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Phase diagrams and edge-state transitions in graphene with spin-orbit coupling
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The quantum Hall (QH) effect, the quantum spin Hall (QSH) effect, and the quantum valley Hall (QVH) effect
are three peculiar topological insulating phases in graphene. They are characterized by three different types of
edge states. These three effects are caused by the external magnetic field, the intrinsic spin-orbit coupling (SOC)
and the strain-induced pseudomagnetic field, respectively. Here we theoretically study phase diagrams when
these effects coexist and analyze how the edge states evolve between the three. We find the real magnetic field
and the pseudomagnetic field will compete above the SOC energy gap while the QSH effect is almost unaffected
within the SOC energy gap. The edge-state transitions from the QH effect or the QVH effect to the QSH effect
directly relies on the arrangement of the zeroth Landau levels. Using edge-state transitions, we raise a device
similar to a spin field effect transistor (spin-FET) and also design a spintronics multiple-way switch.
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I. INTRODUCTION

Graphene, a two-dimensional crystal with a hexagonal
honeycomb lattice structure, has long received extensive at-
tention due to its unique physical properties [1,2]. It has
a special energy band structure where the conduction and
valence bands touch at two inequivalent points K and K ′.
These two points are often dubbed as valleys, correspond-
ing to a pseudospin degree of freedom [3]. The low-energy
excitations around these valleys or so-called Dirac points are
massless and chiral Dirac fermions, which could carry a non-
trivial topological Berry phase [4–7]. Based on this, graphene
can serve as a platform to realize many novel topological
phases.

One typical topological phase in graphene is the “relativis-
tic” quantum Hall (QH) effect when the graphene is subjected
to a relatively high magnetic field [8,9]. Different from the
“conventional” QH effect in the two-dimensional electron
gas, QH states in graphene display a series of Hall plateaus
at filling factors ν = 4(n + 1

2 ) with n = 0,±1,±2, . . . (4
comes from valley and spin degeneracy) [3,9–11]. These QH
plateaus can be observed even at room temperature due to
large cyclotron energies [12]. When the Fermi energy lies
between Landau levels (LLs), although the bulk is insulat-
ing, the Hall current is carried by the spin-degenerate Hall
edge states at sample boundaries, with a definite chirality
[10,13–15].

Another exotic topological phase in graphene is the quan-
tum spin Hall (QSH) effect [16,17]. It was proposed in the
Kane-Mele model in which the spin-orbit coupling (SOC) can
open up a topological energy gap at two inequivalent valleys
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for two sets of spins [18,19]. The QSH effect in graphene
can be simply regarded as a spin version of Haldane model
if only the intrinsic SOC is considered [16,18,20]. Within the
SOC energy gap, the QSH effect is characterized by helical
edge states where two opposite spin states propagate towards
two opposite directions [16,17]. Due to the protection of
time-reversal symmetry, helical edge states are robust against
nonmagnetic scattering and dephasing [18,21,22]. Although
the QSH effect in graphene has so far not been observed
experimentally because the energy gap opened by SOC is so
small [23,24], some theories and experiments have pointed
out that the introduction of adatoms [25–27] or the proximity
effect [28,29] could considerably improve the strength of SOC
for several orders of magnitude [30]. These approaches make
it possible to realize the QSH effect in graphene.

Since graphene is a one-atom sheet and amenable to exter-
nal influences [31], mechanical deformation (i.e., strain engi-
neering) becomes an effective means to tailor its electronic
properties [32–34]. Strain modifies the hopping parameters
between graphene lattices and introduces a gauge vector near
Dirac points [35]. One of the most outstanding phenomena is
that an inhomogeneous strain field can induce a pseudomag-
netic field [36]. Unlike real magnetic fields, pseudomagnetic
fields maintain time-reversal symmetry, thus are opposite at
two valleys. They can lead to a quantum phase of “pseudo-
quantum Hall effect” or “quantum valley Hall (QVH) effect”
[37,38]. The QVH effect could be roughly regarded as a
counterpart of the QSH effect, while the edge states of LLs
from opposite valleys propagate towards opposite directions
at the same edge of the graphene [38,39]. Extremely strong
pseudomagnetic fields and LL signals are observed in the
strained graphene in many experiments [40–45]. A theoretical
scheme also proposed that a large, nearly uniform and tun-
able pseudomagnetic field could be generated by an uniaxial
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stretch [46], which provides a promising way to implement
the QVH effect in graphene.

A question naturally arises that what will happen if three
aforementioned typical effects are combined in graphene.
Several papers discussed the influence of magnetic fields or
pseudomagnetic fields on the QSH effect in graphene re-
spectively [47–50]. However, the edge-state transitions, the
coexistence and the competition among these three phases still
remain illusive.

Our paper is aimed to shed light on these questions. We
find that the SOC energy gap of the QSH effect can keep
whether in a real magnetic field or a pseudomagnetic field.
Outside the SOC energy gap, the real magnetic field and
pseudomagnetic field will compete with each other, affecting
the LLs for different valleys. We also find that the transitions
of the edge states from the QH effect or the QVH effect to
the QSH effect are quite different and directly relate to their
distinctions on the arrangements of the zeroth LLs. Based on
above discoveries, we construct a valuable spintronics device
to regulate the spin polarization of edge states and achieve a
multiple-way switch to control the spin current to flow into
different terminals.

The architecture of our article adopts a progressive layer-
by-layer approach. We first examine the relationship between
each of the two phases separately, and finally investigate the
comprehensive effect of all three phases. The rest of this
paper is organized as follows. In Sec. II, we present our
model, Hamiltonian and solutions of LLs in graphene with
SOC under a real magnetic field or a pseudomagnetic field.
In Sec. III, ignoring SOC, we study the competition between
the real magnetic field and the strain-induced pseudomagnetic
field in a zigzag graphene nanoribbon. In Sec. IV, we ignore
the pseudomagnetic field and study the influence of a real
magnetic field on the QSH effect. In Sec V, we parallelly
analyze the influence of a pseudomagnetic field on the QSH
effect. The results are also compared with those in Sec. IV.
Based on these, we further propose a possible spin FET-like
device to adjust the spin polarization of the edge states. In
Sec. VI, we combine the real magnetic field, the pseudomag-
netic field, and SOC in graphene together. The relationship
of their competition and coexistence is analyzed in detail.
Moreover, we design a spintronics multiple-way switching de-
vice. In Sec. VII, we give our conclusions. Some discussions
about the effect of strain on SOC strength and the effect of
Rashba SOC on the LLs and topological phases are put in the
Appendix A and Appendix B.

II. THE MODEL AND HAMILTONIAN

We consider an infinite zigzag graphene nanoribbon with
a periodic direction along x and lattice number Ny along y
direction. Considering strain-modulated hopping parameters,
the tight-binding Hamiltonian based on the Kane-Mele model
with a real magnetic field can be written as [18,47]

H = −
∑
〈i j〉,α

ti je
iφi j c†

iαc jα +
∑

〈〈i j〉〉,α,β

iλso,i je
iφi j υi jc

†
iαsz

αβc jβ.

(1)
Here indices (i, j) denote lattice sites, α and β =↑,↓ denote
spin indices, and sz is the Pauli matrix. 〈〉 and 〈〈〉〉 refer to

nearest-neighbor and next-nearest-neighbor bonds. The first
term is about the nearest-neighbor hoppings between lattices
with the hopping energy ti j . The second term is about the in-
trinsic SOC with the SOC strength λso,i j . υi j = ±1 depends on
the orientation of two nearest-neighbor bonds as the electron
transverses from lattice j to i. φi j = 2π

φ0

∫ ri

r j
�A · d�r is Peierls

phase from the real magnetic field with the flux quantum φ0

and the vector potential �A. To include the strain effect, the hop-
ping parameters between strained lattices can be modulated as
[52]

ti j = t0e−γ (di j/a−1), (2)

where t0 = 2.8 eV is the unstrained nearest-neighbor hopping
energy and di j is the distance between the strained lattices
i and j. a = 0.142 nm is the unstrained carbon-carbon bond
distance. γ is the Gruneisen parameter of graphene and often
taken as 2 − 3.37 [36,53]. We take γ = 3 in the following
numerical calculations but actually it does not matter. In
principle, the modulations of the intrinsic SOC strength by
strain should also be considered. However, the intrinsic SOC
strength only brings about a SOC energy gap near the Dirac
points. The higher-order corrections from strain are too small
to affect the results (see details in the Appendix A). So in the
following calculations, we set λso,i j in Eq. (1) as a constant
λso not depending on the lattice positions (i, j). In addition,
the effect of Rashba SOC is ignored here, which may break
the QSH phase and result in spin splitting (see details in the
Appendix B).

Ignoring the magnetic field and intrinsic SOC, we first
review how strain field brings about a pseudomagnetic field
under the continuum elasticity frame. di j is a smooth function
of spatial coordinates (x, y) and can be expressed as [36]

�di j = (I + ε̄)�δi j . (3)

ε̄ıj = 1
2 (∂ıuj + ∂j uı ) with ı/j = x, y is the strain tensor de-

fined from an in-plane displacement field �u = (ux, uy). �δi j

refers to the unstrained nearest-neighbor bond vector. There
are only three �δi j in the periodic lattices of graphene with
�δ1 = (0, a), �δ2 = (−

√
3

2 a,− 1
2 a), and �δ3 = (

√
3

2 a,− 1
2 a). As

the strain is small, the hopping parameters corresponding to
these nearest-neighbor bonds �δn in Eq. (2) can be linearly
expanded into tn ≈ t0(1 + δtn) with [53]

δtn = − γ

a2
�δn · ε̄ · �δn. (4)

Using the Fourier transformation, the strain Hamiltonian in
Eq. (1) can be written in the k space (neglecting the Peierls
phase, spin and intrinsic SOC) [32]

H = −
∑
n,k

tnei�k· �dn c†
A,kcB,k + H.c. (5)

(A, B) refer to sublattice indices. �dn is the strained bond vector
of �δn as Eq. (3) indicates. Putting Eqs. (3) and (4) into Eq. (5)
and focusing on the low-energy Hamiltonian near the Dirac
point K , the first-order modification from strain generates a
pseudovector potential Aps [32],

Aps = Aps
x − iAps

y = − 1

ev f

∑
n

t0δtnei �K ·�δn . (6)
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TABLE I. The table for LL eigenvalues and the zeroth LL eigenstates for different valleys K/K ′ and spin-up ↑ and spin-down ↓ components
under a real magnetic field B or pseudomagnetic field Bps along with the SOC energy gap 2so. The spinors of wavefunctions � represent
A and B sublattices. The eigenstates |0〉 and |̃0〉 refer to the ground states for the harmonic oscillator a†a with a = lB√

2
(kx − y/l2

B − ∂y ) and

ã†̃a with ã = lB√
2
(kx + y/l2

B + ∂y ) [51]. Here εn = En/
h̄v f

lB
where En is the energy for the nth LL (n = 0, 1, 2, . . .), ̃so = so/

h̄v f

lB
, lB =

√
h̄

eB or√
h̄

eBps
is the magnetic length.

Types Spin ↑ for K valley Spin ↓ for K valley Spin ↑ for K ′ valley Spin ↓ for K ′ valley

The nth LLs εn 
=0 for B ε±n ±
√

2n + ̃2
so ε±n = ±

√
2n + ̃2

so ε±n = ±
√

2n + ̃2
so ε±n = ±

√
2n + ̃2

so

The zeroth LLs ε0 for B ε0 = −̃so ε0 = ̃so ε0 = −̃so ε0 = ̃so

The zeroth LL �0 for B
( 0
|0〉

) ( 0
|0〉

) (|0〉
0

) (|0〉
0

)
The nth LLs εn 
=0 for Bps ε±n = ±

√
2n + ̃2

so ε±n = ±
√

2n + ̃2
so ε±n = ±

√
2n + ̃2

so ε±n = ±
√

2n + ̃2
so

The zeroth LLs ε0 for Bps ε0 = −̃so ε0 = ̃so ε0 = ̃so ε0 = −̃so

The zeroth LL �0 for Bps

( 0
|0〉

) ( 0
|0〉

) ( 0
|̃0〉

) ( 0
|̃0〉

)

Equation (6) connects hopping energy modulations and the
strain-induced pseudovector potential,

Aps
x (x, y) = − t0

2ev f
(2δt1 − δt2 − δt3),

Aps
y (x, y) = −

√
3t0

2ev f
(δt2 − δt3). (7)

v f = 3t0a
2h̄ ≈ 9 × 105 m/s is the Fermi velocity and e is the

electron charge. With the help of Eq. (4), the relation between
the strain tensor and strain-induced pseudovector is [54]

Aps
x (x, y) = −φ0γ

4πa
(ε̄xx − ε̄yy), Aps

y (x, y) = −φ0γ

4πa
(−2ε̄xy).

(8)

φ0 = h/e is the flux quantum. Since time reversal symmetry
is unbroken, the pseudovector Aps should be opposite at two
inequivalent valleys (K, K ′). In our following studies, an uni-
axial inhomogeneous strain field along the armchair direction
(y direction) will be considered. This means ε̄xx = ε̄xy = 0.
ε̄yy is a linear function of position y. This configuration could
generate a large uniform pseudomagnetic field Bps spreading
over the graphene nanoribbon.

When applying a (pseudo)magnetic field on graphene with
the intrinsic SOC (Kane-Mele model), a gauge vector is intro-
duced to replace the �p as �p + e �A. The low-energy Hamiltonian
for the Kane-Mele model under a magnetic field and pseudo-
magnetic field is [49]

H = v f
[
σxτz

(
px + eAx + eτzA

ps
x

) + σy
(
py + eAy + eτzA

ps
y

)]
+ soσzszτz (9)

where σ denotes (A, B) sublattice, τ denotes valley (K, K ′),
and s denotes spin (up ↑, down ↓). Ax,y is the vector po-
tential from the real magnetic field B and Aps

x,y is the vector
potential from the pseudomagnetic field Bps. 2so = 6

√
3λso

is the energy gap opened by SOC λso. The eigenvalues and
eigenstates for Eq. (9) are easy to be solved [49]. Here we
focus on the cases where only B exists or Bps exists along
with the SOC gap 2so. All the results are summarized in
Table I. For the B case, the energy of nonzero nth LLs is

spin and valley-degenerate (E±n = ±
√

2eh̄v2
f Bn + 2

so, n =

1, 2, . . .). However, spin degeneracy is broken on the zeroth
LLs [47,49]. The energy of the zeroth LLs for the spin-up
component is E0 = −so at both valleys while the energy
of zeroth LLs for the spin-down component is E0 = so

at both valleys [see Table I]. Additionally, the zeroth LL
wavefunctions under B exhibit distinctive sublattice polariza-
tions at different valleys (e.g., B sublattice polarization at the
K valley and A sublattice polarization at the K ′ valley, as
shown in Table I). For the Bps case, the results for K ′ valley
change as Bps should reverse sign at K ′ valley. The energy of
nonzero nth LLs is still spin and valley-degenerate (E±n =
±

√
2eh̄v2

f Bpsn + 2
so, n = 1, 2, . . .). But for the zeroth LLs

at the K ′ valley, the energy of the spin-up component is
E0 = so and of the spin-down component is E0 = −so. In
general, both spin and valley degeneracy of the zeroth LLs are
broken under the pseudomagnetic field and intrinsic SOC, but
they exhibit a spin-valley locking configuration, which guar-
antees the time-reversal symmetry (EK

0,↑ = EK ′
0,↓ = −so and

EK
0,↓ = EK ′

0,↑ = so). There also exhibits the same sublattice
polarization for the zeroth LL wavefunctions at both valleys
(e.g., B-sublattice polarization at both valleys, as shown in
Table I), which is a typical characteristic of pseudomagnetic
fields [42,54]. Actually, these results are still valid when B
and Bps coexist except that the total magnetic field for K
valley is B + Bps and for K ′ valley is B − Bps. In addition,
the distinctiveness of the zeroth LL can be reflected from
the LL spectrum versus (pseudo)magnetic field B (Bps). For
the nonzero nth LLs, they depend on the (pseudo)magnetic

field B (Bps) by relation E±n = ±
√

2eh̄v2
f Bn + 2

so (E±n =
±

√
2eh̄v2

f Bpsn + 2
so). For the degeneracy-broken zeroth

LLs, their energy is stuck on ±so and does not change with
the (pseudo)magnetic field B (Bps).

III. THE COEXISTENCE OF A REAL MAGNETIC AND A
PSEUDOMAGNETIC FIELD IN GRAPHENE NANORIBBON

In this section, the coexistence of the real magnetic
and pseudomagnetic field on graphene with vanishing SOC
(λso = 0) will be investigated. As Eq. (9) suggests, both of
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FIG. 1. The phase diagram for the graphene where a real mag-
netic field B and a pseudomagnetic field Bps coexist with a fixed
Fermi level Ef . The colored patches denote different QH/QVH
phases (other higher filling factor phases are all denoted by dark
blue). White dotted lines denote the boundaries |B| = |Bps|. Ef =√

2eh̄v2
f × 6 ≈ 0.0805 eV.

them could induce LLs with energy E±n = ±
√

2eh̄|B|v2
f n

(n = 0, 1, 2, . . .). |B| is the magnitude of the total magnetic
field. The main difference between the real magnetic field B
and pseudomagnetic field Bps is that the former is the same for
two valleys, but the latter is opposite. When both of them exist,
the total magnetic fields for two valleys become imbalanced,
resulting a LL valley splitting that has been observed in the
experiments [55,56]. As Table I indicates (so = 0), the nth
LLs (n = 0, 1, 2, . . .) at K valley and K ′ valley are [57,58]

EK
±n = ±

√
2eh̄|B + Bps|v2

f n,

EK ′
±n = ±

√
2eh̄|B − Bps|v2

f n. (10)

Here can be firstly divided into two regions [58]: (1) B-
dominated region (|B| > |Bps|). The signs of total magnetic
fields for two valleys are same. All edge states have the same
chirality. A typical representative is the QH phase. (2) Bps-
dominated region (|B| < |Bps|). The signs of total magnetic
fields for two valleys are opposite. Edge states from two val-
leys thus have the opposite chirality. A typical representative
is the QVH phase. Moreover, in each case, if the Fermi level
just lies between EK

n and EK ′
n , the valley degeneracy of LLs

will be broken. More LLs from one valley will be crossed
and contribute more edge states. At this time, the system will
be further classified as valley-imbalanced QH or QVH phases
[38,57,58].

To illustrate above process in detail, we exhibit the phase
diagram where a real magnetic field B and pseudomagnetic
field Bps coexist in Fig. 1. In this diagram, the Fermi level

is fixed at E f =
√

2eh̄v2
f × 6 ≈ 0.0805 eV. We only focus on

those low filling factor phases since E f is close to the charge
neutral point (other higher filling factor phases with more
occupied LLs below the Fermi level are denoted by dark blue).

To label these QH or QVH phases, the filling factor N , i.e., the
number of occupied LLs are labeled. In particular, for those
valley-imbalanced phases, we use the “+” to denote the filling
factor of the additional contribution from one valley.

If Bps = 0, as |B| climbs, the energy for each nonzero-order
LL increases and less LLs are crossed by E f . Filling factors
N declines (e.g., the N = 6 QH phase to the N = 2 QH phase,
see green patches in Fig. 1). Similar situations happen if B = 0
whereas |Bps| climbs, except that QH phases are replaced by
QVH phases (see magenta patches in Fig. 1). Once B and Bps

coexist, phases will become complicated. For example, start-
ing from the N = 2 QH phase (E f only exceeds the zeroth LL)
with Bps = 0, B > 0, the energy of the 1st LL from K ′ valley
will decline and tend to be lower than E f as Bps increases.

After crossing the phase boundary E f =
√

2eh̄|B − Bps|v2
f ,

one more spin-degenerate LL from K ′ valley is occupied. We
denote this valley-imbalanced phase as “N = 2 QH + N =
2 QH from K ′ valley”. Other phase transition processes are

similar, with the phase boundaries E f =
√

2eh̄|B − Bps|v2
f n or

E f =
√

2eh̄|B + Bps|v2
f n with n = 1, 2, . . ..

For clarity, the topological phases in Fig. 1 can be fur-
ther identified by valley Chern numbers CK/CK ′ . We focus
on those within the region B + Bps > 0 and neglect spin
degeneracy. For N = 2, 6 QH phases, CK = CK ′ = 1

2 , 3
2 . For

N = 2, 6 QVH phases, CK = 1
2 , 3

2 while CK ′ = − 1
2 ,− 3

2 . For
“N = 2 QH + N = 2 QH from K ′/K valley” phase, CK/K ′ =
1
2 and CK ′/K = 3

2 . For “N = 2 QVH + N = 2 QH from K ′ val-
ley” phase, CK = 1

2 and CK ′ = − 3
2 . For “N = 2 QVH + N =

2 QH from K valley” phase, CK = 3
2 and CK ′ = − 1

2 . The val-
ley Chern numbers for topological phases within the region
B + Bps < 0 are just opposite of the above.

These phases in Fig. 1 can be reflected by the spin-
degenerate energy bands of a zigzag graphene nanoribbon
plotted in Fig. 2. The unit cell length along x direction is√

3a and the number of lattices is Ny = 800 corresponding
to a nanoribbon width W ≈ 90 nm.

The parameters B and Bps follow purple stars in Fig. 1.
Figures 2(a), 2(b), and 2(f) belong to the Bps-dominated region
and Figs. 2(d), 2(e), and 2(h) belong to the B-dominated
region. Figures 2(c) and 2(g) are two critical points with
|Bps| = |B|. To feature these phases, the situations of edge-

state transports at E f =
√

2eh̄v2
f ∗ 6 ≈ 0.0805 eV (denoted

by red dotted lines in Fig. 2) are schematically present in in-
sets. It is worth noting that for a zigzag graphene nanoribbon,
LL edge states have valley polarizations of K valley or K ′
valley [59–61], which are also marked in the insets.

In Figs. 2(a)–2(d), we increase B along the positive di-
rection with a fixed Bps = 8T . When Bps = 8T, B = 0T
[Fig. 2(a)], the system is in the N = 2 QVH phase [magenta
patch in Fig. 1] with dispersive pseudomagnetic field-induced
LLs [53]. A pair of counterpropagating spin-degenerate edge
states at E f from two valleys locate at only one edge of
the graphene nanoribbon [see inset in Fig. 2(a)], unlike two
edges in QSH effect [38,39]. The reasons can be understood
on two aspects: (i) Due to the magnetic fields at two val-
leys are opposite, the edge state of the zeroth LL from the
K ′ valley should flip its space location, different from the
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FIG. 2. The energy bands for a zigzag graphene nanoribbon without SOC where B and Bps coexist, which correspond to the purple stars

in Fig. 1. The energy bands here are spin degenerate. The red-dotted lines denote the Fermi level Ef =
√

2eh̄v2
f × 6 ≈ 0.0805 eV. (a) Bps =

8 T, B = 0 T. (b) Bps = 8 T, B = 4 T. (c) Bps = 8 T, B = 8 T. (d) Bps = 8 T, B = 12 T. (e) Bps = 0 T, B = 12 T. (f) Bps = 8 T, B = −4 T.
(g) Bps = 8 T, B = −8 T. (h) Bps = 8 T, B = −12 T. The insets within [(a)–(h)] schematically show the edge-state distributions at Fermi level
Ef by black-solid arrows. The red-solid arrows on edge states denote spin-up and spin-down components. The yellow and blue colors in (c) and
(d) denotes bulk states from K ′ and K valleys, respectively. Ny = 800.

QH edge states, which locate at opposite edges in inset in
Fig. 2(e). The one-edge valley-polarized channels also cor-
respond to valley Chern number CK = 1

2 ,CK ′ = − 1
2 , and no

other edge channels appear at the opposite edge. Actually, this
special structure of edge states for the zeroth LL is closely
related to chiral anomaly [53]. (ii) From the symmetry, these
counterpropagating modes at the same edge are implied by
time-reversal symmetry [38]. Moreover, inversion symmetry
has been broken by strain field in QVH effect, allowing for
space asymmetric edge-state distributions. Besides, QSH ef-
fect and QVH effect also differ in their response to disorders.
Different from QSH effect protected by time-reversal sym-
metry, the QVH effect can exist in the graphene with clean
limit or long-range disorders, where intervalley scatterings
are well suppressed. The short-range disorders could couple
valleys and destroy the quantized plateaus. The lack of quan-
tization in the presence of the short-range disorders may cause
some uncertainty on the verification of QVH effect. However,
whether the lower edge [see inset in Fig. 2(a)] remains quan-
tized or becomes conductive by short-range disorders [38],
its longitudinal resistance is always quite different from the
other insulating edge where no edge channels exist [the upper
edge in the inset in Fig. 2(a)]. The latter tends to exhibit an
very large resistance but the former exhibit a finite resistance.
This asymmetry resistivity of two opposite edges could give
some indications on QVH effect. More importantly, QVH
effect with valley polarized edge states can be regarded as
a quantum inversion of valley Hall effect [62–64]. Similar
to valley Hall effect, when applying the longitudinal voltage,
opposite valley polarization or orbital momentum polarization
will accumulate at opposite edges in QVH effect through

valley polarized edge channels (only one edge accumulates
valley polarizations for N = 2 QVH effect) [65]. This out
of plane net magnetization can be detected by Kerr rotation
microscopy [66].

When Bps = 8T, B = 4T [Fig. 2(b)], the LL energy spac-
ings narrow at K ′ valley (B − Bps = −4 T) but widen at K
valley (B + Bps = 12 T). One more spin-degenerate LL from
K ′ valley is crossed and additionally contributes two pairs of
chiral edge states on the N = 2 QVH phase. This leads to six
edge states appearing at the lower edge while two appearing
at the upper edge [see inset in Fig. 2(b)]. The system is thus
in the “N = 2 QVH + N = 2 QH from K ′ valley” phase (cyan
patch in Fig. 1). When Bps = 8T, B = 8T [Fig. 2(c)], the gap
closes at K ′ valley and the energy dispersion astoundingly re-
covers the Dirac linear dispersion, while the gap and LLs at K
valley hold. This peculiar phase is a valley half-metal, which
was proposed to achieve valley complete polarization trans-
port, since the bulk states all come from one valley [denoted
by the yellow color in inset of Fig. 2(c)] [38,67]. Once Bps =
8T, B = 12T [Fig. 2(d)], the total magnetic fields are positive
at each valley, the gap opens and LLs at K ′ valley form again.
Both valleys contribute edge states with the same chirality
[see inset in Fig. 2(d)]. Due to one more spin-degenerate LL
from K ′ valley is crossed (B − Bps = 4 T), we name this phase
as “N = 2 QH + N = 2 QH from K ′ valley” (yellow patch in
Fig. 1). When Bps = 0T, B = 12T [Fig. 2(e)], the system is in
the N = 2 QH phase (green patch in Fig. 1) and chiral edge
states appear at both edges [see inset in Fig. 2(e)] [10]. In
Figs. 2(f)–2(h), we fix Bps = 8 T and increase B along the mi-
nus direction. The results are similar to Figs. 2(b)–2(d). When
Bps = 8, B = −4 T [Fig. 2(f)], one more spin-degenerate LL

165417-5



YU-CHEN ZHUANG AND QING-FENG SUN PHYSICAL REVIEW B 106, 165417 (2022)

from K valley will be crossed by E f and contributes two
pairs of chiral edge states on the N = 2 QVH. This is the
“N = 2 QVH + N = 2 QH from K valley” phase, similar to
the phase in Fig. 2(b). When Bps = −B = 8 T [Fig. 2(g)], the
gap of K valley closes, the energy band recovers the Dirac
linear dispersion, and the bulk states all come from K valley,
which is also a valley half-metal. Once −B > Bps, the system
is in the B-dominated region and in QH phases. For example,
Bps = 8 and B = −12 T in Fig. 2(h), the system is in the
“N = 2 QH + N = 2 QH from K valley” phase. To conclude,
from the Bps-dominated region to the B-dominated region [e.g.
Figs. 2(a)–2(d)], the gap of one valley will close and open.
Its edge states will evolve into bulk states and then into edge
states again. Therefore, by simply tuning the real magnetic
field in the strained graphene, we can control the location of
edge states and achieve a valley polarized transport.

At large real magnetic fields, Zeeman splitting may not be
neglected. Since the spin along z direction is a good quantum
number in the presence of the intrinsic SOC, Zeeman effect
just simply shifts the spin-up and spin-down bands towards
opposite directions of the energy axis by Ez = 1

2 gμBB. In
view that the free electron g factor in graphene is 2 [68],
the Zeeman splitting in graphene under B = 12 T is roughly
Ez ≈ 0.7 meV, which is much smaller than LL spacings. So
in Fig. 2, the original spin-degenerate bands are slightly split
into two spin bands. Correspondingly, the original topological
phases shown in Fig. 1 and Fig. 2 will be further divided into
spin-polarized QH phases/QVH phases.

IV. THE QSH EFFECT UNDER A REAL MAGNETIC FIELD

In this section, we pay attention to how a real magnetic
field affects the QSH phase in graphene. Refs. [47,48,69]
found the QSH phase could be maintained within the SOC
energy gap to a large extent of a real magnetic field, even
though the time-reversal symmetry is lack. Moreover, due
to the contrast between chiral edge states in QH phases and
helical edge states in QSH phases, an “unhappy” spin has
to reverse its direction of propagation when going from one
phase to another [47].

We further illustrate this effect from the perspective of
phase diagrams. In Figs. 3(a) and 3(b), the phase diagram as
a function of the Fermi level E f and SOC strength λso with a
fixed real magnetic field B (a) as well as the phase diagram
as a function of the real magnetic field B and λso with a fixed
E f (b) are both shown. According to Table I and Ref. [47],
the phase boundaries should be described by (considering the
positive energy part)

E f =
√

2eh̄|B∣∣nv2
f + 2

so (11)

with (n = 0, 1, 2, 3, . . .). Due to valley and spin degeneracy
in graphene [3], the QH phases follow filling factors N =
2, 6, 10 . . . as E f climbs with fixed B, λso or as B decreases
with fixed E f , λso. Here only low filling factor QH phases
are considered (denoted by yellow, magenta, cyan patches).
Other higher filling factor QH phases are denoted by dark blue
patches. As long as E f < so, the system can keep QSH phase
(green patch) [47,48].

In Figs. 3(c) and 3(d), we plot the tight-binding energy
bands for the QSH effect under a real magnetic field in a

FIG. 3. (a) The phase diagram for the QSH effect under a real
magnetic field B = 5 T as a function of λso and Fermi level Ef .
(b) The phase diagram for the QSH effect with a fixed Ef as a func-
tion of λso and B. [(c),(d)] The energy bands for a zigzag graphene
nanoribbon with λso = 0.01 eV, B = 10 T. The spin-up component
for (c) and spin-down component for (d). The black-dotted boxes
circle the zeroth LL flat bands. (e) The schematic diagrams of edge
states for different Fermi levels Ef . Red-dotted arrow lines denote
spin-up channels and blue solid-arrow lines denote spin-down chan-
nels. The spin components are also labeled by black-solid arrows.
The green-solid arrows denote the trend of edge-state evolutions
when Ef declines. Ny = 800.

zigzag graphene nanoribbon for the spin-up component (c)
and spin-down component (d ). To exhibit the space evolution
of the edge states, we compute the expectation values of the
ŷ position operator for all eigenstates, as shown by the color
in Figs. 3(c) and 3(d). The edge states for three typical E f are
schematically plotted in Fig. 3(e) (the red-dotted-arrow line
denotes the spin-up channel while the blue-solid-arrow line
denotes the spin-down channel). We emphatically pick out
the zeroth LLs for K/K ′ valley and spin-up/down component
by black-dotted boxes in Figs. 3(c) and 3(d). It is clear that
the spin degeneracy of the zeroth LL is broken [47,49]. The
energy of the zeroth LL for the spin-up component is −so

and of the zeroth LL for the spin-down component is so,
which are well consistent with the results in Table. I. Above
the SOC energy gap 2so, this is a typical QH phase with
magnetic field-induced LLs [47]. The edge states for two spin
components from two valleys have the same chirality [e.g.,
E = 0.08 eV in Fig. 3(e)]. As E f goes down, the edge bands
from the zeroth LL for the spin-down component will join
the zeroth LL flat bands and therewith the edge states will
emerge into bulk states [see black-dotted boxes in Fig. 3(d)].
Conversely, edge states for the spin-up component stay at one
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edge since no LL flat bands will be crossed [see Fig. 3(c)]. We
use green arrows to show the trend of edge-state evolutions
[see Fig. 3(e), E f = 0.08 eV]. Within the SOC energy gap
[e.g., E = 0.03 eV in Fig. 3(e)], the QSH phase keeps [47,48].
The spin-up and spin-down components contribute two edge
states at both edges respectively with the opposite chirality.
As E f continues to descend, edge bands from the zeroth LL
for the spin-up component will join the zeroth LL flat bands
[see black-dotted boxes in Fig. 3(c)] and those edge states
tend to emerge into bulk states [indicated by green arrows
in Fig. 3(e), E f = 0.03 eV], while edge states for the spin-
down component remain still [see Fig. 3(d)]. Below the SOC
energy gap [e.g., E = −0.08 eV in Fig. 3(e)], a QH phase is
recovered with a reversed chirality since carriers change from
the electron type into the hole type. In short, as E f gradually
decreases, the system transitions from the QH phase to the
QSH phase and then to the QH phase again. During each
transition, we find edge bands for only one spin component
(i.e., so-called “unhappy” spin in Ref. [47]) cross the zeroth
LL flat bands and their edge states leave from one edge into
the bulk and further to the other edge, reversing the chirality.

Taking into account Zeeman effect, the spin-up energy
band in Fig. 3(a) will be shifted up by Ez = 1

2 gμBB and
the spin-down energy band in Fig. 3(b) will be shifted down
by Ez. The QSH effect region within the zeroth LLs will
be slightly narrowed but still persist within the energy range
[−so + Ez,so − Ez]. Since the Zeeman splitting is rel-
atively small, the QSH effect remains in a large extent still.
The edge-state transitions shown in Fig. 3(e) will not change.

V. THE QSH EFFECT UNDER A PSEUDOMAGNETIC
FIELD

In last section, from the QSH phase to the QH phase,
time-reversal symmetry has been broken and only one spin
component changes. For a strain-induced pseudomagnetic
field, physical pictures should be different. Especially for edge
states from the zeroth LL, they are a pair of spin-degenerate
counterpropagating modes from two opposite valleys located
at one edge as shown Fig. 2(a), reflecting the space-inversion
symmetry is broken. In this section, we analyze how a pseu-
domagnetic field affects the QSH effect.

In Figs. 4(a) and 4(b), we show the phase diagram as a
function of Fermi level E f and SOC strength λso with a fixed
Bps (a) and the phase diagram as a function of Bps and λso with
a fixed E f (b). From a perspective of the phase distribution,
the situations are basically the same as those under a real
magnetic field in Figs. 3(a) and 3(b), except that QH phases
are replaced by QVH phases.

For the tight-binding energy bands, some details become
somehow different. In Figs. 4(c) and 4(d), we find the SOC
energy gap still keeps like the real magnetic field case. The
QSH phase emerges in the SOC energy gap. Outside the SOC
energy gap, the space distributions of edge states follow the
QVH phase where two time reversal symmetry edge states
stay at the same edge [indicated by colors in Figs. 4(c) and
4(d)]. For each spin component, the zeroth LLs become no
longer energy degenerate at two valleys [see black-dotted
boxes in Figs. 4(c) and 4(d)]. The energy of the zeroth LL for
the spin-up (spin-down) component at K ′ valley (K valley) is

FIG. 4. (a) The phase diagram for the QSH effect under a pseu-
domagnetic field Bps = 5 T as a function of λso and Fermi level Ef .
(b) The phase diagram for the QSH effect with a fixed Fermi level
Ef as a function of λso and pseudomagnetic field Bps. [(c),(d)] The
energy bands for a zigzag graphene nanoribbon with λso = 0.01 eV,
Bps = 10 T. The spin-up component for (c) and spin-down compo-
nent for (d). The black-dotted boxes circle the zeroth LL flat bands.
(e) The schematic diagrams of edge states for different Fermi levels
Ef . Red-dotted-arrow lines denote spin-up channels and blue-solid-
arrow lines denote spin-down channels. The spin components are
also labeled by black-solid arrows. The green-solid arrows denote
the trend of edge-state evolutions when Ef declines. Ny = 800.

so while at K valley (K ′ valley) is −so, as Table I shows.
In other words, the zeroth LLs only appear in one branch of
decussate energy bands near the charge neutral point [see the
color branch in Figs. 4(c) and 4(d)] rather than both. For the
other branch, the states always stay at one edge since no LL
flat bands exist [see the red branch in Figs. 4(c) and 4(d)].

These distinctions directly affect the evolution of edge
states from the QVH phase to the QSH phase. When Fermi
level E f is above the SOC energy gap, system is in the QVH
phase and the counterpropagating edge states from the zeroth
LLs stay at lower edge [e.g., E = 0.08 eV in Fig. 4(e)]. As
the E f declines, energy bands for the spin-up component at
K ′ valley and spin-down component at K valley will join the
zeroth LL flat bands [see black-dotted boxes in Figs. 4(c) and
4(d)]. This suggests the time-reversal symmetry ↑ K ′ and ↓ K
edge states will emerge into bulk states and then go to the
upper edge of the nanoribbon [indicated by green arrows in
left panel of Fig. 4(e)]. As a result, the QVH phase translates
into the QSH phase. Within the SOC energy gap, the helical
edge states emerge. The system is in the QSH phase [e.g.,
E = 0.03 eV in Fig. 4(e)]. As E f continues to decrease, the
edge bands at the upper edge of the nanoribbon start to join
the zeroth LL flat bands. These edge states evolve into bulk
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FIG. 5. [(a), (b)] Respectively show the wavefunctions along
one spin-up and one spin-down energy band for different kx corre-
sponding to purple stars in Figs. 4(c) and 4(d). (c) The schematic
diagram for the spin FET-like device based on the QSH effect under a
pseudomagnetic field. The red-dotted-arrow line denotes the spin-up
channel and blue-solid-arrow line denotes the spin-down channel.

states again, and then go back to the lower edge. Below the
SOC energy gap, a QVH phase recovers and two pairs of
time-reversal symmetry edge states from two opposite valleys
stay at the lower edge again [the right panel of Fig. 4(e)].

We can exhibit the evolution of the aforementioned edge
states through wavefunctions in Figs. 5(a) and 5(b). These
wavefunctions correspond to points along the rightward en-
ergy bands [purple stars in Figs. 4(c) and 4(d)]. For the spin-up
component [Fig. 5(a)], the wavefunction clearly evolves from
the lower edge of the nanoribbon (

√
3kxa = 1.95) to the bulk

(
√

3kxa = 2.1), then to the upper edge (
√

3kxa = 3), next to
the bulk (

√
3kxa = 4.15) again and finally returns the lower

edge (
√

3kxa = 4.4), matching Fig. 4(e) well. While for the
spin-down component [Fig. 5(b)], all wavefunctions always
stay at the lower edge, due to this band no joining the zeroth
LL flat band. In addition, we also notice that the decay length
of the QSH edge states is smaller than the LL edge states,
because the decay length of the former depends on h̄v f /so

while the latter depends on lB = √
h̄/eBps [47].

This picture where one spin channel runs from one edge to
another edge could be used to conceive a spintronics device
to adjust edge states spin direction. In Fig. 5(c), we apply a
smooth potential gradient to design a p − n junction. Here
only those rightward states are considered since smooth po-
tential makes backscattering nearly unlikely to occur. In the p
region and n region, the graphene is in the QVH phase. In the
junction, the graphene is in the QSH phase. We also apply a
weak real magnetic field on the junction (the coexistence of
real magnetic field and pseudomagnetic field will not break
our configuration and will be proved in Sec. VI). Based on
previous discussions, one spin channel will surround the junc-
tion while the other will keep at one edge. See Fig. 5(c), if we

inject a state with the spin polarized in the x direction:

ψi = 1√
2

(ψ↑ + ψ↓), (12)

where ψ↑/↓ denotes the eigenstates with the spin-up/down
polarized in the z direction.

After traversing the junction, the spin-up channel ψ↑ sur-
rounds the junction and accumulates a phase φ1 = 1

h̄

∫
l1

( �p +
e �A) · d�r. The spin-down channel ψ↓ keeps at the lower edge
and accumulates a phase φ2 = 1

h̄

∫
l2

( �p + e �A) · d�r. Here l1 and
l2 are the path for the spin-up and spin-down electrons to
transverse the junction. So the outgoing wavefunction should
be

ψo = 1√
2

(ψ↑eiφ1 + ψ↓eiφ2 ) = 1√
2

[ψ↑ei(φ1−φ2 ) + ψ↓]eiφ2

= 1√
2

[ψ↑ei(φi+2πφ/φ0 ) + ψ↓]eiφ2 . (13)

In the last row of Eq. (13), we divide the phase difference of
φ1 − φ2 into two parts: φi is the phase accumulation at the zero
real magnetic field while φ is the flux from the real magnetic
field since the two paths l1 and l2 just circle the junction. So we
can arbitrarily regulate the relative phase difference between
ψ↑ and ψ↓ by adjusting the magnetic flux φ. In other words,
just by varying the magnetic flux, we can continuously rotate
the spin polarization direction in the x − y plane of the outgo-
ing state ψo. Our device actually has a similar function as a
spin field effect transistor (spin-FET) or Datta-Das transistor,
which is an electronic analog of the electro-optic modulator
[70]. The difference is that we use a QVH-QSH-QVH junction
to implement the spin-related Aharonov-Bohm effect [71] to
control states spin precession instead of the Rashba SOC.

VI. THE QSH EFFECT UNDER THE COEXISTENCE OF A
REAL MAGNETIC AND A PSEUDOMAGNETIC FIELD

In previous sections, we have clarified the relationships
between the real magnetic field and the pseudomagnetic field,
the real magnetic field and the QSH effect, as well as the
pseudomagnetic field and the QSH effect. Now we turn to
figure out how these three phases compete and coexist. We
still pay attention to phase diagrams, energy bands and edge
states. Finally, we design a spintronics multiple-way switch
based on the relationship of these three effects.

Referring to Table I, we naturally generalize the energy of
LLs from K valley and K ′ valley taking into account the SOC
λso,

EK
±n = ±

√
2eh̄|B + Bps|v2

f n + 2
so,

EK ′
±n = ±

√
2eh̄|B − Bps|v2

f n + 2
so, (14)

with n = 1, 2, . . .. The energy of the zeroth LLs for each
valley is still ±so with the sign depending on the sign of
the total magnetic field. In Figs. 6(a)–6(h), we show the en-
ergy bands of a zigzag graphene nanoribbon with λso, B, and
Bps. We also schematically plot edge-state distributions in the

insets at Fermi level E f =
√

2eh̄v2
f × 6 + 2

so ≈ 0.0958 eV

165417-8



PHASE DIAGRAMS AND EDGE-STATE TRANSITIONS IN … PHYSICAL REVIEW B 106, 165417 (2022)

FIG. 6. [(a)–(h)] The energy bands for a zigzag graphene nanoribbon with λso = 0.01 eV where B and Bps coexist. The red-dotted lines
denote the spin-up component and the blue-solid lines denote the spin-down component. The black-dotted lines denote the Fermi level Ef =√

2eh̄v2
f × 6 + 2

so ≈ 0.0958 eV. The insets in [(a)–(h)] schematically shows the edge-state distributions by black-solid arrows at Fermi level

Ef . The red-solid arrows on edge states also label spin-up and spin-down components. The yellow color in (c) denotes bulk states from
K ′ valley and the blue color in (g) denotes the bulk states from K valley. The parameters (a) Bps = 8 T, B = 0 T, (b) Bps = 8 T, B = 4 T,
(c) Bps = 8 T, B = 8 T, (d) Bps = 8 T, B = 12 T, (e) Bps = 0 T, B = 12 T, (f) Bps = 8 T, B = −4 T, (g) Bps = 8 T, B = −8 T, and (h) Bps =
8 T, B = −12 T. (i) The phase diagram as a function of B and Bps with the same Ef > so. The purple stars in (i) correspond to [(a)–(h)]. The
width of the graphene nanoribbon Ny = 800.

denoted by black dotted lines in Figs. 6(a)–6(h). Although
these results, especially for edge-state distributions, are paral-
lel to Fig. 2, some points or discrepancies should be noticed:
(1) On the one hand, a SOC energy gap 2so opened by
λso is hardly affected by the real magnetic field B and the
pseudomagnetic field Bps. The phase of the system depends
on where the Fermi level E f stays. When E f is within the
SOC energy gap, the system is in the QSH phase with a pair
of helical edge states, which is independent of B and Bps. (2)
On the other hand, when E f is outside the SOC energy gap,
the system is in the QH or the QVH phase depending on the

real magnetic field B or the pseudomagnetic field Bps. As B
or Bps changes, the system evolves between QH and QVH
phases [see Figs. 6(a)–6(h)]. However, from the QH phase
to the QVH phase and vice versa, the energy band does not
experience a global energy gap close and open. This is quite
different from the case of λso = 0 [see Fig. 2]. In other words,
B and Bps only affect the energy bands outside the SOC energy
gap. (3) At the special points |B| = |Bps|, the total magnetic
field at one valley disappears. Due to the existence of SOC
energy gap, this peculiar energy band should be regarded as
a valley half-semiconductor rather than the valley half-metal
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FIG. 7. [(a), (b)] B-dominated phase diagrams as a function of λso and Ef with fixed B = 8 T, Bps = 2 T (a) and as a function of λso and
Bps with fixed Ef , B = 10 T (b). [(c), (d)] Bps-dominated phase diagrams as a function of λso and Ef with fixed B = 2 T, Bps = 8 T (c) and as
a function of λso and B with fixed Ef , Bps = 10 T (d). (e) The schematic diagram for a six-terminal device.

[see Figs. 6(c) and 6(g) and Figs. 2(c) and 2(g)]. In compar-
ison, such a valley half-semiconductor would have stronger
application value than a valley half-metal. Because the valley
half-semiconductor has an energy gap, the carrier density
can be well controlled. We can adjust the Fermi level E f to
achieve a complete valley-polarized transport (E f above the
SOC energy gap) and also a spin-related transport (E f within
the SOC energy gap). (4) The energy bands and edge states
above the SOC energy gap can approximately maintain the
spin degeneracy, but within the SOC gap the spin degeneracy
has been strongly destroyed, since time reversal symmetry and
space inversion symmetry are both broken.

The energy bands in Fig. 6 clearly show that when B, Bps,
and λso coexist, B and Bps just compete with each other outside
the SOC energy gap. As long as λso persists, the QSH phase
within the SOC energy gap will not be disturbed. Therefore,
the phase diagram as a function of B and Bps in Fig. 6(i) with
Fermi energy fixed at E f > so should be identical to Fig. 1.

Figures 7(a)–7(d) show the phase diagrams as a function
of E f and λso, or B (Bps) and λso. Here we still divide the
situations into two regions [58]: B-dominated [Figs. 7(a) and
7(b)] and Bps-dominated [Figs. 7(c) and 7(d)]. The phases
boundaries are coordinated with Eq. (14). In Figs. 7(a) and
7(c), the phase diagram is as a function of E f and λso, with
a fixed B and Bps. E f = so separates the QSH phase and
the QH phase (B > Bps) or the QVH phase (B < Bps). Unlike
Fig. 3(a) and Fig. 4(a), an additional valley-imbalanced phase,
“N = 2 QH (QVH) + N = 2 QH from K ′ valley” [see the
magenta patches in Figs. 7(a) and 7(c)], emerges when E f is
between EK

1 and EK ′
1 , since one extra spin-degenerate LL from

K ′ valley is crossed. Similar situations appear in phase dia-
grams as a function of Bps (B) and λso as well [see Figs. 7(b)
and 7(d)]. If the λso is constant and Bps (B) climbs, according
to the Eq. (14), more and more LLs from K ′ valley will
descend and be crossed, echoing valley-imbalanced phases,
e.g., the “N = 2 QH (QVH) + N = 2 (4) QH from K ′ valley”
phase denoted by magenta and cyan in Figs. 7(b) and 7(d).

Below we also illustrate the edge-state distributions of
these phases in Figs. 6 and 7. For the QSH phase, a pair
of helical edge states with opposite spin channels propa-
gate in opposite directions [16,17]. The N = 2 QH, N =
2 QVH, “N = 2 QH + N = 2 QH from K ′/K valley” and
“N = 2 QVH + N = 2 QH from K ′/K valley” phase follow
the edge-state distributions in Figs. 6(e), 6(a), 6(d)/6(h),
and 6(b)/6(f). For the N = 6 QH phase, three chiral spin-
degenerate edge states appearing at both edges analogy to
Fig. 6(e). For the N = 6 QVH phase, two pairs of counter-
propagating spin-degenerate edge states appear at the lower
edge while one pair of counterpropagating spin-degenerate
edge states appear at the upper edge. For the “N = 2 QH +
N = 4 QH from K ′/K valley” phase, three chiral spin-
degenerate edge states propagate in opposite directions at
opposite edges, analogy to Fig. 6(d). For the “N = 2 QVH +
N = 4 QH from K ′ valley” phase, there are two leftward spin-
degenerate edge states at the upper edge, and one leftward
spin-degenerate edge states as well as three rightward spin-
degenerate edge states at the lower edge.

From the perspective of the transport, we can charac-
terize these aforementioned phases in terms of longitudinal
resistance Rxx and Hall resistance RH , by considering a six-
terminal device as shown in Fig. 7(e). In the linear response
regime, the current flowing from the p terminal is calculated
by Büttiker formula [72],

Ip = e2

h

∑
q

Tpq(Vp − Vq), (15)

where Vp is the voltage in the terminal p and Tpq is the
transmission coefficients from terminal q to terminal p. In
theoretical calculations, we set that the transmission coef-
ficients Tpq are equal to the number of the edge states
from terminal q to terminal p by neglecting disorder-induced
backscattering. A voltage V is applied on the terminal 1. The
terminal 4 is grounded. Other terminals are voltage terminals

165417-10



PHASE DIAGRAMS AND EDGE-STATE TRANSITIONS IN … PHYSICAL REVIEW B 106, 165417 (2022)

with zero currents. Along with these conditions, the currents
and voltages for each terminal can be obtained by directly
solving Eq. (15). We note that because space inversion sym-
metry has been broken by Bps, Rxx, and RH are better to define
relying on which edge. For the upper edge, Ru

xx = V2−V3
I1

. For

the lower edge, Rd
xx = V6−V5

I1
. The Hall resistances are RL

H =
V2−V6

I1
and RR

H = V3−V5
I1

.
Based on explicit edge modes distributions in Fig. 6, we

can straightly present the calculation results. In the QSH
phase, Ru

xx = Rd
xx = h

2e2 and RL
H = RR

H = 0 [16,17,69]. For the
N = 2 QH phase in Fig. 6(e), the Ru

xx = Rd
xx = 0 and RL

H =
RR

H = h
2e2 . For the N = 2 QVH phase in Fig. 6(a), Rd

xx = h
2e2

[39]. Because edge states of the N = 2 QVH phase only ap-
pear at the lower edge, terminals 2 and 3 are disconnected with
the edge states. The voltages V2 and V3 are strongly affected
by disorders and hard to be determined, so RL

H , RR
H , and Ru

xx
should be uncertain and depend on disorder configurations.
For the “N = 2 QH + N = 2 QH from K ′/K valley” phase in
Figs. 6(d) and 6(h), Ru

xx = Rd
xx = 0. RL

H = RR
H = h

4e2 for (d )
and − h

4e2 for (h). For the “N = 2 QVH + N = 2 QH from
K ′ valley” phase [Fig. 6(b)], Ru

xx = 0, Rd
xx = h

8e2 , RL
H = − 3h

8e2

and RR
H = − h

4e2 . Similarly, for the “N = 2 QVH + N = 2 QH
from K valley” phase [Fig. 6(f)], Ru

xx = 0, Rd
xx = h

8e2 , RL
H =

h
4e2 and RR

H = 3h
8e2 .

In Ref. [47], the QSH phase with a real magnetic field
allows for a direct junction between the QSH phase and the
QH phase via an additional electrostatic gate. The different
chirality for one spin channel will compel it to propagate
along the interface. This system thus provides a very ef-
ficient spin-polarized charge-current switching mechanism.
Compared with the spin flip from the QSH phase to the QH
phase, the biggest feature from the QSH phase to the QVH
phase is a “side flip” as shown in Fig. 4(e). Enlighten by
this, we can use a junction between the QSH phase and the
QVH phase to achieve a spintronics multiple-way switch.
Considering a four-terminal device, the edge states of the
QSH phase (λso 
= 0, Bps = 0) in Fig. 8(a) and the QVH
phase (λso = 0, Bps 
= 0) in Fig. 8(b) are shown respectively.
A pair of helical edge states with opposite spins propagating in
opposite direction appear at both edges in the QSH phase. The
counterpropagating spin-degenerate edge states only appear
at the lower edge in the QVH phase. We apply a voltage on
terminal 1 (V1 = V ) and ground all the other terminals (V2 =
V3 = V4 = 0). In the QSH phase [Fig. 8(a)], the spin-down
current (blue-solid-arrow lines) will flow from the terminal 1
to the terminal 4 and the spin-up current (red-dotted-arrow
lines) will flow from the terminal 1 to the terminal 2. In
the QVH phase [Fig. 8(b)], the upper edge is disconnected
and no current flows. Next we combine both effects (λso 
=
0, Bps 
= 0) in Fig. 8(c). If the Fermi level E f is within the
SOC energy gap, the system is still in the QSH phase like
Fig. 8(a). When a local top gate is applied on the lower
half plane and drives the lower half plane (covered by gray
plane) into the QVH phase by adjusting E f above the SOC
energy gap, a direct QSH-QVH junction forms [Fig. 8(c)].
Since the QVH phase only has channels at the lower edge,
the spin-up edge flow of the QSH phase cannot flow into the
lower half plane and must flow into the terminal 4 through the

FIG. 8. The schematic diagrams of edge-state transports for var-
ious configurations in a four-terminal device. (a) The system is in
the QSH phase. (b) The system is in the QVH phase. (c) The system
constitutes a junction of the QSH phase and QVH phase by a top
gate on the lower half plane. (d) The system constitutes a junction of
the QSH phase and QH phase by a top gate on the lower half plane
and with a real magnetic field. The red-dotted lines denote spin-up
channels and the blue-solid lines denote spin-down channels.

interface. Hence, by gating the lower half plane into the QSH
phase or the QVH phase, we can control the spin-up current
from the terminal 1 to flow into the terminal 2 or terminal
4. Furthermore, if a magnetic field is applied on this QSH-
QVH junction (λso 
= 0, |B| > Bps 
= 0, B < 0) to magnetize
the QVH phase in the lower half plane into the QH phase (the
QSH phase will not be interrupted), the spin-up chiral state
will emerge along the interface [47] and flow into the terminal
3 and 4 [Fig. 8(d)]. In short, using a local gate and magnetic
field on the graphene with SOC and pseudomagnetic field,
we can realize a direct junction of QSH-QVH or QSH-QH.
This implements a multiple-way spintronics switch to control
one spin-polarized current flowing from the terminal 1 into
terminals 2, 3, and 4.

VII. CONCLUSIONS

In summary, we investigate the phase diagrams and edge-
state transitions when the QH effect, the QSH effect and the
QVH effect coexist in graphene. We find the QSH effect can
still keep within the SOC energy gap under a relatively large
real magnetic field and pseudomagnetic field. Outside the
SOC energy gap, the real magnetic field and pseudomagnetic
field will compete and affect the LLs at each valley. More-
over, the zeroth LLs of different valleys and spins exhibit
different distributions for the real magnetic field and pseu-
domagnetic field, leading to distinctive edge-state transitions
from the QSH phase to the QH phase and to the QVH phase.
Specially in the case of the pseudomagnetic field, the spatially
asymmetric edge-state structure can be used to construct a
spin FET-like device to tune the spin polarization of edge-state
transport and realize a multiple-way spintronics switch.
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APPENDIX A: THE EFFECT OF STRAIN ON THE
STRENGTH OF INTRINSIC SOC

In this Appendix, we consider how the strain field modifies
the strength for intrinsic SOC λso and inspect whether it could
affect our results in the main text.

In Eq. (2), we directly modify the nearest-neighbor hop-
ping parameters ti j by an exponential relation. For SOC,
the situation will be subtle. The intrinsic SOC in graphene
originates from the intra-atomic SOC, which allows for the
transition between the π band and σ band near the Dirac
points [73]. Therefore, to include the SOC modifications in
the π band effective Hamiltonian like Eq. (2), the multiple
transfer process from π to σ bonds must be considered.
From the previous literature, the lowest-order contribution is
the next-nearest-neighbor hopping, i.e., passing from π to π

through σ bonds, and the λso can be derived as [23,24]

λso ≈ ξ 2
0

18V 2
spσ

, (A1)

where  is the energy difference between the 2s and 2p
orbitals, ξ0 is the intra-atomic SOC constant, Vspσ is the Slater-
Koster (SK) parameter formed by 2s and 2p orbitals.

The strain field will change the distance of bonds between
lattices and thus correct the Vspσ . Usually, the variation of SK
parameters with the strain can be modeled as an exponential
function [52]

Vspσ = V 0
spσ e−α(d/a−1) (A2)

where V 0
spσ is the unstrained SK parameter, α is a parameter to

measure the effect of the strain on the SK parameters, and d is
the distance of the bond formed by 2s and 2p orbitals. We can
regard the strain as a small perturbation so the Eq. (A1) is still
valid. Putting Eq. (A2) into Eq. (A1), we can derive a relation

λso,i j ≈ λ0
soeα(dil /a+dl j/a−2). (A3)

Here λso,i j is the SOC strength depending on the next-nearest-
neighbor lattice indices i and j. l denotes the middle lattice
site when passing from j to i. λ0

so is the unstrained SOC
strength. Equation (A3) is very similar to the Eq. (2) except
that the minus sign in the exponential changes into the plus
sign. α takes the role of γ in Eq. (2) with a value around 2
[74].

Now we investigate if λso is modified as λso,i j in
Eq. (A3), what the SOC term Hso [the second term in
Eq. (1)] could bring about. For each lattice point, we de-
note its six next-nearest-neighbor SOC strength as λso, j ( j =
1, 2, 3, . . . 6). Using the Fourier transformation, Hso can
be transformed into the Brillouin zone under the basis

FIG. 9. The comparisons of the energy bands under Bps = 10 T,
λso = 0.01 eV between the case without SOC modulation (olive
green solid lines) and the case with SOC modulation (magenta dotted
lines). (a) The spin-up component. (b) The spin-down component.
Here γ = 3, α = 1.8, Ny = 800.

(φA↑, φA↓, φB↑, φB↓)

Hso(k) =
(

HA
so(k) 0
0 HB

so(k)

)

=
(∑

j,A iλso, jυ j szei�k· �Dj 0

0
∑

j,B iλso, jυ j szei�k· �Dj

)
.

(A4)

Here j denotes the next-nearest-neighbor bond and �Dj is the
bond vector of the next-nearest-neighbor bond j [75]. Using
the linear expansion λso, j ≈ λ0

so(1 + δλso, j ) and the relation
�Dj = (I + ε̄) �Dj , we can expand HA

so near the Dirac point �k =
�K + �q,

HA
so =

∑
j,A

iλso, jυ j sze
i( �K+�q)· �Dj

≈
∑
j,A

i
(
λ0

so + λ0
soδλso, j

)
υ j sze

i( �K+�q)·( �Dj+ε̄ �Dj )

≈
∑
j,A

i
(
λ0

so + λ0
soδλso, j

)
υ j sze

i �K · �Dj (1 + �K · ε̄ �Dj + �q · �Dj )

≈
∑
j,A

iλ0
soυ j sze

i �K · �Dj +
∑
j,A

iλ0
soδλso, jυ j sze

i �K · �Dj

+
∑
j,A

iλ0
so

�K · ε̄ �Djυ j sze
i �K · �Dj . (A5)

In the last equality of Eq. (A5), we ignore the contribution
from �q, which is a small amount around the Dirac point. The
first term of the last equality is the zeroth contribution of the
SOC, which is just a mass term sosz as Eq. (9) indicates.
The second term is the first correction of SOC and should be
tiny since δλso, j is generally smaller than 10%. The third term
should be also neglected as it is small too and irrelevant to
SOC strength modulation. Therefore, the modification from
strain on the SOC strength should not affect our results, in
view that the main contributions come from the SOC zeroth
contribution. This is different from the case for the nearest-
neighbor hopping modulations where the zeroth contributions
disappear at the Dirac points. As for HB

so and K ′ valley, sit-
uations are alike. Furthermore, in Figs. 9(a) and 9(b), we
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plot the energy bands (Bps = 10 T, λso = 0.01 eV) with SOC
corrections (magenta-dotted lines) and without SOC correc-
tions (olive-green-solid lines). It is clear that results are almost
identical.

APPENDIX B: THE EFFECT OF RASHBA SOC

In this Appendix, we theoretically study how the topo-
logical phases are affected by Rashba SOC. If the mirror
symmetry is broken by a perpendicular electric field or by the
interaction with a substrate, a Rashba SOC will arise in the
Kane-Mele model with a term [18,19]

HR = λR(σxτzsy − σysx ) (B1)

where λR is the strength of Rashba SOC. Without the real
magnetic and pseudomagnetic field, the Rashba SOC has two
effects on Kane-Mele model in Eq. (9): (i) breaking the spin
conservation along z direction, (ii) destroying the intrinsic
SOC gap 2so. For 0 < λR < so, the energy gap 2 (so −
λR) remains finite and QSH effect keeps. For λR > so, the
energy gap closes with QSH phase disappearing [18,19].

When in the presence of both the Rashba SOC and the
(pseudo)magnetic field B (Bps), the low-energy Hamiltonian
for K valley is

HK = v f [σxπx + σyπy] + soσzsz + λR(σxsy − σysx ), (B2)

where �π = �p + e �A or �π = �p + e �Aps. Under a real mag-
netic field, the Hamiltonian for K ′ is related to HK

by a time-reversal transformation: T HK (px, py, �A)T −1 =
HK ′ (−px,−py,− �A). While under a pseudomagnetic field, the
Hamiltonian for K ′ is related to HK by a time-reversal transfor-
mation: T HK (px, py, �Aps)T −1 = HK ′ (−px,−py, �Aps). Taking
B as an example and solving the equation in Eq. (B2), the LL
energy E is (q = 0, 1, 2, . . .) [49][

E2−2
so

2h̄eBv2
f

−(q+1)

][
E2 − 2

so

2h̄eBv2
f

−q

]
= 4λ2

R

(
E − so

2h̄eBv2
f

)2

.

(B3)

It can be verified this energy relation is both valid for HK

and HK ′ no matter under a real magnetic or a pseudomagnetic

FIG. 10. The energy change of the three lowest LL bands (n = 0
LL and n = ±1 LLs) at K valley versus Rashba SOC strength λR,
based on Eq. (B3). The red, blue, and black lines denote n = 1, −1,
and 0 LLs, respectively. We here set so = 2h̄eBv2

f = 1.

field. It indicates the energy of LLs at K and K ′ valleys is
similar, and their wavefunctions are related by time-reversal
transformation. We can just pay attention on K valley. The
general solution of Eq. (B3) is a little more complex than re-
sults in Table I and can be consulted in details in Ref. [49]. In
Fig. 10, we focus on the energy variation of three lowest LLs
(n = 0 LL and n = ±1 LLs) versus λR. For convenience, we
take so = 2h̄eBv2

f = 1. When λR = 0, the n = ±1 LLs are

spin-degenerate at ±
√

2eh̄Bv2
f + 2

so, while the zeroth LLs

are spin degeneracy broken at ±so, which is consistent with
the LLs distributions in Table I, Fig. 3, and Fig. 4. As the λR

climbs, the spin along z direction is no longer a good quantum
number and the spin-degenerate n = ±1 LLs are split into
two spin bands respectively (see Fig. 10). Differently, the
n = 0 LL with higher energy stays at so always, while the
n = 0 LL with lower energy starts to approach so from −so

(no energy crossing). The former is attributed to E = so is
always one solution of Eq. (B3) for q = 0. Thus, the original
SOC gap 2so at K and K ′ valley within the zeroth LLs
(denoted by black boxes in Fig. 3 and Fig. 4) is shrunk by the
Rashba SOC and QSH phase will be totally cannibalized once
λR is very large. Outside the SOC gap, since spin-degenerate
LLs are lifted, the QH phases/QVH phases may evolve into
spin-polarized QH phases/QVH phases.
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