed the statistical properties of
the extremes. However, Eqs. (6) can also be solved for a spe-
cific instance of the disorder (see Appendix B), thus obtaining
the information about which spins are frozen and which are
unfrozen. On a given graph, the presence of many LGSs (or
metastable states) is connected with the phenomenon of non-
linear responses to external perturbations. In particular, the
addition of an O(1) external local field on a site may result in
a collective rearrangement (avalanche) of O(N ) spins [28,30–
32]. Here we want to give evidence that both in the SG prob-
lem and in the RFIM, the response to external perturbations
is highly nonhomogeneous, typically involving the unfrozen
spins much more that the frozen ones.

Consider the following numerical experiment. Given an
instance of the problem, we solve the equations for the ex-
tremes, that is, Eqs. (6) for SG or Eq. (10) for the RFIM, to
understand which spins are frozen and which are unfrozen. At
the same time, we solve by BP the RS cavity Eqs. (2) and we
call σα the configuration of the spins obtained from the BP
fixed point via Eqs. (4). Then we choose at random a spin i,
we perturb locally the system by forcing the flip of that spin
from σα

i to −σα
i , and we solve again the BP Eqs. (2). In this

way, we obtain a new configuration σβ that we compare with
σα . We call avalanche the set of spins that change signs after
the perturbation.

For each instance of size N , we can generate N different
avalanches by perturbing different spins. We call ρi the partic-
ipation of spin i, i.e., the number of avalanches (among the N
we generate) flipping it. For each instance I , we compute the
empirical probability distribution of the participation pI (ρ)
by computing the normalized histogram of the {ρi} for that
instance. We present the results in terms of the cumulative
distribution of the participation ρ averaged over the instances:

Cρ = EI

ρ∑
ρ ′=0

pI (ρ ′). (22)

In Fig. 5, we show 1 − Cρ for the SG and the RFIM on a BL
with fixed degree z = 3 very close to the critical point σ̂H =
1.037. In both plots, we compare the cumulative distributions
of the participation conditioning to frozen and unfrozen spins.
It is very evident that unfrozen spins participate much more in
avalanches than frozen spins (please note the logarithmic scale
on the x axis). To quantify this difference, we have computed
the scaling with N of the typical values of the participation:
While for frozen spins the typical participation scales like
N0.2, for unfrozen spins the typical participation scales with
a much larger exponent (N0.5 in the SG problem and N0.7 in
the RFIM).

VII. CONSEQUENCES IN FINITE DIMENSIONS

Up to now, we have discussed the properties of the RSB
phase on a BL. Now we ask if and how this picture is modified
in finite dimensions. Recently, a loop expansion has been
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FIG. 5. Plot of the instance-averaged cumulative distribution of
the participation in the spin glass problem (upper panel) and in the
RFIM (lower panel). Data have been averaged over 106/N instances
defined on a Bethe lattice of fixed degree z = 3, Ji j = ±1 (for SG)
or Ji j = 1 (for RFIM) and Hi ∼ N (0, σH ), with σH ≈ σ̂H . Unfrozen
spins participate much more to avalanches, and this is confirmed by
the scaling of the typical values of ρ shown by the arrows.

introduced in Ref. [33], where the BL solution is the zeroth
order term, and the effects of short loops are introduced per-
turbatively to investigate the finite-dimensional behavior of
the system. In the following, we will look at the first-order
term of this expansion checking whether the introduction of
topological loops changes the BL picture described above.

A fundamental open problem in the statistical physics of
disordered systems consists of determining if the SG prob-
lem on a D-dimensional lattice has a glassy transition in the
presence of an external field. The so-called upper critical
dimension DU is the dimension below which the fluctuations
associated with the short-range interactions become so large
that the mean field (MF) picture does not predict the cor-
rect critical behavior anymore. The standard renormalization
group (RG) approach, based on a field theoretical expansion
around the MF FC solution, leads to DU = 6. For D � 6, the
coupling constants of the theory run away to infinity under the
RG equations, implying the disappearance of the perturbative
stable RG fixed point (FP) [34,35]. However a transition could
still exist below D = 6, and a possibility is that the associated
FP cannot be reached continuously from the MF-FC one by
lowering the dimension. Note that in the SK model there is
no transition at T = 0, implying that the expansion around
the MF-FC FP is well-defined only at finite temperature.
Therefore, as suggested by some authors, a possibility is that
there exists a relevant fixed point located at zero temperature
[36–39]. The expansion around the BL solution represents
the perfect candidate for investigating this new FP, because
on a BL the SG model exhibits a phase transition at zero
temperature, in contrast to the FC theory. Such expansion has
been applied to the SG with external field starting from the
PM phase in Ref. [29], leading to DU � 8. Here we want to
show that the Ginzburg criterion from the RSB phase leads to
the same result. We refer the reader to Appendix G for all the
derivations of the results discussed in this section.

The expansion around the BL has been made rigorous
through the so-called M-layer construction: One starts from
the model defined on an arbitrary graph G = (V, E ), e.g., the
D-dimensional hyper-cubic lattice. Then one replicates M
times G and, for each edge (i, j) of G, the M copies of σi and
σ j are linked via a random permutation, that is each copy of σi

is linked to a randomly chosen copy of σ j . The rewired graph
made of M|V| nodes and M|E | edges converges to a BL in the
large M limit. The observables in the original model (M = 1)
can be obtained by an expansion in powers of 1/M.

In general, if one gets so close to the BL critical point that
the correlation length becomes comparable to the typical size
of the treelike neighborhood of a node, one expects to see a
deviation from the mean-field behavior. In particular, if the
model defined on G has a non-MF nature, one expects the 1/M
corrections to diverge at the BL critical point. Vice versa, if the
model defined on G has a MF nature, due to universality, the
M-layer construction should not change its critical behavior.

Given a generic connected correlation C(x) between two
points at distance x on G one finds [33]

C(x) = 1

M

∞∑
L=1

NNBP(x, L)CBL(L), (23)

where CBL(L) is the same correlation computed between two
points at distance L on the BL and NNBP(x, L) is the number of
nonbacktracking paths of length L connecting the two points
at distance x on the original lattice [40]. For a D-dimensional
hypercubic lattice, the latter reads

NNBP(x, L) ∝ (2D − 1)L exp(−x2/(4L))L−D/2. (24)
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In the broken phase, the Ginzburg criterion consists of
comparing the fluctuations of the order parameter on the cor-
relation length scale with the square of its average. In the
RSB phase, a convenient local order parameter is the RSB
cluster indicator function, equal to 1 if a site is on the RSB
cluster and 0 otherwise. A site is on the RSB cluster if the
distribution of its local field on the many LGS’s is open and
this happens if at least one of the cavity fields arriving from
its z neighbors is open. Thus, the average order parameter is
pRSB = 1 − (1 − p)z.

The fluctuations of the order parameter are related to the
probability qRSB(x) that two sites at distance x on the lattice
are both on the RSB cluster. The Ginzburg parameter G(x) is
therefore given by

G(x) = C(x)/p2
RSB, C(x) = qRSB(x) − p2

RSB. (25)

From Eq. (23), we can write C(x) in terms of the same quan-
tity CBL(L) computed on the BL. Close to criticality, using the
expansion in Eqs. (13), we obtain the following expression for
CBL (see Appendix G):

CBL(L) = qBL
RSB(L) − p2

RSB ≈ p2
RSB L3λL, (26)

where λ(z − 1) = 1 − apRSB with a a constant, and qBL
RSB(L)

is the probability that two sites at distance L on the BL have
both an open distribution of local fields. At this point, by using
Eqs. (23)–(25), we can compute the Fourier transform G̃(q) of
the Ginzburg parameter G(x):

G̃(q) ∝ 1

M
(a pRSB + q2)−4. (27)

Therefore, in real space, if we rescale x with the correlation
length ξ = O(p−1/2

RSB ), we obtain

G(b ξ ) ∝ pD/2−4
RSB

M

∫ ∞

0

dα

αD/2−3
exp

(
− b2

4α
− α

)
. (28)

Note that the prefactor in Eq. (28) diverges in the critical
region for D < 8, leading to an upper critical dimension DU �
8, in agreement with the upper critical dimension found in the
BL expansion approaching the T = 0 critical point from the
PM phase in Ref. [29].

VIII. CONCLUSIONS

Concluding, we have analyzed the RSB phase of a SG
model with external field on a BL at T = 0. Despite the MF
nature of the problem, the complete solution in the broken
phase is not known and until now the differences with the
much more understood RSB phase on the FC model were
never clearly identified. In this paper, we highlight a crucial
difference between the BL and the FC models: in the BL at
T = 0, thanks to local fluctuations due to finite connectivity,
the RSB phase does not take place homogeneously on the
whole system. In fact, there exists some spins that feel a
unique local field in the many RSB LGS: in practice, they
continue to behave as in the RS phase. This phenomenon has
practical consequences on given instances of the problems:
the frozen spins are much less involved in the avalanches that
can be produced by a small perturbation of the GS and bring
the system to another LGS. The largest avalanches involve the
unfrozen spins with higher probability.

Our results are based on the computation of the extremes
of the distribution of local fields on all the LGSs. The equa-
tions for the extremes do not depend on the number of RSB
steps and on the corresponding RSB parameters. The fraction
p of open distributions that we compute is an upper bound to
the actual number of unfrozen spins, as the proper reweighting
of the LGSs could eventually close some open distributions,
thus making the appearance of the RSB effects restricted to an
even smaller fraction of spins.

Frozen and unfrozen spins can also be identified in the
RFIM, with the latter being the only responsible for the spon-
taneous arising of a nonzero global magnetization.

The role of the unfrozen spins in the RSB phase also turns
out to be crucial in understanding how the MF behavior gets
modified passing from the BL to a finite-dimensional model.
Making use of the M-layer expansion, we have been able
to identify the upper critical dimension DU = 8 that is in
perfect agreement with what has been found approaching the
transition from the PM phase [29].

We hope that a deeper understanding of the RSB phase
obtained will be useful to design new optimization algorithms
for the computation of the LGSs in polynomial time.
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APPENDIX A: THE CAVITY METHOD AT T = 0

Below the dAT line, the phase space breaks into many
states, and the correct solution of the BL SG is supposed to
require infinite steps of RSB [7,11,41]. We recall that the dAT
line that corresponds to the curve σ̂H (T ) in the T − σH plane
on which the SG susceptibility diverges on the infinite tree
is proved [20] to coincide with the locus of the points such
that the following homogeneous linear integral equation with
k = 2 admits a nonzero solution g(u):

g(u) = MEJ,H

∫
dhPM−1(h) du′ g(u′)

× δ(u − ũβ (J, H + u′ + h))

(
dũβ (H + u′ + h)

dH

)k

,

(A1)

where ũβ is the filter function at generic inverse temperature
β (see Ref. [6]), M = z − 1, and

PM−1(h) = EH

∫ [
M−1∏
i=1

QRS (ui ) dui

]
δ

(
h − H −

M−1∑
i=1

ui

)
.

(A2)
By taking the zero-temperature limit of Eq. (A1), it is
possible to compute the zero-temperature critical point
limT →0 σ̂H (T ) := σ̂H . For T = 0, Eq. (A1) becomes

g(u) = MEJ,H

∫
dhPM−1(h) du′ g(u′)δ(u − sgn(J )

× (H + u′ + h))1(|H + u′ + h| < |J|). (A3)
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Note that the dependence on k disappeared, since the deriva-
tive on the right-hand side (RHS) of Eq. (A1) becomes the
step function 1(|h| < |J|).

Let us discuss the RSB solution on the BL. We recall
that in the SK model the breaking function q = q(x, T, σH )
is continuous and nondecreasing. In particular, there are two
points xm(T, σH ) and xM (T, σH ), such that for x < xm(T, σH ):

q(x, T, σH ) = qm(T, σH ); (A4)

for x > xM (T, σH ):

q(x, T, σH ) = qM (T, σH ); (A5)

and for xm(T, σH ) < x < xM (T, σH ):

qm(T, σH ) < q(x, T, σH ) < qM (T, σH ), dq/dx > 0,

(A6)
where xm and xM , with 0 � xm � xM � 1, are called the min-
imum and maximum breaking parameters. In Refs. [42,43],
it is shown that for small T the inverse x(q, σH , T ) weakly
depends on σH , and can be expanded as follows:

x(q, T ) = y(q) T + O(T 2), (A7)

where y(q, T ) is a regular function for q < 1, and for q close
to one it is given by

y(q) ≈ (1 − q)−1/2. (A8)

For a generic continuous transition from a RS to a fullRSB
phase, the value assumed by xM on the transition line is related
to the ratio between two static six-point susceptibilities [18].
By exploiting this property, in Ref. [20] it is proven that for
the Ising SG on the BL, the value of the breaking point at the
zero-temperature transition is xM = 1/2. This result does not
depend on the connectivity, and therefore it is also true for the
SK model in the limit of T → 0.

In the case of the BL SG, we assume that, analogously
to the the SK model, the RSB is characterized by a function
x(q, T, σH ) such that for small T :

x(q, T, σH ) = y(q, σH ) T + O(T 2), (A9)

where y(q, σH ) may be singular at q = 1 (see Ref. [41]).
In the presence of RSB the RS recursion relation Eq. (2)

admits many solutions, each of them associated with a LGS of
the system. Let us index the LGSs by α and denote by {hi→ j}α
and Eα = E ({hi→ j}α ), respectively, the αth solution and its
Bethe energy, which is given by [7]

Eα =
∑
i∈V

εα
i −

∑
(i, j)∈E

εα
i j, (A10)

where the εi’s are the node energies,

εα
i = −

∑
j∈∂i

aJji

(
hα

j→i

) −
∣∣∣∣ ∑

j∈∂i

ûJi j

(
hα

j→i

) + Hi

∣∣∣∣, (A11)

and the εi j’s are the edge energies:

εα
i j = − max

σi,σ j

[
hα

i→ jσi + hα
j→iσ j + Ji jσiσ j

]
. (A12)

In Eq. (A11), we introduced the filter function aJ (h):

aJ (h) = max{|J|, |h|}. (A13)

At the 1RSB level, the function q(x, T, σH ) is a step function
that for a given (T, σH ) is defined by three numbers, namely,
two overlaps q1(T, σH ) � q0(T, σH ), and the breaking param-
eter 0 � x1(T, σH ) � 1:

q(x, T, σH ) = q0(T, σH ), if x � x1(T, σH ),

q(x, T, σH ) = q1(T, σH ), if x > x1(T, σH ).
(A14)

Under the assumption Eq. (A9), that in this case reads

x1(T, σH ) = y1(σH )T + O(T 2), (A15)

one has that the zero temperature limit of the Boltzman distri-
bution μ(σ ) can be written as follows:

μ(σ ) = 1

Z

∑
α

e−y1Eα

μα (σ ), (A16)

where μα is the measure associated with the LGS α

[6,7,21,22]. Let us define for each directed edge i → j the
distribution (population) P(1)

i→ j (hi→ j ) of the cavity field hi→ j :

P(1)
i→ j (hi→ j ) = 1

Z

∑
α

e−y1Eα

δ
(
hi→ j − hα

i→ j

)
. (A17)

In general P(1)
i→ j fluctuates from edge to edge. In the large

graph limit, the distribution of these populations (population
of populations) defines the local order parameter P(1)(P

(1)
i→ j ).

Within the 1RSB cavity method, it is possible to write the
following distributional equation for P(1) [7,21]:

P(1) d= 1

z1
[{

P(1)
i

}
; y1

] ∫ [
M∏

i=1

P(1)
i dhi

]

× exp

(
y1

M∑
i=1

aJi (hi )

)
δ

(
h − H −

M∑
i=1

ûJi (hi )

)
,

(A18)

z1
[{

P(1)
i

}
; y1

] =
∫ [

M∏
i=1

P(1)
i dhi

]
exp

(
y1

M∑
i=1

aJi (hi )

)

:= exp

(
−y1�F (1)

iter

({
P(1)

i

}
; y1

))
, (A19)

where {•i} := {•1, . . . , •M}, and the sign of equality in distri-

bution
d= means that

H ∼ PH , J1, . . . , JM
i.i.d.∼ PJ , P(1)

1 , . . . , P(1)
M

i.i.d.∼ P(1).

(A20)

Equation (A18) is usually called 1RSB energetic cavity equa-
tion. By changing the breaking parameter, it is possible to
study the statistical properties of the cavity field conditioning
to a precise energy scale. To obtain the cavity fields at the scale
of the dominant LGS, one has to choose y1 in such a way as
to maximize the 1RSB free energy functional [7,22],

φ(1)(P(1), y1) = E
{
�F (1)

n − z

2
�F (1)

e

}
, (A21)
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where E is the average with respect to P(1), PH and PJ . The
free energy of the node �F (1)

n and of the edge �F (1)
e entering

Eq. (A21) are, respectively, defined by

exp
(−y1�F (1)

n

(
P(1)

1 , . . . , P(1)
z ; y1

))
=

∫ [
z∏

i=1

P(1)
i dhi

]
exp (−y1εn(h1, . . . , hz; J, H )),

(A22)

exp
(−y1�F (1)

e

(
P(1)

1 , P(1)
2 ; y1

))
=

∫ [
2∏

i=1

P(1)
i dhi

]
exp (−y1εe(h1, h2; J )). (A23)

The breaking procedure can be formally iterated at any finite
step k of RSB (see Refs. [21,44]). Let us call R0 the set
of probability distributions over the space of cavity fields h,
and Rk+1 the space of probability distributions over Rk . In
the following, we call a distribution belonging to Rr an r
distribution (or r population). At a generic finite step k, the
order parameter P(k) becomes a k-distribution satisfying the
following recursion equation:

P(k)(P(k−1))
d= O(k)

[
P(k−1);

{
P(k)

i

}
, y1, . . . , yk

]
, (A24)

where the sign of equality in distribution means that

H ∼ PH , J1, . . . , JM
i.i.d.∼ PJ , P(k)

1 , . . . , P(k)
M

i.i.d.∼ P(k)

(A25)
and the function O(k), taking as arguments M k-distributions,{

P(k)
i

}
:= {

P(k)
1 , . . . , P(k)

M

}
, (A26)

evaluates a new k distribution P(k).
The definition of O(k) is iterative, i.e., the function at level

k is defined in terms of the function at level k − 1 and depends
on the value of the k breaking parameters,

0 � y1 � y2 � · · · � yk � ∞, (A27)

that, analogously to the 1RSB case, are obtained from the
finite temperature breaking parameters xr’s,

0 � x1 � · · · � xk � 1, (A28)

by taking the following limit:

yr (σH ) = lim
T →0

xr (T, σH )/T, r ∈ {1, . . . , k}. (A29)

The iterative definition for O(k) is the following:

O(k)[P(k−1);
{
P(�)

i

}
, y1 . . . , yk

] = 1

zk
[{

P(k)
i

}
, y1, . . . , yk

] ∫ [
M∏

i=1

P(k)
i dP(k−1)

i

](
zk−1

[{
P(k−1)

i

}
, y2, . . . , yk

])y1/y2

× δ
[
P(k−1)(P(k−2)) − O(k)

[
P(k−2);

{
P(k−1)

i

}
, y2 . . . , yk

]]
, (A30)

zk
[{

P(k)
i

}
, y1, . . . , yk

]
:= exp

(
−y1�F (k)

iter

({
P(k)

i

}
, y1, . . . , yk

))

=
∫ [

M∏
i=1

P(k)
i dP(k−1)

i

](
zk−1

[{
P(k−1)

i

}
, y2, . . . , yk

])y1/y2

=
∫ [

M∏
i=1

P(k)
i dP(k−1)

i

]
exp

(−y1�F (k−1)
iter

({
P(k−1)

i

}
, y2, . . . , yk

))
. (A31)

We want to observe that the zk−1’s, the so-called reweighting factors, are strictly positive, indeed we can write(
zk−1

[{
P(k−1)

i

}
, y2, . . . , yk

])y1/y2 � ey1 . (A32)

Analogously to the k = 1 case, it is possible to define a k-RSB free-energy functional φ(k) depending on P(k) and y1, . . . , yk ,
such that the cavity Eq. (A24) is equivalent to the stationarity condition of φ(k) with respect to to infinitesimal variations of P(k).
The k-RSB free energy functional is defined as follows:

φ(k)(P(k), y1, . . . , yk ) = E

{
�F (k)

n − z

2
�F (k)

e

}
, (A33)

where E is the average with respect to P(k), PH , and PJ . The node term �F (k)
n and the edge term �F (k)

e are, respectively, given
by the following recursion:

exp
(−y1�F (k)

n

(
P(k)

1 , . . . , P(k)
z ; y1, . . . , yk

)) =
∫ [

z∏
i=1

P(k)
i dP(k−1)

i

]
exp

(−y1�F (k−1)
n

(
P(k−1)

1 , . . . , P(k−1)
z ; y2, . . . , yk

))
,

(A34)

exp
(−y1�F (k)

e

(
P(k)

1 , P(k)
2 ; y1, . . . , yk

)) =
∫ [

2∏
i=1

P(k)
i dP(k−1)

i

]
exp

(−y1�F (k−1)
e

(
P(k−1)

1 , P(k−1)
2 ; y2, . . . , yk

))
. (A35)

174202-9



GIANMARCO PERRUPATO et al. PHYSICAL REVIEW B 106, 174202 (2022)

FIG. 6. Representation of an RSB tree for k = 3. Each node
above the leaves is associated with a population. The leaves represent
the value assumed by the cavity field on the directed edge i → j on
the different states. We want to stress that the finite connectivity of
the Bethe lattice implies a spacial dependence of the order parameter.

This construction can be applied to generic models defined
on sparse graphs [21]. Usually, the choice of k and of the
breaking parameters is made heuristically. In particular, for
a given k the breaking parameters y1 � · · · � yk are chosen
in such a way as to maximize φ(k). In some cases, indeed
it has been proven for a generic temperature that the RSB
free energy is a lower bound of the actual free energy of the
system [45–47] and it is conjectured that this property should
hold, in general [21]. Since the k-RSB ansatz incorporates as
special cases all possible smaller levels of RSB, the solution
of the full RSB ansatz (k ↑ ∞), after the extremization over
the breaking parameters should provide the right value of k.
This approach, however, is practically unfeasible since in most
cases the numerical solution of the RSB equations becomes
complicated already for k = 2. Usually, a plausibility check of
the validity of the RS and the 1RSB descriptions is performed
via a local stability analysis [48].

APPENDIX B: THE EXTREME VALUES
OF THE CAVITY FIELD

In this Appendix, we derive the recursive equation for the
distribution of the maximum and minimum values taken by
the local cavity field.

At the kth step of RSB, the statistical properties of the
cavity field on a given site can be represented by a tree. On
this tree, the leaves correspond to the LGSs, and are associated
with a realisation of the cavity field. The generic node at
distance � from the nearest leaf corresponds to an � population
P(�) (see Fig. 6). In the following, we denote by L(P(�) )
the set of leaves that are descendant of P(�), i.e., the leaves
at distance � from P(�). Let us define for � = 1, . . . , k the
extremes h+(P(�) ) and h−(P(�) ), conditioned to a population
P(�):

h+(P(�) ) = max L(P(�) ), h−(P(�) ) = min L(P(�) ). (B1)

Equivalently, h+(P(�) ) and h−(P(�) ) represent the maximum
and minimum values of the cavity fields conditioned to P(�).
On the directed edge i → j, the maximum h+

i→ j and minimum

h−
i→ j values of the extremes are given by

h+
i→ j = max L

(
P(k)

i→ j

)
, h−

i→ j = min L
(
P(k)

i→ j

)
. (B2)

The couple (h+
i→ j, h−

i→ j ) depends on the directed edge, and
its probability distribution P (h+, h−) is defined by the k-RSB
order parameter P(k) as follows:

P (h+, h−) =
∫

P(k)dP(k)δ[h+ − h+(P(k) )]δ[h− − h−(P(k) )].

(B3)

We want to show that it is possible to write a closed equa-
tion for P (h+, h−) that does not depend on the parameters
defining the symmetry breaking, implying that P (h+, h−)
does not depend on k and on y1, . . . , yk . Indeed, denoting by
S (P(�) ) the sons of P(�), i.e., the neighboring nodes of P(�)

whose nearest leaf is at distance � − 1, we can write

h+ d= H +
M∑

i=1

max
L(P(k)

i )
ûJi (hi ),

h− d= H +
M∑

i=1

min
L(P(k)

i )
ûJi (hi ). (B4)

Equations (B4) are obtained, in order, starting from the defi-
nition Eq. (B3), using the RSB cavity Eqs. (A24), and then by
applying iteratively the following property:

h+(P(�) ) = max
S(P(�) )

h+(P(�−1)),

h−(P(�) ) = min
S(P(�) )

h−(P(�−1)),
(B5)

that is a consequence of the positivity of the reweighting
factors [see Eq. (A32)]. At this point Eqs. (B4) can be closed
observing that the minimum and the maximum of ûJi (hi ) do
not depend on the values of the fields taken on all the leaves,
but only on h+

i and h−
i , being û monotonic [see Eq. (3)]. In

particular by defining the ordering functions

f (+)
J (h+, h−) = max {ûJ (h+), ûJ (h−)},

f (−)
J (h+, h−) = min {ûJ (h+), ûJ (h−)},

(B6)

we obtain equation

P (h+, h−)

= EH

∫ [
M∏

i=1

Q(u+
i , u−

i ) du+
i du−

i

]

× δ

(
h+ − H −

M∑
i=1

u+
i

)
δ

(
h− − H −

M∑
i=1

u−
i

)
, (B7)

where we introduced the joint distribution of the extremes
Q(u+, u−) of the u fields:

Q(u+, u−) =EJ

∫
dh+dh−P (h+, h−)

× δ(u+ − f (+)
J (h+, h−)) δ(u− − f (−)

J (h+, h−)).
(B8)

As already discussed in Sec. II, the extremes do not depend on
k and on the Parisi breaking parameters y1, . . . , yk . Note that
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when P (h+, h−) concentrates on the line h+ = h−, meaning
that the k populations reduce to a single number, Eq. (B7)
equals the RS Eq. (2).

All these arguments can also be repeated for T > 0. In this
case, however, there is a crucial difference, namely, the finite-
temperature filter-function (see Ref. [6]),

ũβ (J, h) = 1

β
arctanh[tanh(βJ ) tanh(βh)], (B9)

is injective, and then below σ̂H (T ) the probability p of draw-
ing an open couple is always strictly equal to one.

The recursions Eqs. (B7) and (B8), which are closed equa-
tions for the joint probability distribution of the extremes, can
also be rewritten in a single-instance version. Indeed, consider
a graph G(V, E ) equipped with a set of couplings {Je}e∈E and
external fields {Hi}i∈V . Let us associate with each directed
edge i → j, (i, j) ∈ E , a couple of h extremes (h+

i→ j, h−
i→ j ),

and a couple of u extremes (u+
i→ j, u−

i→ j ). From Eqs. (B7) and
(B8), we write

u+
i→ j = f (+)

J (h+
i→ j, h−

i→ j ), u−
i→ j = f (−)

J (h+
i→ j, h−

i→ j ),
(B10)

where

h+
i→ j = Hi +

∑
k∈∂i\ j

u+
k→i, h−

i→ j = Hi +
∑

k∈∂i\ j

u−
k→i. (B11)

Equations (B10) and (B11) can be solved by iteration with a
message-passing algorithm. In this way, for a given realization
of the disorder, it is possible to predict if a spin is closed
or open. This turns to be particularly informative in relation
to the phenomenon of the spin avalanches, as discussed in
Sec. VI.

We want to conclude this Appendix with a comment about
the limit T → 0. We introduced the extremes starting from
the energetic RSB cavity equations. A complete control of the
limit T → 0 would require the study of small temperature per-
turbations to check if the entropic contributions are important.
Indeed, the assumption Eq. (A9) of regularity of the T → 0
limit corresponds to requiring that the energetic landscape at
T = 0 has the same form of the free energy landscape for
T > 0, or analogously that after the introduction of a small
temperature, the entropic effects do not produce dramatic
changes to the relative weights of the states (see Ref. [49]).
Here we want to observe that since the entropic effects can
only result in a reweighting of the LGS, they cannot open
the closed populations. Therefore, we expect that a detailed
analysis of these contributions, that will be the object of a
future investigation, at least should not affect the prediction
of the existence of closed spins in the RSB phase.

APPENDIX C: CRITICAL BEHAVIOR OF THE EXTREMES

In this Appendix, we derive the asymptotic behavior of
the extremes close to the critical point. This can be done by
exploiting the double effect of p becoming small together with
the width of the open populations.

Let us denote by ε = σ̂H − σH the distance from the criti-
cal point. It is useful to represent the couple of fields in terms
of the width �, and the median value h,

h+ = h + �/2, h− = h − �/2, (C1)

and to distinguish between open and closed populations:

Q(u,�) = Qo(u,�) + Qc(u) δ(�), (C2)

P(h,�h) = Po(h,�h) + Pc(h) δ(�h). (C3)

At variance with Eq. (9), here it is convenient to use the
following normalizations:∫

Qo(u,�) du d� = p,
∫

Po(h,�h) dh d�h = p̂, (C4)

where p̂ = 1 − (1 − p)z−1 is the probability of drawing an h
couple (h+, h−) with �h > 0.

Equation (B8) can be rewritten in the following form:

Qo(u,�) =
∫

F1(u,�, h,�h)Po(h,�h) dh d�h, (C5)

Qc(u) =
∫

G0(u, h)Pc(h) dh

+
∫

F2(u, h,�h)Po(h,�h) dh d�h, (C6)

where we introduced G0,

G0(u, h) ≡ EJ δ
(
u − ûJ (h)

)
, (C7)

and the two distributions F1, F2. F1 is defined by

F1 ≡ EJ δ(u − sgn(J ) h) δ(� − �h)1(|h| < |J|) + �F1,

(C8)
where 1(A) is the indicator function of the set A. Note that we
have �F1 �= 0 if and only if∣∣|J| − h

∣∣ <
�h

2
or

∣∣|J| + h
∣∣ <

�h

2
, (C9)

and since �h is typically small we consider �F1 as a pertur-
bation. F2 is given by

F2 ≡ EJ δ(u − sgn(J ) sgn(h))1

(
|J| + �h

2
< |h|

)
, (C10)

and this can also be written as

F2 ≡ EJ δ(u − sgn(J ) sgn(h))1(|h| > |J|) + �F2, (C11)

where again �F2 can be treated as a perturbation. Note that at
the leading order, independently of �, either |h| < |J| and the
open population remains open with the same �, or |h| > |J|
and the population closes.

In the following, if not necessary we omit the dependence
of the distributions on u,�, h,�h, and we use the following
simplified notation:

Qo = F1Po, (C12)

Qc = G0Pc + F2Po, (C13)

Pc = (Qc)MPH , (C14)

Po = (Qa + Qc)MPH − (Qc)MPH , (C15)

in which we denoted the convolution between distributions
as a product, and we introduced the linear integral operators
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G0, F1, F2 associated with Eqs. (C7), (C8), and (C10),
namely,

G0Pc ≡
∫

G0(u, h)Pc(h) dh, (C16)

F1Po ≡
∫

F1(u,�, h,�h)Po(h,�h) dh d�h, (C17)

F2Po ≡
∫

F2(u, h,�h)Po(h,�h). (C18)

As an example of the simplified notation introduced in
Eqs. (C12)–(C15), consider

Q2
oQM−2

c PH ≡ (
Q2

oQM−2
c PH

)
(h,�h)

=
∫ [

M−2∏
i=1

Qc(ui )dhi

][
2∏

i=1

Qo(u′
i,�) du′

id�i

]

× δ

(
h − H −

M−2∑
i=1

ui − u′
1 − u′

2

)
× δ(�h − �1 − �2). (C19)

Before going on, it is worth introducing the Laplace transform
of Qo with respect to �:

qo(s) ≡
∫

es�Qo(u,�) d� = (LQo)(s). (C20)

In the following, we make explicit only the dependence on s,
and the product of Laplace transforms has to be intended as
convolutions on all variables but s.

For the computation of qo(s), we apply L to Eq. (C12):

qo(s) = F0 po(s) + (L�F1Po)(s), (C21)

where

F0 ≡ EJ δ(u − sgn(J ) h)1(|h| < |J|). (C22)

Observe how the leading contribution to F1 commutes with L
since it acts as the identity on �. From Eq. (C15) for Po, we
have

po(s) =Mqo(s) QM−1
c PH

+ M(M − 1)

2
qo(s)2 QM−2

c PH + · · · .
(C23)

Note that the convolution has been transformed into products.
By writing

PH = Pcrit
H + δPH , (C24)

Qc = Qcrit + δQc, (C25)

we can expand Eq. (C23) close to the critical point:

po(s) = Mqo(s)(Qcrit )M−1Pcrit
H (C26)

+ Mqo(s) (Qcrit )M−1δPH (C27)

+ M(M − 1) qo(s) δQc(Qcrit )M−2Pcrit
H (C28)

+ M(M − 1)

2
qo(s)2 (Qcrit )M−2Pcrit

H + · · · . (C29)

At this point, let us substitute Eq. (C26) into (C21). We find
that the leading term is given by

qo(s) = M F0(Qcrit )M−1Pcrit
H qo(s) + · · · , (C30)

where the linear operator M F0(Qcrit )M−1Pcrit
H sends a function

f (u) defined for |u| < 1 into another function on the same
space. Note that, generically, we work with functions that
can have a delta peak at u = ±1, but the operator naturally
is always applied to functions that have no peaks by con-
struction; indeed, the variable u in Q(u,�) cannot have peaks
in u = ±1. By definition, the above operator has a (critical)
eigenvalue that goes to one at the transition. We call gs

crit(u)
and gd

crit(u) the corresponding left and right critical eigenvec-
tors.

Let us define∫
du gs

crit(u) qo(u, s) = gs
crit · qo(s) ≡ g(s) (C31)

and choose the normalizations:

gs
crit · gd

crit = 1,

∫
du gd

crit(u) = 1. (C32)

In Eq. (C31), we introduced the symbol · to denote the inte-
gration on the variable u. Note that in the case of symmetric
disorder, M F0(Qcrit )M−1Pcrit

H is a symmetric operator, and then

gs
crit(u) = gd

crit(u)∫
du gd

crit(u)2
. (C33)

Now by the definition Eq. (C31), we write

qo(s) = g(s) gd
crit + · · · , (C34)

where the dots are the contributions of the subleading eigen-
vectors. To obtain an equation for g(s), let us project Eq. (C21)
on the critical left eigenvector gs

crit:

g(s) = gs
crit · F0 po(s) + gs

crit · (L�F1Po)(s). (C35)

On the left-hand side (LHS) of Eq. (C35), we simply have
g(s) from the definition Eq. (C34). On the RHS, the first
contribution is obtained by expanding close to criticality:

F0 po(s) ≈ g(s) + M(M − 1)

2
F0qo(s)2(Qcrit )M−2Pcrit

H

+ M(M − 1) F0qo(s)(Qcrit )M−2Pcrit
H δQc. (C36)

Note that from Eq. (C34), one has

Qa(u) = g(0) gd
crit + · · · , (C37)

where the underline denotes the marginalization over �. As
shown at the end of the Appendix [see Eqs. (C62)–(C76)],
Eq. (C37) allows us to write the variation of the distribution
of the closed population:

δQc = −g(0) gd
crit + · · · . (C38)

We can thus write

gs
crit · F0 po(s) = g(s) + B (g2(s) − 2g(s)g(0)) + · · · , (C39)

with

B ≡ M(M − 1)

2
gs · F0

(
gd

crit

)2
(Qcrit )M−2Pcrit

H . (C40)

To study the second term on the RHS of Eq. (C35),

gs
crit · (L �F1Po)(s), (C41)
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we write at leading order

Po = MQo(Qcrit )M−1Pcrit
H + · · · , (C42)

in which by using Eq. (C34), one has

Qo(u,�) = gd
crit(u)P(�), (C43)

and P(�) is the probability of �. Note that∫
P(�) d� = g(0) = p, (C44)

and it is small close to the transition. We have

Po(h,�h) = Mg1(h) P(�h) + · · · , (C45)

where

g1(h) = (
gd

crit(Q
crit )M−1Pcrit

H

)
(h) (C46)

is normalized to one, and can be evaluated in population
dynamics. Now we rewrite the operator �F1 as

�F1 = �F ′
1 + �F ′′

1 + �F ′′′
1 . (C47)

The first term in Eq. (C47) takes into account those couples
that were wrongly considered unaltered at leading order:

�F ′
1 = − EJ

[
1

(
0 < |J| − |h| <

�h

2

)
× δ(u − sgn(J ) h) δ(� − �h)

]
. (C48)

The second term, taking into account couples that were
wrongly considered to be closed at leading order, can be
written as follows:

�F ′′
1 =EJ

[
1

(
||J| − |h|| <

�h

2

)
× δ(u − uF (J, h,�h)) δ(� − �F (J, h,�h))

]
,

(C49)

where we defined

uF (J, h,�h) = sgn(J h)

2

(
|J| + |h| − �h

2

)
(C50)

and

�F (J, h,�h) = |J| − |h| + �h

2
. (C51)

The last term, �F ′′′
1 , takes into account the cases in which

h+ > |J| and h− < −|J|, and therefore it is not relevant for
the limit of small widths.

Using definition Eqs. (C48) and (C49) in the case of |J| =
1, and writing at the leading order Po(h,�h), according to
Eq. (C45), we find that

gs
crit · (L�F1Po)(s)

≈ 2 B2

∫
es�

(∫ ∞

�

P(�′)d�′ − �

2
P(�)

)
d�, (C52)

with

B2 = gs
crit(1)g1(1)M. (C53)

Note that from the definition of Eq. (C46),

M g1(v) = gd (v), |v| � 1, (C54)

therefore, in the case of symmetric disorder, by using
Eq. (C33), we can write

B2 = gd
crit(1)2∫

du gd
crit(u)2

. (C55)

From Eq. (C52), expanding for small �, we have

gs
crit · (L�F1Po)(s) = B2

(
2

g(s) − g(0)

s
− ġ(s)

)
. (C56)

At this point, by putting together the two contributions
Eqs. (C39) and (C56), we obtain the equation

2
y(z) − 1

z
− ẏ(z) + y2(z) − 2y(z) = 0, (C57)

where we changed variables as follows:

z = sBg(0)

B2
, y(z) = g(s)

g(0)
. (C58)

Equation (C57) has the solution

y(z) = 1

1 − z
, (C59)

whose inverse Laplace transform is the exponential:

P(�) = p
1

�typ
e−�/�typ , (C60)

with

�typ = B

B2
p. (C61)

Equation (C59) is not the unique solution of Eq. (C57), how-
ever, other solutions have many poles. Indeed, consider the
algebraic equation obtained by computing the derivative of
Eq. (C57) in zero. The nonuniqueness follows from the fact
that the terms with ÿ(0) cancel out, leaving the second deriva-
tive unfixed. Interestingly, this cancellation also implies that
the algebraic equation cannot be satisfied if in Eq. (C57) there
was a different linear term in y(z), i.e., the solution would
not exist. This means that in the derivation of Eq. (C57), it
is consistent to consider ε = o(p), i.e., to neglect terms like
Eq. (C27).

At this point, let us come back to Eq. (C38) and show
how to obtain the variation δQc. Consider the total marginal
probability distributions Q and P of, respectively, u and h,

Q = Qo + Qc,

P = Po + Pc,
(C62)

where, as before, the underline denotes the marginalization
over �. Integrating Eqs. (C12)–(C15) with respect to �, we
find the following self-consistent equations for Q and P:

Q = G0 P + �F1Po + �F2Po, (C63)

P = QMPH , (C64)
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that we want to study close to the critical point. Note that in
the limit ε ↓ 0, we obtain the RS equations:

Q = G0 P, (C65)

P = QMPcrit
H . (C66)

Now, by writing

Q = Qcrit + δQ, P = Pcrit + δP, (C67)

we can expand Eqs. (C63) and (C64)

δQ = G0δP + �F1Po + �F2Po + · · · , (C68)

δP = (Qcrit )M δPH + MδQ (Qcrit )M−1Pcrit
H + · · · . (C69)

At the leading order, the variations of Q and P are given by
the sum of two contributions,

δQ = δQRS + δpQ + · · · , (C70)

where δp denotes the variation at fixed ε = 0, and δQRS and
δPRS are the variations of the RS distributions, i.e., the varia-
tions of Q and P at p = 0. Since the RS Eqs. (C65) are regular
at the transition, we should have

δQRS, δPRS = O(ε). (C71)

For the variations at ε = 0, we have

δpQ, δpP = o(p), (C72)

since �F1Po + �F2Po = o(p). At this point, note that the
variations of the marginals can be rewritten as follows:

δQ = Qo + δQc, δP = Po + δPc, (C73)

and that

Qo, δQc = O(p). (C74)

Putting all together, what we found is that the corrections to
the total marginals Q and P are smaller than the corrections to
the separate contributions coming from the open and closed
distributions,

Qo + δQc = o(p), Po + δPc = o(p), (C75)

implying, as anticipated in Eq. (C38), that at the leading order

δQc ≈ −Qo. (C76)

APPENDIX D: CRITICAL BEHAVIOR OF THE RFIM

In the last Appendix, the populations are expanded close to
the critical point in terms of p. To complete the analysis, we
should find how p scales with ε, the distance from σ̂H . The
strategy is to exploit the analogy with the RFIM, and, in par-
ticular, the fact that nunf = m [see Eq. (15)]. For this purpose,
here we focus on the computation of m, the magnetization
of the RFIM, as a function of ε, and in Appendix E on the
computation of nunf, the fraction of unfrozen spin in the SG,
as a function of p.

Let us also use for the RFIM the simplified notation intro-
duced in Appendix C. For example, we write the RS cavity

equation,

Q(u) =EH

∫ [
M∏

i=1

Q(ui )dui

]
δ

(
u − û1

(
H +

M∑
i=1

ui

))
,

(D1)

as follows:

Q = R0 QMPH , (D2)

where

(R0P)(u) =
∫

dhP(h) δ(u − û1(h)). (D3)

One expects that in the ferromagnetic phase, a magnetized
solution of the RFIM cavity equation develops continuously.
This leads to an integral equation corresponding to Eq. (A1)
with k = 0. Indeed, let us rewrite the field distribution as the
sum of a symmetric and an antisymmetric part:

Q(u) = S(u) + A(u). (D4)

There is always the solution A(u) = 0, but close to the critical
point, to study the magnetized solution, we can expand the
cavity distribution as

Q(u) = Qc(u) + δS(u) + m f d (u), (D5)

where Qc(u) is Q(u) at the critical point, δS is the variation
of S, and f d is the right antisymmetric eigenvector of the so-
called longitudinal operator R at the critical point:

R = M R0 QM−1
c Pcrit

H , (D6)

as can be seen by substituting Eq. (D5) into (D2) and taking
the limit ε → 0. Equivalently, f d should satisfy Eq. (A1) with
k = 0. By substituting the decomposition Eq. (D5) into the
definition of the magnetization, we obtain the normalization
condition for f d :

1 = z
∫

dh sgn(h)
(

f d QM
c Pcrit

H

)
(h). (D7)

Let us call f s the left antisymmetric eigenvector of the longi-
tudinal operator, and normalize it in such a way as f s · f d = 1.
Expanding the cavity Eq. (D2) close to criticality, and project-
ing on f s we obtain

0 = M(M − 1) m f s · R0 f d δS QM−2
c Pcrit

H

+ M(M − 1)(M − 2)

6
m3 f s · R0 ( f d )3 QM−3

c Pcrit
H

+ m M f s · R0 f d QM−1
c δPH . (D8)

Note that the terms in which there is a scalar product between
f s and an even function vanish by symmetry, implying that
there are no terms proportional to even powers of m.

For the BL with connectivity equal to three, there is no
term due to the convolution ( f d )3, and the equation can only
be satisfied because of the term coming from the variation of
the symmetric part δS. The expression for δS can be obtained
linearizing the cavity equation:

δS = R0 QM
c δPH + MR0QM−1

c (δS)Pcrit
H

+ m2 M(M − 1)

2
R0( f d )2QM−2

c Pcrit
H . (D9)
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At this point, let us write δS as the sum of two contributions,

δS = δεS + δmS, (D10)

where δεS is the variation of S with respect to ε at m = 0, and
δmS is the variation of S with respect to m at ε = 0. We have

δεS = R δεS + ε ζε, (D11)

δmS = R δmS + m2ζm, (D12)

where we defined

ε ζε = R0QM
c δPH ,

ζm = M(M − 1)

2
R0 ( f d )2 QM−2

c Pcrit
H .

(D13)

Note that since the critical eigenvector is antisymmetric, f s ·
ζm = f s · ζε = 0. Equations (D11) and (D12) can be inverted,

δεS = ε (1 − R)−1ζε, δmS = m2(1 − R)−1ζm, (D14)

allowing us to write δS in terms of ζε and ζm. Going back to
the original Eq. (D8), we obtain an expression of the form

−α2 m ε + m3 = 0, (D15)

where the coefficient α is given by

α =
(

− (M − 1) f s · R0
(

f d ((1 − R)−1ζε )QM−1
c Pcrit

H

) + f s · ξε

(M − 1) f s · R0
( (M−2)

6 ( f d )3 QM−3
c + f d ((1 − R)−1ζm)QM−1

c

)
Pcrit

H

)1/2

(D16)

and ξε is defined by

ε ξε = R0 f d QM−1
c δPH . (D17)

From Eq. (D15), it follows that close to the critical point the
magnetization has a square-root critical behavior:

m ≈ α ε1/2. (D18)

It is interesting to note that the only difference between the
cases T > 0 and T = 0 is that in the latter f d (u), Qc(u), and
δS(u) have finite weight in u = ±1. The analysis based on the
symmetries is the same, leading in both cases to m = O(

√
ε).

Expressions like Eq. (D16) can be computed by discretizing R
[Eq. (D6)], i.e. by representing the distributions of the interval
[0,1] through a basis of histograms and by computing the
matrix elements associated with R. In this way, for z = 3 we
obtained

α = 3.71 . . . . (D19)

See Fig. 12 for the comparison with the numerics.
Interestingly, the fact that the longitudinal operator devel-

ops a critical eigenvector at the same point of the integral
equation associated with the susceptibility can be checked
for T > 0 by noticing that if g(u) is the eigenvector of the
susceptibility equation [Eq. (A1) with k = 1], then g′(u) is
an eigenvector of the cavity equation [Eq. (A1) with k = 0].
This can be shown by deriving the susceptibility equation and
performing an integration by parts. The terms coming from
the boundaries u = ±1 vanish because g(u) goes to zero con-
tinuously at u = ±1 at any finite temperature due to the term
proportional to the derivative of ũ (see also Figs. (2) and (3)
in Ref. [20]).

At T = 0, the susceptibility and the longitudinal opera-
tor should also diverge at the same point. In this case, the
eigenvector of the susceptibility operator no longer vanishes at
u = ±1, having instead a finite limit, see Fig. 1. Again there
is a critical longitudinal antisymmetric eigenvector that can
be identified with g′(u) for |u| < 1. In addition, however, the
eigenvector carries a finite weight at |u| = 1, corresponding to

the fact that the cavity equation has a finite weight at |u| = 1
for T = 0. The antisymmetric eigenvector carries a weight
in u = ±1 that is exactly equal to ∓g(1), as can be verified
again by an integration by part, this time taking care of the
fact that g(±1) �= 0. Formally one can say that the longitu-
dinal eigenvector is proportional to g′(u), with g(u) that has
a discontinuity from zero to g(1) at u = ±1 that leads to the
appearance of antisymmetric delta functions at the extrema.

APPENDIX E: COMPUTATION OF p(ε) CLOSE
TO THE CRITICAL POINT

Once m is known, it is possible to compute the critical
exponent of the probability p of drawing an open population.
To do that, let us express nunf in terms of p. Close to the
critical point, the total cavity marginal distribution on a site
conditioned to the open populations is given by

Psite
o = z gsite

1 P(�) + · · · , (E1)

where by using the notation of Eq. (C24), we defined

gsite
1 = gd (Qcrit )MPcrit

H . (E2)

We have

nunf =
∫

dh d� Psite
o (h,�h)1(|h| < �h/2)

= 2z
∫ ∞

0
dh gsite

1 (h)
∫ ∞

2 h
d�P(�) + · · ·

= z gsite
1 (0)

B

B2
p2 + · · · . (E3)

Note that only a fraction of order p of the open populations
contribute to the fraction of spins that change sign. Equa-
tion (E3) implies that

p ≈ κε1/4, κ =
√

α B2

Bz gsite
1 (0)

, (E4)
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where κ , by using Eq. (D19), for z = 3 equals

κ = 1.90 . . . , (E5)

and B, B2 [see Eqs. (C40) and (C53)] and gsite
1 are computed in

population dynamics. As shown in Fig. 2, the numerical simu-
lations are in perfect agreement with the analytical prediction.

APPENDIX F: THE LARGE L LIMIT OF THE CHAIN IN
THE PARAMAGNETIC PHASE

In this Appendix, we derive the properties discussed in
Sec. V of the correlations between two points in the limit of
large distances in the PM phase.

Let us recall the definition of the u extremes,

u±
L = uL ± �L

2
, �L = 2|JL|, (F1)

that correspond to the maximum and minimum field acting
on σL when fixing σ0 = ±1 on the chain [see Eq. (17)]. To
deduce the iteration rule for the extremes, let us construct a
chain of length L + 1, starting from a chain of length L. The
first step is to draw a field hiter to put on σL, where

hiter = H +
M−1∑
i=1

ui (F2)

and

H ∼ PH , u1, . . . , uM−1
i.i.d.∼ QRS(u). (F3)

Next we add a new spin σL+1 connected to σL with a new
coupling J , drawn from PJ . In the end, since we are at zero
temperature, we optimize the energy over σL:

HL+1(σ0, σL+1) = min
σL

[HL(σ0, σL ) − σL(hiter + J σL+1)]

= E − u′
0σ0 − σ0 JL+1 σL+1 − uL+1σL+1.

(F4)

Equation (F4) defines the updating rule linking (u0, JL, uL )
with (u′

0, JL+1, uL+1). If we focus on the couple of fields acting
on the spin at distance L, we obtain

u+
L+1 = f (+)

J (h+
L , h−

L ), u−
L+1 = f (−)

J (h+
L , h−

L ), (F5)

h±
L = hiter + u±

L , hiter = H +
M−1∑
i=1

ui, (F6)

where f (+) and f (−) are the same ordering functions Eq. (B6)
that we used for the equations of the RSB extremes. As we
already argued in Sec. V, Eqs. (F6) and (F5) are formally
analogous to the equation for the extremes in the case of a
single RSB population.

To study the statistical properties of the extremes act-
ing on σL, let us consider the joint probability distributions
Q(L)

o (uL,�L ) and P(L)
o (hL,�L ) of the open couples on a chain

of length L. From Eqs. (F6) and (F5), we obtain

Q(L+1)
o = F1P(L)

o , (F7)

P(L)
o = Q(L)

o QM−1
RS PH , (F8)

where F1 is the same operator we defined in Eq. (C8) for
the RSB extremes. Note that in the RSB case, the limit of

small width of the extremes is valid when approaching the
critical point. Here, since there is only a single open couple,
the effective coupling cannot increase during the iteration, i.e.,
|JL+1| � |JL|, and then, independently of the distance from the
transition, one expects the typical JL to be small for large L.
Then, for studying the large L behavior of Eq. (F7), we can
rely on the same expansion we did in Appendix C. As for the
RSB extremes, we define

gL(s) = gs · q(L)
o (s), (F9)

where q(L)
o (s) is the Laplace transform of Q(L)

o and gs, gd are
the left and right eigenvectors associated with the maximum
eigenvalue λ of

F0QM−1
RS PH (F10)

for an arbitrary σH > σ̂H . Following the same steps leading to
Eq. (C56), we find

gs · (
L�F1P(L)

o

)
(s) = gs(1)g1(1)

(
2

gL(s) − gL(0)

s
− ġL(s)

)
,

(F11)

where in analogy with the RSB case we used the notation

g1 = gd QM−1
RS PH . (F12)

Projecting the Laplace transform of Eq. (F7) on gs, we find

gL+1(s) = λ gL(s) + gs(1)g1(1)

(
2

gL(s) − gL(0)

s
− ġL(s)

)
.

(F13)

We stress that here the expansion only requires L to be large,
while σH can be arbitrarily larger than σ̂H . For large L,
Eq. (F13) admits a solution of the form

gL(s) ≈ λLL ϕ(s/L), (F14)

where ϕ is to be determined. Substituting Eq. (F14) in (F13),
and expanding for large L, we have

gL+1(s) − λ gL(s) ≈ λL+1ϕ(s/L)+

− λL+1s/L
d

d (s/L)
ϕ(s/L) (F15)

and

2
gL(s) − gL(0)

s
− ġL(s)

≈ λL

(
2
ϕ(s/L) − ϕ(0)

s/L
− d

d (s/L)
ϕ(s/L)

)
, (F16)

from which we obtain the following equation for ϕ:

ϕ(s/L) − s/L
d

d (s/L)
ϕ(s/L)

= �

(
2
ϕ(s/L) − ϕ(0)

s/L
− d

d (s/L)
ϕ(s/L)

)
, (F17)

where we defined the constant

� = 1

λ
gs(1) g1(1), (F18)
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that at the critical point is equal to B2 [see Eq. (C53)]. By
changing variables to set all the constants to one,

z = s

� L
, y(z) = ϕ(s/L)

ϕ(0)
, (F19)

one finds

y(z) − z ẏ(z) =
(

2
y(z) − 1

z
− ẏ(z)

)
(F20)

that has solution

y(z) = 1 + c z2

1 − z
, (F21)

with c an undetermined constant. The inverse transform of
Eq. (F21) is

f (�) = e−� + c (e−� − δ(�) + δ′(�)), (F22)

from which we argue that c = 0, since the singular terms in
Eq. (F22) can only result from a nonphysical initialization
of Q(1)

o . Therefore, for large L the probability qL of drawing
a couple of spins with nonzero effective coupling is [see
Eq. (F14)]

q(J )
L = LλL, (F23)

and the distribution of the open effective coupling is an expo-
nential, with mean value that scales linearly in 1/L:

L〈|J|〉J>0 = 1

2 �(σH )
σH ↓σ̂H−−−→ 1

2B2
= 1.326.... (F24)

This behavior and, in particular, the value of the average
coupling at the critical point, are in perfect agreement with the
interpolations obtained from numerical data in Ref. [28]. Note
that all the quantities we are considering here remain regular
at the transition; however, for the theory to be consistent,
the computation of the critical point should lead to the same
results from both sides of the dAT line. This is guaranteed
from the fact that for σH = σ̂H the maximum eigenvalue of
Eq. (F10) becomes λ = 1/M, and the SG susceptibility di-
verges because of the summation over all the pairs of spins
(see Ref. [20] for all definitions and details).

APPENDIX G: THE GINZBURG CRITERION
FROM THE RSB PHASE

In this Appendix, we study the Ginzburg criterion in the SG
phase. The strategy is to compute the fluctuations of a suitably
chosen order parameter at the leading order in 1/M and to
check at which dimension they become important.

1. Percolation

It is instructive to first consider the percolation problem.
Let us call τ the occupancy probability of a node. Let us call
P the percolating cluster, i.e., the set of all occupied sites
whose elements have at least a neighbor in P . Given a node
i on the BL, consider the cavity graph obtained removing
an edge connected to i. The probability p that i belongs to
the percolating cluster on such cavity graph can be computed
self-consistently according to the following equation:

1 − p = (1 − τ ) + τ (1 − p)z−1. (G1)

Once Eq. (G1) is solved, it is possible to compute the proba-
bility pn that a node on the original graph belongs to P:

pn = τ
(
1 − (1 − p)z

)
. (G2)

Equation (G1) develops a solution with p �= 0 for τ < τc ≡
1/(z − 1), where τc is the critical occupancy probability. In
particular, in the proximity of τc:

p = 2

z − 2
ε + O(ε2), ε = (z − 1) τ − 1. (G3)

At this point, let us consider a chain composed by L edges.
The fluctuations of the order parameter are given by

CBL(L) = qBL(L) − p2
n, (G4)

where qBL(L) is the probability that two sites at distance L
belong to the percolating cluster. Close to the critical point,
the probability that a node belongs to P is small, and therefore
qBL(L) can be expanded as follows:

qBL(L) = q(1)(L) + q(2)(L) + O(p3), (G5)

where q(n)(L) is the probability that the two ends of the
chain belong to P because of the presence of n percolating
nodes connected to the chain. Let us call the source node a
node belonging to the chain that is connected to one of these
percolating nodes. Note that for the computation of Eq. (G4),
we only need qBL(L) up to order τ 2. For large L, the leading
contribution is

q(1)(L) ≈ p L λL, (G6)

where the factor L comes from the summation over all pos-
sible positions of the source node, and λ is the probability:

λ = τ (1 − p)z−2. (G7)

At this point, let us study the correction q(2)(L). Let us number
the nodes of the chain starting from one of the two ends, and
let us identify the two source nodes, respectively, by k1 and k2,
with k1 � k2. If we use the notation L1 = k1, and L2 = L − k2,
we can write

q(2)(L) =
∑
1,2

p̃(L1) p̃(L2) + O
(
p2 L λL

)
, (G8)

where the sum

∑
1,2

≡
L−1∑
L1=0

L∑
I=1

L−1∑
L2=0

δ(L − L1 − I − L2) (G9)

is over all disjoint couples k1 �= k2, and p̃(R) is the probability
that a chain of length R having a source node in one of its ends
belongs to P . The probability p̃(R) is given by

p̃(R) = p (1 − λ) (1 − p) λL1 (1 − δ(R)) + p δ(R), (G10)

where we used the identity

p (1 − λ) = τ (1 − (1 − p)z−2). (G11)
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The last term in Eq. (G8) is due to the case in which k1 = k2,
and it is not written explicitly because it does not contribute at
the leading order to CBL. By summing all the terms∑

1,2

(1 − δ(L1)) δ(L2) λL1 =
L−1∑
L1=1

λL1 = λ

1 − λ
− λL

1 − λ
,

(G12)∑
1,2

(1 − δ(L1)) (1 − δ(L2)) λL1+L2

=
L−2∑
I=1

(L − I − 1) λL−I ≈ λ2

(1 − λ2)
− L λL

1 − λ
, (G13)

we find

q(2)(L) = p2
n + O(p2LλL ), (G14)

and therefore

CBL(L) ∝ p L λL + O(p2LλL ). (G15)

At this point, we can substitute Eqs. (24) and (G15) into
(23), and compare the two-point function, computed on the
scale of the correlation length ξ = O(ε−1/2), with the square
probability belonging to the percolating cluster

1

p2
n

C(b ξ ) ∝ εd/2−3

M

∫ ∞

0

dα

αd/2−1
exp (−b2/(4α) − α),

(G16)
that is the so-called Ginzburg parameter. In Eq. (G16), we
used

− ln λ(z − 1) ≈ − ln(1 − ε) ≈ ε. (G17)

Note that at a fixed distance from the critical point, the cor-
rection is small provided M is large. This corresponds to the
regime in which the correlation length is smaller than the
typical treelike neighborhood of a site. However, for fixed
M, as soon as d < 6 the Ginzburg parameter diverges, in
agreement with the expected result DU = 6 for the percolation
problem (see Ref. [50]).

2. The spin glass

At this point, let us consider the SG below the dAT line.
As we have seen, in the RSB phase we can define a local
order parameter corresponding to the indicator function of
the open sites that is equal to one if there is at least an open
couple entering the site and zero otherwise. The average order
parameter is thus prsb and its fluctuations are given by the
probability that two sites at distance x are both open. Let us
compute these fluctuations on the BL.

Analogously to the percolation case, also for the SG we
can write Eq. (G5). Here q(n)(L) represents the probability
that both ends 0 and L of the chain are open because of the
presence of n open spins connected to the chain. The leading
contribution q(1)(L) can be obtained by taking two triplets
(u0, J1, u�

k ) and (ur
k, J2, uL ) in which all the fields are closed,

and by joining them with the insertion of an open field hext
k

(see Fig. 7). In particular,

hext
k = H +

z−3∑
i=1

ui + uo, (G18)

FIG. 7. The leading contribution to the open-open correlation
function close to the critical point is given by a chain in which the
extremal sites σ0 and σL are open because of an open population hext

k

entering σk .

where the ui’s are closed and uo is an open population. Let
us use, as usual, the notation � = u+

o − u−
o . At this point,

for 0 and L to be open, the two chains must necessarily have
J1 �= 0 and J2 �= 0 (see Appendix F). This is also a sufficient
condition if the central spin σk is not frozen, i.e., if it not
always has the same magnetization over all the LGSs. Indeed,
in this case the flipping of σk leads to a change in the fields
acting on the ends of the chain σ0, σL. If σ0 and σL receive
local fields that do not have the same values over all the LGSs,
they are open by definition. Therefore, we have

q(1)(L) ≈
L∑

k=0

〈
Pc

(
hext

0

)
P(k)

o

(
u0, J1, u�

k

)
P̃o

(
hext

k ,�
)

× 1(|hk| < �/2) P(L−k)
o

(
ur

k, J2, uL
)

Pc
(
hext

L

)〉
,

(G19)

where the angle brackets represent an average over all the
arguments, hk is the total average field acting on σk ,

hk = û
(
J1, hext

0 + u0
) + u�

k + hext
k + ur

k + û
(
J2, uL + hext

L

)
,

(G20)
P̃o is given by

P̃o = (z − 2) Qo(Qc)z−3PH , (G21)

and P(L)
o (u, J, u′) is the probability distribution of the triplet

(u, J, u′) conditioned to J �= 0. Note that in Eq. (G19), the
indicator function enforces the condition that hk + �/2 > 0
and hk − �/2 < 0 that is equivalent to require that σk is not
frozen. Note also that in Eq. (G20) the terms in û are obtained
from the minimization of σ0 and σL. This is a consequence of
the fact that at the leading order the local field on the extremal
spins is open but σ0 and σL assume the same value (the value
obtained with the minimization) on all the states.

For large lengths L1 and L2 of the chains, we can use the
approximation (see Sec. V and Appendix F),

P(L)
o (u, J, u′) ∝ L λLgd (u) gd (u′)

1

2 Jtyp
e−|J|/Jtyp , (G22)

where Jtyp = 1/(2B2L) and all functions are those correspond-
ing to the situation above the dAT line, except for λ, that is,
such that (z − 1)λ is smaller than one because the external
populations are closed. More precisely, we have

(z − 1)λ = (z − 1) gs · F0gd QM−1
c PH , (G23)

that can be expanded close to criticality remembering that the
shift of the distribution of the closed populations obeys [see
Eq. (C38)]:

δQc ≈ −p gd . (G24)
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In this way, we obtain

(z − 1)λ ≈ 1 − 2Bp, (G25)

where the constant B is defined in Eq. (C40). Note that we
considered only the variation with respect to Qc, since the
two triplets before the insertion of the open population belong
separately to the cluster of closed spins. At this point, since for
large L1 and L2 the couplings J1 and J2 are small, at the lead-
ing order we can also neglect in Eq. (G20) the contributions
coming from σ0 and σL:

hk ≈ u�
k + hext

k + ur
k . (G26)

These considerations allow us to perform in Eq. (G19) the
integrations over J1, J2, the fields, and the summations over
L1 with L2 = L − L1, obtaining

q(1)(L) ≈ p�typλ
L

L∑
L1=0

L1 (L − L1) ≈ p�typ λLL3. (G27)

For the term q(2)(L), we have to consider the insertion of two
open populations on two spins σk1 , σk2 of the chain. This can
be done by joining three triplets, (u0, J1, u�

1), (ur
1, JI , u�

2), and
(ur

2, J2, uL ). Again, for the extremes to be open, σk1 and σk2

should be not frozen, and J1, J2 �= 0. Therefore, defining L1 =
k1, and L2 = L − k2, we have

q(2)(L) =
∑
1,2

〈
Pc

(
hext

0

)
P(L1 )

o

(
u0, J1, u�

1

)
P̃o

(
hext

1 ,�1
)
1(|h1| < �1/2) P(I )

(
ur

1, JI , u�
2

)
× 1(|h2| < �2/2) P̃o

(
hext

2 ,�2
)

P(L2 )
o

(
ur

2, J2, uL
)

Pc
(
hext

L

)〉 + O
(
p2 �2

typ, L3λL
)
, (G28)

where the subscripts 1,2 of the fields refer, respectively, to k1 and k2, and P(I ) is the joint probability distribution of (ur
1, JI , u�

2).
Analogously to the percolation case, the last term in Eq. (G28), that we did not write explicitly, is due to the case in which
k1 = k2. Note that here the correlation between 0 and L is not only due to the constraint L = L1 + I + L2, like in the percolation
case, but in general it also depends on the central triplet (ur

1, JI , u�
2). Since we are interested in the large length limit, we can use

the asymptotic formula

P(I )(u1, JI , u2) ≈ Qc(u1) Qc(u2) δ(JI ) + a1 L λLgd (u1) gd (u2)

(
1

2 Jtyp
e−|JI |/Jtyp − δ(JI )

)
(G29)

that is the same as Eq. (G22) (see Appendix F), except for another contribution coming from the chain with JI = 0 (see
Refs. [28,29]). This new term does not contribute to q(1), since we had to require J1, J2 �= 0, while it is fundamental to take
into account in this case. When averaging over JI , Eq. (G29) becomes∫

dJI PI (u1, JI , u2) ≈ Qc(u1) Qc(u2), (G30)

and then, at the leading order, the two total fields h1 and h2 are independent. To be more precise, the expression Eq. (G28) for
q(2)(L) becomes completely equivalent to the percolation case. In particular, one can use the same notation of Eq. (G8) with the
definition

p̃(L1) = 〈
Pc

(
hext

o

)
P(L1 )

o

(
u0, J1, u�

1

)
P̃o

(
hext

1 ,�1
)
1(|h1| < �1/2) Qc

(
ur

1

)〉
(1 − δ(L1)) + p δ(L1), (G31)

where the first term in angular brackets is proportional to

p�typLλL. (G32)

Following the same steps of percolation, and taking into account that close to the critical point p ∝ pRSB and that �typ ∝ pRSB,
we find the fluctuation of the order parameter written in Eq. (26).
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