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Generalized Ellis-Bronnikov bilayer graphene wormholelike surface
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In this paper, we investigate the spinless stationary Schrödinger equation for the electron when it is per-
manently bound to a generalized Ellis-Bronnikov bilayer graphene wormholelike surface. The curvature gives
rise to a geometric potential affecting thus the electronic dynamics. The geometry of the wormhole’s shape is
controlled by the parameter n which assumes even values. We discuss the role played by the parameter n and the
orbital angular momentum on bound states and probability density for the electron.
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I. INTRODUCTION

The notion of a wormhole began by Flamm, Einstein,
and Rosen [1,2] and was still developed by Wheeler [3]. It
is known that wormholes emerges as a kind of solution of
Einstein’s field equations [4]. Through philosophical argu-
ments, Weyl has speculated about these spacetime structures
[5,6], and for the original Einstein-Rosen solution, the worm-
hole throat does not allow the passage of classical objects.
However, many argue that it could link quantum particles
together to form entanglements [7,8].

From a topological point of view [9], one can think of
a wormhole as a tunnel connecting two asymptotically flat
regions of the same universe or two different universes. One
of the most important features of wormholes is the idea of
traversability, first studied by Morris and Thorne [9]. Since
the work of Morris and Thorne who stated that in order to
construct a wormhole that is traversable one requires exotic
matter as a source [9]. Therefore the pursuit for traversable
wormholes in alternatives theories of gravity [10–24] without
the necessity of exotic matter is an intense topic of research.

The first traversable solution for a wormhole was found
by Ellis and Bronnikov [25,26]. In his work, Bronnikov re-
alized, with evidence, that the Ellis drainhole is geodesically
complete, without event horizons, with free singularity and
with traversability independent of direction [25,26]. Besides,
knowing that the wormhole’s scalar field source is phantom-
like, then, all energy conditions of General relativity (GR) are
violated.

In the low energy physics, two-dimensional nanostruc-
tures, such as graphene [27–29] and phosphorene [30], have
attracted attention due to their unusual properties. The elec-
tronic properties of such two-dimensional systems are highly
dependent on the geometry [31–33], so that they can be used
as analog models for high energy physics systems [14,34–40].
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In addition, the effect of curvature in such two-dimensional
systems opens the possibility of constructing new electronic
devices based on curved graphene structures has motivated
the study of graphene in several curved surfaces, such as
the Möbius strip [41], ripples [42], corrugated surfaces [43],
catenoid [44–47], Torus [48–50], paraboloid [51], spheres
[52], among others [53,54].

As a minimal surface, the two-dimensional Ellis-
Bronnikov wormhole geometry is equivalent to a catenoid
[44]. In Refs. [55,56], a bridge connecting a bilayer graphene
was proposed using a nanotube. In order to obtain a smooth
connecting bridge, Refs. [57,58], suggested a catenoid sur-
face to describe the bilayer and the bridge using only one
surface. This can be achieved due to the catenoid curva-
ture which is concentrated around the bridge and vanishes
asymptotically [44]. For nonrelativistic electrons, the surface
curvature induces a geometric potential in the Schrödinger
equation. The effects of the geometry and external electric
and magnetic fields upon the graphene catenoid bridge was
explored in Ref. [44], where a single electron is governed
by the Schrödinger equation on the surface. Incidentally, the
influence of a position-dependent mass problem upon the
electron on a catenoid bridge was studied in Ref. [46], where it
was proposed an isotropic position-dependent mass as a func-
tion of the Gaussian and mean curvatures. In Ref. [59], the
authors describe by first principles the electronic properties of
graphene layers connected by carbon nanotubes (CNT). They
report that, for metallic CNTs the conductance is nearly inde-
pendent of the length of the nanotube but highly dependent on
the link between the graphene layers and the CNT. The oppo-
site happens for semiconducting CNTs, i.e., the conductance
is now dependent on the length of the nanotube and indepen-
dent of the link between the graphene layers to the CNT.

Connecting graphene layers through bridges is a topic
widely addressed in the literature by the experimental commu-
nity as well [60]. In Ref. [60], the authors report the synthesis
of self-organized carbon structures in which graphene lay-
ers are perpendicularly connected with each other by carbon
nanotubes.

In this paper, we propose a theoretical model to inves-
tigate the spinless stationary Schrödinger equation for the
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electron when it is permanently bound to a generalized
Ellis-Bronnikov bilayer graphene wormholelike surface in the
continuous limit. The generalized Ellis-Bronnikov wormhole
is characterized by a function controlling discrete deforma-
tions from a catenoid to a cylinder. The curvature gives rise to
a geometric potential affecting thus the electronic dynamics.
We discuss the role played by the parameter n that controls
the deformation (being therefore related to the link between
the graphene layers and the bridge) and the orbital angular
momentum on bound states and probability density for the
electron.

This paper is divided as follows. In Sec. II, we discuss el-
ements of the generalized Ellis-Bronnikov wormhole in order
to obtain the time-independent Schrodinger equation for the
spinless electron; in Sec. III, we study in details the electron
behavior from the geometric potential induced by the surface.
The numerical results for the bound states are obtained and
discussed in Sec. IV; in Sec. V, the final remarks are outlined.

II. GENERALIZED ELLIS-BRONNIKOV
WORMHOLE SPACETIME

A generic Morris-Thorne wormhole is a Lorentzian mani-
fold whose line element can be written as

ds2 = −e2�(r)dt2 + dr2

1 − b(r)/r
+ r2d�2, (1)

which is in the lorentzian signature (− + + +), where e2�(r)

is the redshift function and b(r) is the shape function. The
(r, θ, φ) are spherically polar coordinates and d�2 = dθ2 +
sin2 θdφ2.

For the usual Ellis-Bronnikov wormhole, we have �(r) =
0 and b(r) = R2/r, charectarizing a zero tidal wormhole
with R being the throat radius. However, a generalized ver-
sion of the usual Ellis-Bronnikov wormhole was proposed in
Refs. [61,62] satistying all the necessary Morris-Thorne con-
ditions for making Lorentzian traversable wormholes. This
generalized Ellis-Bronnikov (GEB) wormhole is character-
ized by two parameters, namely n and R, that tell us about
its size and shape. Then the GEB wormhole line element is
given by

ds2 = −dt2 + du2 + f 2(u)d�2, (2)

with f (u) = (un + Rn)1/n being a well-behaved function for n
even integers. Hence the GEB line element can be written as
[9,62]

ds2 = du2 + (Rn + un)2/nd�2, (3)

where u = (r2 − R2)1/2 is proper radial distance coordinate
(tortoise). The cylindrical angular coordinate φ ∈ [0, 2π ) is
called parallel. These coordinates are part of a parallel-
meridian cartesian system that is capable of covering the
entire space of the GEB wormhole. In these coordinates
−∞ < u < ∞, which is different from the cylindrical radial
coordinate ρ because 0 � ρ < ∞, allowing us to distinguish
between the lower and upper layers of the graphene, and n
is even integer. By considering an slice θ = π/2, the line
element can be rewriten as

ds2 = du2 + (Rn + un)2/ndφ2. (4)

From (4), the non-null components of metric tensor gi j (i, j =
1, 2) are given by

guu(u) = 1, (5)

gφφ (u) = (Rn + un)2/n
. (6)

The nonvanishing components of the Christoffel symbols
[4,63–65] �

j
ik = gjm

2 (∂igmk + ∂kgmi − ∂mgik ) are straightfor-
wardly calculated and written as

�u
φφ (u) = −un−1(Rn + un)2/n−1

, (7)

�
φ

uφ (u) = �
φ

φu(u) = un−1

Rn + un
. (8)

Let us now consider an electron of effective mass m∗ and
electric charge −e permanently constrained to the surface of
a GEB bilayer graphene wormhole surface due to a geometric
potential Vg, as given by the following Hamiltonian,

Ĥ = 1

2m∗ gi j P̂iP̂j + Vg. (9)

As it is widely known the bilayer graphene presents a
quadratic dispersion relation which provides a gap in the
conductance band [27], being therefore described by the
Schrödinger equation. The effective mass m∗ takes into ac-
count the lattice structure, so that the system can be described
here as a continuous model. Let us highlight here that, in order
to the system be considered in fact in the continuous limit,
the radius R must be considered much larger than the lattice
structure of the graphene. Since the length of the bonds in the
graphene lattice are around 1.43 Å [66], the radius R = 70 Å
considered in this work allows us to consider the present
system in the continuous limit. The momentum operator is
written as P̂i = −ih̄∇i, where the electron couples with the
surface by means of the induced metric of the GEB wormhole
surface gi j and the covariant derivative ∇iV j = ∂iV j + �

j
ikV

k .
In addition we consider also the da Costa’s potential [31]

VdC = − h̄2

2m∗ (H2 − K ), where H is the mean curvature and
K is the Gaussian curvature. The da Costa’s potential yields
for the GEB wormhole surface the following expression (see
Appendix):

VdC(u) = − h̄2

2m∗
(n − 1)Rnun−2

(un + Rn)2
− h̄2

8m∗

×
(

[1 − un−2(un + Rn)2/n−2(un + (n − 1)Rn)]
2

(un + Rn)2/n[1 − u2n−2(un + Rn)2/n−2]

)
.

(10)

For n = 2, we recover the da Costa potential for the catenoid
previously addressed in the literature [44,57]. Figure 2 shows
the Da Costa potential for three values of n, namely, n = 2, 4,
and 6. As we can see in Fig. 2, the Da Costa potential is an
attractive potential for any value of n. For n = 2 the Da Costa
potential promotes a confinement of the electron in u = 0,
while as we increase the value of n the Da Costa potential
exhibits two symmetric confinement wells.

The wave function, because of the axial symmetry (about
the z axis) of the GEB wormhole surface, must be invariant

165426-2



GENERALIZED ELLIS-BRONNIKOV BILAYER GRAPHENE … PHYSICAL REVIEW B 106, 165426 (2022)

FIG. 1. Above, the coordinate system, the vector,
�r = f (u) cos φ î + f (u) sin φ ĵ + h(u) k̂, locates any point on
the meridian u with respect to the origin of the coordinate system.
For n = 2, the conventional Ellis-Bronnikov wormhole surface,
which has the catenoid geometry. For n = 4, 6, 8, and 10, several
the generalized Ellis-Bronnikov wormhole surfaces are presented.
These surfaces tend to cylindrical geometries as n increases. Here
the radius R is 20 Å.

under the transformation of U(1), that is,


(u, φ) = �(u) eimφ, m = 0,±1,±2, . . . (11)

Therefore the spinless and stationary Schrödinger equa-
tion for the electron, can be expressed as

− h̄2

2m∗ �′′(u) − h̄2

2m∗
un−1

un + Rn
�′(u)

+
(

h̄2

2m∗
m2

(un + Rn)2/n + VdC(u)

)
�(u) = ε �(u), (12)

where ε are the eigenvalues of Ĥ
(u, φ) = ε
(u, φ). In what
follows, we will discuss some implications of the geometry of
the GEB wormhole surface on the electron dynamics.

FIG. 2. Da Costa potential for three values of n, namely, n = 2,

4, and 6. We have considered R = 70 Å for this plot.

III. GEOMETRY EFFECTS

Equation (12) governs the dynamics of the electron on the
GEB wormhole surface. At this point it is important to high-
light here that the first-order derivative term is not Hermitian,
since〈
�1

∣∣∣∣ − un−1

un + Rn

P̂u

ih̄
�2

〉
= −

〈
− un−1

un + Rn

P̂u

ih̄
�1

∣∣∣∣�2

〉

+
〈
�1

u2n−2 − (n − 1)Rnun−2

(un + Rn)2

∣∣∣∣�2

〉
,

(13)

where P̂u = −ih̄∂u. However the Hamiltonian associated with
Eq. (12) is symmetric under simultaneous application of par-
ity and time reversal operators, i.e., PT ĤPT = Ĥ . Thus,
since the space-time reflection symmetry is preserved, the
spectrum of the Hamiltonian eigenvalues is entirely real even
though it is not hermitian [67–73]. Therefore it is possible
to find an Hermitean equivalent Hamiltonian possessing the
same eigenvalue spectrum. In order to do so, let us perform
the following change of variable

�(u) = (un + Rn)−1/(2n)y(u), (14)

with y(u) satisfying a Schrödinger-like equation, so that (12)
becomes

− h̄2

2m∗ y′′(u) + Veff(u)y(u) = εy(u), (15)

with

Veff(u) = Vind(u) + VdC(u), (16)

being that

Vind(u) = − h̄2

2m∗

(
un−2((2 − 2n)Rn + un)

4(un + Rn)2
− m2

(un + Rn)2/n

)
.

(17)

As we can see, the effective potential is composed of the
induced potential by the surface on the electron, Vind(u), which
is essentially a repulsive potential, and by the da Costa poten-
tial, VdC(u), which emerges from the interaction of the electron
with the graphene surface, being an attractive potential. These
potentials, Vind(u) and VdC(u), compete with each other when
the parameters of the Ellis-Bronnikov wormhole are changed,
such as the radius R of the wormhole, or when the wormhole
geometry is changed.

Therefore the behavior of the electron confined to the sur-
face of the GEB wormhole made of graphene is described by
an Hermitian Hamiltonian with an effective potential written
as (16).

In the limit u → ±∞, we have free asymptotic states for
the electron, because y′′ + k2y ∼= 0 (k2 = 2m∗ε/h̄2, which is
positive to allow scattered free asymptotic states), where it is
clearly seen that the effective potential cancels out. And for
R → 0, the solution is proportional to the Bessel function of
the first type [74]. In summary, when (i) u → ±∞, y(u) =
A cos(ku + ϕ) (A is an amplitude for y and ϕ is an initial
phase) and (ii) R → 0, y(ku) = NJm(ku) (N is a normalization
constant for y). These asymptotic results are identical to those
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FIG. 3. Effective potential for R = 70 Å and n = 2, for some
values of m.

obtained for n = 2. So far, in these regimes, the graphene
nanophysics does not depend on n.

Before discussing the bound states for an electron on the
surface of the GEB graphene wormhole, we need to discuss
the effective potential generated by this surface. For n = 2,
the GEB wormhole recovers the conventional Ellis-Bronnikov
wormhole, with the wormhole having the geometry of a
catenoid, as shown the Fig. 1. For this geometry the effective
potential is shown in Fig. 3. The solid black, dashed red and
blue dotted lines correspond to orbital angular momentum,
m = 0, 1 and 2, respectively, for R = 70 Å and m∗ = 0.03m0

[75]. This configuration was already addressed in the literature
[44].

For the orbital angular momentum m = 0, the effect da
Costa potential, which is attractive, is more pronounced than
the surface-induced potential, which is repulsive, so the effec-
tive potential takes the form of a potential well centered, at
the origin of the wormhole, in u = 0, at this point the value of
the potential is −13.12 meV (see the Fig. 3). However, when
the orbital angular momentum is taken into account, i.e., when
m 
= 0, the induced potential is drastically modified, due to
the centrifugal term, in (17), and under these conditions, the
effect of the induced potential becomes greater than the effect
produced by the da Costa potential, so the effective potential
takes the form of a potential barrier, also centered on the origin
of the wormhole, according to Fig. 3. These potentials are
widely discussed in Ref. [44].

In the Fig. 4, the wormhole geometry is changed for n = 4,
as it changes the effective potential. For m = 0, the da Costa’s
potential is more significant than the induced potential, but
now the effective potential takes the form of a double well,
whose minima are located at u = −58 Å and u = 58 Å, and at
these points, the value of the potential is −14.2 meV, as shown
in Fig. 4. This potential in the form of a double well arises
because the generalized Ellis-Bronnikov wormhole geometry
presents two points of more intense curvature, one at each
end of the wormhole (see the Fig. 1). For m 
= 0, the induced
potential becomes more relevant than the Costa’s potential,

FIG. 4. Effective potential for R = 70 Å and n = 4, for some
values of m.

due to the centrifugal term, and the effective potential takes
the form of a potential barrier, located at the origin of the
wormhole, as shown in the Fig. 4.

The discussion of effective potential shown in Fig. 5 is
qualitatively similar to the effective potential shown in Fig. 4.
However, the double potential well shown in Fig. 5 is deeper
than the double potential well shown in Fig. 4. As the sur-
face of the generalized Ellis-Bronnikov wormhole assumes
the shape of a cylinder (which can be thought as a carbon
nanotube), for larger values of n (see Fig. 1), the effect of
the curvature of graphene at the ends of the wormhole is
accentuated, that explains why the depth of the double well
is greater in Fig. 5, when n = 6, than in Fig. 4, when n = 4.
This fact is in agreement with the results found in Ref. [59],
where the authors report the existence peaks indicating the
presence of localized states at the interface between graphene
and the nanotube. Similarly Gonzalez et al, [76] predicted the

FIG. 5. Effective potential for R = 70 Å and n = 6, for some
values of m.
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FIG. 6. The bound states and their probability densities for a generalized Ellis-Bronnikov wormhole with radius R = 70 Å, m = 0, and
m∗ = 0.03m0. The solid black line represents the effective potential for (a) n = 2, (c) 10, (e) 20, and (g) 40. The dashed red and dotted blue
lines correspond correspond to the ground state and first excited state and their probability densities, respectively.

existence of states confined at the interface between metallic
nanotubes and graphene, under certain conditions by using
Dirac equation. The two minima of the effective potential, for
m = 0, shown in Fig. 5, are located at u = −67 and 67 Å, and
at these points the value of the potential is −24.4 meV.

IV. BOUND STATES

In the previous section, we studied the interaction of
an electron on various types of generalized Ellis-Bronnikov
wormhole surfaces, of radii R, made of graphene. The effec-
tive potential was obtained from this study given by (16). In
this section, we will study their bound states, considering the
radius of these surfaces equal to R = 70 Å, and the effective
mass of the electron in graphene equal to m∗ = 0.03m0. For
this, we solve numerically the (15), using the finite difference
method [77], for the effective potential given by the (16).

Figure 6 shows four effective potentials associated with
four GEB wormhole surfaces made of graphene, namely, (a)
n = 2, (c) 10, (e) 20, and (g) 40. In these potentials the orbital
angular momentum is not taken into account, so m = 0. In
Fig. 6(a), the effective potential for an electron confined to the
surface of a conventional Ellis-Bronnikov wormhole is shown
by the solid black line. For this potential, there is a single
confined state, whose energy is −3.42 meV. Its probability
density function is a Gaussian function, whose the width of
the half height is u = 231 Å, as shown in Fig. 6(b). Making
use of the angular symmetry of the system and taking the
width of the half height of the probability density function
is possible visualize a probability cloud, centered at the origin
of the surface wormhole, in the form of a ring, or probability
ring, where the electron is most likely to be found.

For n = 10, the effective potential, shown in Fig. 6(c), has
the shape of a double potential well (solid black line), whose
minima are located at u = −70.5 and 70.5 Å, with value of
−59.3 meV. The dashed red and blue dotted lines represent
the ground state and the first excited state, respectively, being
that the energies of these states are −9.98 and −0.034 meV.
These states are said to be hybrids, since the effective potential
is composed of two potential wells that are close together and
their states combine and form hybrid states [78]. This can be
seen in the probability density functions shown in Figs. 6(d1)
and 6(d2). Figure 6(d1) shows the probability density function
of the ground state of the system, which has the form of two
practically overlapping Gaussian functions, whose maxima
are located at u = −64 and 64 Å. The width of the half height
of this probability density function is u = 510 Å. The prob-
ability cloud of this state is roughly shaped like a probability
ring centered on the origin of the wormhole surface, because
the two maxima of the probability density function are very
close. Therefore here the electron is more likely to be found
between the wells, i.e., around u = 0.

The first excited state for n = 10 (dotted blue line) presents
also a probability density function in the form of two Gaus-
sian function, with their maximum located at u = −328.5 Å,
and the other located at u = 328.5 Å. The half-height width
of each of the Gaussian functions is u = 1, 348.5 Å
[see Fig. 6(d2)]. Therefore the probability cloud of the first
excited state has the form of two probability rings centered
at u = −328.5 and 328.5 Å of width u = 1, 348.5 Å each.
These probability rings are very close to the origin of the
wormhole’s surface (u = 0). The large width of these prob-
ability rings show that this state is weakly bound.

Figure 6(e) shows the effective potential, for n = 20, in the
form of two wells, with its minimuns located at u = −71 and
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FIG. 7. The bound states and their probability densities for a generalized Ellis-Bronnikov wormhole with radius R = 70 Å, m = 1, and
m∗ = 0.03m0. The solid black line represents the effective potential for (a) n = 18, (c) 20, (e) 30, and (g) 40. The dashed red and dotted blue
lines correspond correspond to the ground state and first excited state and their probability densities, respectively.

71 Å, where its energy are −228.95 meV. Here there are two
hybrid states, whose energies are −22.63 and −6.72 meV. The
probability density functions of the ground state (red dotted
line) has the form of two practically overlapping Gaussian
functions with their maximum separated from u = −70 and
70 Å. Here the width at half height is defined as if there was
a single peak due to the proximity between them, so it is not
possible to visualize two probability rings, but only one, of the
width u = 206 Å, located at u = 0. So the electron can be
found both at the ends of the wormhole and inside it.

The first excited state (blue dotted line) is shown in
Fig. 6(f), whose probability density takes the form of two
Gaussian functions centered on u = −75 and 75 Å, and the
width of each of these Gaussian functions is u = 83 Å.
Again, taking into account the angular symmetry of the worm-
hole, the probability density function of the first excited state
(blue dotted line) takes the form of two probability rings
located at u = −75 and 75 Å, with each ring having a width
of u = 84 Å. Then, the electron is equally likely to be found
at the ends of the wormhole.

For n = 40, in Fig. 6(g), the effective potential has two
wells located at u = −71 and 71 Å, and its minima have
energy equal to −912.6 meV. Two bound states of energy are
obtained, whose values are −63.0 and −50.4 meV. The two
peaks of the probability density function are at at u = −71
and 71 Å, with the width of u = 40 Å, each one [see the
Fig. 6(h)]. The probability density function peaks for the
first excited state have the same location as the ground state
function peaks, however its width is 38 Å. Therefore two
probability rings, for each bound state, can be visualized sym-
metrically about the origin of the wormhole.

It is worth noting that, for n = 40, the probability density
function of the ground state indicates that the electron has the

same possibility of being in each of the wells, the same goes
for the probability density function of the first excited state,
as the two wells are indistinguishable this system has bilateral
symmetry, so an electron located in one of the wells can tunnel
to the other performing a periodic motion with a frequency
given by f = (E1 − E0)/h = 3 THz [78].

Note that the bound states obtained for the GEB wormhole,
n = 40, are more bound than for generalized wormholes for
n < 40, which is reasonable, since the wells become deeper
due to the increase in the curvature effect at the edges of the
wormhole surface.

As stated earlier, when the angular momentum is taken
into account, m = 1, the induced potential by the surface
wormhole, given by Vind(u), becomes more relevant than the
potential of da Costa VdC(u), so the effective potential al-
though it takes the form of a potential barrier, for some values
of n for GEB wormholes. The effective potential in the form of
a double well starts its formation for the GEB wormhole for
n = 6, however, they are very shallow. The first bound state
is only obtained for the GEB wormhole for n = 18, which is
shown in Fig. 7(a), so the effective potential, represented by
solid black line, also presents two wells, with their minima
located at u = −71 and 71 Å, and with energy values equal
to −161.6 meV. A single state is observed with energy equal
to −1.61 meV. Its probability density function is shown in
Fig. 7(b). The probability density function has the form of two
almost overlapping Gaussians. Their maximums are located
at u = −72 and 72 Å. As the probability density function
peaks are very close together, the half-height width of each
peak loses resolution and is seen as a single peak of width
u = 206 Å. Then, only one probability ring is observed at
the center of the wormhole, which is the region where the
electron is most likely to be located.
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For n = 20, also a single state is observed with energy
equal to −3.85 meV. The effective potential minima are
located at u = −71 and 71 Å, with energy value equal to
−204.84 meV. Figures 7(c) and 7(d) show the effective po-
tential, the level energy and the probability density function.
Here, for n = 20, the probability density function is similar
to the one shown for n = 18 [see Fig. 7(d)], however the
peaks of the probability density function are narrower, with
u = 100 Å, Although the peaks are narrower, the resolution
of the two probability rings is not very clear, therefore, a single
probability ring is observed at the center of the wormhole
surface.

Figure 7(e), for n = 30, shows two bound states with equal
energies −19.5 and −7.53 meV. The effective potential have
two minima with value of −491 meV (solid black line). The
probability density functions of the two confined states are
practically similar. That is, two probability rings located at
u = −71 and 71 Å, with a width of u = 56 Å, as shown in
Fig. 7(f). As the probability density functions have similarities
to those discussed for the wormhole for m = 0 and n = 40,
here for m = 1 and n = 30, here too the electron can perform
oscillatory motion with frequency f = 2.9 THz.

The effective potential, for the surface of an GEB if
n = 40, has two bound states with energies equal to −41.6
and −30.6 meV. The minima of the potential well are
−887.7 meV [see Fig. 7(g)]. The probability density function
of the two states exhibits two peaks. The width of the ground
state peaks is u = 40 Å, while the first excited state is u =
38 Å. Hence, the ground state probability cloud consists of
two rings of width 40 Å one at u = −71 Å and the other at
u = 71 Å. Whereas the first excited state consists of two rings
of width 38 Å located at the same positions as the ground
state, as shown in Fig. 7(h). Here too the electron can oscillate
from one well to another with frequency f = 2.7 THz.

When changing the radius R of the wormhole there is no
qualitative change, however, quantitatively there are changes
in the values of energy levels. As R decreases the effective
potential becomes deeper, due to the increasing effect of the
curvature of the wormhole surfaces, so the energy levels be-
come more confined. And the increasing in the value of R has
the opposite effect, the effective potential becomes less deep,
and the levels become less confined.

The table below shows the oscillation frequencies for elec-
trons oscillating between the ends of the wormhole (n = 40),
for some values of R. Note that as R increases, the frequency
of oscillation decreases.

R n m f = E
h m f = E

h

50 Å 40 0 6.0 THz 1 5.2 THz
70 Å 40 0 3.0 THz 1 2.7 THz
100 Å 40 0 1.5 THz 1 1.2 THz
200 Å 40 0 0.4 THz 1 0.3 THz

V. FINAL REMARKS

In this work, we study the electron interacting with the
surface of a Generalized Ellis-Bronnikov wormhole (GEB)
made of graphene, via effective mass approximation. For that,

an effective potential that confines the electron on the surface
of wormhole GEB is obtained. This effective potential is the
combination of an induced potential by the surface, Vind(u),
and the da Costa potential, VdC(u), which emerges from the
squeezing of the electron to the surface of the wormhole. The
induced potential by the surface wormhole GEB is essentially
repulsive, whereas the da Costa potential is attractive.

In the absence of orbital angular momentum (m = 0),
the da Costa potential predominates over the induced po-
tential, which causes the effective potential to take the form
of a potential well for n = 2, or a double potential well for
n > 2. Solving Eq. (15) for these potentials considering R =
70 Å one bound state is obtained for n = 2, and two states are
obtained for n > 8, the latter are hybrids.

The effective potential is drastically altered when the or-
bital angular momentum is taken into account (m 
= 0), since
the induced potential becomes more relevant than the da Costa
potential. Although the induced potential, repulsive, has rele-
vance in relation to the da Costa potential, attractive, a bound
hybrid state for m = 1, R = 70 Å, and n > 16 is obtained, and
two hybrid states for n > 24.

A frequency of an electron oscillating between these states
was estimated of the order of THz. This frequency can be used
as a way of characterizing the system itself.

The effective potential does not show qualitative change
when the radius of the system is modified, however, the values
of the energy levels can be changed. For example, for smaller
R, the effective potential depth increases, and although the
number of states is not changed, these states assume low
energy values, so the radiation emitted by the electron when
transiting from one well to the other can also be modified.
Here it can be inferred that the electronic oscillation frequency
can be related to the size of the system.

A natural extension of this work is to analyze these results
when we have the action of external fields (constant electric
and magnetic fields). Another interesting possibilities are the
study of the thermodynamic properties of the present system
as well as the investigation of a small twist between the upper
and lower graphene sheets.
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APPENDIX: MEAN AND GAUSSIAN CURVATURES

The GEB wormhole has symmetry around the z axis, the
parametrization can be given by [64,65]

x(u, φ) = f (u) cos φ, (A1)

y(u, φ) = f (u) sin φ, (A2)

z(u) = h(u), (A3)

where f (u) = (un + Rn)1/n and h(u) is a homeomorphic con-
tinuous function such that dh is one-to-one. For the moment,
we don’t worry about knowing the function h(u) that makes
the GEB wormhole surface regular, but its derivatives must
be known so that we can calculate the curvatures. The vectors
that constitute any basis for the space tangent to the surface of
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the GEB wormhole are [65]

�ru(u, φ) = un−1(un + Rn)1/n−1
ρ̂ + h′ k̂, (A4)

�rφ (u, φ) = (un + Rn)1/n
φ̂, (A5)

such that the necessary condition for the GEB wormhole sur-
face to be regular leads to

(h′(u))2 = 1 − u2n−2(un + Rn)2/n−2
. (A6)

With (A4) and (A5), the unit normal vector to GEB wormhole
surface is

n̂(u, φ) = un−1(un + Rn)1/n−1 k̂ − h′ ρ̂. (A7)

We have also

�ruu(u, φ) = (n − 1)Rnun−2(un + Rn)1/n−2
ρ̂ + h′′ k̂, (A8)

�ruφ (u, φ) = un−1(un + Rn)1/n−1
φ̂, (A9)

�rφφ (u, φ) = −(un + Rn)1/n
ρ̂. (A10)

where we have �ri = ∂�r/∂xi and �ri j = ∂2�r/∂xi∂x j .
From (A8)–(A10), the coefficients of the second form of

(A1)–(A3) will be

huu(u) = �ruu · n̂ = h′′un−1(un + Rn)1/n−1

− h′(n − 1)Rnun−2(un + Rn)1/n−2
, (A11)

huφ (u) = �ruφ · n̂ = 0, (A12)

hφφ (u) = �rφφ · n̂ = h′(un + Rn)1/n
. (A13)

When n = 2, we get huu < 0 and K < 0 (Gaussian curvature),
and that huφ and guφ are all zero for any n. For this to continue
to be respected for all n = 2, 4, 6, . . . , it is necessary to
impose h′ < 0. Therefore (A11)–(A13) become

huu(u) = − (n − 1)Rnun−2(un + Rn)1/n−2

× (1 − u2n−2(un + Rn)2/n−2)−1/2, (A14)

huφ (u) = 0, (A15)

hφφ (u) = (un + Rn)1/n(1 − u2n−2(un + Rn)2/n−2)1/2. (A16)

The mean and Gaussian curvatures are defined by

H = 1

2

(
huugφφ − 2huφguφ + hφφguu

guugφφ − g2
uφ

)
, (A17)

K = huuhφφ − h2
uφ

guugφφ − g2
uφ

, (A18)

and now can be straightforwardly calculated yielding

H (u) = 1
2 (1 − u2n−2(un + Rn)2/n−2)−1/2((un + Rn)

− (n − 1)Rnun−2(un + Rn)1/n−2

− u2n−2(un + Rn)1/n−2), (A19)

K (u) = −(n − 1)Rnun−2(un + Rn)−2
. (A20)
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[35] M. Cvetič and G. W. Gibbons, Graphene and the Zermelo opti-
cal metric of the BTZ black hole, Ann. Phys. 327, 2617 (2012).

[36] B. Pourhassan, M. Faizal, and S. A. Ketabi, Logarithmic cor-
rection of the BTZ black hole and adaptive model of graphene,
Int. J. Mod. Phys. D 27, 1850118 (2018).

[37] G. Acquaviva, A. Iorio, P. Pais, and L. Smaldone, Hunt-
ing quantum gravity with analogs: The case of graphene,
arXiv:2207.04097.

[38] A. Iorio and G. Lambiase, Quantum field theory in curved
graphene spacetimes, Lobachevsky geometry, Weyl symmetry,
Hawking effect, and all that, Phys. Rev. D 90, 025006 (2014).

[39] A. Iorio, Weyl-Gauge symmetry of graphene, Ann. Phys. 326,
1334 (2011).

[40] A. Iorio, Curved spacetimes and curved graphene: A status
report of the Weyl-symmetry approach, Int. J. Mod. Phys. D
24, 1530013 (2015).

[41] Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Möbius
graphene strip as a topological insulator, Phys. Rev. B 80,
195310 (2009).

[42] F. de Juan, A. Cortijo, and M. A. H. Vozmediano, Charge in-
homogeneities due to smooth ripples in graphene sheets, Phys.
Rev. B 76, 165409 (2007).

[43] V. Atanasov and A. Saxena, Tuning the electronic properties
of corrugated graphene: confinement, curvature, and band-gap
opening, Phys. Rev. B 81, 205409 (2010).

[44] J. E. G. Silva, J. Furtado, T. M. Santiago, and A. C. A. Ramos,
Electronic properties of bilayer graphene catenoid bridge,
Phys. Lett. A 384, 126458 (2020).
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