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Self-trapping of nanoparticles by bound states in the continuum
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In the first tutorial part of the paper, we show that equilibrium positions of small dielectric particles inside the
Fabry-Perot resonator (FPR) are sensitive to a frequency of incident electromagnetic wave and size of particle.
That elucidates basic principles of resonant trapping of nanoparticles by excitation of high-Q resonances of FPR.
In the second part, we consider a long dielectric cylinder with submicron radius (primary cylinder) integrated into
a metallic waveguide which supports symmetry-protected bound states in the continuum (BICs). We consider
the case of a slightly shifted cylinder relative to the axis of symmetry of a waveguide that controls the Q factor
of quasi-BIC. Then, the extra nanoparticle perturbs quasi-BIC as dependent on the size of the nanoparticle and
position relative to the primary cylinder. An interplay between the resonant width of quasi-BIC and a degree
of frequency perturbation defines whether a dragging nanoparticle is terminated at a surface of the primary
cylinder for an ultrasmall size of nanoparticles or at the definite distances from the cylinder for the larger size of
nanoparticles. Thereby, we demonstrate a paradigm of resonant self-trapping and sorting of nanoparticles by use
of quasi-BICs. We also show extremal sensitivity of self-trapping to the frequency of an electromagnetic (EM)
wave propagating over waveguide.
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I. INTRODUCTION

The experimental demonstration of optical separation us-
ing extended optical lattice or holographic methods in the
presence of a laminar flow has shown in Refs. [1,2], which has
been followed by theoretical analysis [3]. A generic method
for sorting of micron particles based on the interference of
two laser beams was considered and experimentally realized
in Refs. [4,5]. However, sorting smaller nanoparticles whose
sizes are substantially less than the optical wavelength needs
different approaches. In the present paper, we consider the
approach based on resonant enhancement of optical forces
by excitation of bound states in the continuum (BICs) [6].
First, sharp features in the force spectrum, causing mutual
attraction or repulsion between successive photonic crystal
layers of dielectric spheres under illumination of a plane wave,
has been established by Antonoyiannakis and Pendry [7].
It was revealed that the lower frequency bonding resonance
forces push the two layers together, and the higher frequency
antibonding resonance forces pull them apart. Later, these dis-
closures were reported for coupled photonic crystal slabs [8],
two planar dielectric photonic metamaterials [9], a dimerized
high-contrast grating with a compliant bilayer structure [10],
and even in a single high-contrast dielectric resonator close to
metal surface [11].

Mostly, the optical trapping is given by the Ashkin force
which is proportional to gradient of electromagnetic power
∇|E |2 and, therefore, particles are trapped at the region of
maximal intensity [12]. Optical trapping has found many
applications in the physical and life sciences because it al-
lows for precise control and positioning of micrometer-sized
dielectric objects [13]. For example, optical trapping has

been applied to objects of biological interest, such as cells,
bacteria, and viruses, to indirectly manipulate DNA and to
measure the forces involved in RNA transcription [14]. There
are fundamental challenges in extending optical trapping to
nanoscale objects smaller than 100 nm. The gradient optical
force becomes much weaker as the object gets smaller, scaling
with the third power of its size. So far, the only approach to
trap smaller objects has been to increase the trapping laser
intensity. Consequently, trapping very small objects involves
intensities that can exceed their damage threshold.

In this paper, we show first that BICs can be engaged
for optical trapping of ultrasmall dielectric particles up to a
few nm, applying a relatively small power electromagnetic
wave of power around 1 mW/μm. Moreover, we demonstrate
that nanoparticles dragging by air or liquid laminar flow in
metallic waveguides are kept at definite positions relative to
the primary dielectric cylinder integrated into the waveguide,
and these positions are very sensitive to the size of dragging
particles. As sketched in Fig. 1(a), the waveguide formed
by two perfectly conducting metallic planes at a distance d
holds a dielectric cylinder with refractive index n = √

ε and
radius R. The TM solutions of the Maxwell equations with
electric field along the cylinder in such a system are equivalent
to the solutions of periodic array of dielectric cylinders in
air [15] that supports bound states in the radiation continuum
(BICs) [16–32].

We consider the possibility of optical trapping of nanopar-
ticles owing to extremely high sensitivity of quasi-BIC
solution onto a presence of the particle near the primary
cylinder. That mechanism is different from the so-called self-
induced back-action optical trapping enhanced by the use of
an optical resonance of the nanoparticle [33]. The property of
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FIG. 1. (a) An infinitely long dielectric cylinder between two
metallic planes. (b) The case under consideration: small (thin) cylin-
der moves parallel to reference cylinder.

giant enhancement of the response of the system supporting
BICs is widely used in various applications of BICs, espe-
cially in sensing. However, that property is not enough for
sorting of particles, for example, by sizes, because a magni-
tude of optical force is proportional to the area of particle.
We consider the more sophisticated case when the system
is almost tuned to the situation close to BIC. Then, a small
dielectric particle approaching the system slightly perturbs the
system and slightly shifts the resonant frequency of the system
plus the nanoparticle. If the shifted frequency approaches
close to the BIC frequency, the optical force enhanced by the
Q factor of the system becomes extremely large. The perturba-
tion of resonant frequency by small particles was considered
by many scholars [34–36] and sensitive parameters of the
small particles, such as size and shape, position, and refractive
index of particles. Therefore, engagement of the BICs for
sorting of particles promises to give us perspective in view of
sorting the nanoparticles. In the present paper, we present the
basic principles of sorting particles by use of high-Q modes
of the Fabry-Perot resonator (FPR) and symmetry-protected
(SP) BICs supported by single dielectric primary rod fixed in
metallic waveguides as shown in Fig. 1.

II. RESONANT TRAPPING OF SMALL PARTICLES
IN FABRY-PEROT RESONATOR

To illustrate principles of resonant trapping of small par-
ticles by high Q-resonant modes, we consider radiation
pressure-driven FPR [37,38]. The FPR is formed by two
high-contrast dielectric layers supprting resonances given by
an number of the half wavelengths between layers [39]. As-
sume the distance between layers of the FPR slightly differs
from the high-Q resonance. It is clear that a small particle
modeled by a thin intermediate low-contrast layer inside the
FPR perturbs the solution insignificantly. But the perturbation
could be sufficient to tune the total system onto the high-Q
resonance and, respectively, can cause significant changes of
optical pressure as dependent on a position of the particle. The
total system is sketched in Fig. 2. That reduces the problem to
the one-dimensional case and enables analytic consideration
of optical forces acting on the particle by use of the transfer
matrix [40].

The solution in each spatial domain is given by the transfer
matrices [38,40][
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FIG. 2. Two dielectric slabs with refractive index n0 and thick-
ness a with thin dielectric slab with refractive index n and
thickness δ.

where the transfer matrices are given [40] for slabs of FPR
with thickness a and permittivity ε0:
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Here k and q are the wave vector components along the x axis:

k2 = ω2 − π2, q2
0 = ε0k2 + (ε0 − 1)π2. (4)

Respectively, for the transfer matrix of thin layer with thick-
ness δ and permittivity ε, we have
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and

q2 = εk2 + (ε − 1)π2. (6)

Following Refs. [37,38], we write for optical pressure (the
force per unit area of thin layer)

P(x) = P0(|A(x)|2 + |B(x)|2 − |C(x)|2 − |D(x)|2), (7)

where P0 = |E0|2
8π

( k
π

)2 and E0 is the amplitude of electromag-
netic (EM) field. The results of simple numerics are presented
in Fig. 3 which shows that the pressure completely corre-
lates with the transmittance. For small perturbation of high-Q
resonant mode Ez,n = E0 sin(πnx/L), n = 1, 2, 3, . . . inside
the FPR, we can calculate perturbation shift of the resonant
frequencies by use of the formula [34–36]

�ωn = −ωn(ε − 1)

2

∫ x+δ

x
Ez,n(x)2dx

≈ −πnδ(ε − 1)E2
0

2L
sin2(πnx/L). (8)

One can see that the transmittance follows this formula for
δ = 0.02 as shown in Fig. 3(a), and the optical pressure fol-
lows the Ashkin gradient force

P = P0
d|Ez,n|2

dx
= P0

2
sin 2πnx/L,

as seen from Fig. 3(b).
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FIG. 3. Transmittance and optical pressure in arbitrary units ren-
dered by plane wave at thin dielectric layer inside FPR. a0 = 1,

ε0 = 10, ε = 2. White lines show equilibrium positions of thin layer.
(a) and (b) δ = 0.02, and (c) and (d) δ = 0.1.

However, that is correct for a small perturbation exerting by
small particle. With increasing thickness of the intermediate
layer, the perturbed resonant mode cannot be described as the
resonant mode of the empty FPR. It is easy to understand the
origin of the resonant behavior of the transmittance shown in
Fig. 3(c) for a thicker inner layer with δ = 0.1 if we present
the total system as two FPRs with two lengths x and L − x.
Respectively, the left FPR has resonances at kL

n ≈ πnL/x
while the right FPR has resonances at kR

n ≈ πnR/(L − x),
where nL and nR are positive integers. As the resonances are
crossing, we observe avoided crossing that Fig. 3(c) clearly
demonstrates.

Optical force can reach significant values at the resonances
with sufficiently high Q factors [38,41]. Because of propagat-
ing the plane wave from the left to the right, the pushing forces
exceed the pulling forces. One can see from Eq. (9) the force
is proportional to the thickness of layer that also correlates
with Fig. 3. Figure 4 shows equilibrium positions of the thin
particle inside the FPR as dependent on thickness. Therefore,
one can select the particles of definite size by proper choice
of the frequency of illumination or, equivalently, by proper
choice of the length L of the FPR.

III. RESONANT TRAPPING OF NANOPARTICLES IN
METALLIC WAVEGUIDE WITH DIELECTRIC CYLINDER

In this section, we explore the system sketched in Fig. 1(a)
which supports abundance of different BICs, among which
the SP are the most easy to achieve [15]. As analyzed in this
paper, BICs in metallic waveguides with integrated dielectric
rods are equivalent to BICs in the periodical array of rods.
Thereby, we use the methods of solution of the Maxwell
equations developed by Yasumoto and Jia [42] for multilayer
two-dimensional photonic crystal structures.

FIG. 4. Equilibrium positions of thin layers with different thick-
nesses δ at the parameters listed in Fig. 3.

In the first step, we solve the homogeneous Maxwell equa-
tions to establish the SP BICs as the resonant eigenmodes with
real eigenfrequencies. It is clear that for the dielectric rod
with the refractive index n0 to trap the EM wave, its radius
R has to be comparable with the characteristic wavelength
inside the cylinder 2π

n0k . Therefore, the threshold for SP BICs
can be evaluated as Rn0 ≈ C, where the constant C of the
order of magnitude of the unit depends on specific type of SP
BIC [15]. In what follows, we take R = 0.15, ε0 = 15, where
sizes and wave number are given in terms of the width of
waveguide d . Numerically calculated behavior for thresholds
of dipole (closed circles) and quadruple (open circles) types
of SP BICs are presented in Fig. 5(a). Comparisons to this
evaluated formula are shown by solid lines with C = 0.3 and
C = 0.6, respectively. The only condition for the SP BICs to
exist is the symmetrical position of the cylinder relative to the
waveguide. Therefore, a shift of dielectric cylinder by distance
� from the center line controls the Q factor of the quasi-BIC
as shown in Fig. 5(b), where the Q factor is given by the
ratio Re(k)

2Im(k) . The SP BICs can be labeled by orbital momentum
l = 1, 2, 3, . . . provided that the frequencies of the BICs are

FIG. 5. (a) Curves of thresholds above which the SP BICs exist
versus refractive index and radius of circular rod. (b) The Q factor
of the quasi-SP BIC versus shift of cylindrical rod with R = 0.15,

ε = 15 relative to central line of waveguide.
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FIG. 6. The Q factor (color map) and contours of eigenfrequen-
cies (solid lines) of the total system as dependent on position of
nanoparticle in waveguide. Parameters of primary cylinder: R =
0.15, � = 0.002, ε0 = 15 and nanoparticle : ε = 3 and radii (a) a =
0.01 and (b) a = 0.04 in terms of waveguide width. Dashed line re-
sponses for the resonant frequency given by the perturbation theory.

below the second cutoff of the waveguide 2πc/d , where c
is the light velocity. In the present paper, we consider the
SP BICs with l = 1 (dipole type) and l = 2 (quadruple type)
whose profiles of electric field Ez are seen in Fig. 5(a).

Next, we assume that noninteracting (dilute concentration)
nanoparticles are dragged by liquid or air flowing over a
metallic waveguide as sketched in Fig. 1(b). To elaborate
the basic principles of trapping and sorting of nanoparticles
by sizes through an excitation of quasi-SP BICs, we model
the nanoparticle as a thin dielectric cylinder parallel to the
primary cylinder that reduces the dimension of the problem
till two. We consider the dragging cylinder with permittivity ε

has an extremely small radius a � R. One can expect that the
presence of a nanoparticle in the waveguide perturbs the sys-
tem and transforms the true SP BIC into quasi-BIC similar to
the effect of structural imperfections [43–46]. However, there
might be the opposite effect. Assume the primary cylinder
in the waveguide is slightly shifted relative to central line of
the waveguide by distance � that deflects the true SP BIC
into quasi-BIC with a large but finite Q factor as shown in
Fig. 5(b). Next, assumethe nanoparticle is approached by the
primary cylinder. If the perturbation by the nanoparticle is
not sufficient to push the solution to the BIC solution, we
observe gradual variation of the Q factor with the position of
nanoparticle with the radius a = 0.01 as shown in Fig. 6(a).

FIG. 7. Optical force |F| [nN/μm] (color map) and its directions
(arrows) at the frequency kd = 4.0173 at different radii of nanopar-
ticle: (a) a = 0.005, (b) a = 0.01, and (c) a = 0.04. Solid thin lines
show trajectories of nanoparticles at different initial positions y and
x = −1. Closed circles mark equilibrium positions of particles. The
primary cylinder is shifted by � = 0.002, F0 = 30 pN/μm, injected
power equals 1 mW/μm.

The real parts of the perturbed complex eigenfrequencies are
shown by solid lines while the imaginary parts are shown by
means of the Q factor. However, to increase the perturbation
caused by the nanoparticle one sees in Figure 6(b), first, strong
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FIG. 8. Optical force |F| acting on ultrasmall particles at different frequencies of incident wave (a) kd = 4.017 and (b) kd = 4.0174 with
radius a = 0.01 (upper panel); (c) kd = 4.013 and (d) kd = 4.017 with radius a = 0.04 (bottom panel). All other parameters are given in
previous figures.

enhancement of the Q factor by two orders in magnitude and,
second, quasi-BIC with an extremely high-Q factor is restored
for selected positions of the nanoparticle. Also, we show in
Fig. 6 that numerically calculated resonant frequencies of the
total system (solid black lines) are close to the perturbation
theory results (dased lines) [34–36]:

�Re(k) = −Re(k)(ε − 1)

2

∫
d2−→x |Er (x)|2. (9)

Here integration is performed over the area of the small cylin-
der with the radius a � R modeling the nanoparticle. Profiles
of the scattering waves for a given amplitude of the incident
wave are very close to the BIC solutions [23]. The only effect
is related to strong resonant enhancement of the response
proportional to Q1/2. The current case is not an exception—
the electromagnetic wave propogates over waveguide from
the left and gives the scattering wave function close to the
BIC solutions shown in Fig. 4(a) because of smallness of
the nanoparticle. If we take d = 1μm, these cases imply the
sizes of the nanoparticle range from a = 50 nm to a = 40 nm,
which is considerably less than the radius of the primary
cylinder.

In the second step, we calculate the optical force acting
onto a small cylinder by excitation of quasi-BIC by external
TM wave propagating along the metallic waveguide whose
electric field is directed along cylinders. Results of the nu-
merical calculation of optical force according to the theory of

electromagnetic force via the stress tensor [6],

Fi =
∫

Ti jdS j,

Ti j = 1

4π
EiE

∗
j − 1

8π
δi j |E|2 + 1

4π
HiH

∗
j − 1

8π
δi j |H|2, (10)

are shown in Figs. 7(a)–7(c) for three choices of the size of
ananoparticle a = 0.005 (a), a = 0.01 (b), and a = 0.04 (c).
Here the indices i, j numerate components in the cylindrical
system of coordinates. For nanoparticles the optical force
calculated by Eq. (10) is well approximated by the Ashkin
formula [12], F = −α

2 ∇|Ez|2, where α is the polarizability of
the particle and Ez is the electric field directed along the z

axis. The absolute value of force
√

F 2
x + F 2

y is proportional

to the Q factor and therefore reaches extremely large values
at those positions of the nanoparticle with the maximal Q
factor shown in Fig. 6(b). For rather low power 1mW/μm
of an electromagnetic wave propagating over the waveguide
from the left to right, the force reaches giant magnitude 720
nN/μm. The directions of the force in Fig. 7 are shown by
blue arrows.

However, in what follows we show that for optical self-
trapping of nanoparticles, considerably lower resonant forces
have importance. Assume that nanoparticles are dragged by
the flow of air or liquid that is described by equation

dx
dt

= F + exF0, (11)
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FIG. 9. The same as in Fig. 8 but for smaller nanoparticle with
a = 0.0025. (a) kd = 4.0174 and (b) kd = 4.017.

where the last term describes the dragging force directed along
the waveguide and the friction coefficient at a velocity of
nanoparticle is absorbed by time. Solid thin lines in Fig. 7
show trajectories of nanoparticles which evolve since initial
position x = −1. These trajectories unambiguously demon-
strate that owing to excitation of high-Q resonant modes close
to the SP BIC by the propagating wave, the primary cylinder
in the waveguide effectively manipulates viscous motion of
nanoparticles.

One can see from Fig. 7 that curves of definite fixed reso-
nant frequencies form two arcs above and below the primary
cylinder, which are extending with growth of the nanopar-
ticle’s size for the dipole-type quasi-SP BIC. Respectively,
an electromagnetic wave resonant to these frequencies gives
rise to resonant optical forces which follow these arcs. These
arc forces exceed by two orders in magnitude nonresonant
forces (white background) as seen from Fig. 7, and have a
key importance in a resonant self-trapping of nanoparticles
inside arcs. As soon as nanoparticle deviates from these arcs
the force drastically falls down and can be balanced by weak
dragging force right near the arcs. Moreover, the x component
of vectorial forces at the right arcs is opposite to forces at the
left arcs as one sees from Fig. 7 and the following figures.
Thereby, the drag force directed to the right can be compen-
sated only around the right arcs to result in full termination of
the nanoparticle at places marked by a closed circle. In accor-
dance with Eq. (9), the size of the resonant arc increases with
the volume of the nanoparticle. That mechanism elaborates a

FIG. 10. Evolution of nanoparticles with initial position x = −1
under excitation of the quadruple quasi-SP BIC solution by elec-
tromagnetic wave with power 1 mW/μm and frequency kd = 3.28
for two radii of nanoparticles: (a) a = 0.01 and (b) a = 0.04. The
primary cylinder with the radius R = 0.3 and ε = 15 is shifted by
� = 0.01.

paradigm of the resonant sorting of nanoparticles by its sizes
as shown in Figs. 7(a)–7(c).

The above considered paradigm of resonant optical self-
trapping forces brings a new parameter to manipulate by
sorting the particles, by a frequency of electromagnetic power.
As Fig. 6 shows, a slight variation of resonant frequency
drastically changes the radius of the arcs. Respectively, one
expects that for nanoparticles of selected size, a slight change
of the frequency of propagating electromagnetic wave will
drastically change the final position of the nanoparticles, as
Fig. 8 demonstrates for nanoparticles of two sizes: a = 0.01
and a = 0.04. Moreover, one can see from this figure that the
more the size of the particle, the more change in frequency
of the propagating EM wave is necessary. Figure 9 shows
a striking effect of blockage of nanoparticles with the radius
a = 0.0025 that constitutes only a few nanometers in optical
range by the slightest change of frequency of electromagnetic
wave for 0.04%.

The case of quadruple quasi-SP BIC obviously will form
four arcs of resonant frequencies along which the giant res-
onant optical force are arranged. Accordingly, Fig. 10 shows
the corresponding distribution of optical forces and evolution
of the nanoparticle under the effect of total force on the
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right-hand side of Eq. (11). Differently from the case of
excitation of dipole quasi-BIC, in the present case quadru-
ple quasi-BIC nanoparticles are terminated at the surface
of the primary cylinder independently of the size of the
nanoparticles.

IV. CONCLUSIONS

The aim of the present paper was a demonstration of basic
principles of resonant self-trapping of nanoparticles with sizes
much less than the wavelength by use of high-Q resonances
in the FPR or in a metallic waveguide with an integrated
high-contrast dielectric cylinder. Owing to that, nanoparticles
can considerably effect the solution as dependent on a vicinity
of the solution to the BIC. As for a system which can support
BICs, we consider a dielectric long high-contrast cylinder
integrated into a metallic waveguide [15]. That system also
has an advantage by a possibility to drag nanoparticles by air
of liquid flowing over a waveguide. For approaching nanopar-
ticles to the primary cylinder, there can be two basic scenarios
for trapping nanoparticles as dependent on comparison be-
tween the frequency perturbation given by Eq. (9) and the
resonant width of quasi-BIC. In the first scenario, the nanopar-
ticle perturbs the solution so weakly that the optical force
can be described by the optical force without involvement
of the nanoparticle. Our calculations show that force traps
the nanoparticle on a surface of the primary cylinder. In the

second scenario, the perturbation can be sufficient to excite
high-Q resonant modes or quasi-BIC. However, that happens
for only definite positions of nanoparticles relative to the
primary cylinder. Because of the high sensitivity of equilib-
rium positions of nanoparticles to their sizes, we demonstrate
means of resonant self-trapping and sorting of nanoparticles.
Moreover, we demonstrate extremely high sensitivity of this
effect on the frequency of electromagnetic wave propagating
over waveguide. Therefore, both models demonstrate the key
result of a manipulation position of small particles as depen-
dent on their sizes and frequency of illumination, i.e., sorting.

It is remarkable that the similar TM SP BICs exist in
metallic waveguides of cross-section Lx×Ly with symmetri-
cally integrated dielectric cylinder of the length Ly or Ly with
an electric field directed along the cylinder [15]. That opens
a way of sorting submicron particles of finite sizes. If we
assume the particles have a spherical shape with radius a, the
perturbed resonant frequencies will be diminished by a factor
a/Lx. Moreover, the Q factor of quasi-BIC is restricted by
the surface impedance of a metallic waveguide and material
losses of the primary cylinder. These adverse effects are to be
accounted for in future studies.
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