
PHYSICAL REVIEW B 106, 165428 (2022)

Signatures of the long-range phase transition in topological Josephson junctions
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The extended Kitaev models spark a recent surge of interest due to its unprecedented topological phase with
fractional invariants. In this extended model of topological superconductors, long-range pairing interactions can
induce a pair of subgap massive edge modes (MEMs), posing novel challenges to the unambiguous detection of
Majorana bound states (MBSs) sustained by the same model in the short-range limit. Here we investigate the
effect of a power-law decayed long-range pairing on the dc and ac Josephson currents between two Majorana
nanowires. By varying the magnetic field and long-range pairing, the nanowires can be driven into different
phases hosting MEMs, MBSs, or trivial Andreev bound states (ABSs), which considerably modulate the
Josephson current. For weakly linked Josephson junctions, we show that the MEMs emerging in the long-range
phases can induce a zigzag profile in the dc current-phase relation featured by two sign reversals deviating
from the point where the superconducting phase difference φ = π . In contrast, the Josephson current indicates
a sharp sign reversal at φ = π in the short-range phase that hosts MBSs, while a smooth sinelike dc Josephson
current appears in the presence of ABSs. In the nonequilibrium junction biased by a voltage, we identify a 4π

ac Josephson current in the short-range phases, indicating a MBSs-mediated tunneling process dominating the
supercurrents. Differently, when the system enters MEMs-hosted long-range phases, the ordinary ac Josephson
current with 2π periodicity can be restored. In addition, we find the ac Josephson current induced by MEMs is
significantly suppressed under the strong long-range pairing interactions. These signatures can serve as probes
to discriminate MBSs from MEMs and ABSs.
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I. INTRODUCTION

Majorana bound states (MBSs) in the topological su-
perconductors have attracted decade-long studies in the
condensed matter physics [1–5]. This emerging topological
phase of matter is expected to be an building block for
fault-tolerant topological quantum computation due to its
non-Abelian statistics [6–10]. Although many experimental
researches have reported signatures of MBSs so far [11–18],
those results are inconclusive and a decisive evidence of
their existence has not been revealed yet [19–21]. In the
hybrid superconductor-semiconductor nanowires, a stringent
probe for the elusive MBSs can be established by measuring
the fractional Josephson effect through a Josephson junction
between two topological superconducting nanowires. This
phenomenon was proposed to demonstrate an anomalous 4π

periodicity in the superconducting phase difference φ = φ1 −
φ2 between the two wires with zero bias compared to the
ordinary 2π periodicity measured in a conventional Josephson
junction [1,22–29].

Theoretically, the equilibrium supercurrents induced by
fractional Josephson effects (dc Josephson currents) with 4π

periodicity can be observed if the fermion parity is pre-
served during the phase evolution [4]. This permits a protected
MBSs-mediated crossing at φ = π which prevents the system
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evolving adiabatically back to the ground state as φ evolves
from 0 to 2π , unlike for other trivial zero-energy states [30].
However, realistic Josephson junctions are often composed
by two topological superconducting nanowires with finite
lengths. The finite-size effect will give rise to additional MBSs
at the two far ends of the Josephson junction, allowing for
finite hybridizations of MBSs on each nanowire even when the
fermion parity is preserved. This hybridization leaves residual
energy splittings at φ = π which inevitably destroys the mea-
surements of fractional Josephson effects as the system stays
in the ground state during the whole phase evolution [31]. The
anomalous periodicity can be recovered via Landau-Zener
transition with a voltage bias applied to Josephson junc-
tion [32]. The Landau-Zener transition assists nonadiabatic
transitions between states of the same fermion parity, resulting
in an ac Josephson current with a bias-dependent 4π -periodic
tunneling regime [33]. Therefore, the fractional Josephson
effects can still provide a measurable probe for the existence
of MBSs in realistic Josephson junction experiments [34,35].

Recent experimental progress facilitates the fine-tuning of
the interactions between particles in the quantum systems,
pushing the long-range interacting studies from the theoretical
investigations to the practical applications [36,37]. A novel
quantum phase induced by the long-range effect with power-
law decaying pairing interactions in the extended Kitaev chain
has raised great concern [38–49]. This long-range pairing
profile often takes a form of �i j = �r−α

i j where � is the
pairing energy between the nearest-neighboring sites, ri j is the
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spatial distance from site i to j, and the exponent α describes
the decaying rate. Among other features, the long-range quan-
tum phase (α < 1) is characterized by a pair of massive edge
modes (MEMs) hybridizing finitely even in the thermody-
namic limit [50–53], unlike the exponentially decaying MBSs
in the short-range regime (α � 1). It is thus important to
discriminate MBSs from MEMs appearing in the long-range
phase in a realistic device.

The long-range effects have also been intensively explored
in various realistic systems. The long-range superconduc-
tivity has been experimentally observed in the magnetic
impurity chains on superconducting substrates where the
large spatial extent of slowly decayed Shiba states results
in the long-range couplings between the magnetic impuri-
ties [54–58]. The steady Floquet-Andreev states have been
generated in a Josephson junction by continuous microwave
application [59], which offers an ideal platform for realiz-
ing the Floquet engineering of long-range superconductivity
via driven tunneling interactions [60,61]. Besides condensed
matter systems, electric circuits recently manifest as an excep-
tional platform to imitate the long-range tight-binding model
by the inductor-capacitor network [62–65], providing an alter-
native pathway to simulate the long-range superconductivity.
Other experimental proposals include engineering the long-
range Kitaev chain via planar Josephson junctions [66,67] and
manipulating the variable-range interactions in trapped atomic
ions [68,69]. For nanowire-based topological superconducting
devices, Wang et al. develop a low-energy effective theory
to capture the long-range superconductivity in the weakly
coupled limit [70], which mimics the long-range interac-
tions derived for the magnetic chains on superconductor
substrates [71]. A new topological phase featured by MEMs
can be identified via fine-tuning a slowly decayed pairing am-
plitude with long-range interactions falling as 1/rα

i j [38,72].
In this work, we investigate the influence of long-range

pairing interactions on the equilibrium and out-of-equilibrium
supercurrents in the Josephson junctions composed of a nor-
mal region tunneling coupled to two superconducting regions.
The long-range superconducting pairing interaction between
two particles is taken as a decaying power-law function of
their spatial distance. We start with a continuum model of
a single topological superconducting nanowire and present
its phase diagram. In the case of a finite-sized system with
open boundary condition, the low-lying energy spectra and
the wave functions along the whole junction in both long-
range and short-range phases are given. It is found that the
Josephson current indicates distinct dependence on the super-
conducting phase difference in the presence MBSs, MEMs,
and trivial Andreev bound states (ABSs). For the out-of-
equilibrium currents driven by a biased voltage, we show a 4π

periodicity of ac Josephson current for MBSs persisting in the
short-range limit. Differently, a conventional 2π ac Josephson
current appears in the long-range phase hosting MEMs.

The rest of this paper is organized as follows. In Sec. II,
we present the model Hamiltonian of the Josephson junction
with long-range pairing interactions. For the long-range su-
perconducting region, we give the derivation of its topological
invariants and the phase diagram. We then employ the
nonequilibrium Greens function method combined with a
partition-free approach to outline the calculation of Josephson

FIG. 1. (a) Schematic view and (b) the corresponding lattice
model of the one-dimensional Josephson junction consisting of two
superconducting regions and a central normal region with length LS

and LN . The proximity-induced long-range pairing interactions take
a power-law dependence on the spatial distance r and acquire a phase
difference φ = φ1 − φ2 across the junction. The tunneling couplings
at the junction interfaces are described by tL and tR. The central
region can sustain static or nonequilibrium supercurrents when the
applied voltage is zero or finitely biased.

currents. In Sec. III, the energy spectra and wave functions
are examined in a long-range Josephson junction with a finite
length. We also discuss the numeric results of Josephson cur-
rents and investigate the distinct signatures in the presence of
MEMs, MBSs, and ABSs, respectively. Finally, we summa-
rize our results in Sec. IV.

II. MODEL AND FORMALISM

We consider a one-dimensional Josephson junction with
long-range superconducting pairing interactions represented
in Fig. 1. The system Hamiltonian reads

H = HN + HL + HR + HT . (1)

Here HN denotes the Hamiltonian of the central normal
region, Hγ with γ ∈ {L, R} specify the left and right super-
conducting regions, and HT describes the tunneling couplings
across the two Josephson junction interfaces, respectively.
For a realistic nanowire-based device, the superconducting re-
gions consist of spin-orbit-coupled semiconducting nanowires
covered with the superconductor thin films. The long-range
superconducting pairing potentials are proximity-induced by
two s-wave superconductors. Correspondingly, Hγ can be de-
composed into two parts Hγ = HNW + Hγ

SC

HNW =
∫ LS

0
dx�†(x)HNW�(x), (2)

Hγ

SC =
∫ LS

0
dxdx′ψ†

↑(x)�γ (x, x′)ψ↓(x′) + H.c., (3)
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where LS is the length of the superconducting regions. The
Hamiltonian of the nanowire is given by HNW = (p2

x/2m∗ −
μγ + eVγ − σyλpx/h̄)τz + VZσx, where m∗ represents the ef-
fective electron mass, μγ is the chemical potential, Vγ denotes
the biased voltage in the γ region, λ describes spin-orbit
coupling, and px = −ih̄∂x is the momentum operator. The
magnetic field B induces a Zeeman splitting VZ = geffμBB/2
with geff the effective g factor and μB the Bohr magneton. The
Pauli matrices σ (τ ) act on the spin (particle-hole) spaces and
HNW is written in terms of the spinor �(x) = [ψ↑(x), ψ↓(x)]T

with ψs(x) annihilating an electron of s spin at position x.
Generally, the long-range pairing potential �γ (x, x′) can

take various forms depending on details and degree of com-
plexity incorporated into the model. Here we assume that the
pairing between two particles decays as a power-law function
of their spatial distance [70,73]. With this specification, the
tight-binding Hamiltonian of Hγ over an M-site chain reads

Hγ =
M∑

j=1

[(2t − μγ + eVγ )c†
j c j + VZc†

jσxc j]

+
M−1∑
j=1

(−tc†
j c j+1 − i tλc†

jσyc j+1 + H.c.)

+
M∑

j=1

M−1∑
=0

(eiφγ �c†
j,↑c†

j+,↓ + H.c.). (4)

The length of superconducting region is LS = Ma with a =
10 nm denoting the lattice spacing. The nearest-neighbor hop-
ping and spin-orbit coupling are described by parameter t =
h̄2/2ma2 and tλ = λ/2a in the lattice model. The annihilation
operator of s spin on site j is c j,σ and some spin indices have
been suppressed for brevity. Here φγ represents the phase of
superconducting order parameter in the γ region, while the
spatial-dependent part of pairing in both left and right regions
is specified by

� = �

( + 1)α
, (5)

where � is the onsite superconducting pairing potential and
 = |i − j| gives the spatial distance between sites i and j.
This type of long-range pairing interactions can be seen as a
generalization of its counterpart in the extended Kitaev model.
By tuning the power-law exponent to the short-range limit
(α → ∞), the standard model of the hybrid superconductor-
semiconductor Majorana nanowire is restored [71,73].

The tight-binding Hamiltonian of the normal region takes
the same form of Hγ in Eq. (4) except that its length is LN =
Na and chemical potential is μN . The proximity-induced su-
perconductivity and applied voltage in this region are set to
zero. The tunneling Hamiltonian in this lattice model reads

HT =
∑

s

tLd†
1,scM,s + tRd†

N,sc
′
1,s + H.c., (6)

with d j,s, c j,s, and c′
j,s represent the annihilation operators

in the central normal, left superconducting, and right super-
conducting region, respectively. tL(R) describes the tunneling
coupling across the left (right) junction interface.

A. Phase diagram of the long-range superconducting nanowire

First, we discuss the phase diagram of the long-range
superconducting region described by Hγ in Eq. (4). In the
equilibrium case where Vγ = 0, the real-space Hamiltonian
Hγ can be transformed into the Hamiltonian in momentum
space as

H(k) = (ε − 2t cos k − 2σytλ sin k)τz + VZσx + �(k)τx (7)

with Nambu spinor [ck↑, ck↓, c†
−k↓,−c†

−k↑]T and onsite energy
ε = 2t − μ. The long-range pairing terms of Eq. (5) in the
momentum space reads

�(k) = �

[
1 +

∞∑
=1

2 cos k

( + 1)α

]
, (8)

which is strictly convergent when α > 1. In this case, one
can verify that the long-range superconducting region mod-
eled by Eq. (7) belongs to class BDI characterized by a Z
invariant [73–75]. The corresponding topological invariant is
given explicitly by [70]

W = 1

2
[sgnZ (π ) − sgnZ (0)], (9)

where Z (k) = [�(k) + 2i tλ sin k]2 + (2t cos k − ε)2 − V 2
Z .

However, Eq. (9) is not applicable for α � 1 since �(k)
becomes divergent at k = 0 and the sign of Z (0) is thus ill
defined. Therefore, the contribution to topological invariant
can only come from Z (π ). The relevant noninteger winding
numbers can be defined as [73,76]

W =
⎧⎨⎩− 1

2 for |2t + ε| <

√
V 2

Z − �2(π ),

+ 1
2 for |2t + ε| >

√
V 2

Z − �2(π ),
(10)

by linearizing Z (k) around the k = π point. Detailed deriva-
tions are given in Appendix.

The corresponding phase diagram on the ε − α param-
eter plane are presented in Fig. 2(a). For the short-range
regime with a large long-range exponent α � 1, two topo-

logical branches bounded in |2t − ε| <

√
V 2

Z − �(0)2 and

|2t + ε| <

√
V 2

Z − �(π )2 are symmetrically distributed about
ε = 0. They correspond to a pair of opposite integer winding
numbers W = 1 and W = −1, respectively. The energy spec-
tra in these two branches are topologically equivalent to that
of a standard Majorana nanowire and the system can host two
unpaired MBSs at the ends of an open chain. The symmetry
of these two short-range topological phases under ε → −ε is
broken when the long-range pairings arise. We can identify
that the topological region corresponding to W = 1 vanishes
when α approaches the critical line α = 1, while the phase
associated with W = −1 exhibits no apparent deformations.
Since the topological condition VZ >

√
μ2 + �2(k) holds at

k = 0 [3], the critical long-range pairing exponent αc satisfies
the following relation:√

V 2
Z − μ2 = �

[
1 + 2

LS∑
=1

( + 1)−αc

]
, (11)
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FIG. 2. (a) Phase diagram on the ε − α plane of a single long-range nanowire with power-law decaying pairing exhibits a dependence
on the on-site pairing potential. [(b)–(d)] Trajectories of the winding vector on the complex plane at ε = 2t for (b) MBSs in the topological
short-range regime, (c) trivial states in the nontopological short-range regime, and (d) MEMs in the long-range regime. (e) Mass gap as a
function of α in the long-range superconducting region with open boundary condition and LS = 1000a. The other parameters are taken as
VZ = tλ = t and � = t/4.

from which the topological transition points in the short-range
regime can be extracted. For the strict long-range regime of
α � 1, the long-range pairing term �(k = 0) becomes di-
vergent in the thermodynamic limit LS → ∞. The system
is driven into two novel phases, corresponding to a pair of
half-integer winding numbers W = ±1/2. The two critical

lines traced by ε = −2t ±
√

V 2
Z − �(π )2 remain gapped in

the long-range regime and become the boundaries that sepa-
rate the W = −1/2 and the W = 1/2 sectors. The system can
host nonlocal MEMs at the two wire ends in these long-range
phases labeled by half-integer invariants.

We show the correspondence between bound states and the
topological invariants by plotting the trajectory of winding
vector Z (k) in Figs. 2(b)–2(d). For the MBSs represented by
the red star in the short-range regime of Fig. 2(a), the winding
vector winds a completely closed contour around the origin
in Fig. 2(b), producing an integer winding number W = 1.
As illustrated in Fig. 2(c), the winding vector of a trivial
nanowire in the short-range sector also traces a similar closed
contour except that it excludes the origin, which results in
zero winding number W = 0. However, for the long-range
phase featured by MEMs, the divergent Z (k) at k = 0 leaves
the trajectory traced by the winding vector discontinuous on
the real axis, which explains the half-integer winding number
W = 1/2.

To further explore the different behaviors between the non-
localities of MEMs and MBSs, we present mass gap of the
lowest-energy eigenstates as a function of α in Fig. 2(e). First,
we rewrite the tight-binding Hamiltonian given by Eq. (4) into
the diagonal form Hγ = ∑M

m=1 ξmη†
mηm. After the eigenvalues

ξm are calculated, the mass gap η of an M-site open chain
can be easily obtained as η(M ) = minξm. Here we consider
a quite long nanowire with LS = 1000a. The mass gap of the
subgap modes for α � 1 is exponentially suppressed, which is
an intrinsic feature of the MBSs in the topological short-range
phase. In contrast, the finite mass gap η exhibits a algebraic
dependence on α within the long-range phases, indicating a
more slowly attenuated wave function overlap against the wire
length between MEMs [38]. Note that we exclude the data
around α = 0 for visualization since the mass gap becomes
divergent as the long-range pairings do not decay any more
when α approaches zero.

B. Derivation of dc and ac Josephson currents

We now outline the formalism to calculate the Josephson
currents in both equilibrium and nonequilibrium junctions. In
an equilibrium Josephson junction with zero biased voltage
V = 0, the corresponding phase-dependent supercurrents can
be obtained from the following equation [77]

I (φ) = 2e

h̄

d�

dφ
, (12)

where � is a thermodynamic potential of the system depen-
dent on the superconducting phase difference φ across the
junction. The factor of 2 accounts for the Cooper pair charge
and all the degeneracies are included in the potential �. This
formula is valid for the general model of Josephson junction.
In the following sections, we mainly focus on weak-linked
junctions where the energy levels from the continuous spec-
trum contribute negligibly to the supercurrents [78]. Here we
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choose � to be the grand potential of the superconductor, and
the Eq. (12) can then be written as [77]

Idc(φ) = −2e

h̄

∑
p

tanh

(
ξp

2kBT

)
dξp

dφ
, (13)

where kB is the Boltzmann constant, T is the temperature, and
the summation is performed over all the discrete levels ξp in
the superconducting gap. Hence the dc current-phase relation
(CPR) of the finite-sized system modeled by Eqs. (4) and (6)
at zero temperature can be further simplified to

Idc(φ) = − e

h̄

∑
n>0

dEn

dφ
, (14)

where En>0 can be explicitly obtained as the nth positive
eigenenergy by diagonalizing the total Hamiltonian in Eq. (1).
Here the summation over spin degree is explicitly assumed
since the spin degeneracy is lifted by the Zeeman field VZ ,
which results in the drop of factor 2 for spin degeneracy in
Eq. (14) [79]. Another experimentally relevant transport prop-
erty is the critical current Ic = maxφ I (φ), which is defined as
the maximum supercurrent supported by the junction with the
phase difference φ varying.

For the nonequilibrium Josephson junctions, we adopt a
partition-free approach where the superconducting regions
are assumed coupled in equilibrium to the normal region
before applying the biased voltage [80]. As we switch on the
bias voltage V after t � 0, the only time-dependent compo-
nent of the nonequilibrium total Hamiltonian H (t ) are the
proximity-induced superconducting pairing terms and in the
lattice model it can be written as

Hγ

SC(t ) =
M∑

j=1

M−1∑
=0

ei(φγ +2eVγ t )�c†
j,↑c†

j+,↓ + H.c., (15)

where we define φγ (t ) ≡ φγ + 2eVγ t as the evolution of the
superconducting phase in the γ region. We denote H(t ) the
matrix form of the time-dependent Hamiltonian H (t � 0) in
the tight-binding basis. Here H (t = 0) describes the equilib-
rium Hamiltonian H in Eq. (4). In the Bogoliubov–de Gennes
space, the generic component of H(t ) is a block matrix

Hνν ′ (t ) =
[

hνν ′ (t ) ϑνν ′ (t )

ϑ
†
νν ′ (t ) −hνν ′ (t )

]
, (16)

where ν = 1, . . . , 2M + N labels the sites of the whole
system and h(t ), ϑ (t ) represent the nanowire and supercon-
ducting components of Hamiltonian in the subspace.

The time-dependent supercurrent across the left junction
interface can be calculated via the nonequilibrium Green’s
function method [78]

Iac(t ) = 2
∑

m

tLRe Tr[G<
1m(t, t )], (17)

where subscript 1 labels the left most site in the normal region
and m label the states in the left superconducting region. The
supercurrent flowing through the right junction can be defined
in an analogous way with Eq. (17). The time-dependent lesser

Green’s function G<(t, t ′) takes the following form [81]:

G<(t, t ′) = i
∑

q

f (Eq)

[
uq(t )u†

q(t ′) uq(t )v†
q (t ′)

vq(t )u†
q(t ′) vq(t )v†

q (t ′)

]
. (18)

Here f (E ) = 1/[1 + exp(E/kBT )] is the Fermi-Dirac distri-
bution. The qth eigenenergy and eigenstate of time-dependent
Hamiltonian H (t ) are denoted by Eq and a two-component
vector �q(t ) = [uq(t ), vq(t )]T in the Nambu space.

Following the partition-free method, we first calculate the
initial lesser Green’s function G<(0, 0), which is related to the
equilibrium Hamiltonian H(0) as [81]

G<(0, 0) = i

1 + exp[H(0)/kBT ]
, (19)

which in the tight-binding basis takes the following form:

G<
νν ′ (0, 0) = i

∑
q

f (Eq)

[
uq(ν)u†

q(ν ′) uq(ν)v†
q (ν ′)

vq(ν)u†
q(ν ′) vq(ν)v†

q (ν ′)

]
. (20)

where uq(ν) and vq(ν) give the particle and hole wave func-
tions on site ν. They are specified by solving the secular
equations for the static eigenstates �q,∑

ν ′
Hνν ′ (0)�q(ν ′) = Eq�q(ν). (21)

The time evolution of eigenstates are governed by the time-
dependent Bogoliubov–de Gennes equations, which can be
expressed in the compact form

i�̇q(ν, t ) =
∑
ν ′

Hνν ′ (t )�q(ν ′, t ). (22)

Here the solutions of Eq. (22) are given by

�q(ν, t ) =
∑
ν ′

Uνν ′ (t, 0)�q(ν ′, 0) (23)

with the initial condition �q(ν, 0) = �q(ν) and the time evo-
lution operator U(t, 0) is defined as

U(t, 0) = T exp

[
−i

∫ t

0
dt ′H(t ′)

]
, (24)

where T represents the time-ordering operator. The lesser
Green’s function is propagated in time as [78]

G<(t, t ) = U(t, 0)G<(0, 0)U†(t, 0). (25)

Since the bias voltage is constant in time, we can discretize
the time into a sequence tn = nδt with n a positive integer.
The evolution of the lesser Green’s function can then be nu-
merically solved via a time-stepping procedure

G<(tn, tn) = ŨnG<(tn−1, tn−1)Ũ†
n, (26)

where the discretized time evolution operator Ũn =
exp[−iδtH(tn)] propagates the lesser Green’s function
from tn−1 to tn. Inserting this numeric result back to Eq. (17),
we can then obtain the ac Josephson supercurrents.
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III. RESULTS

A. The current-phase relation of LRK-based
Josephson junctions

To demonstrate the effects of long-range pairing on the
Josephson supercurrents, we will first study a simpler model
where the junction are composed of two weakly connected
long-range Kitaev chains (LRK). Here we consider a general-
ization of standard Kitaev chain in the presence of long-range
pairings decaying algebraically as a power-law function of
site distance, and nonlocal hopping terms are not taken into
account. The corresponding long-range Hamiltonian over an
N-site chain reads [50]

HLRK = − μ

N∑
j=1

c†
j c j − t

N−1∑
j=1

c†
j c j+1 + H.c.

+ �

N∑
j=1

N−1∑
=1

−αc jc j+ + H.c., (27)

where  denotes the distance between different sites. The
standard Kitaev Hamiltonian, which involves only nearest-
neighboring pairings, is recovered in the short-range limit
α → ∞.

The long-range Kitaev models proposed by previous lit-
erature can be exactly solved within the standard approach
to noninteracting fermion problems [38], allowing us to give
its phase diagram in the μ − α plane with closed boundary
condition. As displayed in Fig. 3(a), we can identify a simpler
diagram in comparison to Fig. 2(a). When α < 1, two novel
phases have been found out and the corresponding winding
number W takes the values W ± 1/2 (at μ ≷ 1). They are not
continuously connected to the short-range phases in α > 1,
which labeled by integer winding numbers W = 0, 1, for triv-
ial states and topological MBSs, respectively. The long-range
phases within α < 1 and μ < 1 are suggested to support a
pair of topological MEMs localized at the two ends of Kitaev
chain, which can be attributed to the divergencies in the quasi-
particle spectrum.

We then consider a Josephson junction consists of two
weak-linked LRK described above and extract its CPR in
the equilibrium configuration. First, we investigate the edge
modes in the phase at α > 1 and |μ| < 1, labeled by the red
star in Fig. 3(a). In the case, the structure of these edge modes
is qualitatively equivalent to those in the nontrivial Kitaev
chain: Two real fermionic modes emerge, with wave func-
tions localized at the endpoints of the chain, which eventually
evolve into the MBSs with vanishing mass in the infinite-chain
limit. Figure 3(b) depicts a steep sawtooth CPR profile at the
phase difference φ = π induced by this short-range subgap
mode. This means that a parity-protected zero crossing is
allowed by MBSs, which prevents the system evolving adi-
abatically back to the ground state after the superconducting
phase rotates over 2π radians. This indicates that both the
inner and outer pairs of edge modes exhibit clear MBSs
characteristics at the two junction interfaces. For α < 1, there
are still subgap modes with wave functions mostly localized
around the endpoints of the chain, which can be identified as a
remnant of the edge modes in the phase at α > 1 and |μ| < 1.
However, the wave function overlap of long-range subgap

FIG. 3. (a) Phase diagram in the μ − α plane of a long-range
Kitaev chain with its pairing interactions quantified by power-law
decay rate α, adapted from Ref. [52]. The winding number W = 0,
W = 1 are associated with the trivial and topological phases in
the short-range sector (α > 1), while W = +1/2, W = −1/2 cor-
responds to the unconventional trivial and topological phases in
the long-range sector (α < 1). [(b) and (c)] Phase-dependent dc
Josephson currents of a LRK-based Josephson junction involving
(b) MBSs in the short-range sector (α � 1), or (c) MEMs in the long-
range sector (α = 0.25). The chemical potentials are fix at μ = 0.

modes will keep finite even in the thermodynamic limit, thus
dubbed as MEMs. The CPR also manifests itself differently
in this long-range regime. As shown in Fig. 3(c), Idc instead
exhibits a smooth sinelike curve, implying the absence of
zero crossing within the whole 0 � φ � 2π interval in the
MEMs-dictated phase.

B. dc Josephson effects

We now discuss the effects of long-range pairing on the
Josephson current in a realistic nanowire-based Josephson
junction. Let us start with the low-lying energy spectra of
the device. In Figs. 4(a) and 4(b), we present the Zeeman-
dependent low-energy spectrum at φ = π for short-range
(α = 10) and long-range phases (α = 0.2), respectively. In
the short-range case (α = 10), the superconducting spectrum
shown in Fig. 4(a) undergoes a topological phase transition at

VZ = VZC ≡
√

μ2
S + �2 (vertical gray dashed line) and a gap

closing is anticipated at this point. In the topological phase,
the four lowest levels of edge modes appear almost pinned
to zero energy with an increasing VZ , which corresponds to
the four unpaired MBSs located at the outer inner ends of the
Josephson junction. However, the situation is different in the
long-range regime. Figure 4(b) demonstrates that the splitting
oscillations of edge modes spectra persists in the topologically
nontrivial region VZ > VZC accompanied by sporadic zero
crossings.
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FIG. 4. [(a) and (b)] Low-lying eigenenergies in a long tunneling
junction as a function of Zeeman field Vz in the (a) short-range regime
α = 10 and (b) long-range regime α = 0.2. [(c) and (d)] Spatial
distributions of the wave functions for the lowest four eigenstates in
the short-range regime marked in (a) by the red star and black anno-
tation. [(e) and (f)] The same quantities while in long-range regime
indicated in (b) by the blue triangle and black annotation. The other
parameters are taken as μS = � = 0.5 meV, t = 50�, and tλ = 4�.
The chemical potential in the normal region is set as μN = μS/2 to
induce zero-energy ABSs via the confinement effect [82].

These behaviors can be further illustrated by looking at
the total wave function of the four lowest states in Figs. 4(c)
and 4(d). In the topological phase at VZ = 1.5VZC , the four
lowest levels shown in Fig. 4(c) represent four MBSs (red
solid curves). We note that the outer MBSs wave functions
exhibit an exponentially suppression, which results in neg-
ligible zero-energy splitting as VZ increases. For the inner
MBSs, the spatial overlap is considerably enhanced across the
normal region. In contrast, for the long-range regime shown
in Fig. 4(d), MEMs (blued solid curves) are always mainly
located at the junction interfaces and do not induce a spatial
distribution at the outer ends of the system. Additionally,
we also calculate the spatial distributions of ABSs in both
short-range and long-range sectors. As illustrated by Figs. 4(e)
and 4(f), both ABSs exhibit a diffusive wave function largely
entering into the central normal region.

FIG. 5. [(a) and (c)] Phase-dependent low-lying eigenenergies
in the (a) short-range α = 10, (b) long-range regime α = 0.2 at
VZ = 1.5VZC , and (c) a nontopological case at VZ = 0.5VZC, α = 10
for comparison. [(d) and (f)] Phase-dependent dc Josephson currents
for different VZ in the (d) short-range α = 10, (e) long-range regime
α = 0.2, and (f) nontopological cases with VZ � 0.6VZC, α = 10
accompanied by ABSs.

Figure 5 demonstrates the dc Josephson currents induced
by three types of subgap modes. In order to highlight their
different localization natures, we consider a short-junction
scenario (LN � ξ ) with high transparency tL = tR = t . First,
we give the phase-dependent low-lying spectra of MBSs,
MEMs, and ABSs in the long-range regime, respectively, in
Figs. 5(a)–5(c). For all three cases, we observe dense energy
spectra emerging as the quasicontinuum above the gap which
are almost dispersionless within the whole 2π period of φ. In
the MBSs-dictated phase illustrated by Fig. 5(a), we notice
that the lowest two energy levels, associated to the outer
MBSs, are insensitive to remaining at zero energy, whereas
the inner MBSs are submerged with the quasicontinuum at
φ = 0, 2π . Although its energy levels gradually detach from
the continuum as the phase difference deviates from 0 or 2π , it
only touch zero at φ = π , indicating that the short-range end
states can only manifest MBSs characteristics at this single
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FIG. 6. [(a) and (b)] Phase-dependent dc Josephson current Idc on the α − φ plane at VZ = 1.5VZC in the (a) short junction case with
LN = 10a and (b) long junction case with LN = 100a. Other parameters are taken the same as in Fig. 5.

point. Moreover, the energy splitting at φ = π is considerably
reduced, even vanished.

On the contrary, the long-range spectra characterized by
MEMs in Fig. 5(b) shows different subgap behaviors. Notice
that the two lowest levels associated with the MEMs located
at junction interfaces are not pinned at zero energy. Instead,
they only exhibit linear dispersion at two crossing points
symmetrically deviating from φ = π . The next two lowest
levels stay closer to the quasicontinuum and acquire no zero
crossings throughout the whole 2π period of φ, implying the
negligible wave functions located at outer ends of the system
and the strong overlap between MEMs. As a comparison,
the energy-phase relation of ABSs demonstrates a smoother
behavior near the zero energy and there is no zero cross-
ing in its low-lying energy spectra throughout the whole 2π

period of φ.
The phase-dependent dc supercurrents Idc in the same

short-junction scenario are presented in Figs. 5(c) and 5(d)
for different values of the Zeeman field VZ in the short-range
and long-range regimes, respectively. In the case of short-
range phase, Fig. 5(d) depicts a steep sawtooth CPR profile at
φ = π , signaling an MBS-induced protected crossing at this
point. We also note how the overall CPR shape and the crit-
ical supercurrent Ic in the strong short-range regime remains
almost unaltered by the Zeeman field VZ . The CPR exhibits
different behaviors in a strong long-range regime α = 0.2. As
shown in Fig. 5(d), the emerging MEMs give rise to a distinct
CPR which develops a zigzag profile involving two sign-
reversal points symmetrically located before and after φ =
π , indicating a 0-π transition in the supercurrent [83]. This
transition arises from the zero-energy crossings in the low-
energy spectrum, as depicted in Fig. 5(b). The zero crossings
permitted by MEMs anticipate a shift from φ = π toward
φ = 0 as VZ increases. For VZ < VZC , the trivial ABSs could
be generated and Idc exhibits a sinelike behavior, as illustrated
in Fig. 5(f).

In addition, we also give the CPR as a function of long-
range pairing exponent α in Fig. 6. Since the low-lying spectra
of the subgap bound states sensitively depend on the length
of the normal region, we consider both the short and long
junction scenarios. For a short Josephson junction case shown
in Fig. 6(a), following similar analyses from the previous
discussion, the system is driven into a long-range phase with
MEMs when α < 1. Compared with the exponentially sup-
pressed wave functions of MBSs, the leakage of MEMs into
the central normal region exhibits a much slower algebraic
decay, leading to a more prominent energy hybridization.
Consequently, the zero crossings of its low-lying spectra no
longer degenerate at a single point, which results in two sign-
reversal points away from φ = π . In the short-range phase of
1 < α < αc, the sign reversal of the Josephson current moves
to the point of φ = π gradually. With the further increase of α

and for α > αc, the system is driven into the topological super-
conducting phase and a pair of MBSs is induced, manifesting
a sharp sign reversal at the point φ =π in the current-phase
relation.

Figure 6(b) demonstrates the effect of long-range pairing
on the Josephson current as a function of the phase difference
φ in the long junction case, where we take LN = 100a. In this
case, the smoother wave function overlaps across the central
normal region makes the subgap bound states less related to
φ. In the long-range phase, the longer junction produce a
more flat low-lying spectrum of MEMs near the zero energy.
Correspondingly, a much smoother current phase relation is
induced over 0 � φ � 2π , as plot in Fig. 6(b). Meanwhile, the
critical currents related to MEMs are significantly suppressed
for the long junction case. However, in the short-range phase
hosting MBSs, the parity-protected exact zero crossing still
holds and the sign reversal of the Josephson current still ap-
pears at φ = π .

The critical supercurrents as a function of the Zee-
man splitting are plotted in Fig. 7 for the short and long
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FIG. 7. Critical current Ic as a function of the Zeeman splitting
VZ with the long-range exponent taking values in 0.2 � α � 10 for
(a) the short junction case with LN = 2a and (b) long junction case
with LN = 100a. The rest of parameters are the same as in Fig. 5.

junction cases, respectively. We first consider the short junc-
tion case LN = 2a, compared to the Majorana coherence
length ξ ∼ 50a. In the short-range cases α > 1, the critical
currents indicate a nonmonotonic dependence on the Zee-
man field VZ . The minimum values of Ic gradually reach
VZ = VZC since the contributions of long-range pairing term
to the spectrum decay rapidly as α approaches 1. When the
device experiences the phase transition, the appearance of
MBSs dominates the contributions to the supercurrents and
its unique nonlocality is helpful to enhance the Josephson
current. Differently, for the long-range case α � 1, the critical
current slightly decreases and exhibits a smoother behavior
with the increase of VZ . This implies that MEMs and ABSs
produce similar contributions to the dc Josephson currents.

It is illustrated in Fig. 7(b) for the long junction case LN =
100a ∼ 2ξ . In the region of VZ < VZC , the critical currents
for both the short-range and long-range cases exhibit similar
behaviors and undergo a large decline at VZ ∼ μN , which is
due to the emergence of near-zero energy ABSs. As VZ further
increases, the critical current Ic in the short-range phase is
continuously enhanced until its value reaches a plateau. In
contrast, the critical current Ic in the long-range phase remains
significantly suppressed. The different field-dependent Ic be-
haviors between the short-range and long-range phases are
the consequences of nonlocal natures of MBSs and MEMs.
In the topological short-range phase, the overlap of the well-
localized inner MBSs is exponentially suppressed, leading to
a protected zero crossing at the phase difference φ = π in the
energy spectrum. The current-phase relation is almost unaf-
fected with the increase of VZ . While for the long-range phase,
the MEMs-induced crossings are notably smeared out since
the wave function of MEMs is only algebraically suppressed

against the increasing LN . In this case, the energy splitting of
MEMs is less sensitive to the Zeeman field for longer LN , and
the critical current Ic is thus suppressed.

C. ac Josephson effects

For the equilibrium case, a given phase difference φ is
maintained for an infinitely long time, so the occupation
numbers of the subgap states have enough time to relax to
thermodynamic equilibrium. We now study the case where
the Josephson current tunneling across a junction biased by
a small voltage V . This bias makes the phase difference
take time dependent form φ(t ) = φ0 + 2eV t/h̄ and the state
of the system is determined dynamically starting from the
initial conditions, where the initial phase difference φ0 = π

is taken for t = 0. In the long time limit, a finitely dissipative
Josephson junction would exhibit an exact 2π -periodic ac su-
percurrent. As a result, few signatures remain to qualitatively
distinguish the CPR profiles associated with different edge
modes if system has reached the thermodynamic equilibrium.
However, topologically protected edge modes exhibit crucial
differences in their spectra that lead to diverse supercurrent
behaviors in the transient regimes [30]. To further explore
these features, we extract the ac current-phase relation from
Eq. (17) in Figs. 8 and 9 with different values of VZ and
α for the first few 2π periods in a short-junction limit with
LN = 2a.

The properties of the ac Josephson current can be divided
into two distinct regimes in respect of the biased voltage V
and Majorana hybridization energy δM . First, the adiabatic
region is identified when V � δM . In this regime, the Joseph-
son current is approximately 2π periodic since the applied
voltage cannot support the Landau-Zener transition. When we
tune up the voltage to V = 2δM , the voltage is high enough
to support the Landau-Zener transition. Figure 8(a) shows
the contour plot for ac Josephson current as a function of
the Zeeman field VZ and time period with a fixed bias voltage
V = 2δM . Here we fixed α = 10 in the short-range regime.
One can identify that the 2π periodicity is quite stable when
the system stays in the topologically trivial phase VZ < VZC .
As we increase VZ to drive the system into topological phase,
the stability of the 2π periodic current decays rapidly and
begin to develop a quasi-4π periodicity. This 4π periodic-
ity become more consolidation as the Zeeman field further
increases. The 4π Josephson current can be sustained for a
significant amount of time in these topological sectors. On
the contrary, within the long-range regime, the period is al-
ways 2π as shown in Fig. 8(b), exhibiting a stable periodicity
against various VZ values across both the topologically trivial
and nontrivial phases. This enhanced higher-order Josephson
current is caused by the strong hybridization of bound states
localized at the normal-superconductor interfaces. It can be
attributed to trivial ABSs in the VZ > VZC phase and MEMs
when VZ < VZC . The different periodicity stabilities against a
varying Zeeman field can be used to distinguish whether the
system lies in short-range or long-range phase.

The dependence of the ac Josephson currents on different
α is further demonstrated in Fig. 9. When the long-range
pairings decay fast in the superconducting regions, as shown
in Fig. 9(a) with α = 10, the fractional Josephson effect
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FIG. 8. (a) Time-dependent ac Josephson currents as a function
of phase difference φ and Zeeman field VZ in the short-range regime
α = 10. (b) The same quantity but in the long-range regime α = 0.2.
Color symbols mark the cut-lines where the CPR are extracted ac-
companied by MBSs (red star), trivial states (black rhombus), and
MEMs (blue triangle), respectively. The coherence length and wire
length of the superconducting region are reduced to ξ ∼ t/� = 5
and LS = 20a to alleviate the computation of Eq. (26) in small time
steps. Other parameters are the same as in Fig. 4.

manifests as a 4π periodic current-phase relation with the
MBSs-mediated tunneling process dominating the super-
currents, which differs from the adiabatic 2π supercurrent
assisted by Cooper-pair hoppings. As α further decreases, ac
Josephson currents plotted in Figs. 9(b) and 9(c) exhibit an
expanded quasiperiodicity of 8π which doubles the period ex-
tracted from Fig. 9(a). The amplitude of critical supercurrents
also sees an nonmonotonic modulation before the supercon-
ducting regions enter the long-range phases.

When α < 1, the superconducting regions are driven into
the MEMs-associated long-range phases and a 2π peri-
odicity in ac Josephson currents is restored, as shown in
Figs. 9(d) and 9(e). In the long-range phase hosting MEMs,
only the two lowest-lying energy levels are detached from
the quasicontinuum and the hybridization between the two
levels destroy the parity-protected crossing at phase dif-
ference φ = π . As a consequence, the 4π periodicity of
the Josephson current does not appear any more, which
is similar to the state evolution accompanied by trivial
ABSs [30]. Therefore, the ac CPR can serve as an valid
signature to distinguish the existence of MBSs and MEMs

FIG. 9. [(a)–(e)] Time-dependent ac Josephson currents at V =
2δm over a wide range of long-range decay rates: (a) α = 10 marked
by the red star in Fig. 8(a), (b) α = 4.0, (c) α = 2.2, (d) α = 0.8,
and (e) α = 0.2 marked by the blue triangle in Fig. 8(b). (f) Same
current measurement marked by the black rhombus in Fig. 8(a) in
the nontopological regime.

in the presence of a strong Zeeman field. Additional to the
period reduction, Fig. 9(e) reveals that the critical super-
currents is considerably suppressed as α approaching the
long-range limit, leading to a prominent fast oscillation in
the CPR profile. This oscillatory pattern can be attributed to
the divergence originates from the barely attenuated long-
range pairing terms in the energy spectrum. As a result,
the sinusoidal behavior of as Josephson currents are almost
smeared out by the fast oscillations in the long-range limit
α → 0. Additionally, the trivial ABSs dominate the subgap
modes during the supercurrents transport process in both
short-range and long-range phases at low Zeeman fields. The
ac Josephson currents with these nontopological origins also
acquires a 2π periodicity on the time-dependent phase dif-
ference φ(t ), as typically presented in Fig. 9(f) with α = 10,
VZ = 0.5VZC . The ABSs-mediated nonequilibrium CPR re-
sembles the ac supercurrents profile sustained in the adiabatic
regimes where the applied bias voltage cannot support the
Landau-Zener transition.

IV. CONCLUSION

In summary, we investigated the long-range Josephson
junction where two superconducting regions with power-law
decayed pairings are connected through a central normal re-
gion. In the short-junction scenario, the MBSs can induce a
steep sawtooth current-phase relation at the phase difference
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φ = π , signaling a parity-protected zero crossing at this point
that prevents the system evolving adiabatically back to the
ground state after the superconducting phase rotates over 2π

radians. While in the long-range regime hosting MEMs, the
CPR instead develops a zigzag profile involving two sign-
reversal points symmetrically located before and after φ = π ,
indicating a 0-π transition in the supercurrent. The critical
supercurrent induced by MEMs is significantly suppressed in
a long Josephson junction, as opposed to the stable large value
of the critical currents seen in the short-range regimes. As a
comparison, the zero-energy ABSs can result in smooth CPR
without any sign-reversal points.

We also discuss the ac Josephson currents under bias
voltage with different values of Zeeman field and the power-
law decaying rate. It is found that, in the short-range regime,
the 2π periodicity of ac currents decays rapidly and develop
a 4π periodicity as we tune up the Zeeman field to drive
the system into topological phase. On the contrary, the CPR
associated with MEMs exhibit a stable 2π -periodic current
against a wide range of Zeeman field values. This feature of
the Josephson current can serve as a valid probe to distinguish
the short-range phase from the long-range phase.

Until now, the strict long-range phase at α < 1 has not
been realized, and it is a long way to finally implement
the fine-tuning of long-range interactions. Nevertheless, the
long-range couplings between the impurity states have been
experimentally observed in a chain of magnetic impurities
on two-dimensional superconductors [54–58]. Recently, the
topological physics has been widely simulated by electric cir-
cuits [62–65] and photonic waveguide arrays [84–86], such as
the edge states, high-order topology, and even the non-Abelian
braidings. It is expected that the long-range phase and MEMs
could be realized in chains of magnetic atoms on the surface
of a superconductor or in electric circuits.
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APPENDIX: DERIVATION OF THE TOPOLOGICAL
INVARIANTS FOR THE LONG-RANGE

SUPERCONDUCTING NANOWIRES

In this section, we detail the derivations of topological
invariants in Eq. (9) and Eq. (10) of the main text. The long-
range superconducting region modeled by H(k) in Eq. (7)
belongs to class BDI with a Z invariant and respects the
particle-hole symmetry C = τyσyK [73–75] with K denoting
the complex conjugation. Therefore, H(k) can be expressed
as a block off-diagonal form after a unitary transformation

UH(k)U † =
[

0 Q(k)
Q(k)† 0

]
(A1)

with the antidiagonal component

Q(k) = [�(k) + 2i tλ sin k] − i(2t cos k − ε)σy − VZσz. (A2)

Then the Berry connection of the system can be written as [74]

Ak = 1

2i
∂k ln(detQ). (A3)

The corresponding winding number can then be calculated by
counting the number of quantized Berry phases in terms of π

over the first Brillouin zone [70,73,74]

W = 1

π

∮
dkAk = 1

2π i

∮
dk∂k ln Z (k). (A4)

where Z (k) ≡ det[Q(k)] takes the explicit form

Z (k) = [�(k) + 2i tλ sin k]2 + (2t cos k − ε)2 − V 2
Z , (A5)

which can also be expressed in the polar form as Z (k) =
|Z (k)| exp[iϕ(k)] with ϕ(k) ≡ arg Z (k). Consequently, the
winding number computation is further simplified to

W = 1

2π i

∮
dk∂k[ln |Z (k)| + iϕ(k)] = 1

2π

∮
dk∂kϕ(k),

(A6)

where the contribution of the first term vanishes under the
closed integration due to the periodicity of |Z (k)| in the first
Brillouin zone. It is noted that the relation

−ϕ(k) = ϕ(−k) mod 2π (A7)

holds since Z (k) respects the particle-hole symmetry C. In-
serting these results back into Eq. (A6), we can finally deduce
the calculation of winding number to

W = 1

2π

[∫ 0

−π

dk∂kϕ(k) +
∫ π

0
dk∂kϕ(k)

]
= 1

π

∫ π

0
dk∂kϕ(k)

= 1

π
[ϕ(π ) − ϕ(0)], (A8)

which coincides with the following form [70]:

W = 1

2
[sgnZ (π ) − sgnZ (0)]. (A9)

This is exactly the Eq. (9) in the main text.
However, Eq. (A9) is only legitimate when the supercon-

ducting region is in the short-range regime (α > 1). In the
strict long-range regime (α � 1), �(k) becomes divergent
at k = 0, leading to the topological singularity in the dis-
persion which makes the winding vector ill defined at this
point [50]. Accordingly, the energy band touching can only
occur at k = π and the only contribution to the winding
number computation from the point k = π [73,76]. In this
case, the real part of Z (k) is only zero for k = π , leaving

the lines μ = 4t ±
√

V 2
Z − �2(π ) gapped. At point k = 0, the

real part of Z (k) and the dispersion diverge, where the lines

μ = ±
√

V 2
Z − �2(0) become gapless. As a consequence, only

two distinctive sectors appear in the phase diagram below the
critical line α = 1.
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To determine the winding number for in the long-range
regime, we note that the only contribution to the integral in
Eq. (A6) comes from the point k = π . By linearizing the real
and imaginary parts of Z (k) at the point k = π , we have

Re[Z (k)] ∼ (4t − μ)2 − V 2
Z + �̃2, (A10)

Im[Z (k)] ∼ 4tλ(k − π )�̃, (A11)

where �̃ = �[1 − (2 − 22−α )ζ (α)] with ζ denoting the
Riemann zeta function. The winding number for the case
of α � 1 can then be explicitly calculated with numerical

methods and its final results are given by

W = 1

2π

∫ ∞

−∞
dk∂kϕ(k)

=
⎧⎨⎩− 1

2 for |μ − 4t | <

√
V 2

Z − �2(π ),

+ 1
2 for |μ − 4t | >

√
V 2

Z − �2(π ),
(A12)

which exactly agrees with the results given by Eq. (10) in the
main text.
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