
PHYSICAL REVIEW B 106, 174109 (2022)

Relaxation and dynamics of stressed predisplaced string resonators
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Predisplaced micromechanical resonators made from stressed materials give rise to new static and dynamic
behavior, such as geometric tuning of stress. Here, an analytical model is presented to describe the mechanics of
such predisplaced resonators. The bending and tension energies are derived and a modified Euler-Bernoulli
equation is obtained by applying the least action principle. By projecting the model onto a cosine shape,
the energy landscape is visualized, and the predisplacement dependence of stress and frequencies is studied
semianalytically. The analysis is extended with finite-element simulations, including the mode shapes, the role
of overhang, the stress distribution, and the impact of film stress on beam relaxation.
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I. INTRODUCTION

Nowadays, micro- and nanomechanical resonators are
widely used for a large variety of applications, ranging from
sensing and detection [1–3], optical and microwave quantum
transducers in hybrid optoelectromechanical systems [4], to
fundamental experiments in the quantum regime [5–7]. These
resonators are often made out of prestrained films, such as
Si3N4, as such materials provide very high quality factors
[8–11], enabling, e.g., high detection efficiencies in the case of
sensors [3] and long coherence times in mechanical quantum
storage [12]. For all these experiments, it is imperative to
engineer the geometry of the resonator [9,13–18] including
the stress [19,20], to reach the best performance. Our recent
work [21] experimentally demonstrates the geometrical tun-
ing of the stress of resonators made out of prestrained SiN
films. There, the stress in string resonators could be varied
by a factor of 40, resulting in strong frequency tuning and
changes in dissipation. The latter was successfully modeled
using the framework of dissipation dilution [10,22], which
enabled a new approach for systematic studies of the damping
mechanisms in these systems. More generally, the stress re-
duction also allows a range of applications where stress tuning
can be employed, such as matching the resonance frequen-
cies of distinct oscillators for optomechanical synchronization
[15,23,24], reducing the spring constant to enhance the sig-
nal from micromechanical sensors, or, e.g., improving the
performance of optomechanical phase shifters as shown in
Appendix C. Still, the relatively simple predisplaced string
geometry already raises many interesting questions, such as
the potential for these devices to buckle and the influence of
the geometry on the eigenmodes. A thorough understanding
of the statics and dynamics of these structures is, however,
still lacking.
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Here, we provide a detailed analysis of the mechanics
of predisplaced beam resonators using analytical methods,
which are supported by finite-element simulations. It is found
that the relaxation of the strings is governed by a competi-
tion between bending and stretching energy, and that there
are many analogies between this system and buckled beams.
In Sec. II the stress relaxation of straight and predisplaced
stressed beams is studied, as well as their potential to buckle.
In Sec. III, expressions for the bending and tension energy
stored in the beam are derived. Based on this, their equa-
tions of motion, i.e., modified Euler-Bernoulli equations, are
obtained in Sec. IV. For a deeper understanding, the model
is projected onto the mode shape resembling the fundamental
modes (Sec. V). Finally, in Sec. VI, finite elements simula-
tions are used to validate the results and to study the mode
shapes, the role of the overhang, the distribution of the stress
throughout the beams, and the influence of the film stress.

II. RELAXATION

A. Relaxation of straight strings

Nanomechanical strings are typically made by etching a
thin film, most notably silicon nitride, with a large, uniform
tensile stress, followed by their release from the supporting
substrate. The films are typically thin (thickness h � length
L) so that the out-of-plane components [i.e., z; see Fig. 1(a) for
the coordinate system] of the stress tensor vanish (σiz = σzi =
0 for i ∈ {x, y, z}), and only in-plane tensile forces remain. For
an isotropic material, there are no shear stresses σxy = σyx = 0
and only the components σxx = σyy ≡ σfilm remain. The film
stress σfilm is a property of the growth process and can be
controlled using, e.g., the stoichiometry of the material. It is
the amount of stress that remains present for two-dimensional
resonators that are clamped on all sides, such as membranes
[25], or when narrow (width w � L) and straight structures
are patterned but still held by the supporting substrate as
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FIG. 1. (a) Illustration of the relaxation of straight strings. In the
supported case (top), there is both a large stress in the x direction
(yellow) and y direction (orange). After release (middle), the stress
in the y direction has relaxed, resulting in shrinking in the y direction
(in-plane, black arrows). For typical materials with a positive Poisson
ratio, this gives rise to an expansion in the z direction (out-of-plane,
black arrows) and a reduction in the stress in the x direction (yellow).
The length is still the separation between the clamping points L. If the
beam would be completely free (bottom), its length would reduce to
L0 and there are no stresses anymore. Here, for clarity, the transverse
deformations are not shown. (b) Relaxation of predisplaced beams.
When supported (top), the beams have designed predisplacement
profile u0(x) and after release (middle) this relaxes to u(x) [21]. If
the beams were to be forced straight (bottom), e.g., by (fictitiously)
pushing with strong structures from the sides (red), an out-of-plane
buckling displacement v(x) can result. (c) Color plot of the resulting
strain εxx if the beams were made straight [as in the bottom of
(b)]. Compressive (tensile) strains are indicated in blue (red) and
the dashed line indicates the critical strain for out-of-plane buck-
ling εc,z. Note that εc is almost indistinguishable from ε = 0. Here,
U0 = u0(L/2); for a complete list of parameters, see Appendix A.

illustrated in the top panel of Fig. 1(a). After release, the
forces in the y direction cannot be sustained and σyy ≈ 0
[Fig. 1(a), center]. In this case, σxx is, thus, the only remain-
ing stress component, and we define its value as σ0. Since

the straight beam is clamped at the ends, the length before
and after the release remains the same [see Fig. 1(a)] and
thus the xx component of the strain tensor, εxx is identical
before and after the release. For an isotropic linear-elastic
material with Young’s modulus E and Poison ratio ν, this
longitudinal strain is given by εxx = (σxx − νσyy)/E , which
is (1 − ν)σfilm/E before and σ0/E after the release. Since
these two are equal, the remaining xx component of the stress
tensor σ0 can be determined: σ0 = (1 − ν)σfilm. For our sil-
icon nitride films with σfilm = 1050 MPa and ν = 0.23, this
yields σ0 = 809 MPa (see Appendix A), corresponding to a
prestrain εxx = σ0/E = 0.31%. Note that the cross-sectional
area A = hw can always be used to convert back and forth
between the stress σxx and tension T = σxxA.

Finally, when the clamping at x = 0 and x = L would be
removed [Fig. 1(a), bottom], the beam would relax completely
so that also σxx = 0, and the beam would attain a length L0 =
(1 − εxx )L. To put this into perspective: a 100 μm long beam
would shrink by L − L0 = 310 nm when freed.

B. Relaxation of predisplaced strings

So far, the discussion of relaxation of stressed beams has
focused on straight strings. Figure 1(b) shows a schematic
of our predisplaced strings [21]. Here, the beam is made
with a center line that is not straight, but has an x-dependent
displacement in the y direction u0(x). The length of the beam
is thus longer than the distance between the clamping points
L; the exact length � depends both on L and u0(x) as will
be shown in the next section. Before release, the beam is
supported [Fig. 1(b), top] and the stress is again σfilm. Now,
upon release both transverse relaxation, as well as straighten-
ing of its shape will occur. Both will happen together, but for
the understanding it is good to imagine this as two separate
steps: one where the transverse stress relaxes as was shown in
Fig. 1(a), but still retaining the predisplacement, and a second
one where the predisplacement relaxes too. After the first step,
the relaxed stress would also be σ0 = (1 − ν)σfilm, just like for
a straight beam, but now along the direction of the center line,
which can be locally under an angle with the x axis. There will
thus be an uncompensated y component in the tension along
the string, which will cause the straightening. This changes
the profile from u0(x) to u(x) [Fig. 1(b), middle]. As will
be detailed in the following sections, how much the string
straightens depends on the competition between tension and
bending energy, and if there is potential to buckle.

C. Potential to buckle

Buckling is the sudden deformation of a structure un-
der a compressive load, which can lead to out-of-plane
deformations [26–28]. In engineering, buckling may result
in catastrophic failure of structures, but in micromechanics
buckling can also be harnessed to implement a variety of
functions in micromechanical devices, e.g., for information
storage [29,30] or to control propagation of waves [31]. As
explained above, when predisplaced strings relax towards the
line connecting the clamping points, their curve length short-
ens and the tensile stress decreases. When the string would
be (actively made) straight between the clamping points [see
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Fig. 1(b), bottom], the tension can become negative, and out-
of-plane deformations, cf. buckling in the z direction, may be
energetically favorable compared to in-plane deformations for
h < w. In this section it is explored if this situation can occur,
or not.

The curve length � of the resonator depends on the in-
and out-of-plane displacement profiles, u(x) and v(x), respec-
tively, through the functional

�[u, v] =
∫ L

0

[
1 +

(
∂u

∂x

)2

+
(

∂v

∂x

)2]1/2

dx. (1)

Throughout this paper, it is assumed that the displacements are
not large, e.g., |u0(x)| � L and |∂u0/∂x| � 1 and likewise for
u and v. In this approximation, the length becomes

�[u, v] ≈ L + 1

2

∫ L

0

(
∂u

∂x

)2

+
(

∂v

∂x

)2

dx. (2)

Now, if the string would be completely straight [cf. u(x) = 0
and v(x) = 0], then the curve length should equal the dis-
tance between the clamping points: �[0, 0] = L, which is not
necessarily equal to the length that the straightened string
would have if it was not clamped, L0, thus resulting in a strain
εxx = (L − L0)/L that can be positive or negative, depending
on whether L0 is smaller or larger than L. For L0 < L there
is still tensile strain and no buckling occurs. However, if
L0 > L there would be a compressive load exerted by the
clamping points. Still, out-of-plane buckling may only occur
when that compression is large enough, i.e., when the critical
strain εc,z = −4π2h2/{12L2(1 − ν2)} < 0 [32] is exceeded:
(L − L0)/L < εc,z(L).

Figure 1(c) shows a color plot of the strain when beams
with varying length L and varying predisplacements u0(x) =
1
2U0[1 − cos(2πx/L)] would be made straight, as well as the
line where the critical strain εc,z is reached (dashed line). Long
beams with small initial displacements (top left corner) still
have tensile strain when made straight, but short beams with a
large displacement (bottom right corner) would have compres-
sive strain that can exceed the critical strain. Even though in
Fig. 1(c) there was a large tensile stress present before release,
this shows that there are still beams that have the potential to
buckle, and, thus, also the out-of-plane displacement v should
be taken into account in the analysis.

III. BENDING AND TENSION ENERGY

To understand the statics and dynamics of the predisplaced
strings, the potential energy that is stored in both the bending
and stretching of the beam is needed. In this section, first
the bending energy EB is calculated, followed by the tension
energy ET .

A. Bending energy

It costs energy to deform a mechanical structure and a part
of that is due to bending. For example, when a doubly clamped
beam is displaced downwards, in the middle its bottom sur-
face will be stretched, whereas its top becomes compressed
[33,34]. Only the neutral plane does not deform. There, not
only the direction of the in-plane displacement ux, but also the
displacement-induced stretching force (concretely σxx − σ0,
see Secs. III B and VI C) reverses sign there, so that both in the

stretched and in the compressed area, elastic energy is stored.
By averaging the work needed over the cross section of the
beam, one obtains [10,32,33]

EB,z[v(x)] = Dz

2

∫ L

0
v′′2(x)dx, (3)

where Dz = EIz/(1 − ν2) is the bending rigidity (also known
as the flexural rigidity) and Iz is the second moment of area,
which equals wh3/12 for a beam with a rectangular cross
section displaced in the z direction [33]. The quotes in Eq. (3)
denote derivatives with respect to x. The bending energy thus
depends on the curvature of the displacement profile, v′′ =
∂2v/∂x2, squared.

In the case of a tensionless beam with a predisplacement
u0(x) in the y direction, the same argument can be used to find
the bending energy for the in-plane direction:

EB,y[u(x)] = Dy

2

∫ L

0
(u′′(x) − u′′

0 (x))2dx, (4)

with Dy = EIy/(1 − ν2) and Iy = w3h/12. For u(x) = u0(x),
the bending energy is at its minimum: UB,y[u0(x)] = 0 and
the more the beam displaces from its initial shape the more
bending energy this costs. The total bending energy EB is the
sum of EB,y and EB,z.

B. Tension energy

Compared to EB, the tension energy ET is more subtle to
calculate since, in addition to a constant component T0, a part
of the tension T depends on the flexural displacements. First
focusing on in-plane displacements u(x) only, one can ask
what force distribution fy(x) generates a particular u(x), given
a tension T . The static force balance of a string under tension
is [32]

−T [u(x)] × ∂2u

∂x2
= fy(x). (5)

This is typically used to find the displacement for a given force
distribution by solving the differential equation, but when u(x)
is already specified, the force per unit length that is needed to
create that displacement can be obtained from Eq. (5) directly.
fy(x) is thus a functional of the displacement profile. This is
indicated with the notation fy[u(x)](x). Equation (5) shows
that the larger the displacement, the larger the force per unit
length has to be.

Physically, fy(x) originates from having to balance the
tension T that tries to pull the string back to u(x) = 0. When
incrementing the displacement, work is done against that ten-
sion, which is stored as potential energy. By summing the
work required to bring the displacement from 0 to u(x), and
integrating over the length of the string, one obtains:

ET [u(x)] =
∫ L

0

∫ u(x)

0
fy[ũ(x)](x)dũdx. (6)

By using Eq. (5) and defining ũ(x) = su(x), Eq. (6) can be
expressed as

ET [u(x)] =
∫ L

0

∫ 1

0
−T [su(x)]

∂2(su)

∂x2
d (su)dx (7)

=
∫ 1

0
T [su(x)]sds

∫ L

0
−∂2u

∂x2
u(x)dx. (8)
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Note that the second integral in Eq. (8) only contains the final
displacement profile u(x) and its curvature, whereas the first
integral takes the changing magnitude of the displacement and
tension during the process of going from ũ = 0 to ũ = u into
account through the dummy variable s. If the tension would
be independent of u(x), i.e., T [u(x)] = T0, then the integral
over s would give 1

2 T0 [10]. With the contribution because of
the displacement-induced elongation of Eq. (2) included, the
tension is

T [u(x)] = T0 + AE

2L

∫ L

0

(
∂u

∂x

)2

dx. (9)

The second term in Eq. (9) gives an additional s2, so that s4

appears in the antiderivative of the first integrant of Eq. (8).
The prefactor of that term is 1

4 instead of the 1
2 in front of

T0 in the expression from ET . Here, it should be emphasized
again that T0 is the tension of the straight beam T [u(x) = 0],
and not the tension σ0A = T [u0(x)] initially present after the
transverse stress relaxation, as was detailed in Sec. II B. Still,
after inserting u(x) = u0(x) into Eq. (9) and rearranging, one
obtains

T0 = σ0A − AE

2L

∫ L

0

(
∂u0

∂x

)2

dx. (10)

which shows clearly that T0 depends on the predisplacement
u0 and on the initial stress σ0.

After performing partial integration and realizing that the
boundary terms are zero for the boundary conditions u(0) =
u(L) = 0, the tension energy becomes:

ET = 1

2

{
1

2
T0 + 1

2
T [u(x)]

}∫ L

0

(
∂u

∂x

)2

dx. (11)

It should be noted that the effective tension appearing between
the curly brackets in ET is neither the initial tension T0, nor the
final tension T [u], but Teff = 1

2 (T0 + T ) = T0 + 1
2 (T [u(x)] −

T0). When Teff is positive, u(x) = 0 [i.e., straight strings] is
a minimum of ET . When the effective tension is negative,
u(x) = 0 corresponds to a maximum in ET and buckling may
occur, as explored in Sec. II C. From Eq. (9) it is clear that this
requires T0 < 0.

When both displacements in the y (u) and z direction
(v) are present, the tension is a functional of both profiles,
T [u(x), v(x)], and after a similar derivation as done above for
u only, the tension energy ET becomes:

ET = 1

2
Teff

∫ L

0

(
∂u

∂x

)2

+
(

∂v

∂x

)2

dx. (12)

with Teff = 1
2 T0 + 1

2 T [u, v].

IV. EQUATIONS OF MOTION

The equation of motion for u(x, t ) and v(x, t ) can be ob-
tained using the formalism of Lagrangian mechanics [35].
For this, the total potential energy Etot = EB + ET , as derived
in the previous section, as well as the kinetic energy K are

needed. The latter is

K = 1

2
ρwh

∫ L

0
u̇2 + v̇2dx, (13)

where the dot indicates a derivative with respect to time t .
To obtain the equations of motion, in short, one inserts

u → u + δu (and likewise for δv) into the Lagrangian L =
K − Etot and linearizes in the infinitesimal virtual displace-
ment δu(x, t ). This results in integrals containing δu, as well
as its time (in K) and spatial derivatives (in EB, ET , and T ). Af-
ter performing partial integration, and setting the total change
in the Lagrangian δL to zero, one obtains an equation with
an integral over the beam length containing δu(x, t ) itself,
but no longer its derivatives. Since δL = 0 should hold for
arbitrary δu, the prefactor of δu(x, t ) inside the integral should
vanish at all locations x. This yields the Euler-Bernoulli equa-
tions [33,34] with tension included [10,28,36,37], but now
with the fourth-order spatial derivative of u − u0 instead of
u:

ρAü = −Dy

(
∂4u

∂x4
− ∂4u0

∂x4

)
+ T

∂2u

∂x2
+ fy(x, t ) (14)

ρAv̈ = −Dz
∂4v

∂x2
+ T

∂4v

∂x2
+ fz(x, t ). (15)

Here, external forces (per unit length) in the y and z di-
rection [ fy(x, t ) and fz(x, t )] have also been included. Note,
that the actual tension T [u, v] appears again [28], and not
the effective tension Teff that turned up as prefactor in ET

[see Eq. (12)]. This is because the virtual work δET done by
the virtual displacement δu not only contains the direct change
Teff

∫ L
0 u′δu′dx via the integral of Eq. (12), but also the change

δTeff . This is analogous to the emergence of the ac tension
[37] in the description of the flexural resonances of carbon
nanotubes [36] and buckled beams [26]. The fact that only T
appears in the equation of motion is expected, since in a local
force balance, which would also lead to Eqs. (14) and (15), it
is irrelevant if the tension is due to T0, due to the elongation,
or a combination of the two.

A dimension analysis [36] shows that T L2/Dy ∝
(σ/E )(L/w)2 ≡ 
y is the parameter that determines the im-
portance of tension over bending rigidity. A resonator with

y 	 1 behaves as a string, whereas one with 
y � 1 acts
as a tensionless beam. Interestingly, when the stringness [21]

y 	 1, i.e., a resonator where the tension dominates over
the bending rigidity, u0 drops out of Eq. (14). Thus, after
relaxing, the predisplaced beams simply behave as strings
under tension and the only effect of the predisplacement u0

will be the geometric tuning of the tension T [21]. Irrespective
of the value of 
y, the u′′′′

0 term in Eq. (14) is independent of u
and v and, hence, when solving the equations of motion, that
term can be viewed as an additional in-plane force per unit
length +Dyu′′′′

0 that acts on the beam. Thus, to solve the static
displacement and the eigenmodes, one can follow the standard
approach of inserting u(x, t ) = udc(x) + uac(x, t ) and solving
for the static profile udc(x) and for the eigenmodes by taking
uac(x, t ) = χn(x) exp(iωnt ). In the latter case, it is important
to also include the ac part of the tension [36]. Although the
mode shapes χn(x) can be solved analytically, finding the
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tension and eigenvalues ωn typically has to be done numer-
ically [21,36].

V. PROJECTION ONTO MODES

The full equations of motion [Eqs. (14) and (15)] are partial
differential equations that govern both the spatial profile and
the dynamics. Getting insights from these directly is therefore
not easy. The analysis can be greatly simplified by assuming
a specific displacement profile and projecting onto that mode.
Of course, the better that ansatz is, the better the agreement be-
tween the dynamics calculated using the full and the reduced
equations of motion will be. In our experimental work [21],
the focus was on the so-called S-beam design that is close to
the cosine shape. Inspired by this, we take

{u0, u, v} = {U0,U,V } × 1
2 [1 − cos(2πx/L)] (16)

for the pre- and postrelease in-plane displacement and the out-
of-plane displacement, respectively. Note that displacement
profiles of the form (16) satisfy the boundary conditions for
doubly clamped beams [33] and also correspond to the shape
of buckled beams [32]. With a single antinode at x = L/2,
they also resemble the shape of the fundamental in- and out-
of-plane flexural modes of beams and strings. On the other
hand, Eq. (16) is not expected to work well for higher modes,
which have very different shapes, e.g., with nodes. For these,
different projections for the static and dynamic behavior may
be used [37]. Alternatively the full model [Eqs. (14) and (15)]
can be solved, or finite-element simulation can be performed
(Sec. VI). However, in the following we focus on the funda-
mental modes and use the projection of Eq. (16). Inserting it
into the expression for K , EB, ET , and T , and performing the
integration yields:

K = 1

2
m[U̇ 2 + V̇ 2] × 3

8
(17)

EB = 1

2
[Dy(U − U0)2 + DzV

2]
1

L3
× 2π4 (18)

ET = 1

2

(
1

2
T0 + 1

2
T

)
[U 2 + V 2]

1

L
× 1

2
π2 (19)

T = T0 + EA

2L2
[U 2 + V 2] × 1

2
π2, (20)

where m = ρLhw is the total mass of the beam [32].
The factors after the multiplication sign depend on the as-
sumed displacement profile. If, for example, instead of 1

2 [1 −
cos(2πx/L)], sin(πx/L) was chosen (i.e., the fundamental
mode shape of a string, as well as the predisplacement of our
sine design [21]) these factors would be 1

2 , 1
2 π

4, 1
2 π

2, and 1
2 π

2,
respectively. In other words, for the same amount of center
displacement, it would have less bending energy, but equal
stretching energy and tension as well as a higher effective
mass meff = 3

8 m → 1
2 m. In the following, we employ on the

shape given by Eq. (16) for the projection onto the modes; this
agrees well with finite-element simulations as will be shown
below.

A. Potential energy landscape

After the projection onto the mode shape using Eq. (16),
the total potential energy is a function of the two center

FIG. 2. Potential energy and strain of a L = 100 μm long beam
with predisplacement U0 = 2.5 μm (left) and U0 = 4.5 μm (right).
The top panels show the energy landscape both as color map and
with contour lines. The middle (bottom) panels show the energy
(strain) for V = 0. The round symbols represent U0 and the arrows
and crosses indicate the minimum of Etot at Umin. The complete list
of parameter values is given in Appendix A.

displacements (U and V ) only, so it is easier to visualize
than the functionals of Sec. III. Figures 2(a) and 2(b) show
the two-dimensional energy landscape for beams with two
different center predisplacements U0. First of all, note that
both potentials are symmetric with respect to V = 0. This
can be understood because only V 2 appears in Eqs. (17)–(20).
Moreover, both panels show that it costs energy to displace
the beam beyond U0 and that the potential energy can be
lowered by straightening (0 � U < U0). Still, the two cases
show very different behavior: For U0 = 2.5 μm, the potential
energy contours appear almost concentric, and the relaxed
displacement, given by the position of the potential minimum
U = Umin, is close to 0. Figure 2(c) indicates that in this case
the tension energy (blue) dominates over the bending energy
(green) and that after straightening the string still has a con-
siderable positive strain value [Fig. 2(e)]. For U0 = 2.5 μm,
the beam thus almost completely straightens (i.e., Umin � U0)
and still has considerable tensile stress after relaxing.

For U0 = 4.5 μm, the situation is different. In this case, the
potential landscape is more complex, as both the contour plot
in Fig. 2(b) and the line cuts in Fig. 2(d) show. From the latter,
Etot appears to have two minima, but, as Fig. 2(b) shows, the
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left one is actually a saddle point. The global minimum is
at Umin ≈ 2.79 μm 	 0, which indicates that there is still a
significant displacement. In other words, the beam has not
fully straightened. Looking at the strain in Fig. 2(f) clarifies
that U = 0 would be a situation with a compressive strain
that exceeds the critical value for buckling (see Sec. II C).
Indeed, looking back at Fig. 1(c) shows that the beam with
U0 = 2.5 μm does not have the potential to buckle, whereas
the one with U0 = 4.5 μm has. In the latter case, the beam
thus remains displaced, but has only very small (tensile) stress
after relaxing. Note that there is no out-of-plane displace-
ment, which would be Vmin 
= 0; in our numerical studies
that situation was only encountered for compressive initial
stress σ0 < 0, but never for tensile initial stress. Thus, even
for Dy 	 Dz, with tensile film stress the predisplaced beams
prefer an in-plane displacement above out-of-plane buckling.
Still, the potential to buckle as introduced in Sec. II C is an
important parameter that indicates if the beams will almost
completely straighten, or not.

B. Predisplacement dependence

The position of the minimum in the potential energy Umin

can be tracked as a function of the predisplacement U0. With
its value, also the relaxed tension can be calculated from
Eq. (20). Figures 3(a) and 3(b) show Umin and the tension nor-
malized by the cross-sectional area, respectively. These show
that, in agreement with the experiments [21], for U0 � 3 μm,
the final displacement is close to zero and that the stress is
still relatively large. The latter is close to that of a straight
string T0/A, as calculated using Eq. (10) (dotted). Beyond
where T0/A becomes zero, the stress becomes small, but is
still tensile, and the displacement Umin grows. Interestingly,
the relaxed displacement approaches that of a buckled beam
under compressive tension T0/A < 0 (dotted line) [28]. This
shows once more that the behavior of the predisplaced beams
is intimately related to their potential to buckle. Before, after,
and close to the buckling transition, both the final stress and
displacement obtained from the analytical modal-projection
model are almost indistinguishable from those obtained using
finite-element simulations (FEM, dashed lines). This shows
that the analytical model can be used to accurately describe
the static relaxation of the predisplaced beams.

C. Reduced equations of motion

To derive the reduced equations of motion, i.e., the dif-
ferential equations that govern the dynamics of the center
displacements U and V , the formalism of Hamiltonian me-
chanics is employed. There, Hamilton’s equations relate
the generalized momenta PU and PV that are associated
with U and V , respectively, to derivatives of the Hamilto-
nian H = K + Etot with respect to said quantities, and vice
versa [35]:

PU = +∂H

∂U̇
= meffU̇ , PV = +∂H

∂V̇
= meffV̇ (21)

ṖU = meffÜ = −∂H

∂U
, ṖV = meffV̈ = −∂H

∂V
. (22)

(a)

(b)

(c)

FIG. 3. (a) The final displacement Umin, (b) stress, and (c) reso-
nance frequencies as obtained using the analytical modal projection
model (orange) and comparison with finite-element simulations
(black) as a function of the predisplacement U0 of a L = 100 μm
beam; other parameter values are given in Appendix A. In (a) the
dotted gray line shows the displacement 2L/π ([σc,w − T0/A]/E )1/2

of a buckled beam with tension T0 < Aσc,w < 0 [32]. In (b) the stress
when the beam would be straight T0/A is also shown (dotted gray).
In (c), in- (y) and out-of-plane (z) polarized modes are indicated with
solid and dashed lines, respectively and the fundamental (higher)
modes from the FEM simulations are indicated in black (gray). The
frequencies are compared to that of a string (light blue).

From this, the reduced equations of motion follow directly:

meffÜ = −2π4Dy(U − U0)/L3 − 1
2π2T [U,V ]U/L

− EAπ4U 3/8L3 (23)

meffV̈ = −2π4DzV/L3 − 1
2π2T [U,V ]V/L − EAπ4V 3/8L3.

(24)
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Here, meff = 3
8 m is again the effective mass, which is the

same for the in- and out-of-plane mode. Comparing these
equations to the equation of motion for a harmonic oscillator
shows that the part of the right-hand sides that is proportional
to U and V , respectively, contains the spring constants ky,z and
these determine the resonance frequencies. Both the first (i.e.,
bending) and second (tension, via T0) term contribute to this.
Besides these linear contributions, there are, e.g., also terms
proportional to U 3 and UV 2. The last term in Eqs. (23) and
(24) is clearly nonlinear, but, since the tension T depends on
U and V [see Eq. (20)], also the second term contributes to
the beam’s nonlinearities. This term also nonlinearly couples
in- and out-of-plane motion [37,38]; a detailed analysis of
these nonlinear effects in predisplaced beams will, however,
be published elsewhere.

By linearizing Eqs. (23) and (24) around (Umin,Vmin = 0),
the spring constants ky,z are obtained and from these the
eigenfrequencies f = √

ky,z/meff/2π .1 Figure 3(c) shows the
frequencies calculated using the analytical modal projection
model as a function of U0 in orange. Both the frequency for the
z- and for the y-polarized modes show good agreement with
those calculated using finite-element simulations. The vertical
offset between the analytical model and the finite-element
simulations may be explained by the difference between the
assumed and the actual mode shape. For small U0, both fre-
quencies also follow the same trend as the frequency of a
string (light blue) [22,39,40] when using the tensile stress
calculated with Eq. (20) [cf. the orange line Fig. 3(a)]. For
larger U0, the z-polarized mode continues to follow the fre-
quency of a string, but the y-polarized mode has a different
behavior, both in the analytical model and the finite-element
simulations. As will be shown in Sec. VI A, especially during
the upward trend of the in-plane mode with U0, that in-plane
mode shape is strongly modified, explaining why the devi-
ation between the reduced model and the FEM simulation
increases there. Still, the upward trend and the position of the
transition are reproduced by the analytical model. The modal
projection can thus be also used to understand the dynamics of
the fundamental modes. For example, the difference between
the in- and out-of-plane mode frequencies for large U0 can
be directly related to the ellipsoidal equipotential contours in
Fig. 2(b) around the minimum, which indicate that the curva-
ture of Utot, i.e., the spring constants ky,z, are very different for
the V and U direction.

VI. FINITE-ELEMENT SIMULATIONS

To go beyond the analytical model presented in the previ-
ous sections and the Euler-Bernouli equations of Eqs. (14) and
(15), also finite-element (FEM) simulations were performed
using COMSOL MULTIPHYSICS® as detailed in Appendix B and
Ref. [21]. From the FEM simulations, both static and dynamic
quantities can be obtained, as was shown in Fig. 3. There,
there was a very good agreement between the projected model
and the FEM simulations for both the final displacement and

1Note that due to the symmetry with respect to V = 0 (see
Sec. V A), there is no linear coupling (∂2Etot/∂U∂V = 0 for V = 0)
between U and V and the eigenmodes are purely y and z polarized.
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FIG. 4. Static profiles and eigenmodes of L = 100 μm beams
obtained with FEM simulations. Left panels are for U0 = 2.5 μm
and the right ones for 4.5 μm. (a) and (b) show the static dis-
placement profile before [u0(x), light blue] and after release [u(x),
blue]. Corresponding normalized mode shapes of the fundamental
z-polarized (c), (d) and y-polarized (e), (f) eigenmodes are illustrated,
respectively. In all panels, the dashed black line indicates the cosine
shape from Eq. (16) with the same maximum displacement. The
different colors correspond to the different Cartesian components of
the displacement vector.

the stress. For the eigenfrequencies in Fig. 3(c), deviations
between the analytical model and the simulations were visi-
ble, which were attributed to the difference between the actual
mode shape and the assumed cosine shape of Eq. (16). In the
following, the exact mode shape will be studied in more detail
using FEM simulations. Also the role of the overhanging
clamping points, the stress distribution within the beams, and
the effect of the film stress on beam relaxing and eigenmode
will be studied in this section.

A. Mode shapes

To validate the ansatz made in Sec. V, first the static beam
shape before and after relaxation is investigated. For this, the
geometry of the S beam is created as detailed in Ref. [21]
and its static relaxation is computed. As shown in Figs. 4(a)
and 4(b), the two typical predisplaced beams that were also
studied analytically, both straighten after relaxing, i.e., their
final profiles u(x) (blue) are smaller than the initial profile
u0(x). The S beam becomes nearly straight for U0 = 2.5 μm
while still having a significant displacement remaining for
4.5 μm, which confirms the discussion from Fig. 3(a). The
relaxed static profile is compared with the cosine function of
Eq. (16) (dashed black line). Although the simulated profile
shows slightly larger curvature near the clamping points, the
two curves lie almost on top of each other, indicating that the
simulated u(x) is described well by the cosine shape.
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Next, the eigenmodes are simulated and Figs. 4(c)–4(f)
show the first out-of-plane (Z1) and in-plane (Y1) polarized
modes for U0 = 2.5 μm (left) and 4.5 μm (right). The sim-
ulated eigenfrequencies of these modes are also indicated.
In both cases, the lowest eigenmode is the fundamental out-
of-plane mode Z1. Taking a closer look at the mode profile
shows clear differences between the two predisplacements:
The left one has a finite slope close to the clamping points
and looks thus more like the sine shape expected for a pure
string rather than a cosine. This is not surprising, given the
significant remaining stress after relaxing [see Fig. 3(b)] for
this geometry [32]. By comparison, the lower final tension
for U0 = 4.5 μm gives a larger relative bending contribution,
resulting in a much more rounded shape, which is captured
better by the cosine function.

For U0 = 2.5 μm, the in-plane mode shape [Fig. 4(e)]
looks similar to that of the out-of-plane mode and also re-
sembles, but not entirely matches, the cosine shape (dashed
line) of Eq. (16). However, the Y1 mode of the U0 = 4.5 μm
beam shape looks very different [Fig. 3(f)] . The central max-
imum in the modal displacement is now a local minimum.
Instead, two maxima appear near one and three-quarter of
L. Such mode shapes are characteristic of buckled beams
(see, e.g., Refs. [26,38]). Note, that Fig. 3(c) showed that at
4.5 μm predisplacement, the mode of Fig. 4(f) has crossed
the y-polarized mode with a single node (Y2), similar to what
happens for the aforementioned buckled beams. Hence at that
point, the Y1 mode is actually the fifth eigenmode of the
structure and lies above the odd Y2 mode (and also above
Z1, Z2, and Z3). Still, we stick to this nomenclature as the
mode in Fig. 4(f) is a direct continuation of the original Y1 at
U0 = 0. Irrespective of the naming, the slope and curvature are
no longer accurately described by the cosine shape, explaining
why the two models start to deviate beyond U0 � 3.5 μm in
Fig. 3(c).

All these considerations indicate that a small tension, or
equivalently a large remaining U , can impact the in-plane
eigenmodes due the close connection to the dynamics of buck-
led beams. Note that in this case, the mode clearly deviates
from the assumed cosine shape so that in this regime the
analytical model from Sec. V is no longer accurate, explaining
the deviations in Fig. 3(c) between that model and the FEM
simulations. Still, for most of the parameters, the simulated
fundamental mode shape is described to a good approximation
by Eq. (16).

B. Role of overhang

Another important question is how the details of the
clamping region influence the statics and dynamics of the
predisplaced beams. In the experiments [21], the beams are
defined by vertically etching the structures into the silicon
nitride [41], followed by isotropic etching of the silicon oxide
underneath. This causes an overhang of the clamping region,
which can have an effect on, e.g., the residual stress and
resonance frequencies [42,43]. The size of this overhang O
is determined by the depth of the isotropic silicon-oxide etch
and is ∼660 nm in our experimental realization [21].

To model the role of such an overhang, the FEM geometry
of the predisplaced beams is extended with two rectangu-

FIG. 5. Effects of overhang on three different predisplaced
Sbeams’ stationary and dynamical behavior. All have L = 100 μm.
(a) Schematic of the geometry of an S beam with two extra over-
hanging clamping regions. The fixed boundaries are indicated by
red color. (b) The relative change of the center displacement to
the case without overhang (i.e., [U (O) − U (O = 0)]/U (O = 0) ×
100%). (c) Relative change of the stress component σxx . (d) Relative
change of the first in- (solid lines) and out-of-plane (dashed lines)
eigenfrequencies. The colors correspond to different predisplace-
ments U0 and are consistent between the panels. The dotted gray lines
indicate the etch depth of ∼660 nm in our experiments [21].

lar pads that are clamped at their outside sides, as shown
in Fig. 5(a). Their extent in the y direction is chosen large
enough that the exact boundary condition at those ends does
not influence the results. Intuitively, the overhang will make
the clamping of the beam less rigid compared to the case
with fixed boundary conditions at x = 0, L. This will af-
fect the final displacement, stress, and resonance frequencies.
In accordance with the previous sections, here the center
displacement U is defined as the y component of the dis-
placement vector field �u(x, y, z) evaluated at the beam center:
U (O) = uy( L

2 ,U0, 0)|Overhang=O.2 Figure 5(b) shows that for
both predisplacements 2.5 and 4.5 μm, the relative change in
U is negative, indicating that the relaxed beams retain less
final displacement when the overhang gets bigger (and for
U0 = 0, it stays 0). Furthermore, the residual stress compo-
nent σxx shown in Fig. 5(c) increases with the overhang. The
larger U0, the higher this relative increase of σxx is, which is
consistent with the model by Bückle et al. [42]. In this case,
the tension in the wide overhang regions pulls on the beam,
thereby increasing the tension of the latter [44].

The eigenfrequencies also have a relative shift compared
to a beam without overhang as Fig. 5(d) shows. However, the
f change is nonmonotonic as it exhibits both downward and
upward shifts. That can be understood from the interplay be-
tween the increase in effective length [43] on the one hand and
the increase in the stress on the other hand. The former leads

2The Cartesian coordinates used here correspond to the original,
undeformed geometry.
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to a reduction in the frequency of flexural modes, whereas
the latter increases the frequency [42,44]. The competition
between these two effects leads to the complex behavior
observed in Fig. 5(d), where, depending on displacement po-
larization, predisplacement, and overhang, both a positive or a
negative frequency shift can be obtained. Still, the experimen-
tal etch depth of ∼660 nm [21] will only cause small shifts of
frequencies of less than ∼1% for 100 μm string. For the stress
and final displacement, the changes are slightly larger but
never exceed the percent level so that in many cases its effect
can be neglected. Nevertheless, for very accurate modeling of
the strings, the overhang should be included.

C. Stress distribution and bending

The beam geometry has L 	 w, h and in the above dis-
cussions, the beam was viewed as a one- (Sec. IV) or even
zero-dimensional object (Sec. V), i.e., without considering its
cross sections. Still, it is important to look how the stress of
each continuum element [38] is re-distributed along the beam
and over its cross section after relaxing, especially to under-
stand better why the S beam does not become fully straight. In
the following, the focus is on the xx component only, because
the FEM simulations indicate that all other components are
orders of magnitude of smaller (<1 MPa) and thus negligible
compared to σxx. This holds even at the largest geometric
stress tuning and these simulation results thus also confirm
the argument about which stress components are nonzero in
Sec. II.

Figure 6 shows the σxx distribution of three different pre-
displaced beams as color maps; the values averaged over the
entire beam are indicated in the color bar. In agreement with
Fig. 3(b), the larger U0, the smaller the average final stress.
However, these average values do not tell the entire story
as the xy projections show that locally the stress can devi-
ate strongly from the mean. Although for the straight beam
[Fig. 6(a)] the average of σxx is 811 MPa and is distributed
uniformly over the structure, the stress is nonuniform for the
predisplaced beams [Figs. 6(b) and 6(c)], even reaching sig-
nificant negative (i.e., compressive) values for U0 = 4.5 μm.
First, note that in all cases σxx is symmetric about the center
x = L/2. Moreover, the stress distributions at three yz planes
are plotted for U0 = 2.5 μm [(i), (ii), and (iii)], showing that,
as expected for thin beams [32,33], the stress is constant along
the thickness of the beam. Therefore, slices at constant z are
sufficient to fully represent the stress distribution in these
structures.

The xy cuts in Figs. 6(b) and 6(c) show that for the two
predisplaced beams σxx is different on both sides of the cen-
ter curve (which corresponds to the so-called neutral plane
[33]). Overall, the relaxation is accompanied by a shrinking
of the beam’s curve length as discussed in Sec. II, causing
the reduction in the average longitudinal stress. On top of this
global effect, one side of the beam is stretched more than
average, and thus has a higher-than-average stress, whereas
the other side is stretched less or even compressed, resulting
in a lower local σxx that can even be compressive (σxx < 0,
blue). Figure 6 shows that from 0 to L/4 and from 3L/4 to L,
the stress is higher at the upper edge of the xy cut and lower
at the lower edge. This situation is reversed between L/4 and

(a)

(b)

(c)

i

ii

iii

σxx (MPa)

U = 00 μm

2.5 μm

4.5 μm

1150-550

x

y

z

y

z

x

32 403 811

FIG. 6. Distribution of the stress component σxx for (a) U0 = 0,
(b) 2.5, and (c) 4.5 μm along the beam (xy plane). The average σxx

over beam is 811, 403, and 32 MPa, respectively, as indicated in
the colorbar. For (b) also the stress distribution at yz cut planes are
shown near a clamping point (i), halfway (ii), and at a quarter L (iii).
For clarity, xy cuts have been plotted with a different vertical and
horizontal scale. This may give the impression that the difference be-
tween �[u0, 0] and L and the angle between the center curve and the x
axis are large, but in reality these are only (� − L)/L = 0.17 (0.54)%
and 0.10 (0.18) rad for U0 = 2.5 (4.5) μm, respectively.

3L/4. The border between these two regions coincides with
the inflection point of the center curve. The sign of the local
curvature of u0–u thus determines whether the upper or lower
side has a higher-than-average stress. A more detailed analysis
of the distribution of σxx over the beam width indicates a
linear dependence on y around the average value. This is
exactly as expected for bending of the beam [32,33]. The FEM
simulations thus confirm that the final relaxation is determined
by the interplay between the tension and bending rigidity
as predicted by our analytical model. Finally, it should be
kept in mind that for a static situation, the longitudinal stress
integrated over the width and thickness of the beam is constant
along x. This can be understood since any variation of the
tension T ≡ ∫∫

σxxdydz leads to longitudinal displacements
that will balance the gradient in T [45].

D. Film-stress dependence

A tensile film stress is a prerequisite for the straightening
of predisplaced beams. This can be understood intuitively but
was also shown explicitly in Sec. III. It is, thus, interesting
to study how the film stress impacts the relaxation. This is
an example of a parameter that is not easily varied in the ex-
periment as would require a separate deposition run for every
value [21], but can be readily changed in the analytical model
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FIG. 7. Effects of film stress on S-beam relaxation and the first
y-polarized eigenmode shape for L = 100 μm and U0 = 4.5 μm.
(a) Relaxation of the S beams with different σfilm. The gray dashed
line is the beam profile before relaxation. Others are profiles after
relaxation. The colors correspond to different initial stress σfilm and
are consistent between (a) and (b). (b) The evolution of the first
y-polarized eigenmode shape showing a transition from a shapes with
dip in the center to a maximum there.

as well as in the FEM simulations. The latter is presented in
Fig. 7.

The beam is purely bending-rigidity dominated when
σfilm = 0, where no relaxation occurs as is indeed visible in
Fig. 7(a). In this case, the FEM simulations show that the
relaxed displacement (dark blue) matches the predisplacement
profile (gray). Here, σ0 = 0 and hence T0 < 0, as can be seen
from Eq. (10).

Increasing the film stress reduces u(x) and the beam
straightens. As already illustrated in Fig. 3(a), for a given
σfilm, the larger U0, the larger U but the smaller (or more
negative) T0. On the other hand, an increase in σfilm increases
T0 (Sec. II), which is equivalent to the decreasing of u0(x) in
Eq. (10) and vice versa. Therefore, the effect of increasing
film stress on eigenfrequencies is also similar to reducing
U0 and, thus, also the film stress can be used to tune the
predisplaced beams between the two regimes of Fig. 3. This
can indeed be seen from the eigenmodes in Fig. 7(b), where
there is a clear transition from the buckled-beam modes with
a depression in the middle to the stringlike shapes with the
antinode in the center. This example shows that model can

thus also be used to study the impact of parameters that are
not easy to vary experimentally.

VII. CONCLUSION

A theoretical framework to analyze the relaxation and
dynamics of predisplaced beams was presented. First, the
relaxation of straight and predisplaced beams was studied and
expressions for the bending and tension energy were derived.
For the tension energy, it is neither the initial nor the final ten-
sion that appears, but their average. The equations of motion
were derived and a modified Euler-Bernoulli equation is ob-
tained. The predisplacement appears as an additional in-plane
force. In the limit of high tension, the resonators behave as
simple strings with a geometrically tunable tension. By pro-
jecting on the fundamental mode shape, the system is reduced
to two variables: the in- and out-of-plane displacements at the
center. From the energy landscape, insights in the relaxation
and the role of buckling are obtained. This reduced model
can be used to understand the static relaxation and dynamics
of the fundamental modes, such as the geometric tuning of
the stress and resonance frequencies. Finally, the analytical
model is supported by finite-element simulations of the mode
shapes, the role of the overhang, stress profiles, and the film
stress. This enables a good understanding of the experimental
observations in Ref. [21] and future work will explore the
nonlinear properties of the predisplaced beams more detail.
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APPENDIX A: PARAMETER VALUES

The parameters used are inspired by our experimental work
described in Ref. [21], where high-stress silicon nitride beams
were used to geometrically tune the tension and to study the
dissipation in such resonators. The nominal values of the pa-
rameters used in the calculations and simulation in this paper
are given in Table I.

TABLE I. Parameter values used for the calculations (unless
stated otherwise).

Parameter Description Value Source

h Thickness 330 nm [21]
w Width 850 nm [21]
L Length 100 μm [21]
σfilm Film stress 1050.1 MPa [25]
ρ Density 3.10 × 103 kg/m3 [46]
E Young’s modulus 250 GPa [46]
ν Poisson ratio 0.23 [46]
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APPENDIX B: FINITE-ELEMENT SIMULATIONS

The FEM simulations of the predisplaced beams were
first built up in the graphic user interface of COMSOL

MULTIPHYSICS® (version 5.4). First, the geometry is defined in
the plane geometry and extruded to three dimensions. Then,
Si3N4 from the material library is applied to the geometry.
Next, the physics of the mechanical resonators are applied
under the solid mechanics. Here, e.g., the film stress is added
with initial stress and strain under linear elastic material by
setting σxx and σyy to 1050.1 MPa (σzz = 0). The boundary
conditions for the ends are fixed under the fixed constraint.
Other physics, such as external forces, can also be applied if
needed. Next, the mesh is built. In this work, the default mesh
element type tetrahedral was used. To study both the statics
and dynamics, first the stationary solver is used, followed by
the eigenfrequency solver so that the eigenmodes are calcu-
lated for the relaxed structure. Note that the setting include
geometric nonlinearity has to be ticked [10] to correctly take
the stress into account. For convenience with sweeping pa-
rameters and extracting and processing results, the COMSOL

model was exported as a MATLAB® script, adapted to work
with our simulation framework for sweeping parameters and
extracting results, and executed via the MATLAB LIVELINKTM.
Two representative COMSOL models are available at the Zen-
odo open-access repository [47].

APPENDIX C: APPLICATION: IMPROVED
OPTOELECTROMECHANICAL PHASE SHIFTING

As a final outlook, it is shown that our geometric tuning of
stress using predisplaced structures is also applicable beyond
the simple string geometry. In Fig. 8 we study an extension
of our previously demonstrated optoelectromechanical phase
shifter [14]. This integrated photonic device can shift the
phase of light traveling through a waveguide by electrostat-
ically displacing a mechanical structure in the shape of an H.
Compared to the original design of Ref. [14], now the center
of the H is displaced by an amount U0 in the center. Upon

FIG. 8. Finite-element simulations of an optoelectromechanical
phase shifter with a predisplacement. The left axis shows the induced
phase shift for an applied force of F = −1 μN and the right the
spring constant, which is defined as k = (∂uc/∂F )−1, where uc is
the y displacement in the middle at the side of the waveguide. The
inset shows the geometry where the H is designed with a U0 = 5 μm
predisplaced away from the waveguide (blue). Other simulation pa-
rameters are as in Ref. [14] and Appendix A.

release, the structure straightens, resulting in a lower stress in
the arms and thus lowering the spring constant significantly,
as shown in Fig. 8. The same amount of force thus results
in a much larger displacement of the optomechanical phase
shifter. The resulting phase change is further amplified by the
nonlinear relation between the effective refractive index and
the distance between the waveguide and the phase shifter [14].
Figure 8 shows that for the same amount of applied force,
the induced phase shift is more than tripled when giving the
structure a predisplacement of 5 μm compared to the original
design. This shows that geometric tuning of stress is not only
important in the string resonators that were studied in detail
in this work, but also for more general structures with a wide
range of applications.
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