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Dynamics and lifetimes of resonant phonons in the quasiparticle and nonquasiparticle regimes
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The dynamics and lifetimes of a phonon with model resonant interactions from the quasiparticle to nonquasi-
particle regime were investigated employing Green’s function and the Green-Kubo method. In the weak-coupling
case, the dynamics of the resonant phonon are analogous to a damped harmonic oscillator and its lifetime τ

is in accordance with the standard phonon transport theory τ = 1
2�

(� being the imaginary part of phonon
self-energy). In the strong-coupling nonquasiparticle regime, however, the resonant phonon “propagates” in a
complex form of wave packets and the actual phonon lifetime τGK as determined from the Green-Kubo formula
significantly deviates from the standard τ = 1

2�
relation. Taking the four-phonon resonant AgCrSe2 and three-

phonon resonant PbSe model systems as examples, the phonon nonquasiparticle dynamics and their lifetimes
in real materials are further investigated by first-principle calculations. Substantial discrepancies between τGK

and τ are found for the strongly resonant phonons at high-symmetrical points in both materials. Meanwhile,
the lifetime τGK of the phonons that are not subjected to resonant phonon interactions almost recovers to the
conventional theoretical result τ despite the non-Lorentzian spectral feature of these phonons. It is suggested
that ωτGK, instead of the conventional ωτ , can be applied as a criterion to distinguish phonon quasiparticles and
nonquasiparticles in addition to the phonon spectral functions.

DOI: 10.1103/PhysRevB.106.174110

I. INTRODUCTION

Heat transport by phonons, or lattice thermal conductivity
(κl ), is a fundamental physical property of materials. Materials
with a high κl have important industrial applications in the
thermal management of mechanical, electrical, and nuclear
systems [1], while low κl materials have potential applications
as high-efficient thermoelectrics [2], thermal barriers, and
thermal insulating materials. In high κl materials, phonons are
weakly coupled; thus, they can be viewed as ideal quasiparti-
cles. The heat transport by these ideal phonon quasiparticles
can be well described by the standard phonon Boltzmann
transport equation (BTE) [3–7]. In contrast, the phonons in
low κl materials are highly anharmonic and usually deviate
from the ideal phonon quasiparticle picture. In strongly an-
harmonic crystals, it is suggested that the standard BTE is no
longer appropriate as it is simply a kinematic approximation,
which implicitly requires ωτ � 1 (ω: phonon frequency; τ :
phonon lifetime, which is usually characterized by the full
width at half maximum 1/τ of the spectroscopic Lorentzian
line) [4,5,8]. In fact, large discrepancies in κl between exper-
iments and the standard BTE theories have been discovered
in materials with low κl , including Tl3VSe4 [9], CsPbBr3

[10], and La2Zr2O [11]. To amend the limitation of standard
BTE theory, attempts have been made either by adding the
heat conduction from the nonquasiparticlelike phonons in the
framework of a two-channel model [9,11] or by considering
the nondiagonal thermal contributions to κl [10,12,13]. How-
ever, the fundamental principles of these strategies are still
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based in the standard BTE theory, which paradoxically extrap-
olates the weak-coupling approximation ωτ � 1 to strongly
anharmonic crystals. Furthermore, whether τ can be unam-
biguously defined for certain materials from the viewpoint of
spectroscopies remains in question. For example, experimen-
tal data have shown that the degenerate zone center optical
phonons in CuCl [14], PbTe [15–17], and PbSe [16,18] are
of non-Lorentzian shape and even split into two individual
peaks due to strong anharmonicity. These phonons are usually
considered nonquasiparticles. Their dynamics, as well as their
phonon lifetimes, are not well understood and should be rein-
vestigated carefully beyond the current standard BTE theory.

Here, by taking the strongly anharmonic resonant phonon
as a model system, we investigate its dynamics and lifetimes
in both weak-coupling quasiparticle and strong-coupling non-
quasiparticle regimes using Green’s function (GF) [19,20]
and the Green-Kubo (GK) method [21–25]. The numerical
calculations of the resonant phonon’s spectral function and
time-correlation function demonstrated that the dynamics of
the resonant phonon were similar to a damped harmonic
oscillator (DHO) in the limit of weak anharmonicity. With
increasing phonon interactions, its spectral functions are
characterized by non-Lorentzian and nonquasiparticle shape
features, while its time-correlation functions considerably
differ from those of DHOs and show unusual nonlinear os-
cillations. Using the Green-Kubo formula, we obtain the
phonon lifetime unambiguously and self-consistently in both
the quasiparticle and nonquasiparticle regime. In the quasi-
particle regime, the resonant phonon lifetime, as calculated
by the GK method τGK, approached the values predicted by
standard theory. In the nonquasiparticle regime, however, τGK

decreased much slowly with increasing phonon interactions
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FIG. 1. Schematic diagrams of the phonon dispersion for (a) three phonon resonance and (b) four phonon resonance. (c) The real part
and imaginary part of phonon self-energy calculated with ω0 = 3 THz, γ0 = 0.5 THz, A = 10−5 THz3 K−2, and n = 2 at T = 474.3 K for the
resonant phonon interactions [Eqs. (6) and (7)].

and reached saturation, leading to a large gap between τGK

and that according to the standard phonon transport theo-
ries. These results are also demonstrated for the resonant
phonons in the real materials AgCrSe2 and PbSe by first-
principle calculations and many-body perturbation theories,
which highlights the universality of the Green-Kubo formula
for phonon nonquasiparticles due to strong phonon-phonon
interactions.

II. THEORY

Phonon resonance can give rise to extremely strong phonon
interactions [26] and leads to low κl in PbTe [15,17],
PbSe [16,18], AgCrSe2 [27], and halide perovskites [28].
Figures 1(a) and 1(b) are schematics of the two most common
types of resonant phonon interactions, i.e., three-phonon and
four-phonon resonances in crystals. The black solid lines in
Figs. 1(a) and 1(b) are indications of the phonon dispersions
that facilitate resonant phonon interactions while conserving
both momentum and energy. For the three-phonon resonance
process shown in Fig. 1(a), the acoustic phonon branch and
one of the optical phonon branches have similar dispersion
patterns and are parallel to each other. In this case, the phonon
on the upper optical phonon dispersion at zone center (ph1)
can easily excite any phonon on the lower acoustic phonon
dispersion (ph2), creating a new optical phonon on the up-
per optical phonon branch (ph3) as ph1 + ph2 → ph3. As a
consequence, the scattering phase space for the zone center
phonon ph1 is huge, and theoretically ph1 resonantly interacts
with other phonons. Three-phonon resonance was proposed
to explain the unusual non-degenerate behaviors of the zone
center optical phonons in CuCl by Kanellis et al. [14]. Simi-
larly, the four-phonon resonance originates from the phonons
lying on two flat phonon branches. For example, the phonon
on one of the flat phonon branches (ph1) can readily combine
any phonon on these two phonon branches (ph2) and yield
two new phonons (ph3 and ph4, which are still on the flat
phonon branches). Thus, ph1 + ph2 → ph3 + ph4, as long as
the momentum and energy are conserved. It is obvious that the
scattering phase space for ph1 is very dense and ph1 becomes
resonant as well. In a recent study, the four-phonon resonance
was used to explain the exceptionally low κl of AgCrSe2 [27].

Next, we focused on the dynamics of the phonon due
to resonant interactions by directly calculating the phonon

spectral function and single-particle correlation function. The
spectral function S(ω, T ) of a phonon at temperature T can
be defined by the imaginary part of its one-particle Green’s
function G(ω, T ) using Eq. (1) [19,20],

S(ω, T ) = −2ImG(ω, T ). (1)

For a phonon with eigenfrequency ω0 subjected to phonon-
phonon interactions, G(ω, T ) can be explicitly obtained from
the Dyson equation as

G(ω, T ) = ω0

π

1

ω2 − ω2
0 − 2ω0�(ω, T )

, (2)

where �(ω, T ) is the phonon self-energy and can be further
written by its real part 	(ω, T ) and imaginary part �(ω, T )
as �(ω, T ) = 	(ω, T ) − i�(ω, T ). In general, �(ω, T ) de-
termines the finite phonon lifetime τ = [2�(ω0, T )]−1 in
the standard phonon transport theories [29], while 	(ω, T )
leads to the renormalization of the phonon frequency due to
phonon-phonon interactions. Inserting Eq. (2) and expression
of �(ω, T ) into Eq. (1), we obtain Eq. (3) [19]

S(ω, T ) = 4ω2
0

π

�(ω, T )[
ω2 − ω2

0 − 2ω0	(ω, T )
]2 + 4ω2

0�
2(ω, T )

.

(3)

It is worth noting that Eq. (3) is analogous to a classical
DHO in its form, which is [30]

SDHO(ω, T ) = 2ω0

π

ωγ (T )(
ω2 − ω2

0

)2 + ω2γ 2(T )
, (4)

where γ (T ) is the damping parameter of the DHO as a
function of temperature. Here, we did not distinguish the
eigenfrequencies of phonons and DHOs, and the same sym-
bol ω0 was used throughout the text. Interestingly, Eq. (3)
exactly recovers to Eq. (4) if �(ω, T ) = ωγ (T )

2ω0
and the phonon

frequency shift is neglected [	(ω, T ) ≈ 0]. This simple ap-
proximation directly links the damping parameter of DHOs
to the phonon lifetime as τ (T ) = [2�(ω0, T )]−1 = γ (T )−1.
In fact, Eq. (4) has been widely applied in Raman, inelastic
neutron, and x-ray spectroscopies [31] as a fitting function to
extract the lifetime information of phonons. In addition to the
frequency domain, the phonon dynamics can also be studied
in the time domain via single-particle correlation function
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F (t−t ′, T ) [20], which is related to S(ω, T ) as

F (t − t ′, T ) =
∫ +∞

−∞

1

eβ h̄ω − 1
S(ω, T )e−iω(t−t ′ )dω, (5)

where β−1 = kBT , and kB is the Boltzmann constant.
Given Eqs. (3) and (5), the phonon dynamics of a resonant

phonon can be readily obtained as long as the resonant phonon
interactions �(ω, T ) are known. Unfortunately, the analytical
forms of three-phonon and four-phonon resonance are still
unclear despite their straightforward physical pictures. For the
sake of simplicity, we adopted the following form proposed
for resonant scatterings, or resonant phonon-phonon interac-
tion [32]:

�(ω, T ) = Aγ0ωT n

(
ω2 − ω2

0

)2 + γ 2
0 ω2

, (6)

where γ0 is the “damping” constant and A is a parameter
that characterizes the overall strength of phonon interactions.
The temperature effect is taken into consideration by a simple
power law �(ω, T ) ∼ T n, where n is determined by specific
mechanisms of phonon interactions. For instance, three-
phonon resonant interactions usually lead to n = 1 [33,34],
while four-phonon interactions give rise to n = 2 [35,36]. The
real part of the phonon self-energy can be evaluated from
Eq. (6) via the Kramers-Kronig relationship as follows:

	(ω, T ) = A
(
ω2 − ω2

0

)
T n

(
ω2 − ω2

0

)2 + γ 2
0 ω2

. (7)

Figure 1(c) displays Eqs. (6) and (7) calculated with ω0 =
3 THz, γ0 = 0.5 THz, A = 10−5, and n = 2 at T = 474.3 K.

III. RESULTS AND DISCUSSION

In this section, we first study the phonon dynamics of the
model resonant phonon interacting system and compare the
phonon lifetimes calculated by Green-Kubo method to the
conventional theory. Then the phonons in two model sys-
tems AgCrSe2 and PbSe, which are characterized by strong
four-phonon resonant interactions and three-phonon resonant
interactions, are further investigated and discussed.

A. Model phonon resonant interacting system

The spectral functions and time-correlation functions of
a phonon subjected to a model resonant phonon-phonon in-
teraction [Eq. (6)] at different temperatures are studied with
parameters ω0 = 3 THz, γ0 = 0.5 THz, A = 10−5, and n = 2.
As a comparison, the dynamics for a classical DHO [Eq. (4)]
under the same strength of phonon interactions, i.e., γ (T ) ≡
2�(ω0, T ), was also calculated. Figure 2 summarizes the
spectral functions and time-correlation functions at T = 100,
300, 474.3, and 600 K, as calculated by the DHO model (black
curves) and GF (red curves), respectively. These tempera-
tures were chosen specifically to generate nominal ω0τ (T )
values of 22.5, 2.5, 1, and 0.62, which cover the phonon
interactions from the weak- to extremely strong-coupling
regions. In the weak-coupling region [ω0τ (T ) = 22.5, T =
100 K], the spectral functions S(ω, T ) predicted by the DHO
model and GF were similar to each other in their single-peak

Lorentzian-like line shape. Here, the phonon is considered
a quasiparticle, as it has well-defined energy and linewidth
(or lifetime). In addition, the corresponding time-correlation
functions F (t−t ′, T ) (t ′ = 0) were well-defined oscillations.
Indeed, it has been proved that the long-time behavior of
the correlation function F (t−t ′, T ) would reduce to the well-
known form exp(−γ t )cos(ω0t ) when ω0τ (T ) � 1 [37].

In the mild- to extremely strong-coupling region, how-
ever, the phonon dynamics according to the DHO model
and GF are drastically different in both frequency and time
domains. Notably, all the spectral functions for the classical
DHO model were still of single peak shape with increas-
ing phonon interactions. Above the critical temperature T =
474.3 K [ω0τ (T ) = 1], the phonon spectral function flat-
tened and almost vanished, which is typically considered
a hallmark of the breakdown of the phonon quasiparticle
picture. Moreover, the corresponding time-correlation func-
tion F (t−t ′, T ) (t ′ = 0) decayed rapidly and dropped to zero
within ∼1 ps when ω0τ (T ) � 1. These results are trivial and
have been reported previously in the literature. In comparison,
the spectral functions according to GF were no longer of
single peak shape, but split into two peaks with increasing
resonant phonon interactions. This splitting of the phonon
spectral function agrees with the experimental observation in
CuCl [14], PbTe [15,17], and PbSe [18]. This characteris-
tic non-Lorentzian two-peak feature in the phonon spectrum
also departs from the phonon quasiparticle picture, since
the energies and linewidths cannot be consistently defined
spectroscopically in any sense. Furthermore, the quasiparticle
picture even failed when ω0τ (T ) = 2.5 > 1 at 200 K, while
a single well-defined peak was found for the DHO model.
As a result, we questioned whether ω0τ (T ) is an appropriate
or quantitatively accurate criterion for the validity of phonon
quasiparticle approximations in materials with strong anhar-
monicity.

In the time domain, the time-correlation functions
F (t−t ′, T ) (t ′ = 0) calculated by GF were dramatically dif-
ferent from their DHO counterparts as well. Unlike those of
DHOs, the time-correlation functions F (t−t ′, T ) according to
GF consisted of several wave packets. For example, there were
four clear wave packets, each lasting from 0 to ∼1 ps, ∼1 to
∼2 ps, ∼2 to ∼3.5 ps, and ∼3.5 to ∼5 ps, for ω0τ (T ) = 2.5.
With increasing phonon interactions, the shape of F (t−t ′, T )
became nonperiodic and much more complicated. Nonethe-
less, all of them showed correlations up to ∼3–4 ps even for
the most strong-coupling case [ω0τ (T ) = 0.62, T = 600 K].
These peculiar nonlinear oscillations in F (t−t ′, T ) can be
phenomenologically explained by the two-peak structure of
the spectral functions S(ω, T ) from the perspective of Fourier
transform [Eq. (5)]. Taking ω0τ (T ) = 1 as an example, the
two sharp and isolated peaks in the spectral/frequency domain
can be approximately considered as a superposition of two
oscillators in the time domain, in which the frequency of one
oscillator is smaller than ω0 and the other is larger than ω0.
More importantly, the “linewidths” of these two peaks were
much smaller than that of DHO, which hence explained the
weak “damping” in F (t−t ′, T ).

The complex oscillation that persists up to ∼3–4 ps in the
time-correlation function F (t−t ′, T ) indicated that the life-
time of the model resonant phonon was longer than τ = 1

2�
,
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FIG. 2. (a) Spectral functions and (b) time-correlation functions of the resonant phonon [Eq. (3)] (red solid lines) and the DHO [Eq. (4)]
(black solid lines) at different temperatures (or interaction strength), calculated with ω0 = 3 THz, γ = 0.5 THz, A = 10−5 THz3 K−2, and
n = 2.

which was expected from the standard transport theory, espe-
cially when ω0τ (T ) � 1. To overcome this inconsistency, we
referred to Refs. [21–25] and defined the phonon lifetime by
an integration of the phonon spectral function S(ω, T ), as

τGK(T ) ≡ π

2

∫ +∞

−∞

cV (ω, T )

cV (ω0, T )
S2(ω, T )dω, (8)

where cV (ω, T ) = (β h̄ω)2 kBexp(β h̄ω)
[exp(β h̄ω)−1]2 is the harmonic

phonon heat capacity. Note that Eq. (8) is actually a wave
formalism of phonon lifetime and its application is not
limited by the shape of the phonon spectrum. In other
words, we can determine the phonon lifetime from Eq. (8)
unambiguously, whether S(ω, T ) is characterized by single
Lorentzian peak or (double) non-Lorentzian peaks (or
whether phonons are quasiparticles or nonquasiparticles).
In the weak-coupling limit (� → 0), it can be proved that
Eq. (8) would recover to the general kinematic approximation
τGK ≈ 1

2�
for quasiparticles [21–23]. Using Eq. (8), we

calculated the lifetime for the resonant phonons by inserting
Eqs. (3) and (4) for DHOs at different temperatures, or
different coupling strengths. As shown in Fig. 3, the lifetime
of DHOs calculated using the wave formalism τDHO

GK (T )

FIG. 3. Phonon lifetime τGK as a function of temperature, calcu-
lated by the Green-Kubo method [Eq. (8)] for the resonant phonon
[Eq. (3)] (red circles) and the DHO [Eq. (4)] (black rectangles),
respectively. The green dashed line indicates the critical phonon
lifetime that leads to ωτ = 1 according to standard theory.
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(black rectangles) decreased monotonically with increasing
temperature (or phonon interactions). This result agrees
with the typical behavior of phonon lifetime with increasing
phonon interactions and temperature. Beyond the critical
point ωτ = 1 (green dashed line), at which the DHO spectral
function is non-Lorentzian and its lifetime is difficult to define
by standard theory, we obtained the DHO lifetime according
to the Green-Kubo method. In fact, the numerical integration
of Eq. (4) resulted in τDHO

GK (T ) = τ = [2�(ω0, T )]−1 no
matter the values of ω0, γ0, A, n, and T [38]. Although
we are unable to give a rigorous proof here, we inferred
that τDHO

GK (T ) should be exactly equivalent to [2�(ω0, T )]−1

analytically. This is a very interesting finding as it directly
links the wave formalism of phonon lifetime to the standard
kinematic transport theory in the special case of DHOs. That
is, the conventional τ = 1

2�
for phonon lifetime is valid for

both quasiparticles and nonquasiparticles when phonons are
DHOs or have the unique line shape of DHOs. Thus, we
can use τDHO

GK = 1
2�

as a reference when phonon lifetimes
are compared in terms of wave formalism and the standard
kinematic approximation.

In most cases, however, phonons are not ideal DHOs, and
their lifetimes as a function of temperature (or phonon in-
teractions) should deviate from the benchmark τDHO

GK = 1
2�

.
As shown in Fig. 3, the τRP

GK(T ) calculated by Eq. (3) for
the model resonant phonon (red circles) was slightly higher
than the τDHO

GK (T ) below 100 K, or in the quasiparticle
regime [ω0τ (T ) � 1], which is consistent with the con-
clusion that τGK → 1

2�
in the weak-coupling limit [21–23].

With increasing phonon interactions [ω0τ (T ) → 1], τRP
GK(T )

also decreased, but at a much slower rate than τDHO
GK (T ). At

300 K, τRP
GK(T ) was ∼3 ps, while the reference τDHO

GK (T ) was
less than 1 ps. Such a large gap in phonon lifetime is in
agreement with the significant differences in the phonon time-
correlation functions [Fig. 2(b)]. Unexpectedly, τRP

GK(T ) even
stopped decreasing with further increasing temperatures and
phonon interactions. Instead, it reached a plateau (∼2.9 ps)
at around 400–500 K and increased marginally at higher
temperature. The increase in phonon lifetime with increasing
temperature or phonon interactions is unexpected and very un-
usual. It can only be obtained when the full phonon spectrum
contribution to the phonon lifetime is considered. This com-
plex behavior of phonon lifetime as a function of temperature
is the key result of this work and the limitation of stan-
dard τ = 1

2�
for phonon lifetime was clearly demonstrated.

Therefore, the use of ω0τGK, instead of ω0τ , may be more
accurate as a basic criterion to distinguish quasiparticles and
nonquasiparticles. For example, the minimum ω0τGK value for
the resonant phonon was ∼9 at around 400–500 K, which
is much larger than 1 and suggests quasiparticlelike phonon
transports despite its peculiar nonquasiparticlelike two-peak
feature. In contrast, ω0τ was ∼1 in the same temperature
range according to the standard phonon transport theory.

In the following two sections, the resonant phonons in
real materials AgCrSe2 and PbSe will be further discussed.
These two materials are chosen specifically because the
low-lying transverse acoustic (TA) phonons in AgCrSe2 is
dominated by strong four-phonon resonant interactions [27],
while the transverse optical (TO) phonon in PbSe is well
known to have notable three-phonon resonant interactions

[16,18]. The phonon dispersions and phonon-phonon interac-
tions of AgCSe2 and PbSe were calculated in a combination
of density functional theory and the temperature-dependent
effective potential (TDEP) method [7]. The details of the
calculation of AgCrSe2 are reported elsewhere [27]. For PbSe,
similar procedures were carried out with a plane wave en-
ergy cutoff of 450 eV and the electron configurations of Pb
and Se as 5d106s26p2 and 4s24p4, respectively. The phonon
self-energy of PbSe is calculated on a 11 × 11 × 11 mesh
grid. Figure 4 displays the calculated phonon dispersions of
AgCrSe2 and PbSe at 300 K. Next, we discuss the phonon
spectral functions, time-correlation functions, and lifetimes of
these two materials in detail.

B. Resonant phonons in AgCrSe2

For the sake of simplicity, we focus on the low-lying TA
phonons of AgCrSe2 at the high-symmetrical F and L points
and the calculated S(ω, T ) [Eq. (3)] and F (t−t ′, T ) (t ′ = 0)
[Eq. (5)] are given in Figs. 5 and 6. For TA1 phonons, their
spectral functions are obviously far from Lorentzian shape
and a clear peak splitting takes place with increasing tem-
perature, which is qualitatively similar to those predicted by
the simple resonant scattering model [Fig. 2]. It is interesting
to remark that the peak positions of the spectral functions
S(ω, T ) deviate from the phonon eigenfrequency ω0 (ωTA1

0 ∼
0.7–0.8 THz) profoundly due to phonon renormalization. As
a result, the time-correlation functions F (t−t ′, T ) differ from
DHO-like oscillations. A notable change of oscillating fre-
quency from 100 to 300 K can also be found for the TA1
phonons, especially the TA1 phonon at the F point (Fig. 5).
For TA2 phonons, their spectral functions are in the shape of
the Lorentzian function at 100 K and deviate from the con-
ventional quasiparticle picture with the emergence of a small
shoulder at higher temperatures. However, the F (t−t ′, T ) of
TA2 phonons still resemble that of a DHO. In addition to the
TA phonons, the LA phonons, which are barely affected by
four-phonon resonant interactions, are investigated as well.
As shown in Figs. 5 and 6, an accumulation of spectral
density at a low frequency of ∼1.5 THz occurs for the LA
phonons. Such an unusual shift in spectral density indicates
strong phonon renormalization and possible nonquasiparticle
behaviors. In the time domain, the increasing spectral density
at ∼1.5 THz gives rise to the oscillation of LA phonons in the
form of wave packets.

Using Eq. (8), we compare the phonon lifetimes τGK as
calculated from the Green-Kubo method to that determined
by the conventional theory τ . As shown in Fig. 7, the τGK

of TA1 phonons (red solid circles) are about ∼100% larger
than τ (red open circles) given their strong phonon-phonon
interactions and the nonquasiparticle feature in spectral
functions. For TA2 phonons, the differences between their
lifetimes τGK and τ are relatively smaller, but still have a
sizable discrepancy of 15% at 100 K and up to 57% at 300
K. These results are consistent with our calculation results
(Fig. 3) by using the simplest resonant interaction model
[Eq. (6)] qualitatively. Our calculations indicate that ω0τGK

of the TA1 phonon at the F point is already <1 at 100 K,
thus resulting in a non-negligible underestimation of phonon
lifetime by the standard τ = (2�)−1 relation. In comparison,
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FIG. 4. Theoretical phonon dispersions of (a) AgCrSe2 and (b) PbSe at 300 K.

the phonon lifetimes τGK of LA phonons are almost equal
to τ numerically in spite of their significant nonquasiparticle
spectral features. The reason is still not well understood yet
and it might be partly explained by the results ω0τGK > 1 of
LA phonons. Specifically, ω0τGK of the LA phonon at the F
(L) point decreases from 4.40 (3.07) at 100 K to 2.14 (1.55)
at 300 K. Nonetheless, the good agreement between τGK and
the standard theory result τ for a phonon “nonquasiparticle”
does not seem like a coincidence and should deserve further
studies.

C. Resonant phonons in PbSe

PbSe is another good exemplary material system that
has characteristic resonant phonon interactions. Figure 8(a)
displays the calculated degenerate transverse optical (TO)
phonon spectral functions at the � point and a clear crossover
from the quasiparticle regime to the nonquasiparticle regime
could be found. Meanwhile, the time-correlation functions
of the TO phonon follow a conventional oscillating behavior
except for that at 300 K [Fig. 8(b)]. The phonon lifetime of the
� point TO phonon is also calculated by using Eq. (8) and the

FIG. 5. (a) Spectral functions and (b) time-correlation functions of the transverse acoustic and longitudinal acoustic phonons of AgCrSe2

at the high-symmetrical F point, calculated at 100, 200, and 300 K, respectively.
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FIG. 6. (a) Spectral functions and (b) time-correlation functions of the transverse acoustic and longitudinal acoustic phonons of AgCrSe2

at the high-symmetrical L point, calculated at 100, 200, and 300 K, respectively.

results are given in Fig. 9. The differences between τGK and
τ of TO phonons are non-negligible as well, ranging from an
underestimation of phonon lifetime by 12% at 100 K to over
51% at 300 K by the standard theory. The value of ω0τGK for

the � point TO phonon is ∼1.86 at 100 K and decreases to
∼0.84 at 300 K, which agrees with the as-observed crossover
from quasiparticles to nonquasiparticles in the spectral func-
tions. Besides the � point TO phonon, the spectral functions

FIG. 7. Theoretical phonon lifetimes τGK (solid circles), as calculated by Green-Kubo method [Eq. (8)], and τ = (2�)−1 (open circles), as
calculated by the standard theory, of the transverse acoustic and longitudinal acoustic phonons of AgCrSe2 at the high-symmetrical (a) F and
(b) L point at 100, 200, and 300 K. The lines are spline interpolated for better visualization.
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FIG. 8. (a) Spectral functions and (b) time-correlation functions of the transverse optical phonons of PbSe at the zone center � point,
calculated at 100, 200, and 300 K, respectively.

and τGK of � point longitudinal optical (LO) phonons are
also determined and the results are provided in Fig. S1 of
the Supplemental Material [38]. An onset of spectral density
at ∼4.75 THz can be readily found in the spectral functions
at 200 and 300 K, which indicates the incipient transition
to nonquasiparticles. However, similar to the LA phonons in
AgCrSe2, the calculated τGK of � point LO phonons match
τ very well. Again, the good consistency between τGK and
the standard theory τ for a phonon deviating from the con-
ventional Lorentzian shape cannot be simply ascribed to the
mild or weak coupling of phonons (ω0τGK ≈ 2.67 for the LO
phonon at 300 K) and must have further implications. Careful
studies in this aspect will be our future work.

IV. CONCLUSIONS

In conclusion, the dynamics and lifetimes of a simple
resonant phonon and a corresponding DHO with the same

FIG. 9. Theoretical phonon lifetime τGK (solid circles), as cal-
culated by Green-Kubo method [Eq. (8)], and τ = (2�)−1 (open
circles), as calculated by the standard theory, of the optical phonons
of PbSe at the zone center � point at 100, 200, and 300 K. The lines
are spline interpolated for better visualization.

coupling strength using Green’s function and the Green-Kubo
method were studied. Our results highlight the limitation of
the standard theory for phonon lifetimes (τ = 1

2�
) and the

necessity of a full wave formalism of phonon thermal trans-
port, especially when the phonon spectra are characterized
by non-Lorentzian and nonquasiparticle shape features. These
findings are also well demonstrated in the model systems
AgCrSe2 and PbSe, which are both characterized by strong
resonant phonon interactions. The huge difference in phonon
lifetimes infers the mismatch between the experimental κl

values and the theoretical BTE values is possibly a result of
the neglect of the two-channel phonon heat transport [9,11]
or the nondiagonal part of thermal transport [10,12], as well
as the intrinsic limitation of τ = 1

2�
. Using the same Green-

Kubo method, it has been reported that the lifetimes of the
soft phonons in GeTe are substantially larger (by a factor of
100) than those calculated by the standard method [25]. We
believe our results are ubiquitous and should be readily ap-
plicable to materials with exceptionally strong anharmonicity
and anomalous κl behaviors. These results also provide in-
sights into the phonon dynamics of the heat transport in strong
anharmonic material systems. It is suggested that a reinvesti-
gation into the phonon spectral functions and the deviations
from the standard phonon lifetime τ = 1

2�
in strongly anhar-

monic materials such as CuCl, PbTe, Tl3VSe4, and CsPbBr3,
is of great importance for the future development of phonon
transport theories.
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