PHYSICAL REVIEW B 106, 165409 (2022)

Nonsymmorphic chiral symmetry and solitons in the Rice-Mele model
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The Rice-Mele model has two topological and spatial-inversion-symmetric phases, namely, the Su-Schrieffer-
Heeger (SSH) phase with alternating hopping only, and the charge-density-wave (CDW) phase with alternating
energies only. The chiral symmetry of the SSH phase is robust in position space, so that it is preserved in the
presence of the ends of a finite system and of textures in the alternating hopping. However, the chiral symmetry
of the CDW phase is nonsymmorphic, resulting in a breaking of the bulk topology by an end or a texture in the
alternating energies. We consider the presence of solitons (textures in position space separating two degenerate
ground states) in finite systems with open boundary conditions. We identify the parameter range under which
an atomically sharp soliton in the CDW phase supports a localized state which lies within the band gap, and we
calculate the expectation value p, of the nonsymmorphic chiral operator for this state, and the soliton electric
charge. As the spatial extent of the soliton increases beyond the atomic limit, the energy level approaches zero
exponentially quickly or in a manner inversely proportional to the width, depending on microscopic details of the
soliton texture. In both cases, the difference of p, from 1 is inversely proportional to the soliton width, while the
charge is independent of the width. We investigate the robustness of the soliton level in the presence of disorder
and sample-to-sample parameter variations, comparing it with a single soliton level in the SSH phase with an

odd number of sites.

DOLI: 10.1103/PhysRevB.106.165409

I. INTRODUCTION
A. The Rice-Mele model

The Rice-Mele model [1] is a one-dimensional tight-
binding model with one electronic orbital per site and two
sites per unit cell, with alternating on-site energies and alter-
nating nearest-neighbor hopping. It can be considered to have
two topological and spatial-inversion-symmetric phases [2,3]
which lie within the BDI (chiral orthogonal) classification of
topological insulators [4—6]: The Su-Schrieffer-Heeger (SSH)
phase [7,8] has alternating hopping only, and the charge-
density-wave (CDW) phase [2,3,9] has alternating energies
only.

As well as being a model of polymers [1,7,8,10,11] and of
topological systems in one dimension [2,3,12-32], the Rice-
Mele model and its phases have been realized in engineered
atomic lattices [33—40] and with cold atoms in optical lat-
tices [41-45]. They also have analogies in higher dimensions
including square lattices [30,46—48], graphene nanoribbons
[49-52], and finite stacks of rhombohedral graphite [53-56].

In position space for a system of J atoms with open bound-

ary conditions, the Rice-Mele model [1] Hamiltonian may be
written as a J x J matrix in a basis of atomic orbitals,

u t+3A 0 0 0
t+1ia —u t—in 0 0
0 t—1A u 0 0
H=[ . : . : . . M
0 0 0 u t+1ia
0 0 0 t+3IA —u
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where alternating on-site energies are parametrized by u,
parameter ¢ is the mean nearest-neighbor hopping, and alter-
nating hopping is described by A. The alternating energies
and hopping give two different atomic sites, labeled sites
A and B. The Bloch Hamiltonian in k space written in the
canonical basis [2] with Bloch orbitals on A and B sites is

u 2tcr + iASs,
2tcy — iAS —u ’

Hk) = (

cr = cos(ka/2), s = sin(ka/2), 2)

where a is the lattice constant. This has two bands with ener-
gies E = £/u? + 412 cos®(ka/2) + A2 sin’(ka/2). The band
gap occurs at the edge of the first Brillouin zone k = +r /a
and has value 24/u? + AZ.

The topological properties of the SSH phase (z = 0) have
been studied at length [2,3,7,8,12,15,16,18,19,23-27,30-32],
and ends and solitons in the A texture (domain walls in
position space separating two degenerate ground states) con-
serve the chiral symmetry. The CDW phase (A = 0) is less
well studied [2,3,9]; the chiral symmetry is nonsymmorphic
[9,31,57,58], so that solitons in # and ends in a finite system
break the chiral symmetry. In this paper, we focus on the
properties of nontopological solitons in the CDW phase and
consider whether they are robust to disorder or sample-to-
sample variations in parameter values.

In the remainder of this introduction, we review the sym-
metry properties of the Rice-Mele model, describing the
representation of the nonsymmorphic chiral operator in po-
sition space. Then, we review the Jackiw-Rebbi mechanism
[59] which, in the continuum limit, predicts the existence of
solitons which preserve chiral symmetry and support localized
states at zero energy. In Sec. II, we discuss the properties of

©2022 American Physical Society
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TABLE 1. Parity and chiral operations for the SSH and CDW models in k space and in position space. In k space (second column), the
Bloch Hamiltonian H (k) is a 2 x 2 matrix (2), and operations are defined in terms of 2 x 2 Pauli matrices o, oy, o,. In position space (third
column), the Hamiltonian is represented by a square matrix H (1) of order J, where J is the number of atoms. P is a generalization of the Pauli
matrix o, of order J (3). S, is a generalization of the Pauli matrix o, of order J (4), and T, is a matrix of order J (5) representing translation
by an atomic spacing (half a lattice constant). Time inversion and chiral-parity are symmetries of the full Rice-Mele model, and they may be
combined to give charge conjugation-parity (CP) symmetry. The final three columns show the effect of the operation on the parameters u, t, A

of the Rice-Mele model.

Operation k space Position space u t A

Time inversion [H(=k)]* H* u t A
SSH parity o H(—k)o, PHP for evenJ —u t A
SSH chiral —o,H(k)o, —S.HS, —u t A
CDW parity H(—k) PHP for odd J u t —-A
CDW chiral —o,H (k)oy, —S,'HS,, where S, = T,»S. u t —A
Chiral-parity —o,H(—k)o, —I'~'HT, where I' = PS, for even J and I' = PS, for odd J u t A
Translation by a/2 o.H (k)o, TJzI HT,) —u t —A

atomically sharp solitons (where the texture is essentially a
step function) in the CDW phase in a finite system. We em-
ploy numerical calculations as well as perturbation theory for
weak hopping (]| < |u|) to show that these solitons support
a localized state with energy within the band gap for a wide
range of parameter values but that, by tuning the hopping
t to very large values determined by the system size, the
soliton level will eventually merge with the bulk states. The
soliton state is characterized by the expectation value of the
nonsymmorphic chiral operator, p,, which is a generalization
of electric polarization.

Section III describes the properties of a soliton with a
spatially smooth texture of width £ greater than the lattice
constant. As the width & increases, the soliton energy ap-
proaches zero exponentially quickly or in a manner inversely
proportional to &, depending on microscopic details of the
soliton texture [9]. In both cases, the difference of p, from
1 is only inversely proportional to &; that is, even a level at
zero energy is not topological in a finite system. In Sec. IV
we show numerically that the electric charge of an atomically
sharp soliton is not a half-integer in the CDW phase, unlike
the SSH phase [10,59] (for spinless electrons at half filling),
but is dependent on the ratio u/t of the parameters [9]. We find
that the charge is independent of soliton width &, so a smooth
soliton has the same charge as an atomically sharp one, as
determined by u/t, even though its energy and p, value are
different. In Sec. V, we discuss solitons in disordered systems
[26,27,60]. For a Hamiltonian to satisfy the nonsymmorphic
chiral symmetry in position space, its form is highly restricted,
and its parameters must be uniform across the sample. This
means that spatial disorder will break the chiral symmetry
but that some types of sample-to-sample variations (e.g., in-
duced by a gate potential) will conserve the chirality. Using
numerical calculations, we study the effects of disorder and
sample-to-sample variations on a soliton in the CDW phase,
comparing them with the properties of a soliton in the SSH
phase.

B. Symmetries of the Rice-Mele model

The symmetries of the Rice-Mele model are summarized
in Table I. The model satisfies time-inversion symmetry [2] so

that the position space Hamiltonian (1) is real. For the SSH
phase, a center of inversion is midbond, and spatial-inversion
symmetry (parity) involves swapping A and B sites, as de-
scribed by o, in k space [2]. In position space, this only holds
for an even number of atoms J and is represented by a matrix
P of order J,

0O 0 O 0 1
0 0 O 1 0

p— R : oo 3
o 01 --- 0 O 3
o1 0 --- 0 O
1 0 0 --- 0 O

For the CDW phase, a center of inversion is an atomic site, so
parity does not involve swapping A and B sites [2]. In position
space, parity is still represented by matrix P of order J as in
Eq. (3), but this holds for odd J only.

For the SSH phase, chiral symmetry is represented by o,
in k space, and this may be represented in position space as a
matrix S, of order J,

10 0 0 0
0 -1 0 0 0
0 0 1 0 0
SZ: . . . . . (4)
0 0 0 - 1 0
0 0 0 - 0 -1

Note that S, may be generalized to an odd number of atoms
with termination of 1 (instead of —1) at the bottom right
corner [32]. The chiral symmetry (4) for the SSH model
is extremely robust because S, is diagonal in the sublattice
space. This means that the chiral symmetry holds even in the
presence of a position-dependent texture in A.

Note that the position space Hamiltonian (1) is real, so
the SSH phase satisfies time-inversion symmetry [2]. With
chiral symmetry, this places the SSH phase in the BDI (chiral
orthogonal) classification of topological insulators [4-6]. If
the hopping parameters acquired a complex phase, the SSH
phase would not satisfy time-inversion symmetry and would
lie in the AIII (chiral unitary) symmetry class [20], but this is
not a case we consider in this paper.
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Although chiral symmetry of the CDW phase is simply rep-
resented by o, in k space, this is nonsymmorphic [9,31,57,58].
In position space, it can be represented as S, = 7;/,S;, which
is a matrix product of S, (4) with T, describing translation
by an atomic spacing a/2:

0O 1 0 O 0 O
0O 0 1 O 0 O
0 0 0 1 0 O
T, = o o0 o0 o --- 0 0 , (3)
0O 0 0 O 0 1
1 0 0 O 0 O
0O -1 0 O 0o 0
0 O 1 0 0o 0
O 0 0 -1 0o 0
s, =10 0 0 0 0 0], (6)
O 0 0 O 0 -1
1 0O 0 O 0O O

where S, is written for even J. In contrast to S, chiral sym-
metry in the CDW phase is fragile in position space, and it is
violated by an end or a texture in the alternating energies. Note
that a chiral symmetry which is a combination of sublattice
symmetry and a shift of the energy spectrum (i.e., a shift pro-
portional to the identity matrix) has recently been discussed in
the context of non-Hermitian systems [61].

In Table I, we also include chiral-parity [9,62], which is a
symmetry of the Rice-Mele model. It may be combined with
time inversion to give charge conjugation-parity (CP) sym-
metry, guaranteeing electron-hole symmetry of the electronic
spectrum.

C. Jackiw-Rebbi mechanism

Although the chiral symmetry S, of the CDW phase tight-
binding model (6) is fragile, there are levels at zero energy
localized on a soliton in the continuum limit, as described by
the Jackiw-Rebbi mechanism [59]. The continuum Hamilto-
nian is obtained by substituting k — — (v /a) + p/h [63] in
H(k), Eq. (2), where p is the momentum operator,

H = vpo, + A(x)oy + u(x)o,

where the velocity is v = at/A. In the SSH phase, u(x) = 0,
we consider a soliton profile of the staggered hoppings A(x)
centered on x = 0 with limits given by

lim A(x) = —sAg, lim A(x) = sAo, 7
xX——00 X—>00

for Ay > 0 with parameter s = 1 describing two different
textures. Then, there is a single localized state for each tex-
ture with energy E = 0 [2,7,8,59], and (un-normalized) wave
functions given by

Yo(x) = e i A (8 ;3@ )

For the CDW phase, A(x) = 0, we consider a soliton pro-
file of the on-site energies u(x) centered on x = 0 with limits

(a) Soliton (b) Antisoliton
+ - -+ -+ -+ -+ + -+ -+ -
1 23456 78 1 23456 78
E E E’23:u0+t
uy——E,;=E,~E~Es=+u, uy——=FE;=E;=+u,
,,,,,,,,,,,,,,,, Eyz=uyt
0 Epy=-uytt 0 i
'HO_E5:E7:-U() _HO_E]:E4:E6:E8:-U()
E'23:-u()-t

FIG. 1. Atomically sharp domain walls in the CDW phase,
shown schematically for a finite system with open boundary condi-
tions and J = 8 sites, where numbers 1, 2, ..., J label sites. Straight
lines indicate nearest-neighbor hopping ¢, and £ symbols indicate
alternating on-site energies uy and —ug, with uy > 0. (a) A soliton
consisting of two consecutive on-site energies —u, on sites 2 and
3. For hopping ¢ = 0, energy levels are degenerate at E = uy or
E = —uy. To first order in degenerate perturbation theory in ¢, the
levels on sites 2 and 3 are split as E}; = —uo —t and Ey; = —ug + 1.
The latter lies within the band gap —uy < E < 1y, and we refer to
it as a soliton because it generally lies at negative energy. (b) An
antisoliton consisting of two adjacent on-site energies u, on sites
2 and 3. To first order in degenerate perturbation theory in ¢, the
levels on sites 2 and 3 are split as Ej; = up +¢ and Ey; = up —t.
The latter lies within the band gap —uy < E < uy, and we refer to it
as an antisoliton because it generally lies at positive energy.

given by

lim u(x) = —suy,

lim u(x) = suy, ©)]
xX——00 X—>00

for uyp > 0 with parameter s = £1 describing two different
textures. Then, there is a single state with energy £ = 0 [13]
and (un-normalized) wave function given by

Yw) = e B e <}s> | (10)
Thus a smooth soliton in the continuum limit should support
a zero-energy state with topological properties [9]. It is the
aim of this paper to model the properties of solitons in finite
systems where the chiral symmetry of the CDW phase is
broken. We begin by considering atomically sharp solitons
and describing the parameter values for which they support
a localized state with energy within the bulk band gap.

II. ATOMICALLY SHARP SOLITONS

A. Qualitative picture for weak hopping

We consider atomically sharp domain walls in the CDW
phase (Fig. 1). As an illustrative example, Fig. 1(a) shows
a finite system with open boundary conditions and J = 8
atoms, and with a soliton consisting of two consecutive on-site
energies —ug on sites 2 and 3. We use uy (where uy > 0) to
denote the magnitude of the staggered on-site energies u at
the ends of the system (away from the soliton). In the case of
an atomically sharp soliton, every atom in the system has an
on-site energy of +uy. We also assume ¢t > 0.

To describe the origin of a state within the band gap and
localized on the soliton, we consider the regime of weak
nearest-neighbor hopping r < uy. Atz = 0, all states are local-
ized on independent atoms and have energies determined by
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the on-site energies, namely, E = +uy or E = —ug, and they
are highly degenerate. Using degenerate perturbation theory,
to first order in ¢, hopping ¢ hybridizes the two degenerate
orbitals immediately adjacent to the soliton [sites 2 and 3
in Fig. 1(a)]. In the 2 x 2 space of these two atoms, with
YT =(1 0)and ¥J =(0 1), the interaction is foy. It
results in splitting of these two levels, as E}; = —uo — ¢ and
Eyy = —up +t. The latter lies within the band gap —uy <
E < ug, and we refer to it as a soliton because it generally
lies at negative energy. Note that it corresponds to the an-
tibonding (higher-energy) state between sites 2 and 3, i.e.,

vh=01 1) V2. To second order perturbation in 7, we find
its energy eigenvalue Eq is
2
Egl = —up +1 — —, (1)
ZMO

where the second-order term describes interaction with the
two closest sites with opposite energy [sites 1 and 4 in
Fig. 1(a)]. We note that this expression is independent of the
length of the system or the position of the soliton (assuming
a soliton always occurs between unit cells) because it only
involves orbitals on the four sites near the soliton.

Figure 1(b) shows an antisoliton which consists of two
consecutive on-site energies up on sites 2 and 3; we name
this an antisoliton because it is generally at positive energy.
Note that it arises from bonding between the two sites, w{3 =
a1 =1y +/2. To second order in perturbation in ¢, we find
that its energy eigenvalue is Eypisol = —FEso1, With Eg given
in Eq. (11).

We determine expectation values of the chiral operators S,
and S), for the soliton state which are generalized versions of
electric polarization,

Pz = (VIS:[¥), (12)
py = (VIS I|¥), 13)

where S, = T,,S.. Using degenerate perturbation theory for
small ¢, it is sufficient to consider only four atoms in the vicin-
ity of a soliton [e.g., sites 1-4 in Fig. 1(a)]. To first order in ¢,

the soliton stateis ¥y = (-7t 1 1 —1)//2(1 + 2)for
T =1/(2uo). This yields pi' = 0 and

ol _ (1+17)? ot

o _ T L 14
Y T o0+ T 2u (14

This predicts pi,"l =1/2 for t =0 and p_sv"1 > 1/2 fort > 0.
For the antisoliton, pi"°' = —po!,

B. Numerical results

Energy eigenvalues E, and eigenstates ¢,,,n = 1,2, ...,J,
are obtained by numerical diagonalization of the position
space Hamiltonian (1) with a texture in the on-site energies
u (and A = 0 for the CDW phase). The soliton state has index
n =J/2 for even J. The density of states per unit energy
g(E) is determined numerically by approximation using a
Lorentzian with a finite width §,

1 8
g(E)Z;Zm~ (15)

n

R
(a) ZC (b)0-23
0.20
I o
S ~0.15
N >
83 — —0.10
-1
L 0.05
P )
012345678 24 6 810121416
8(E) (1/uy J
(c) © cooo0od (d) Lo g0
o © — oz
@208” J=200 09 éo \goﬂbom
E \\ © J:16 é \\\
] [m] S~
LTJ _1?......‘\ ...... Oeveeerereieienerens 0.7 ’l h
\ g 0.6
i _ P
-15 ! J=8 0.5
2 4 6 8 10 2 4 6 8 10
t/uo t/uo

FIG. 2. A single atomically sharp soliton in the CDW phase, at
the center of a finite system with open boundary conditions. (a) The
density of states determined numerically for a system with J = 16
atoms using Eq. (15) with broadening § = 0.005u«y. (b) The prob-
ability density |v;|* per site j =1,2,..., 16 for the energy level
localized on the soliton (with energy Ey, = —0.2681). In (a) and
(b), t = 2.0uy. (c) The energy eigenvalue E, plotted as a function
of the ratio 7/uy of the hopping to the alternating on-site energy,
where the dotted line indicates the bulk band edge E = —uy. (d) The
polarization p, of the soliton eigenstate, where p, measures the chiral
symmetry of the CDW phase (13). In (c) and (d), black diamonds
are numerical data points for a system with J =200 atoms, red
squares are numerical data points for / = 16 atoms, and blue circles
are numerical data points for J = 8 atoms. Dashed curves represent
the predictions of degenerate perturbation theory forr < 1, namely,
Eq. (11) for the soliton energy and Eq. (14) for the polarization p,.

We begin by discussing when a single atomically sharp
soliton results in a localized state with an energy level within
the bulk band gap. We consider a system with an even number
of atoms, J, where J = 2N with N unit cells. Figure 2 shows
a single atomically sharp soliton in the CDW phase located at
the center of a finite system with open boundary conditions
(there are an even number of unit cells in total). Figure 2(a)
shows the density of states determined numerically for a
system with J = 16 atoms using Eq. (15) with broadening
6 = 0.005up and ¢ /up = 2.0. An energy level can be observed
within the bulk band gap —uy < E < ug at Esq = —0.268uy.
Figure 2(b) plots the probability density |1/f‘,-|2 per site j =
1,2, ..., 16 for the state corresponding to this level, showing
that the state is localized at the soliton.

Figure 2(c) shows the energy eigenvalue E, of a single
state plotted as a function of the ratio #/ug of the hopping
to the alternating on-site energy, for different system sizes.
The horizontal dotted line shows the band edge E = —uy, and
we find that there is a single level within the gap, but below
zero energy, —uy < Egq < 0 for 0 < t/uy < J/2, where J is
the number of atoms. For small ¢ /ug, there is agreement with
the prediction of perturbation theory equation (11) (dashed
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FIG. 3. A single atomically sharp soliton in the CDW phase, in
a finite system of J = 16 atoms with open boundary conditions. The
soliton is placed in different positions, with numerical data showing
the soliton at a distance from the closest end of M = 2 atoms (blue
diamonds), M = 4 atoms (magenta circles), M = 6 atoms (black
crosses), and M = 8 atoms (red squares). (a) The energy eigenvalue
of a single soliton E, plotted as a function of the ratio ¢/uy of
the hopping to the alternating on-site energy, where the dotted line
indicates the bulk band edge E = —uy. (b) The polarization p, of
the soliton eigenstate, where p, measures the chiral symmetry of
the CDW phase (13). In both plots, dashed curves represent the
predictions of degenerate perturbation theory for ¢ < uy, namely,
Eq. (11) for the soliton energy and Eq. (14) for the polarization p,.

curve). For large t/uy, the energy is exactly Ey, = —uq for
t/up = J/2. This can be shown analytically, as in Appendix A.
Figure 2(c) shows this energy explicitly for J = 8 (blue cir-
cles) and for J = 16 (red squares).

The polarization p, is plotted in Fig. 2(d), and for small
t/uyg, there is agreement with the prediction of perturbation
theory equation (14) (dashed curve). The energy level E is
within the band gap for a wide range of parameters, although
not necessarily near zero energy. It can approach arbitrarily
close to zero, with polarization p, arbitrarily close to 1, for
a system that is sufficiently long, J > 1, and with tuned
parameters, typically ¢ > ug (black diamonds in Fig. 2 show
numerical data for J = 200). However, the existence of the
energy at the band edge Ey, = —ug for ¢ /uy = J/2 explicitly
demonstrates that a finite system breaks the bulk topology:
Parameter ¢, which conserves the bulk chiral symmetry, can
be tuned to a high value, moving the level away from zero
energy and out of the band gap at ¢ /uy = J/2.

Figure 3 shows a single atomically sharp soliton in the
CDW phase located at different positions in a finite system
of J = 16 atoms with open boundary conditions. Again, the
horizontal dotted line shows the band edge £ = —uy, and we
find that there is a single state within the gap but below zero
energy, —uy < Es, < O for a range of ¢ values. At the very
least, this range is 0 < t/ug < M, where M is the number of
atoms between the soliton and the closest end of the system.

For an atomically sharp soliton, the energy level E, can
approach zero, and the polarization p, can approach 1 for a
long system by increasing the ratio ¢ /uy. However, increasing
the ratio ¢ /ug also increases the total bandwidth (4¢) as com-
pared with the band gap (2u). An alternative way to tune the
properties of the soliton is to make it spatially smooth with a
characteristic width greater than the lattice constant.

III. SMOOTH SOLITONS

We determine the properties of spatially smooth solitons,
generalizing the atomically sharp domain wall in Fig. 1(a).
There are two ways [9] to model smooth solitons in the CDW
phase: (i) atomically smooth solitons where the energies vary
smoothly on the atomic scale so that the magnitudes of on-site
energies of A and B sites within the same unit cell are slightly
different and (ii) unit-cell-smooth solitons where the energies
within the unit cell (on A and B sites) have the same magni-
tude. Reference [9] showed that the energy E, of the former
depends exponentially on soliton width whereas the energy
Esq of the latter varies in a manner inversely proportional to
the width. Here, we consider both types of soliton, including
the dependence of E, on parameters (i.e., the ratio 7 /ug) and
the behavior of the polarization p,.

A. Atomically smooth solitons

To model an atomically smooth soliton, we implement on-
site energies u; with site index j =1,2,...,J as

W=04y%mm(j;”>, (16)

where 1 is the magnitude at infinity and & is the width in
dimensionless units written as the physical width divided by
the atomic spacing (a/2). For domain walls centered between
unit cells, the center jy should be an even number plus 1/2,
e.g., for a center between sites 2 and 3 as in Fig. 1(a), then
Jjo = 5/2. The energy profile for an antisoliton is the same as
in Eq. (16) but with an additional minus sign.

Figure 4 shows the dependence of Ey,; and p, on soliton
width & for a single soliton (16) at the center of a finite
system with open boundary conditions and J = 5000 atoms.
Figures 4(a) and 4(b) show that E, approaches zero exponen-
tially quickly [9] with &,

Esol 08 _67§/Za (17)

with a £-independent parameter £. However, Figs. 4(c) and
4(d) show that p, approaches 1 much more slowly. We fit
In(1 — p,) versus In & to a straight line y = mx + ¢ with data
in the range 500 < & < 5000. Repeating this for different data
sets in the range 0.1 < f/up < 10.0 yields m = —0.998 &+
0.001, so we deduce that the difference 1 — p, is inversely
proportional to &,

1
1—p, x —. 18
p)(XE (18)

Thus it is possible to have a zero-energy state (within numer-
ical precision) that breaks the bulk topology as indicated by
noninteger p,, even for & > 1.

B. Unit-cell-smooth solitons

To model a unit-cell-smooth soliton, we implement on-site
energies u; with site index j =1,2,...,J as
JF1/2— j0>

s 9

where the plus (minus) sign is for the B (A) atom in the unit
cell, uy is the magnitude at infinity, and £ is the width in

W:i%mm< (19)
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atomically smooth solitons
= (b) %

0 5 10 15 20

t/uy=2.0

0.7 -12
2 4 6 8 10 5

6 7
g Ing
FIG. 4. Dependence in the CDW phase on soliton width &, for a
single atomically smooth soliton (16) at the center of a finite system
with open boundary conditions and J = 5000 atoms. The width &
is dimensionless (the physical width in units of the atomic spacing
a/2). In all plots, black diamonds are numerical data points for
t/uy = 2.0, and blue circles are for t /uy = 0.5. (a) The soliton energy
level Eg,, and (b) In(|Es/upl) vs & with linear fits (solid lines).
Fitting is done with data up to the point where Ej is zero within nu-
merical precision (2.0 < & < 9.0fort/uy =2.0and4.0 < & < 17.5
for ¢ /uy = 0.5). (c) The polarization p,, and (d) a log-log plot with
In(1 — p,) vs In& and linear fits (solid lines). Fitting is done with
data for 100 < & < 5000.

8 9

dimensionless units written as the physical width divided by
the atomic spacing (a/2). For domain walls centered between
unit cells, the center jy should be an even number plus 1/2.
The energy profile for an antisoliton is the same as in Eq. (19)
but with an additional minus sign.

Figure 5 shows the dependence of Es, and p, on soliton
width & for a single soliton (19) at the center of a finite
system with open boundary conditions and J = 5000 atoms.
Figures 5(a) and 5(b) show that E, approaches zero in a
manner inversely proportional to & [9]. The numerical data
in Fig. 5(b), for ¢t /ugp = 0.5 and for ¢ /ug = 2.0, coincide for
& > 1, showing that Ey,/ug is independent of 7/ug in this
regime. We fit In(|Eso/ug|) versus In& to a straight line y =
mx + ¢ with data in the range 500 < & < 5000. Repeating this
for different data sets in the range 0.1 < ¢/up < 10.0 yields
m = —0.998 & 0.001 and ¢ = —0.71 & 0.01, so we deduce
that

Ep ~ — o0 20
sol ™~ _E- ( )
This equation is shown as the solid line in Fig. 5(b).

Figures 5(c) and 5(d) show polarization p, as a function of
width &, and these numerical data are very similar to those
of the atomically smooth soliton [Figs. 4(c) and 4(d)]. For
& > 1, the difference in the two sets of data is negligible.

unit-cell-smooth solitons

@ T ()
0.1 OOEE ) —~
X e © <
$-03] © g 7
04 o % -8
05 =
~0.64° -9

(c) 10 v -
0000 r,ocooO~'>OOOCOO ( )
o~ e
09 . ° S
= o \
X o ~
N’
08 o =
lo -11 t/uy=2.0
0.7 -12
2 4 6 8 10 5 g8 9

6 7

g Ing

FIG. 5. Dependence in the CDW phase on soliton width &, for a
single unit-cell-smooth soliton (19) at the center of a finite system
with open boundary conditions and J = 5000 atoms. The width &
is dimensionless (the physical width in units of the atomic spac-
ing a/2). In all plots, black diamonds are numerical data points
for t/uy = 2.0, and blue circles are for ¢/uy = 0.5. (a) The soliton
energy level E., and (b) a log-log plot of In(|E,/uo|) vs In& with
the solid line showing E, /up = —1/(2&) (20). Note that numerical
data points (for ¢/uy = 0.5 and for ¢/uy = 2.0) coincide. (c¢) The
polarization p,, and (d) a log-log plot with In(1 — p,) vs In& and
linear fits (solid lines). Fitting is done with data for 100 < & < 5000.

This demonstrates that 1 — p, is inversely proportional to &
[Eq. (18)] and that p, does not depend on the microscopic
profile of the soliton (atomically smooth or unit cell smooth).

In the remainder of this paper, we present numerical data
for atomically smooth solitons (16) because the data for unit-
cell-smooth solitons (19) are qualitatively the same (for both
soliton charge and robustness to disorder). In Sec. V, we
consider how robust the state localized on a soliton in the
CDW phase is to different types of disorder. Before that, in
Sec. IV, we consider the electric charge of the soliton in the
CDW phase.

IV. ELECTRIC CHARGE OF THE SOLITON

The electric charge of a soliton texture in A in the SSH
phase is a half-integer [10,59] (for spinless electrons at half
filling) and generally fractional [1,10,13] for a soliton texture
in A in the Rice-Mele model. Now we determine the electric
charge of the soliton in « in the CDW phase. We consider a
system of spinless electrons at half filling and at zero tempera-
ture, with electron charge —e, where e > 0. For a finite system
of J atoms, the electronic charge is —eJ/2 in total. The soliton
level discussed in the previous sections is the highest occupied
energy level. Its eigenstate is normalized to unit probability
over the whole sample, so that if one were to consider this
state in isolation and integrate over the whole sample, one
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CDW phase SSH phase
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Oatomically sharp soliton
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FIG. 6. (a) and (b) Schematic of the setup for determining soliton
electric charge numerically (21) with a soliton on the left and an
antisoliton on the right of a system with periodic boundary conditions
and J = 8§ atoms. (a) is for a texture in on-site energies in the CDW
phase, indicated by plus and minus symbols, and (b) is for a texture
in hopping strengths in the SSH phase, indicated by solid and dashed
curves. Dash-dotted vertical blue lines show the boundary between
the left and right sides. (c) and (d) Soliton electric charge Q) in the
CDW phase determined for a system with J = 5000 atoms. (c) The
charge of an atomically sharp soliton as a function of 7/uy with
numerical data (diamonds) and the analytic formula (22) [9] (solid
curve). (d) Dependence of the charge on soliton width & for an
atomically smooth soliton. In both plots, symbols are numerical data,
and solid curves are the analytic formula (22). Data are only plotted
until the point when the soliton energy Ej, is zero within numerical
precision (see text). Blue circles are #/uy = 0.5, red squares are
t/up = 1.0, black diamonds are ¢ /uy = 2.0, and magenta crosses are
t/uy =4.0.

would incorrectly conclude that the soliton charge was —e.
The presence of the soliton state disturbs the other states, and
in determining soliton charge, it is necessary to sum over all
valence band levels in the spatial vicinity of the soliton.

In order to determine the soliton charge numerically, we
consider a system in position space with periodic boundary
conditions in order to eliminate any spurious end effects
[Figs. 6(a) and 6(b)]. We then introduce a pair of a soliton
and an antisoliton which are widely separated at the oppo-
site sides of the ring, dubbed “left” and “right,” respectively.
Left (L) sites are j =1,2,...,J/2, and right (R) sites are
j=J/2+1,J/242,...,J. The antisoliton has the inverted
texture of the soliton, i.e., it has the same magnitude of param-
eters u, £, etc., and is therefore assumed to have the opposite
charge of the soliton. Then, the soliton charge is determined
by calculating the difference in the total charges on the left and
right sides of the ring by summing over all negative energy
states with index n = 1,2, ...,J/2:

J/2
Quol = —g > [Z Wail* = |wn,,-|2}. @1

n=1 L jeL JER

The numerical procedure fails when the soliton and antisoliton
energy levels are zero (within numerical precision) and thus
degenerate because the corresponding eigenstates may be lin-
ear combinations of the two (and not solely localized on the
left or the right). Such degeneracy can be broken by introduc-
ing an infinitesimal symmetry breaking, e.g., a tiny value of
A in the CDW phase. However, here we consider cases when
the energy levels are not degenerate (i.e., an atomically sharp
soliton or a smooth one with & not too large).

The charge of an atomically sharp soliton was determined
analytically in Ref. [9] by relating it to the charge of the
ends of a chain in the pristine CDW phase [e.g., the charge
of a soliton with two consecutive —u on-site energies as in
Fig. 1(a) can be related to the charge at the end of a chain that
terminates with —ug]. For completeness, we briefly outline
this derivation in Appendix B, which gives the charge of an
atomically sharp soliton [9] as

Ol ~ —%[1 — ¢ (uo)l, (22)

where

2
C(up) = — o]

2t
K( ) 23)
n\/u3+4t2 \/u%~|—4t2

and K (x) is the complete elliptic integral of the first kind,

/2 do
Kx) = / _— 24)
0 1—2x2sin’6

The function ¢ (up) describes the magnitude of the difference
in probability densities |yg|> — |¥4|> for the occupied va-
lence bands, and it modifies Qg by describing an unequal
distribution of charge between the two sublattices. Note that
¢ (up) = 0 by definition and it is independent of the sign of ug.
Function K(x) = /2 for x < 1, and K(x) — oo for x — 1.
This means that ¢(ug) — 1 for ug >t and ¢(uy) — 0 for
uy < t. Hence Qs — 0 for ug > ¢, and Qg — —e/2 for
up K t (for a sufficiently large system with J > 1).

Figures 6(c) and 6(d) show numerical data (symbols) for
the soliton charge Qs for a system with J = 5000 atoms, and
solid curves are fits to the analytic formula (22). Figure 6(c)
is for an atomically sharp soliton, showing dependence on the
ratio t /ugp, and the agreement of numerics with analytics (22)
is extremely good. As with Eg, and p, (discussed in Sec. 1I),
it is possible to increase the ratio ¢ /uy and approach the value
Oso1 = —e/2 expected for a topological system (as long as
t /ug does not become huge, t /ug ~ J).

Numerically, we implement a smooth soliton and
antisoliton pair, with the same width &, as u; = (=) ug +
(—Dug tanh[(j — j1)/&]+ (=1)7 ug tanh[(j — j»)/€1,
with centers j; and j,. Figure 6(d) shows that Qg is
independent of the soliton width & [64], so that the analytic
formula (22) remains applicable even for a smooth soliton. In
this respect, Qs behaves quite differently from Ey, and p,.
Note that we only plot numerical data until the point when
the soliton energy becomes zero within numerical precision,
because the numerical procedure fails when the soliton and
antisoliton levels are degenerate.

The soliton charge is independent of the width and
microscopic structure of the texture [64] in the CDW
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phase, and this can be understood by considering the
regime of weak hopping (r < up). We discuss the example
in Fig. 6(a) with only J =8 atoms, a soliton centered
between sites 2 and 3 on the left, and an antisoliton
centered between sites 6 and 7 on the right. When ¢t = 0,
the states v; are all localized on atoms with position index
ji=12,....Jeg,yI=0 1 0 0 0 0 0 0.
Both left and right sides have two occupied valence band
states Y, and ¥3, ¥s and g, so that the charge (21)
is zero. For finite ¢ (with # < uy), the valence band
states associated with the soliton on the left are ¢l =

(-t 1 1 —t 0 0 0 0)/J/20+71?) and
yl,=@x 1 —1 —t 0 0 0 0)//2(+7)

with © =1/(2up). These states are still fully localized
on the left side and so still contribute a probability of
2. However, the valence band states associated with the
boundary sites 5 and 8 extend across the boundary as
yl=0 0 0 -t I -t 0 0)/v/1+2t> and
YI=(-7t 0 0 0 0 O0—7 1)/4/1+272 Thus
the presence of the soliton and antisoliton modifies other
valence band states, including those at the boundary, which
leads to a motion of charge between the right and left sides.
Using Eq. (21), Qs = —2et? = —et?/(2u3), which agrees
with the atomically sharp result (22) to lowest order in ¢ /uy.
Note that this estimate depends only on the magnitude of the
texture uq at the boundary as it appears in ¥5 and ¥, and is
independent of the microscopic details of the texture near the
soliton center, including the texture shape and width &.

We can consider soliton charge in the SSH phase in a
similar way, using the fully dimerized limit A =2¢ [19].
Figure 6(b) shows a soliton centered on site 3 on the left and
an antisoliton centered on site 7 on the right, solid curves
correspond to nonzero hopping (magnitude 2¢) and dashed
curves corresponding to zero hopping (fully broken bonds).
The isolated state on site 3 is at £ =0, the dimers give
a valence band state at £ = —2¢ with probability equally
distributed on both sites, and the trimer (sites 6, 7, and 8)
has a valence band state at E = —2¢ and a state at E =0
(plus a conduction band state). For the valence band states
at E = —2¢, both sides have a contribution to the probability
of 3/2 (half-integer because of the dimer state on sites 4 and
5). There are also two E = 0 states—one on the soliton on the
left and one on the antisoliton on the right—but only one of
them may be occupied. Thus the charge of the soliton on the
left is Qso = £e/2 [10,13,59], where the plus (minus) sign is
for when it is unoccupied (occupied).

Here we have considered spinless electrons at half fill-
ing. For spinless electrons in the CDW phase, the charge
Q"™ for different occupancy of the soliton state (n =0, 1)
may be found from Q') [Eq. (22)] and Q©) = —0Q'!) by
adding or subtracting electric charge e [9], and the results
are summarized in the first four rows of Table II. For spinful
electrons, we denote soliton charge as Q, and twofold spin
degeneracy gives ngf = ZQ&) and Q;gzisol = 2Q;g?isol. Then,
by adding or subtracting electric charge e we find the soliton
charge for different occupancies (n = 0, 1, 2), and the results
are summarized in the last six rows of Table II. We introduce
parameter ng such that ny + 1 is equal to the number of differ-
ent possible occupations of the state, i.e., 0 < n < ng. Then,

TABLE II. Soliton electric charge in the CDW phase depending
on the particular soliton state, where Q is the charge in a spinless
system (the first four rows of the table) and Q is the charge in
a spinful system (the last six rows of the table). Subscript “sol”
(“antisol”) indicates a soliton (antisoliton), and superscript 0, 1, or 2
indicates the occupancy of the soliton state. The function ¢ (1) is an
analytical approximation [9] given in Eq. (23). The electron charge
is —e, where e > 0.

State Charge o >t Uy Lt
Ol e(1+¢)/2 e e/2
Q4! —e(1-¢)/2 0 —e)2
Qo e(1-¢)/2 0 e)2
Ol —e(14¢)/2 —e —e/2
Qsol) e(l + () 2e e
Qgcln) e e 0
0 —e(1—¢) 0 —e
Ointso e(1-20) 0 ¢
Q:(iil:isol —eg —e 0
Qe(li:isol —6(1 + {) —2e —e

the results for the spinless case (n9 = 1) and the spinful case
(np = 2) may be combined as ngl) ~ e[no(1 + ¢) — 2n]/2
and Q") ~ e[ng(1 —¢) —2n]/2. In the large-bandwidth
limit uy <t (the fourth column of Table II), then £ — O
and the soliton and antisoliton charges with the same occu-
pancy are equal, and they coincide with the known values for
topological solitons in the SSH phase [13] as described by

0" = e(ny — 2n)/2.

V. DISORDER AND SAMPLE-TO-SAMPLE PARAMETER
VARIATIONS

A. Nonsymmorphic chiral symmetry in position space

We begin by considering the general form of a J x J
Hamiltonian H in position space which satisfies nonsymmor-
phic chiral symmetry S;'HS, = —H. For even J, it may be
written generically as

hy hy hy ... k5 K
hy —hi hy ... h} =K}
o hi h ht o h
H=|? 7 S R
hs  hy hs ... I hy
hy —hy hy ... hS —h
where Ay, hy, ..., hy41 are arbitrary components. With the

property of Hermiticity, there are J real numbers: h; and
hjjo41 are real, and the other components, hy, hs, ..., by,
are complex. The CDW phase satisfies this symmetry, but
only with periodic boundary conditions and no textures
in the components. Note that it is not possible to write
a nonzero Hamiltonian that satisfies this symmetry for
odd J.

To satisfy the nonsymmorphic chiral symmetry, the
components /; must be uniform across the entire sample. Thus
it is not possible to have microscopic disorder within a sample;
in order to satisfy the symmetry, variations must be restricted
to parameter values that differ from sample to sample within
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an ensemble (e.g., as in gate-induced variations). In the
following, we consider the robustness of the soliton states in a
finite system to four different types of disorder [26,27,60] or
sample-to-sample variations: (i) “On-site disorder” (diagonal)
gives an additional contribution to the on-site energy of site
Jj=1,2,...,J as ¢;, where J¢; is drawn randomly from a
uniform distribution —W < d¢; < W with disorder strength
W. (ii) “Hopping disorder” (off-diagonal) gives an additional
contribution to the nearest-neighbor hopping between sites
jand j+1of 8t;, j=1,2,...,J — 1, where dt; is drawn
randomly from a uniform distribution —W < 8t; < W. For
a given j, both de¢; and &¢; also vary between members of
the ensemble. (iii) “On-site variations” give an additional
contribution to the staggered on-site energy éu that is uniform
across the entire sample but is drawn randomly from a uniform
distribution —W < du < W for different ensemble members.
(iv) “Hopping variations” give an additional contribution
to the nearest-neighbor hopping &¢ that is uniform across
the entire sample but is drawn randomly from a uniform
distribution —W < §r < W for different ensemble members.

As an example, on-site disorder in the CDW phase
(without solitons) would give on-site energies u + d€;, —u +
d¢r, +u + 8¢z, ..., —u+ 8¢; for the first member of the
ensemble, u+ de€j, —u+ 8¢5, +u+ 8¢}, ..., —u+ 8¢, for
the second, u+ 8ef, —u+8e), +u+8€,..., —u+ 8¢
for the third, etc., where J¢; # (SE} # 86}/. However,
on-site variations in the same phase would give on-site
energies (u+6éu), —(u+du), +(u+déu), ..., —(u+68u)
for the first member of the ensemble, (u+ 8u'), —(u +
Su'), +(u+8u),...,—(u—+du) for the second,
(w+8u"), —(u+8u"), +(w+8u”), ..., —(u+8u") for
the third, etc., where du # du’ # Su’”.

B. Numerical methodology

For a given disorder realization, the Hamiltonian is di-
agonalized, and the states are ordered from lowest energy
upwards with labels n =1, 2, ..., J. Averages with respect
to disorder are made with an ensemble of 10000 disorder
realizations, and the properties (e.g., energy and polarization)
of the levels with the same label n are averaged. In the results
we present, we focus on the soliton state with label n = J/2
for even J, or n = (J 4+ 1)/2 for odd J. We present results for
the mean soliton energy (E;,) and its standard deviation og,
and the mean polarization (p,) and its standard deviation o,,.

C. Solitons in the SSH phase

Before considering a soliton in the CDW phase, we con-
sider an exemplar of preservation of bulk topology [26,27,30],
namely, a single soliton in the SSH phase (uyp = 0) for a
system with an odd number of atoms and stronger bonds at the
ends. It supports a single localized state at zero energy [60].
For a nearest-neighbor bond ¢, with index £ =1,2,...,J —
L,

A = (—=1)!Ag tanh <E ;e"), (26)

where A is the magnitude at infinity and & is the width
in dimensionless units written as the physical width divided
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FIG. 7. Dependence of the disorder-averaged density of states
(g(E)) on energy E in the SSH phase for a single soliton (26) with
width & = 50, r/Ay = 1, at the center of a finite system with open
boundary conditions and J = 501 atoms. For all plots, the disorder
strength is W/Ay = 0.5, and (g(E)) is determined using Eq. (15)
with broadening § = 0.005A,. (a) is for on-site disorder (black),
(b) is for hopping disorder (magenta), (c) is for on-site variations
(red), and (d) is for hopping variations (blue). Averaging is done with
respect to 10 000 disorder realizations.

by the atomic spacing (a/2). We consider the soliton to be
centered on an atomic site, with integer site index jjy, such
that the bond index is £y = jo — 1/2.

Figure 7 shows the mean density of states for a single
soliton at the center of a SSH system with J = 501 atoms,
width § = 50, and disorder strength W/ Ay = 0.5 for the four
types of disorder and sample-to-sample variations. Note that
an integral of the density of states over a small energy window
centered on each peak at E = 0 will yield unity, reflecting the
fact that there is a single soliton state. For hopping disorder
and hopping variations, the soliton level at £ = 0 is clearly
visible, which is to be expected because hopping disorder con-
serves the SSH chiral symmetry. The level is barely visible for
on-site disorder and is not discernible for on-site variations;
staggered on-site energies break the SSH chiral symmetry.

Figure 8 shows properties of the SSH soliton state as a
function of disorder strength. For hopping disorder, mean
energy (Es,) = 0, polarization (p,) = 1, and standard devi-
ations are zero (within numerical precision) for the disorder
strengths we consider (up to W/Aq = 1.5). For hopping vari-
ations, (Es) = 0 with zero standard deviation, but (p,) = 1
only up to W/Ap = 1. After this, (p;) is slightly less than 1,
and the standard deviation o, is nonzero. The system actu-
ally remains topological, but some members of the ensemble
have bonds at their ends that are weaker (in magnitude) than
the adjacent bonds. They thus support additional zero-energy
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FIG. 8. Dependence in the SSH phase on disorder strength W for
a single soliton (26) with width & = 50, /Ay = 1, at the center of a
finite system with open boundary conditions and J = 501 atoms. In
all plots, black diamonds show numerical data for on-site disorder,
magenta circles show hopping disorder, red squares show on-site
variations, and blue crosses show hopping variations. Averaging is
done with respect to 10 000 disorder realizations. (a) The mean soli-
ton energy (Es,) with error bars, with each data set offset from zero
by multiples of 0.04A,, and (b) the standard deviation, o, of E,.
(c) The mean polarization (p,) with error bars and (d) the standard
deviation, o, of p..

states at the ends: The two new states have p, = 1, while

the polarization of the central soliton flips to p, = —1. The
addition of contributions with p, = —1 reduces the ensemble
average (p.). Note also that (p;) =1 (0, = 0) for on-site

variations even though ox # 0.

D. Solitons in the CDW phase

We now compare solitons in the CDW phase with those in
the SSH phase. Figure 9 shows the mean density of states for
a single soliton at the center of a CDW system with J = 500
atoms, width & = 50, and disorder strength W/Ay = 0.5 for
the four types of disorder and sample-to-sample variations
[64]. For the sample-to-sample variations (on-site and hop-
ping), the soliton level at E = 0 is clearly visible, but it is
barely visible for spatial disorder (on-site and hopping). Fig-
ure 10 shows properties of the CDW soliton state as a function
of disorder strength [64]. For zero disorder, this state is at
zero energy (within numerical precision) with p, = 0.9975.
It is clearly fragile in the presence of spatial disorder (on-site
and hopping) with nonzero standard deviations oz and o,
and (p,) approaching zero for large disorder. However, for
sample-to-sample variations (on-site and hopping), the level
remains at zero energy with high p, values and oz ~ o, ~ 0
until W/uy =~ 1. For W/ug 2, 1 and on-site variations, some
of the ensemble members have |8u| 2 up, which destroys the
state localized on the soliton. For W/uy 2 1 and hopping
variations, some of the ensemble members have total hopping

(a) . on-site disorder (b) . hopping disorder

1 1
0.5 05
S S
S o N
N5 M o5
-1 -1
-1.5 15 c_
100 150 100 150

(lB)) Ty (e(E)) (Vi)

(C) on-site variations (d) hopping variations
1

15 5 e
1 1
0.5 0.5
S S
NN X 0
N s N5
-1 -1
-15 -15 <l
100 150 50 100 150

(g(E)) (1/ug) (8(E)) (1/uy)

FIG. 9. Dependence of the disorder-averaged density of states
(g(E)) on energy E in the CDW phase for a single soliton (16) with
width & = 50, t/uy = 1, at the center of a finite system with open
boundary conditions and J = 500 atoms. For all plots, the disorder
strength is W/uy = 0.5, and (g(E)) is determined using Eq. (15) with
broadening § = 0.005u. (a) is for on-site disorder (black), (b) is for
hopping disorder (magenta), (c) is for on-site variations (red), and
(d) is for hopping variations (blue). Averaging is done with respect
to 10000 disorder realizations.

that is negative. For these, the soliton energy is still near zero,
but there is a flip in the sign of p, (to p, & —1), resulting in a
decrease of (p,) and an increase in o).

The mean density of states for an atomically sharp single
soliton at the center of a CDW system with J = 500 atoms and
disorder strength W/ Ay = 0.5 is shown in Fig. 11. The soliton
state is barely visible for spatial disorder (on-site and hop-
ping). It can be seen for sample-to-sample variations (on-site
and hopping), but with significant width (and an asymmet-
ric shape as a function of E). Figure 12 shows properties
of the atomically sharp CDW soliton state as a function of
disorder strength. For zero disorder, this state is at nonzero
energy Eq, = —0.4142u with p, = 0.8536. To some extent,
the behavior mirrors that of a smooth soliton (Fig. 10) but it is
less robust. For sample-to-sample variations (on-site and hop-
ping), or and op are smaller for W/uy < 1 than for disorder,
and (p,) remains close to its original Value for W/ug < 1.
For on-site disorder and variations, the mean energy (Eg)
actually moves towards zero as disorder increases, which we
attribute to a general narrowing of the mean band gap, as seen
in Fig. 11 (by comparing the on-site with the hopping figures).

VI. CONCLUSION

In the charge-density-wave (CDW) phase with staggered
on-site hopping, chiral symmetry is nonsymmorphic, so that
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FIG. 10. Dependence in the CDW phase on disorder strength W
for a single soliton (16) with width & = 50, ¢ /uy = 1, at the center of
a finite system with open boundary conditions and J = 500 atoms. In
all plots, black diamonds show numerical data for on-site disorder,
magenta circles show hopping disorder, red squares show on-site
variations, and blue crosses show hopping variations. Averaging is
done with respect to 10 000 disorder realizations. (a) The mean soli-
ton energy (E,) with error bars, with each data set offset from zero
by multiples of 0.04u,, and (b) the standard deviation, og, of E.
(c) The mean polarization (p,) with error bars and (d) the standard
deviation, o, of p;.

an end, spatial disorder, or a spatial texture in parameter values
breaks the chiral symmetry. Despite this, an atomically sharp
soliton supports a localized state with an energy Ey, which
lies within the band gap for a wide range of parameter values.
Increasing the ratio of the bandwidth to the band gap (i.e., the
ratio ¢ /ug), in a sufficiently long system, can drive the soliton
energy E, towards zero, the polarization p, towards 1, and
the occupied soliton electric charge Q. towards —e/2.

For a smooth soliton of width &, the dependence of the
energy level E, on & depends on microscopic details of the
soliton texture [9]: For an atomically smooth soliton (16),
E,q scales to zero exponentially with &, whereas for a unit-
cell-smooth soliton (19), Ey, is inversely proportional to &.
However, both types of smooth soliton share the same de-
pendences of their polarization p, and charge Qs on &: py
approaches 1 only in a manner inversely proportional to &,
and Qs is independent of &. Hence any soliton in a finite
system with open boundary conditions cannot be regarded as
topological. Nevertheless, a smooth soliton in the CDW phase
can be robust with respect to sample-to-sample variations in
the staggered on-site energies and nearest-neighbor hoppings.

All relevant data presented in this paper can be accessed
[65].
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FIG. 11. Dependence of the disorder-averaged density of states
(g(E)) on energy E in the CDW phase for a single atomically sharp
soliton with #/uy = 1, at the center of a finite system with open
boundary conditions and J = 500 atoms. For all plots, the disorder
strength is W/uy = 0.5, and (g(E)) is determined using Eq. (15) with
broadening § = 0.005u. (a) is for on-site disorder (black), (b) is for
hopping disorder (magenta), (c) is for on-site variations (red), and
(d) is for hopping variations (blue). Averaging is done with respect
to 10000 disorder realizations.

APPENDIX A: THE ENERGY LEVEL OF A SINGLE
ATOMICALLY SHARP SOLITON IN THE CDW PHASE IS
AT THE BAND EDGE FOR ¢ /uy = J/2

We consider a single atomically sharp soliton in the CDW
phase, placed at the center of a system with N unit cells (where
N iseven), J = 2N atoms, and open boundary conditions. The
aim is to demonstrate that there is an energy level exactly at
the band edge E = —uq for t /ug = J/2.

The energy eigenvalue equation Hy = Ey, where ¥
is a J-component column vector of atomic states v/, j =
1,2,...,J, yields J simultaneous equations. With £ = —uy,
half of the equations give relations between pairs of compo-
nents which may be summarized as

= (=D, (AD

Y1 =—Y3 =15 =
Y=Yy =Yya == (="

The other J/2 simultaneous equations split into relations
between the sites before (j < J/2) and after (j > J/2) the
soliton. For example, the former are

(A2)

1Yy = —2ug,
1ty +tYs = —2upss,
s + te = —2u0ys,
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FIG. 12. Dependence in the CDW phase on disorder strength W
for a single atomically sharp soliton, 7/uy = 1, at the center of a
finite system with open boundary conditions and J = 500 atoms. In
all plots, black diamonds show numerical data for on-site disorder,
magenta circles show hopping disorder, red squares show on-site
variations, and blue crosses show hopping variations. Averaging is
done with respect to 10000 disorder realizations. (a) The mean
soliton energy (E,) with error bars and (b) the standard deviation,
og, of Eg,. (c) The mean polarization (p,) with error bars and (d) the
standard deviation, o,, of p,.

tWyp_a + iy = —2ugypoi.
Using Egs. (A1) and (A2), these may be written as
=ty = 2upyy,
1Y + 1Y = 2uoy,
—ty — tye = 2uoy,

(=D 12 + 14 = 2upy.
These J/4 equations may be added together to give
1Yy = Juo/2)y.

Likewise, the J/4 simultaneous equations which give relations
between the sites after (j > J/2) the soliton yield

1Y = (Juo/2)Yy.

These latter two equations are only compatible if ¢ /uy = J/2.

(A3)

(A4)

APPENDIX B: ANALYTIC EXPRESSION FOR THE
CHARGE OF AN ATOMICALLY SHARP SOLITON IN THE
CDW PHASE

We briefly outline the derivation of Ref. [9] for the expres-
sion for the charge of an atomically sharp soliton, Eq. (22).
Consider the position space Hamiltonian of a pristine CDW

chain with j =1,2,...,J atoms and open boundary con-
ditions as in Eq. (1) with A =0 and where the first site
has on-site energy u = uy. This Hamiltonian may be block
diagonalized using the eigenstates of a monatomic chain (with
uy = 0) which has eigenvalues and eigenstates as

E) = sel?. ). @D

: 2 ni j
0) _ j+l : ( J) B2
Ypoj =8 ‘/J—I-lsm i) (B2)

where n=1,2,...,J/2 and s = £1. In a basis with pairs

g[f;% 7 W,(:)l i for each n, the CDW Hamiltonian is reduced

to 2 x 2 blocks,

e =2 COS( d
J+

(0)
H2*? = (En " ) (B3)

up ——e

These have eigenvalues

nim
Eps=+en, € = |ud+ 41 2(—) B4
+ € € \/”o + 41< cos Tr1 (B4)

For negative energy states, probability densities are

sin2(J””le)[1 - (—1)f+lz—:]. (B5)

A
S |
The charge Q.nq at the left end of the chain is determined
by summing over all negative-energy states and over M sites
near the end (where M is an even number and M > 1):

2 M M
Qend quZZhﬁn,—,jF _Qe?’ (B6)
n=1 j=l1
where the electron charge is g. = —e, e¢ > 0. The second

term indicates that the charge is measured with respect to the
contribution of M sites with a perfectly homogeneous charge
distribution (for half filling). With the form of the probabilities
(B5),and M > 1,

Qena ~ —sgn(u) L1 = £ w)). (B7)
where [9]
2 & jul
Clo) = 7 2_1: c (B8)
__2 - Juol . (B9)
J+14 \/u% + 412 cosz(%)

For a system with a large number of sites J > 1, this may be
approximated as an integral,

alu T dk
£ug) ~ & 0'/
T 0

u? + 412 cos? (%)

(B10)
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The complete elliptic integral of the first kind, K(x), is
defined as

(B11)

/2 do
K(x) =/ T
0 /1—x%sin"0

so that

2
() ~ = 1ol

K( 2t )
”\/u%+4t2 \/u5+4t2

(B12)

The charge of a domain wall is equal to the sum of the
charges of the two “ends” of which it consists [9]). For ex-
ample, for the soliton in Fig. 1(a), which consists of two
consecutive sites with —ug, the charge is

Qs ~ %[1 — ¢(uo)]. (B13)

For the antisoliton in Fig. 1(b), which consists of two consec-
utive sites with +u, the charge is

Ounisol © —%[1 — ¢(uo)l. (B14)
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