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We show that an accurate description of the interplay between the anharmonic ionic interaction and the zero-
point fluctuation of ions in crystalline aluminum (Al) can be achieved using the path-integral molecular dynamics
(PIMD) method in conjunction with improved empirical modified embedded-atom method (MEAM) potentials.
Our results show that the zero-point fluctuation of ions is noticeable at a temperature between 200 K and 250 K,
roughly half of the Al Debye temperature of 428 K, with a selective influence on mechanical properties. The
effect provides appreciable corrections to the lattice constant a, bulk modulus B, and elastic constant C11 at
low temperature, but without much influence on elastic constants C12 and C44. With a revised MEAM potential
which takes into consideration the influence of zero-point fluctuations, the PIMD method has a much improved
accuracy in a, B, and the C’s up to 700 K, when compared with precision experimental measurements. The
largest errors of a and B can even be reduced by about an order in percentage below 300 K.
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I. INTRODUCTION

Thermal and mechanical properties of materials at very
low temperature are of persisting interest to the exploration of
outer space [1–3]. It is also found recently that they played
a pivot role in cutting-edge scientific apparatuses such as
inertial confined fusion devices [4], which may further boost
corresponding investigations [5]. An improved description of
materials’ structure and their responses to external stresses at
low temperature is thus an important topic of theoretical inves-
tigations of these fields. Preceding studies [6–11] have shown
that the interplay between the anharmonic ionic interaction
and the zero-point fluctuation of ionic motion [12] plays an
important role in a series of unique properties at cryogenic
temperature, e.g., bond-length increasing [6,7], decreasing of
thermal expansion [8–10], and enhancement of heat capac-
ity [11], which poses new challenges to microscopic methods,
such as the molecular dynamics (MD) method [13], to provide
a satisfactory description.

In the classical MD method, which is commonly used to
describe ionic motion at a relatively high temperature, ions are
viewed as classical particles, and their motions are described
by Newton’s law [13]. The highly anharmonic interaction
between ions may be captured by an appropriately constructed
interaction potential under this condition. However, at low
temperature, when the quantum-mechanical feature of the
system gradually takes dominance, the departure of ionic
motion from the classical MD description becomes signifi-
cant [14]. In previous works [15,16], the deviation of phonon
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distribution from Boltzmann distribution and the zero-point
fluctuation of ionic motion, originated from Heisenberg’s un-
certainty principle, have been vigilantly noticed. A direct
solution has been provided with the Feynman path-integral
(PI) approach [12,17], where the description of ions as pointed
particles is replaced by path loops.

But even with this improved methodology, one may still
not be able to arrive at a satisfactory prediction to those
properties closely associated with anharmonic interactions
between ions, e.g., lattice constant and bulk modulus. The
subtle issue here is the accuracy of ionic interaction, es-
pecially the highly anharmonic part which interplays with
the zero-point fluctuation of ions at low temperature. In
principle, an explicit quantum-mechanical description of the
surrounding electrons would provide the most accurate ionic
interaction, which may be achieved with the most advanced
approximations so far to electrons’ exchange and correla-
tion interactions [18–20]. However, it is still a challenge for
quantum-mechanical methods to provide predictions on ther-
mal and mechanical properties that have comparable accuracy
as in precise experimental measurements [21], and this ap-
proach may also incur huge computational costs [22] when
dealing with real materials.

In practice, empirical ionic potentials, e.g., embedded-
atom method (EAM) potentials [23–29], modified
EAM (MEAM) potentials [30–35], and Tersoff-type
potentials [36–38], are more commonly used when
computational cost is a major concern. But those empirical
potentials are generally parametrized for MD method
at relatively high temperature. Their description of the
anharmonic part is questionable at low temperature,
when quantum effects of ions, especially the zero-point
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fluctuations, are prominent. This may severely constrain
the predictive capability of the calculation. It is thus of
great interest, not only theoretically but also practically,
if both the quantum effect of ions and their anharmonic
interactions at relatively low temperature are well described
simultaneously.

We show in this article, with aluminum (Al) as an illus-
trating example, that an accurate description of the interplay
between the anharmonic ionic interaction and the zero-point
fluctuation of ions can be achieved with the path-integral
molecular dynamics (PIMD) method [39] in conjunction with
improved empirical MEAM potentials. Al is chosen as the
example for two reasons. One is that Al has been studied in-
tensively as a typical metallic material [40–47], and the other
is that there are high-precision experimental data available
for Al [48–51]. With two MEAM potentials revised from the
parametrization of Pascuet et al. [34] and Aitken et al. [35],
a series of PIMD results of crystalline Al are presented at
temperatures from 50 K to 700 K.

Our results show that the quantum zero-point fluctuation
becomes noticeable at a temperature between 200 K and
250 K, roughly half of the Al Debye temperature of 428 K,
suggesting that this effect is significant enough to be con-
sidered even at a relatively high temperature. In addition,
it displays a selective influence on measured quantities. At
low temperature, the effect provides an appreciable correc-
tion to the lattice constant a, bulk modulus B, and elastic
constant C11, but without much influence on elastic con-
stants C12 and C44. Furthermore, with the revised MEAM
potentials taking the influence of zero-point fluctuations into
consideration, the PIMD method has a much improved ac-
curacy in the prediction to those properties associated with
anharmonic interactions, compared with precision experi-
mental results below 700 K. Especially, the largest errors
of a and B are reduced by about an order in percent-
age below 300 K. In addition, the revision procedure of
the MEAM potential provides a possible way to further
improve the accuracy of low-temperature ionic potentials
generated based on quantum-mechanical calculations by tak-
ing the correction from experimental measurements into
consideration.

The rest of this article is organized as follows. A brief
summary of the PIMD method and its computational details
are presented in Sec. II. A concise description of the fitting
procedure for the determination of MEAM parameters is pro-
vided in Sec. III. The main results of the lattice constant, bulk
modulus, and elastic constants together with corresponding
analyses are given in Sec. IV. A short summary is provided
in Sec. V.

II. PATH-INTEGRAL MOLECULAR DYNAMICS METHOD

In the formulation of the PI method, the partition func-
tion of an N-particle system at temperature T is evaluated
as the trace of the system’s density matrix ρ, i.e., Z ≡∫

dRρ(R, R; β ), where β = 1/kBT is the inverse temper-
ature (where kB is the Boltzmann constant), and R ≡
{r1, r2, . . . , rN } is a 3N-dimensional vector containing all
ionic coordinates in the system. It is further decomposed into
a series of cyclic paths composed of a finite number M (the

Trotter number) of imaginary-time steps (slices) [12] as

Z =
∫

· · ·
∫

dRdR1dR2 . . . dRM−1

× ρ(R, R1; τ )ρ(R1, R2; τ ) . . . ρ(RM−1, R; τ ). (1)

Here, the subscript of R is the numeration of the imaginary-
time slice, each of which corresponds to an imaginary-time
step of τ = β/M. Note that RM ≡ R for the cyclic path condi-
tion. With the so-called quantum-classical isomorphism [52],
the quantum system is formally mapped to a classical sys-
tem, where the potential-energy related part of the classical
system’s partition function is the same as Eq. (1). This is
conceptually equivalent to replacing each quantum particle
by a ring polymer consisting of M classical beads (parti-
cles) connected with harmonic springs. The PIMD method
then samples the microstates of the classical system us-
ing a molecular dynamics algorithm, with an appropriately
chosen expression for its kinetic energy contribution. More
detailed description of the PIMD method can be found else-
where [39,52].

The PIMD calculation is carried out in canonical (i.e.,
NVT) ensembles (where V is the volume) using the i-PI
code [53], which is linked with the LAMMPS [54] pack-
age for the evaluation of ionic interactions. A 2 × 2 × 2
face-centered-cubic (fcc) supercell with periodic boundary
conditions is used in the calculation, which consists of N =
32 aluminum atoms. The length L of the supercell varies
from 7.80 Å to 8.30 Å. T varies in the range from 50 K to
700 K. τ is fixed to be 0.10667k−1

B K−1 in all simulations
in order to maintain a similar precision for all temperatures.
This amounts to setting M = 14 at T = 700 K and M = 192
at T = 50 K. Each PIMD calculation is conducted for 105

steps with a time step of 0.25 fs. In parallel, classical MD
calculations at the same temperature are carried out using the
LAMMPS package, which are equivalent to PIMD simula-
tions with M = 1. The MD calculations are conducted for
2500 ps with a time step of 0.25 fs. The first 10% trajectories
in both calculations are used as thermalization, before statis-
tics of physical quantities are taken.

The pressure P of the system is calculated through the
virial theorem [55] as

P = 1

3V
〈2Ek (Ri, Ri−1) + ṼMEAM(Ri )〉. (2)

Here, ṼMEAM is the virial contribution from the MEAM poten-
tial, and the kinetic energy Ek is calculated as

Ek (Ri, Ri−1) = 3N

2τ
− 〈(Ri − Ri−1)2〉

4λτ 2
, (3)

where the effective mass λ equals h̄2/2m, with m the mass of
an Al ion, and h̄ the Planck constant. The angle brackets 〈·〉 in
Eqs. (2) and (3) represent averages over all M imaginary-time
slices and all running (sampling) steps.

To evaluate lattice constant a and bulk modulus B at
temperature T , pressures P of several volumes V near the
equilibrium volume are first calculated in NVT ensembles,
where the temperatures are all fixed at T . The P-V relation
P = P(V ) is then fitted with a quadratic polynomial. The
lattice constant a(T ) is determined by the volume Veq(T ) at
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the ambient pressure P = 1.0 bars from the fitted P-V relation
through a(T ) = 3

√
Veq(T )/2. The bulk modulus B(T ) can also

be determined from the P-V relation as

B(T ) = −V

(
∂P

∂V

)
T

∣∣∣∣
V =Veq (T )

. (4)

Higher-order polynomials of P(V ) in the fitting process af-
ford similar results with negligible difference from those of
quadratic polynomials.

Elastic constant Ci jkl is calculated based on the linear
relation

σi j =
∑
k,l

Ci jklεkl , (5)

where ε is the strain tensor, σ is the stress tensor, and indices
i, j, k, and l denote the directions along the x, y, z axes in
the Cartesian coordinates. In the calculation, a series of finite
strains εkl are manually loaded to the supercell, and corre-
sponding stresses σi j are calculated following the approach
described in Refs. [56,57]. The elastic constant Ci jkl is then
determined as the slope of the linear fitting function of σi j

with respect to εkl . In a fcc structure, only elastic constants
Cxxxx, Cxxyy, and Cxyxy are used to describe elastic properties
of the system, and they are usually denoted as C11, C12, and
C44, respectively, following the convention of Voigt. Other
elastic constants are either zero or equal to one of these three
constants as the result of its symmetry.

III. MEAM POTENTIALS WITH ZERO-POINT
FLUCTUATIONS OF IONS

With current MEAM potentials, the PIMD method is gen-
erally not able to provide an accurate description to thermal
and mechanical properties for metals and alloys at cryogenic
temperature, because those potentials were parametrized in
compatibility with classical MD methods, which did not take
into consideration the influence of the anharmonic ionic inter-
action to the zero-point fluctuation of ions at low temperature.
It is thus desirable to construct new ionic interaction potentials
that are compatible with the PIMD method.

As a demonstration, we describe an optimization process
for the generation of a revised MEAM potential of Al for
accurate PIMD calculation, based on the potential parame-
ters generated for classical MD calculations. The temperature
dependency of lattice constant a and bulk modulus B up to
room temperature are chosen to be the fitting targets, with
precision experimental measurements of a and B [48–50] used
as reference data. We note that it is not necessary to start
the optimization process from the very beginning with all
parameters undetermined. In this way, the computational costs
will be tremendous. Instead, it is possible to greatly reduce
the computational costs by only optimizing those parameters
associated with the zero-point fluctuation of ions. Other pa-
rameters can be directly taken from current MEAM potentials
for MD methods.

Our trial PIMD simulations show that only two MEAM
parameters α̃ and re in Pascuet et al.’s [34] and Aitken
et al.’s [35] MEAM potentials are directly associated with a
and B. In addition, we find that a very close initial guess to α̃

and re can be estimated analytically, which further reduces

TABLE I. Revised MEAM potential parameters of Al, based on
the work of Pascuet et al. [34]. The meaning of each parameter is the
same as that in Ref. [34].

α̃ β (0) β (1) β (2) β (3)

5.02977 1.56205 5.39270 5.29601 −1.00047

re (Å) Ec (eV) A t1 t2

2.839 3.39 1.06859 −1.54917 −1.28508

t3 d1 d2 Cmin Cmax

10.01041 0.39558 0.09806 1.00769 2.31407

optimization iterations. Following Alchagirov et al.’s [58]
approach, zero-point corrections to a at zero temperature,
denoted as 
a0 with subscript 0 representing T = 0 K, are
estimated as


a0

a0
= 3

16
(B1 − 1)

kB�D

B0V0
, (6)

where V0 is the experimental volume at T = 0 K, B0 is bulk
modulus at zero temperature, B1 is the derivative of B0 with
respect to pressure, and �D is the Debye temperature. For
bulk modulus B, its zero-point correction 
B0 can be similarly
estimated as


B0

B0
= −3
a0

2a0
(B1 − 1)

− 6
a0

a0

1

B1 − 1

(
2

9
− 1

3
B1 − 1

2
B0B2

)
, (7)

with B2 the second-order derivative of B0 with respect to
pressure.

The zero-point effect corrected value of a0, denoted as
ā0 = a0 − 
a0, is 4.019 Å, and the corrected B0, denoted as
B̄0 = B0 − 
B0, is 90.6 GPa for Al [21,59]. The parameters
re and α̃ are then given by re = ā0/

√
2 and α̃ =

√
9B̄0V0/Ec,

respectively, where Ec is the cohesive energy of Al. These
two corrected parameters, together with other parameters, are
then updated through a few optimization iterations to obtain
the optimized parameter set. The optimized parameters are
determined by minimizing the objective function

Q =
∑

i

wi

(
qcal

i − qexp
i

)2

(
qexp

i

)2 . (8)

In Eq. (8), qcal
i refer to the values of fitting targets calculated

with the PIMD method, qexp
i stand for the reference data points

taken from experiments, and wi are corresponding weights.
The summation is calculated over a series of temperatures
below 300 K with equal weights for the two fitting targets
a and B. Table I lists the optimized MEAM parameters of Al
based on the potential generated by Pascuet et al. [34], re-
ferred as the M-PR potential hereinafter. Table II displays the
optimized parameters based on the MEAM potential of Aitken
et al. [35], referred as the M-AR potential. Accordingly, the
original MEAM potentials of Pascuet et al. and Aitken et al.
will be referred to as the M-P potential and the M-A potential,
respectively, for short.
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TABLE II. Revised MEAM potential parameters of Al based on
the work of Aitken et al. [35]. The meaning of each parameter is the
same as that in Ref. [35].

α̃ β0 β1 β2 β3

4.711 3.173 2.342 2.013 2.471

re (Å) Ec (eV) A t1 t2

2.839 3.427 1.06859 3.285 −0.057

t3 dattrac drepuls Cmin Cmax

5.194 0.063 0.043 0.350 2.539

IV. RESULTS AND DISCUSSION

A. Lattice constant

The lattice constant of Al is displayed in Fig. 1 as a func-
tion of T from 0 K to 700 K, where Fig. 1(a) is the results
calculated with the M-P potential and the newly revised M-PR
potential, and Fig. 1(b) is calculated with the M-A potential
and the M-AR potential. The results of the different potentials
are distinguished with colors. In both panels, PIMD results are
plotted as diamonds, MD results are displayed as circles, and
experimental data are displayed as solid curves.

It shows that PIMD and MD results start to deviate from
each other at a threshold temperature between 200 K and
250 K, which is roughly half of the Debye temperature of
428 K. Above that temperature, both PIMD and MD lattice
constants display a linear dependence with respect to temper-
ature. However, when temperature is lower than the threshold
temperature, the PIMD lattice constant gradually converges
to a constant value, while the MD lattice constant keeps a
linear temperature-dependent relation. Since the deviation is
regarded as a typical feature of the zero-point effect of ionic
motion [60,61], this high threshold temperature, which is
between 200 K and 250 K, suggests the importance to take
quantum effects into consideration for metal and alloy.

TABLE III. PIMD results of lattice constant a at T = 50 K,
300 K, and 700 K. The difference 
a = a − aExpt with respect to
experimental value (Expt.) [48] and corresponding percentage dif-
ference 
a/aExpt are listed in the last two columns. Numbers in
parentheses are numerical uncertainties of the last digit.

T (K) Potential a (Å) 
a (Å) 
a/aExpt (%)

50 M-P 4.0682(1) 0.0365 0.90
M-A 4.0606(2) 0.0289 0.72

M-PR 4.0329(2) 0.0011 0.03
M-AR 4.0330(1) 0.0012 0.03
(Expt.) 4.0318

300 M-P 4.0844(7) 0.0360 0.89
M-A 4.0746(4) 0.0262 0.65

M-PR 4.0474(7) −0.0010 −0.02
M-AR 4.0467(5) −0.0017 −0.04
(Expt.) 4.0484

700 M-P 4.1374(2) 0.0451 1.10
M-A 4.1089(5) 0.0166 0.41

M-PR 4.0952(9) 0.0029 0.07
M-AR 4.0796(9) −0.0127 −0.31
(Expt.) 4.0923

When compared with experimental measurements, dis-
played as solid curves in the figure, Fig. 1 shows that the
two original MEAM potentials generally overestimate the
lattice constant for both PIMD and MD calculations. The
overestimation is about 1% at room temperature and above.
At low temperature, the overestimation by the MD calculation
is slightly reduced as a result of not including zero-point
fluctuations. This overestimation shows the necessity of a new
Al potential for an accurate description of thermal properties
at low temperature.

With the revised MEAM potentials, of which the pa-
rameters are listed in Tables I and II, the overestimation is
essentially reduced. Table III provides a detailed comparison
for the improvement. It shows that with the correction of
zero-point fluctuations, the PIMD lattice constant with both

FIG. 1. Lattice constant a of Al as a function of T , calculated by the PIMD and MD methods. Experimental measurements taken from
Ref. [48] are also presented for the comparison purpose. (a) PIMD and MD results calculated with the M-P and the M-PR potentials. (b) PIMD
and MD results calculated with the M-A and the M-AR potentials.
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FIG. 2. Bulk modulus B of Al as a function of T , calculated with the PIMD and MD methods. Experimental results of Kamm et al. [49]
and Gerlich et al. [50] are also presented with blue and black curves, respectively, for the comparison purpose. (a) PIMD and MD results
calculated with the M-P and the M-PR potentials. (b) PIMD and MD results calculated with the M-A and the M-AR potentials.

revised potentials has arrived at such an accuracy that its
deviation with respect to experimental data is less than 0.05%
around room temperature and below. Moreover, in the tem-
perature range from 300 K to 700 K, the M-PR potential
has an excellent performance. The largest deviation in lat-
tice constant is about 0.07% at 700 K. The M-AR potential
slightly underestimates the lattice constant in this temperature
range. However, compared with the original M-A potential,
the largest deviation is no more than 0.31%, which is still a
very accurate result.

B. Bulk modulus

In Fig. 2, the isothermal bulk modulus B at atmospheric
pressure (1.0 bars) is presented as a function of temperature up
to 700 K. The zero-point effect appears at a similar threshold
temperature as that of the lattice constant, as can be seen
from the differences between PIMD and MD calculations. The
similar threshold temperature for the arising of the zero-point
effect in both thermal properties, i.e., the lattice constant and
bulk modulus, may not be an accident. In a rough picture,
assuming that anharmonic interaction is neglected, the motion
of ions can be viewed as the superposition of a series of simple
oscillation motions (i.e., phonon modes). For each oscillation
mode, the probability density ρ̃(q) with respect to its general
coordinate q is ρ̃(q) ∝ exp[−q2(ω/h̄) tanh(h̄ω/2kBT )] [17],
where ω is the frequency of the mode, and h̄ is the Planck
constant. ρ̃(q) approaches the classical distribution, propor-
tional to exp(−q2ω2/2kBT ), as the tanh function goes to
zero, and approaches the quantum distribution proportional to
exp(−q2ω/h̄), i.e., the distribution dominant by the zero-point
fluctuation, as the tanh function goes to 1. It is reasonable to
use the inflection point of the tanh function as the starting
threshold of the zero-point effect, which corresponds to a
temperature Tth = h̄ω/2kB. In a solid, the Debye temperature
�D is related to the frequency of the highest-energy mode by
�D = h̄ωmax/kB. It is thus not surprising that one observes a
threshold temperature about half of the Debye temperature.
As a rule of thumb, one may consider using a fraction of the
Debye temperature, instead of the temperature at which the

thermal wavelength is comparable with the distance between
ions, as an indication of the appearance of zero-point effect in
a solid.

Figure 2 also shows that original MEAM potentials have a
significant underestimation to bulk modulus for all tempera-
tures under consideration, when compared with experimental
data. With the revised potentials, however, the results are
much improved. Table IV provides a quantitative compari-
son of PIMD predictions of the bulk modulus for all four
potentials, at 50 K, 300 K, and 700 K. At T = 50 K, the
bulk modulus calculated by the M-P potential has an under-
estimation of 12.73%, and the M-A potential underestimates
the bulk modulus by 3.23%. With the revised potentials, the
deviation is much reduced to 2.01% for the M-PR potential,
and 1.12% for the M-AR potential. Note that both revised
potentials slightly overestimate the bulk modulus while the

TABLE IV. PIMD results of bulk modulus B at T = 50 K,
300 K, and 700 K. The difference 
B = B − BExpt with respect to
experimental value (Expt.) [49,50] and corresponding relative error

B/BExpt are listed in the last two columns. Numbers in parentheses
are numerical uncertainties of the last digit.

T (K) Potential B (GPa) 
B (GPa) 
B/BExpt (%)

50 M-P 69.3(8) −10.1 −12.73
M-A 76.8(2) −2.6 −3.23
M-PR 81.0(9) 1.6 2.02
M-AR 80.2(2) 0.8 1.12
(Expt.) 79.4

300 M-P 61.1(8) −14.6 −19.34
M-A 71.9(4) −3.8 −4.72
M-PR 72.1(9) −3.6 −5.18
M-AR 74.9(6) −0.8 −1.04
(Expt.) 75.7

700 M-P 40.5(8) −27.2 −40.17
M-A 63.4(7) −4.3 −6.28
M-PR 51.1(9) −16.6 −24.46
M-AR 66.8(8) −0.9 −1.34
(Expt.) 67.7
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FIG. 3. Temperature dependencies of elastic constants for aluminum, calculated with the PIMD method. The diamonds in blue, red, and
black stand for the results of C11, C12, and C44, respectively. Experimental results of Kamm et al. [49] and Gerlich et al. [50] are also presented
with blue and black solid curves, respectively, for comparison purposes. (a) Results calculated with the M-PR potential. (b) Results calculated
with the M-AR potential.

original potentials underestimate it. At T = 300 K, the devi-
ation of the revised M-PR potential is reduced to 5.18% from
the deviation of 19.34% of the original M-P potential, and the
error of the M-AR potential is 1.04%, much smaller than the
error 4.72% of the M-A potential.

As displayed in Fig. 2, the two revised potentials have
very different performances at T above 300 K. For the M-
PR potential, the PIMD prediction to bulk modulus has an
increasing deviation. The largest deviation of −24.46% ap-
pears at T = 700 K. However, the M-AR potential maintains
a good performance at T above 300 K. The PIMD results
keep a small error about 1% for all temperatures from 300 K
to 700 K. The largest deviation of 1.34% takes place at
T = 700 K. The good performance of both revised poten-
tials at temperatures below 300 K is within the anticipation,
since the potentials are optimized in this temperature range.
The good performance of the M-AR potential may suggest it
having a much larger application range not confined at low
temperature.

C. Elastic constants

Figures 3(a) and 3(b) display the PIMD calculation of elas-
tic constants C11, C12, and C44 with the two revised MEAM
potentials. The elastic constant C11, which describes the stress
response in the direction parallel to the stretch, shows a similar
temperature dependency as that of lattice constant and bulk
modulus. At low temperature, C11 converges to a constant
value as the result of the quantum zero-point fluctuation of
ions, which is similar to the trend displayed in the calculations
of a and B. C12 describes the perpendicular stress response to
a stretch, and C44 is for the response of shearing motion. Both
C12 and C44 have a different temperature-dependent relation
from that of C11. As can be observed from experimental mea-
surements, they are nearly independent of temperature for all
T below 700 K, which implies that the interplay between the

quantum effects and the ionic potential has a minor influence
on them.

The two revised MEAM potentials perform quite differ-
ently in the calculation of elastic constants. As displayed in
Fig. 3(b), the M-AR potential results show excellent agree-
ment with experimental measurements for all temperatures
below 700 K. Quantitatively, the maximal differences for C11,
C12, and C44 are 3.98%, 6.48%, and 17.24%, respectively.
The maximal difference will further decreases to 2.16%,
4.11%, and 8.19%, respectively, if the potential is applied
to a temperature below 300 K, i.e., below the room temper-
ature. The C11 and C12 calculated with the M-PR potential
agree well with the experimental data at temperatures be-
low 300 K. But they are significantly underestimated when
T is higher. This is consistent with the trend revealed in
the calculation of B shown in Fig. 2(a), since B = (C11 +
2C12)/3. The relation between bulk modulus and elastic con-
stants also shows that the temperature dependency is actually
contributed by C11, considering C12 is nearly temperature in-
dependent. The C44’s calculated with the M-PR potential are
generally about 30% to 50% higher than the experimental
results for all temperatures below 700 K, showing that the
shearing-related properties predicted by the M-PR potential
will be less accurate than those predicted with the M-AR
potential.

V. CONCLUSION

In summary, we show that an accurate description of
thermal and mechanical properties of Al at low tempera-
ture can be achieved by the PIMD method together with
particularly revised empirical MEAM potentials, as long as
the interplay between the highly anharmonic ionic interac-
tion and zero-point fluctuation of ions is carefully taken into
consideration. The revision procedure of the MEAM poten-
tial also provides a possible option to further improve the
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accuracy of low-temperature ionic potentials generated based
on quantum-mechanical calculations by taking the correction
from experimental measurements into consideration.
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