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Signatures of Lifshitz transition in the optical conductivity of two-dimensional tilted Dirac materials
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Lifshitz transition is a kind of topological phase transition in which the Fermi surface is reconstructed.
It can occur in the two-dimensional (2D) tilted Dirac materials when the energy bands change between the
type-I phase (0 < ¢ < 1) and the type-II phase (+ > 1) through the type-III phase (+ = 1), where different tilts
are parametrized by the values of 7. In order to characterize the Lifshitz transition therein, we theoretically
investigate the longitudinal optical conductivities (LOCs) in type-I, type-II, and type-III Dirac materials within
linear response theory. In the undoped case, the LOCs are constants either independent of the tilt parameter
in both type-I and type-III phases or determined by the tilt parameter in the type-1I phase. In the doped case,
the LOCs are anisotropic and possess two critical frequencies determined by w = w; () and w = w,(t), which
are also confirmed by the joint density of state. The tilt parameter and chemical potential can be extracted
from optical experiments by measuring the positions of these two critical boundaries and their separation
Aw(t) = wy(t) — w(¢). With increasing the tilting, the separation becomes larger in the type-I phase whereas
smaller in the type-II phase. The LOCs in the regime of large photon energy are exactly the same as that in
the undoped case. The type of 2D tilted Dirac bands can be determined by the asymptotic background values,
critical boundaries, and their separation in the LOCs. These can therefore be taken as signatures of Lifshitz
transition therein. The results of this work are expected to be qualitatively valid for a large number of 2D tilted
Dirac materials, such as 8-Pmmn borophene monolayer, @-SnS,, TaCoTe,, TalrTe,, and 17’ transition metal

dichalcogenides, due to the underlying intrinsic similarities of 2D tilted Dirac bands.

DOLI: 10.1103/PhysRevB.106.165404

I. INTRODUCTION

Graphene has triggered extremely active research in two-
dimensional (2D) Dirac materials characterized by linear
and/or hyperbolic energy dispersions around Dirac points
in momentum space [1,2], such as a-(BEDT-TTF),I; [3],
silicene [4-8], graphene under uniaxial strain [9], 8-Pmmn
borophene [10-13], transition metal dichalcogenides [14-16],
partially hydrogenated graphene [17], &-SnS, [18], TaCoTe,
[19], and TalrTe4 [20]. Among them, 2D tilted Dirac materials
host tilted dispersions along a certain direction of wave vector
and have been attracting increasing interests theoretically and
experimentally [3,9-13,16-20]. They exhibit many signifi-
cant qualitative differences in physical behaviors compared
to their untilted counterparts, including plasmons [21-26],
optical conductivities [22,26-34], Weiss oscillation [35],
spectrum of superconducting excitations [36], Klein tunneling
[37-39], Kondo effects [40], Ruderman-Kittel-Kasuya- Yosida
(RKKY) interactions [41,42], Hall effects [43,44], thermo-
electric effects [45], thermal currents [46], valley filtering
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[47], gravitomagnetic effects [48], Andreev reflection [49],
Coulomb bound states [50], guided modes [51], and valley-
dependent time evolution of coherent electron states [52].

Lifshitz transition is a kind of topological phase transition
in which the Fermi surface is reconstructed [53], which is
crucial for understanding the novel states of matter and physi-
cal properties around the transition. It accounts for the huge
magnetoresistance in black phosphorus [54], superconduc-
tivity in iron-based superconductors [55-59], and abnormal
transport behavior in heavy fermion materials and topological
quantum materials [60-63]. The Lifshitz transition occurs
in tilted Dirac materials when the energy bands change be-
tween the type-I phase (undertilted, 0 < ¢ < 1) and the type-1I
phase (overtilted, ¢+ > 1) through the type-III phase (critical
tilted, + = 1) where ¢ is the tilt parameter [64,65]. In three-
dimensional (3D) tilted Dirac bands, many physical properties
can characterize the Lifshitz transition, such as spin suscep-
tibilities [66], magnetic response [67,68], Hall conductivity
[69], anomalous Nernst effect [70,71], magnetoresponse [72],
Andreev reflection [73], Klein tunneling [74], Kerr rotation
[75], magnetothermal transport [76], plasmon [77], RKKY
interaction [78], and optical response [79—-81].

Similarly, the Lifshitz transition can be realized in 2D tilted
Dirac materials. For example, 8-Pmmn borophene undergoes

©2022 American Physical Society
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the Lifshitz transition under the control of tunable vertical
electrostatic field [82]; the different compounds in 17 tran-
sition metal dichalcogenides correspond to different phases
of the Lifshitz transition [16]: type-I phase (17’-MoS, and
1T’-MoSe,), type-IIl phase (17'-WSe,), and type-II phase
(17’-MoTe, and 17’-WTe,). Consequently, a very important
issue is how to most effectively characterize the Lifshitz tran-
sition in 2D tilted Dirac materials. In 2D tilted Dirac bands,
some indicators were already proposed to characterize the
Lifshitz transition, including the spectrum of superconducting
excitations [36], Coulomb bound states [50], and nonlinear
optical response [81].

The optical conductivity provides a powerful method for
extracting the information of energy band structure, and has
been extensively investigated theoretically and experimentally
in the 2D untilted Dirac bands [83-96] and undertilted Dirac
bands [22,26-31]. Specifically, the exotic behaviors of longi-
tudinal optical conductivity (LOC) can be used to characterize
the topological phase transitions in both silicene [90] and
17’-MoS, [30]. However, the energy bands of the above-
mentioned 2D Dirac materials are restricted to either the
untilted or the undertilted (type-I phase), leaving the impact
of type-II and type-III energy bands on the LOCs unexplored.
To characterize the Lifshitz transition of tilted Dirac materi-
als, we perform a comprehensive study of the LOCs in the
type-1, type-1I, and type-III phases. In particular, we focus
our theoretical study of LOCs on both the undoped and doped
situations.

The rest of the paper is organized as follows. In Sec.Il,
we briefly describe the model Hamiltonian and theoretical
formalism to calculate the LOC. The analytical expressions
for the interband conductivity, joint density of states (JDOS),
and the results for interband conductivity are presented in
Sec. III and Sec. IV, respectively. In addition, the intraband
conductivities are analytically calculated in Sec. V. The sum-
mary and conclusions are given in Sec. VI. Finally, we present
four appendices to show detailed calculations.

II. THEORETICAL FORMALISM

We begin with the Hamiltonian in the vicinity of one of two
valleys for 2D tilted Dirac materials [3,9-13,22]

HK (kxv ky) = Khvtkyfo + h(vxkxtl + UykyTZ)s (])

where « = & labels two valleys, k = (k,, k,) stands for the
wave vector, and 7 and t; denote the 2 x 2 unit matrix and
Pauli matrices, respectively. For simplicity, we hereafter set
h = 1 and introduce the tilt parameter 7 by defining

r=2 )

vy

It is noted that this system remains invariant under
the valley transformation (k,ky) <> (—«, —k,), indicating
H_i(ky, —ky) = H,(ky, ky). The eigenvalue evaluated from
the Hamiltonian reads

el (ky, ky) = rtvyky + L2 (ky, ky), 3)
where Z(k,, ky) = ,/vk? + v2kZ, and A = £1 denotes the

conduction band (A = +1) and valence band (A = —1), re-

spectively. The energy bands and the Fermi surfaces for the
n-doped case at the k = + valley, are schematically shown in
Fig. 1.

For the untilted case (t = 0), the only Fermi surface, con-
tributed completely by the electron pocket with a closed area
[see Figs. 1(a) and 1(e)], is an ellipse obeying the equation

g R
L=, )
vy

which reduces to a circle when v, = v,. For the type-I phase
(0 <t < 1), the only Fermi surface, also contributed com-
pletely by the closed electron pocket [see Figs. 1(b) and 1(f)],
is an ellipse obeying the equation

Kty \2
K2 (ky + vy(l—rz))
2 2

=1, &)

K

V2(1—12)
which remains an ellipse even when v, = v,. The tilt param-
eter t moves the center of the ellipse along the k, axis and
changes the major axis and minor axis of the ellipse. For the
type-1II phase (¢ = 1), the only Fermi surface, contributed
entirely by the electron pocket with an open border [see
Figs. 1(c) and 1(g)], is a parabola satisfying

o vk
2k, 2Kpvy

y (6)
Interestingly, for the type-II phase (+ > 1), the Fermi surface
is a couple of hyperbola [see Figs. 1(d) and 1(h)] whose
equation reads

(ky — 562 )2 k?
y(@2=1) x
- =1 ™)

T weD

which is contributed not only by the electron pocket but also
by the hole pocket.

These indicate that the Fermi surface is reconstructed
when the energy band changes between the type-I phase and
the type-II phase, corresponding to a Lifshitz transition [see
Figs. 1(e)—1(h)]. On the other hand, the edges of the electron
pocket and the hole pocket determine the boundaries of the
interband transition of the LOCs. As a consequence, the Lif-
shitz transition can be characterized by the critical boundaries
of interband conductivity. It is the purpose of this work to
characterize such Lifshitz transition in the 2D tilted Dirac
materials via the LOC.

Within linear response theory, the LOC o;;(w) at finite
photon frequency w is given by

jj(@) =g, Y of;(), ®)

k==l

where j = x, y stands for the spatial component, g, = 2 rep-
resents the spin degeneracy, and o};(w) denotes the LOC
at given valley x, whose explicit expression is provided in
Appendix A. Interestingly, o;;(w) possesses the particle-hole
symmetry (see Appendix A for details) such that we can
safely replace w by |u| in all of o;;(w), q;fj(a)), and f(x)
because we only concern the final result of o;;(w). It can be
proven that aj’fj(w) = oj_j“ (w) by considering H_ (k,, —k,) =
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FIG. 1. Schematic diagrams for tilted Dirac bands (top panels) and the corresponding Fermi surfaces (bottom panels) of different typical
tilt parameters ¢ at the « = + valley. The green and purple shaded regions represent electron and hole pockets, respectively. The Fermi contour
represented by the red line, is an ellipse for t = 0 and r = 0.5, a parabola for # = 1, and a couple of hyperbola for = 2. We hereafter set the
chemical potential 4+ = 0.2 eV and the Fermi velocities vy = 0.86vp, vy = 0.69vp with vy = 10° m/s, the same as that given in Ref. [27].

H, (kx, ky), such that we are allowed to focus on the x = sis to the n-doped case (u > 0) and the x = + valley for
+ or the k = — valley. Hereafter, we restrict our analy- convenience.
|
After some standard algebra, the real part of the LOCs can be divided into an interband part and an intraband part as

Reo (@) + O[uIReo jp, () + O—plReo i (@), 0<1 <1
Reo i (w) = ©
Reo; J(IB)(w) + Reo ]](D)(w) + Reo; ](D)(w) t > 1,

where ®(x) is the Heaviside step function satisfying ®(x) = 0 for x < 0 and ®(x) = 1 for x > 0, and x denotes the chemical
potential measured with respect to the Dirac point. In addition, the 1nterband and intraband conductivities are given, respectively,
as

+00 dk, oo & f[s,(_(kx, ky)] - f[g,j(kx, ky)]a[

Rec®. = (k. k — 22 (ky, k)], 10
eGJJ(IB)(w) ”/_OO 27 ) o 27 ]:—,+( y) » ( y)] (10)
+00 gk [T dk df e} (ky, ky)]

Regj’sz(}‘D)(w) =7 foo 2w ) y}—f}{J(kxyk )[ kay)}%w), (11)
_ _ (ke

where §(x) is the Dirac § function, f(x) = {1 + exp[(x — u) /Iq_;_T]}_1 denotes the Fermi distribution function in which kg is the
Boltzmann constant and 7" represents the temperature, and ]-'ff/{,’ (ky, ky) is explicitly given as

FE (s ky) —fvz{l ok Tk } (12)
S R [Z ke, k)T )
(ke ky) e {2 25 +1 ’v%k’% uk +drsy, ok } (13)
! (ke =—v P8+ 1 — a2 ustic B §
T . Bl k)P O Bl k)
[
with 8, the Kronecker symbol. where Reo? (@) and Reo [ (w) are recast as
For the sake of simplicity, we denote the real part of total
LOCs as Reo [B(w) _ U B
—— =TI (@)« + F y (@)3y,
(o)) y

Reaj;(w) = Reo ?(w) + Reo [} (w), (14) (15)
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ReoP(w) v,
— I Dt ANy ()
o)) Uy

Uy D
+ TR ANy S(@). (16)

In these notations, oy = e?/4% (we temporarily restore /i for
explicitness), and F}?(a)) and FPj(u, t, A) are introduced for
convenience with j = x, y, whose explicit definitions are in-
dependent of the ratio v, /v, (see Appendix B for details). The
relation between the LOCs and the ratio of Fermi velocities
v/v, has also been reported in Refs. [28,30]. Obviously, the
only difference between the isotropic case (v, = vy) and the
anisotropic case (v, # vy) is the magnitude of the LOCs. It is
emphasized that UOZ—iFg(u, t, A) and oy v:' TP (1,1, A) refer

.
to the Drude weights for Reo> and Reo”, respectively.

In the next, we will analytically calculate the interband and
intraband LOCs by assuming zero temperature 7 = 0 such
that the Fermi distribution function f(x) can be replaced by
the Heaviside step function ®[u — x]. To better analyze the
physics of interband LOCs, we also evaluate the JDOS defined

by
J@)=g5 Y Te(w), (17)

k==%1

where

d’k _
Te(w) = / 58w — 2Z ke, k) {O[1 — &, (kv ky)]
(2m)

— O — & (ke, k1) (18)

The detailed analytical calculations of LOCs and JDOS are
found in Appendices B and C.

III. INTERBAND CONDUCTIVITY AND JDOS

In this section, the analytical results of the interband LOC
and JDOS are listed for different tilts. Firstly, the LOCs in
the undoped case (u = 0) are completely contributed by the
interband transition, which are given as

Mw)=1 o (19)
w W)= 1 1
G-(1) =G (=), 1>1
and
M= SISt )
)y w) =
R (AT N A Y
where two auxiliary functions
1 arcsinx  xv/1—x?
Gi(x) =+ + 1)
2 b4 T

are introduced for simplicity. It is interesting to note that
in the undoped case the LOCs are constant in frequency.
Specifically, these constant conductivities depend on the tilt
parameter only in the type-II Dirac materials, but are indepen-
dent of the tilt parameter in both the type-I and type-III Dirac
materials.

Hereafter, we focus on the interband LOCs in the doped
case for different tilts. In the untilted case (r = 0), we recover

the result of the ordinary Dirac cone and get
I (@) =TH(w) = 0(w —2u),

which are consistent with Refs. [84-88]. The corresponding
JDOS is given as

j(a))_{O, O<w<2u

(22)

Jow 1, w>=2u,

. _ 1
with Jy = Tro

When the Dirac cone is tilted (¢ > 0), we introduce three
compacted notations

2+ w O®)
£ = om
w t
®
(1) =2u1—f)t,
_ O —1) O —1)
wg(t)—2u®(t)|: = — :|,

in order to simplify our results. The reason that we still used
the step function ®(¢) in these notations is just to empha-
size the constraint ¢+ > 0 without the need of referring to
the context. In the subsequent three subsections, we list the
analytical expressions of the interband conductivity for the
type-1I, type-1I, and type-III Dirac materials in sequence. In
the fourth subsection, we express I'}? () and T'}> () in terms
of the corresponding JDOS.

A. For type-I Dirac materials

For the type-I phase (0 < ¢ < 1), the interband conductivi-
ties can be expressed by

0, 0<w<w(()
M) =4{1-G_(60), wit)<o<wm() (23)
1, ® = w(t)
and
0, 0<w<w()
@) =11-G1(), o) So <) (24
1, w = wy(t),

where &1 = (2u + w)/tw. The corresponding JDOS 7 (w) is
given by

0, 0<w< wlt)
J (o) _ ) arccos&_ , o) <w<w) (25)
Jow "

1 w 2 (7).

It is noted that there are two tilt-dependent critical bound-
aries at o = w1 (t) =2u/(1 +1¢) and w = wy(t) =2 /(1 —
t) in the interband LOCs, which are also confirmed by

.. drs . .
the JDOS. In addition, ;‘afw) is continuous at w = w;(t)

and w = w;(t), while % is discontinuous thereabouts.
These expressions agree exactly with the analytical results
in Ref. [30]. After substituting v, = 0.86vr, vy, = 0.69vf,
and v, = 0.32vp with vp = 10° m/s into Eq. (15), these
expressions give rise to the numerical results reported in
Ref. [27]. Furthermore, these results are also valid in the

165404-4



SIGNATURES OF LIFSHITZ TRANSITION IN THE ...

PHYSICAL REVIEW B 106, 165404 (2022)

untilted limit (+ — O%) and/or undoped case (u = 0). In the
regime of large photon energy where o > Max{w,(t), 211}
which leads to &L = +£1/t, these interband conductivities
approach the asymptotic background values Reo Y™ (w) =
Loy and Reay\,ymp(w) —'ao, which satisfy Reo?™ () x

Reay," ™ (w) = 0. It is evident that the asymptotic back-
ground values and their product are independent of the tilt
parameter, which is the same as reported in Ref. [30].

B. For type-II Dirac materials

For the type-II phase (¢ > 1), the interband conductivities
take the form

0, 0<w<w()
IP@)=11-G_(&), w1(t) S 0 < w(t) (26)
Y XG- (&), o= (1)
and
0, 0<w<wl)
Iy =1- Gy, wi(t) S o <) (27)
' szj:l XG-F(EX)V w 2 a)Z(t)v

where £ = (2u + w)/tw. The corresponding JDOS J(w)
reads

0,
j(w) — arccos &_

big oo
jOCU arcsin &, —arcsin £_
P ,

0<w<w((t)
w1(t) Lo <wm() (28)
w = wy(t).

There are also two tilt-dependent critical boundaries at
w=w{t)=2u/t+1)and v = wy(t) =2/ — 1) in the
interband LOCs, which are also confirmed by the JDOS. Note

o drB(w) . . o dTBw) . .
that in this case, 2—— is continuous, while % is discon-

tinuous at these two tilt-dependent critical boundaries. In the
regime of large photon energy where @ > Max{w,(t), 211}
which leads to &1 = %1/, the asymptotic background values
can be obtained as

X Uy 1 1
Reoi2 0= ool (1) -6 ()] e

vy 1 1

as 1 1
Reop™0 = Yool 64 () ~0u(~7) ] o0

which is a straightforward consequence of the LOCs in the
undoped case. In addition, they satisfy

Rea ™™ (1) x Rea ™™ (1)

411 1 e 2
:; t—4—t—2+arcsrn " 05, 31

which, different from that in the type-I phase, is tilt dependent.

C. For type-III Dirac materials

For the type-III phase (t = 1), the interband conductivities
are given as

0, O<w<p
=G ) s ¢y
and
0, O<w<pu
HOE A Gy

where £+ = (2u £ w)/w. The corresponding JDOS J (w) is
given by

O<w<p

J(w) {0, 34)

= arccos&_
Jow — 0=

It is remarked that there is only one finite critical bound-
ary at ® = u = w;(1) in the interband LOCs, which is also
confirmed by the corresponding JDOS. Moreover, around this
critical boundary, E?( )5 is continuous, while % is not.
In the regime of large photon energy where w > 2u, these
interband conductivities approach to the asymptotic back-
ground values Reoy” P (w) = = w0y and Reoy, " (w) = 00
The results for the interband LOCs the JDOS, the asymp—
totic background values, and their product Rec ™ (w) x
Recry,,y P(w) can also be obtained from that of type-I phase
in the limit + — 1~ or from that of type-II phase in the limit
t — 1%. As a consequence, the interband conductivities are
continuous when the tilt parameter changes from ¢ < 1 to
t > 1 throught = 1.

D. Relation between l';‘;(w) and J (®)

In this section, we express I'% () and T'}> () alternatively
in terms of the corresponding JDOS as

J(w)

I (w) = — 35

(@)= = — L), (35)
J (@)

I (w) = 0w L@ (36)

From these two relations, it can be found that FIB (w) and
% (w) depend on JDOS in terms of ‘7j(w) rather than J(w),
and on the auxiliary function £(®) in the opposite way. The
auxiliary function £(w) is explicitly written as

L)=g Y Le(w), 37)
k=%l

where

L(w) =2mvvy
A2k v2k2 . v2k2
Q) [Z(ke, k)]
y Olu — & (ky, k)] — O —
w

8[w — 22 (ky, ky)]

+
& (ky, ky)]. (38)

It is emphasized that in the untilted phase (r = 0), we have
L (w) = 0 after taking the symmetry of integration into ac-
count, and hence the auxiliary function L(w) = 0. As a direct
result, the dimensionless function FIB (w) can be written as

M) =T (w) = Z(‘”) However, in the tilted phase (¢ >
0), the aux111ary function L(w) does not always vanish along
other directions. As a direct consequence, I'}} () # T'}>(w),
which implies that £(w) can characterize the anlsotropy be-
tween I'[® (@) and I'}}} (w) originating from the tilting of Dirac
bands.

After some straightforward algebra (see Appendix D for
details), we arrive at the explicit expressions of L(w) for the

165404-5



TAN, HOU, YAN, GUO, AND CHANG

PHYSICAL REVIEW B 106, 165404 (2022)

(@) t=05

(b) t=1.0

(c) t=15

(d t=25

12 T T T T T 0.9 T r
03}
> (e ® (h)
= osl ] o6}
0.8 1 02t
\
3 o4} 1 03t 1 02t 1 0.1twq
w
= w w> w1 1 o) w3
s g == R NS /2 e apavory77 o
i B g : . FIB A T J/(JO(‘))
0.8} T {1 08} 1 08} yy 4 o08f i i ____. 1
w/.. — L 1B
’§ 0.6} 1 06} o060 e - 1 o6f Iy
= 04} 7 1B ] o4l 1 04l {7 r1B 1 04l
M. /] g / xx
T 02p TR E— 1 02t _ 4 02t ¥/ i - 1 02t
0.0 v 0.0 — 0.0 0.0 -
02t % , 4 -02b " L 1-02 i X R %) S i N -2
00 02 04 06 08 10 12 00 02 04 06 08 12 00 02 04 06 08 10 12 00 02 04 06 08 1.0 12

w (eV) w (eV)

w (eV) w (eV)

FIG. 2. Schematic interband transitions, the JDOS 7 (w), and the relation among Fﬁ(a}), J(w), and L(w). In panels (a), (c), and (d), two
Van Hove singularities appear at w = w;(t) and w = w,(¢) in the type-I and type-II phases, but in panel (b), only one Van Hove singularity
exists at @ = w; (¢) in the type-III phase. In the top panel of (e)—(h), the JDOS 7 (w) and the corresponding Van Hove singularities are shown,
while in the bottom panel of (e)-(h), F}?(w) and the relation with 7 (w) and £(w) are presented, respectively.

type-I phase (0 <t < 1) as
0, 0<w<w(t)
Lw)=1ZNE - i <o<m@) (9
0, @ 2 a)Z(t)9
for the type-II phase (r > 1) as

0, 0<w< ()

L) = | 2 o1(1) < < on(t)  (40)
TEENTE s,

and for the type-III phase (f = 1) as

0 O<w<p

= \evE 0

IV. RESULTS FOR THE INTERBAND CONDUCTIVITY

Utilizing the analytical expressions listed in the previous
section, we plot the interband transitions, JDOS, and LOCs,
in Fig. 2. We at first present four general findings. First, the
interband conductivities are anisotropic, due to the band tilting
and Pauli blocking. Second, when ¢ # 0 and ¢ # 1, the JDOS
possesses two Van Hove singularities at v = w;(¢) and w =
ws(t), leading to two critical boundaries in the LOC. Third,
in the region 0 < w < w,(¢), the real part of LOCs always

vanish, namely, F}? (w) = 0. Fourth, the results are valid for
both the n-doped and p-doped cases.

For the type-I phase (0 <t < 1), it can be seen from
Fig. 2(e) that in the region (1) < ® < wy(1), T (w) in-
creases monotonically from zero at w = w;(¢) to one at
® = w»(t), and that F}.]]??(a)) =1 when @ > w(t). By con-
trast, for the type-II phase (t > 1), as shown in Figs. 2(g)
and 2(h), T} () increases monotonically from zero at w =
wi () to the corresponding critical value at w = w,(¢). When
> wy(t), however, I''®(w) drops dramatically in magnitude
whereas Filyg (w) becomes larger smoothly with the increasing
of photon energy. This difference results from the competition
between L2 and L(w). Explicitly, when w > w,(t), %

Jow
is identically equal to one in the type-I phase whereas J@)

decreases monotonously in the type-II phase, the latter ‘of
which originates from the dip in JDOS. On the other hand,
in this region L(w) vanishes for the type-I phase whereas
L(w) increases monotonously with w for the tyg?-II phase. In

the region w > w,(t), the relative changes of Tw) and L(w)

determine the dramatically different behaviors of F)ICE (w) and
F;];(a)) in the type-I and type-II phases, leading to a con-
sequence that ['}(w) = I'>() in the type-I phase while
[P (w) # I'}}(w) in the type-II phase, as shown in the bottom
panels of Fig. 2. Specifically, for the type-III phase (r = 1),
the JDOS exhibits one Van Hove singularity atw = w; (1) = u
and one Van Hove singularity at w = w,(t) = oo. As a result,
there is only one critical boundary at finite frequency in the
LOCs, as shown in Fig. 2(f). For the untilted case (r = 0), the
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kE(t)
010 -005 000 005
ky (A1)

010 -005 000 005 010
ky, (A7)

0.10

®

- type-I

type-II

()

pasymp

W

t

FIG. 3. Schematic diagram of interband transition, the dependence of two critical boundaries @ = w;(t), their separation Aw(t), and
the asymptotic background values Fjjymp(t) on the tilt parameter 7. In panel (a), the interband transitions and two critical boundaries are
schematically shown, where two critical boundaries w = w;(t) = Zvyk} () and w = wy(t) = 2v,,k§(r) and the corresponding Fermi wave

vectors kL (1) = a ﬁ)vv and k2(t) = ﬁ are labeled. The Fermi surfaces projected onto the k.-k, plane are shown in panels (b) and (c). Two

Fermi wave vectors k} (t) and k% (t) can reflect the corresponding changes in @ = w;(t) and w = w,(t) with respect to ¢. As ¢ increases, k} (1)
always decreases. In comparison, k2 (¢) becomes larger when 0 < ¢ < 1 but becomes smaller for t > 1. In panel (d), the first critical boundary
at w = w; (1) is represented by the black line in both the type-I and type-II phases, while the second critical boundary at w = w,(¢) is denoted
either by the red line in the type-I phase or by the blue line in the type-II phase. These are in exact agreement with the trend of w; (¢) and w,(t)
in panels (a)—(c). The separation between two critical boundaries Aw(t) is shown in (e): type-I phase (red line) and type-II phase (blue line).
The dependence of asymptotic background values I';?™"(r) on the tilt parameter ¢ are shown in (f): [&™(r) = T3¥™(z) = 1 in the type-I
phase but I'i™P(r) < I{¥™(r) < 1 in the type-II phase.

JDOS exhibits only one Van Hove singularity at v = 2u, so Combined with the separation between two critical boundaries
the LOC behaves as a step function.

Interestingly, when 0 < 7 < 2,

® B | o) = r) — oy = | OSI=h gs)
— — 1 w = — =
FBeu) =IBeu) = 1, (42) 2 ! KT
as a consequence of L(2u) = 0, and when ¢t > 2,
I'B2uv2/(2 —2)) = B /272 —2 one can further determine the chemical potential w. Inter-
o Qv 2/( ) » (. mV2/( )). estingly, it is shown in Fig. 3(e) that with increasing the tilt
_ arcsin [¢4(2)] — arcsin [¢_(2)] (43)  Parameter this separation becomes larger in the type-I phase

(0 <t < 1) whereas smaller in the type-II phase (t > 1). In
experiments, the positions of these two critical boundaries and
their separation can also be used to determine whether the
Lifshitz transition occurs and which phase the Dirac materials
belong to.

In addition, the asymptotic background values I';7™ ()
behave dramatically different in the type-I phase and type-II
phase, as shown in Fig. 3(f). For the type-I phase, 'ty "*(t)
and T""P(¢) are always identically equal to 1. By contrast,
for the type-II phase, I'yy’ " (¢) and I'y;""" (t) decrease with ¢
and always satisfy the relation Iy " (1) < Ty’ ") < 1. In
addition, for the type-IIl phase, the asymptotic background
values satisfy Ty T(f = 1) = I'""P(r = 1) = 1. Hence, the

b4
with ¢4 (1) = 1(\/ 552 £ 1).
The tilt parameter ¢ and the chemical potential ;& can be
extracted from optical experiments by measuring two critical
boundaries at = w;(¢) and @ = w,(¢). As shown in Fig. 3,
the first critical boundary w = w;(¢) decreases monotonically
with the increasing of ¢ no matter in the type-I phase (0 <
t < 1) or type-II phase (¢ > 1); however, the second critical
boundary w = w,(t) increases in the type-I phase (0 <t <
1) and decreases in the type-II phase (¢ > 1) as ¢ increases.
Explicitly, the tilt parameter ¢ satisfies the relation

o) — o1 (0)

2 44
@y (1) + wi (1) @9

asymptotic background values ;7™ (r) can also be taken as
fingerprints of type-I phase and type-II phase.
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V. DRUDE CONDUCTIVITY

In this section, we turn to the Drude conductivities con-
tributed by the intraband transition around the Fermi surface.
At zero temperature, the derivative of the Fermi distribution
function in Eq. (11) can be replaced by [ — sﬁ(kx, ky)]. In
the untilted case (t = 0), we recover the result of the ordinary
Dirac cone as

T, 1, A) =TD (.1, A) =4y,

which is exactly the same as that in Ref. [84]. For the type-I
phase (0 <t < 1), we arrive at

2,1, A) = SMI_—l_tz,
t2/1 — 12

1—-v1—1¢2
Fp(pt, A) = 8pu——"g5—. (47)

(46)

Four remarks for the type-I phase are in order here.
First, these results are also valid in the untilted limit
(t — 07). Second, in the critical-tilted limit (r — 17),
LD (.1, A) =8 but TP (1,1, A) is divergent. Third, the
ratio T'D (. 1, A)/T) (i, 1, A) is always 1/+/1 — 2. Fourth,
F}?j (u,t, A)are always convergent when 0 < ¢t < 1, and yield
the numerical results of Drude weight in Ref. [27], namely,
N; = 4.686 and N, = 2.673 after applying the parameters
of 8-Pmmn borophene (v, = 0.86vr, v, = 0.69vF, and v, =
0.32vp with vp = 10° m/s). The detailed evaluation can be
found in Appendix B.

For the type-II and type-III phases (t > 1), we introduce a
momentum cutoff A to account for the limitation of integra-
tion interval, which is a measure of the density of states due
to the electron and hole pockets [79]. For the type-II phase
(t > 1), the Drude contributions are given by

B(u,t, A)

81
P (u,t, A) =— [A(u t, A)—+ —

— C(u,t, A)], (48)
Ty, 1, A) =8—“[(r2 — DAGL L A2
b4 M

+ V12— 1B(u, 1, A) +C(u, 1, A)]’ (49)

where

L i (roxay
A, t, A) = — /1 - <—) s
X:iZt tA

I R G L
B(u,t, A) :—21n ,
B e G
1 w—xA
C(u,t,A) = Z ) arccos A (50)

x=%

Keeping up to O(1) of A, we have the approximate expres-
sions

/32 _
t 12A_l:|’ 51)

P (u,t,A)=8 -
(K ) u[ o

1.2 ——— ————r 12
1.0 1.0
308 { —~o08 P
—~ 0.6 | < 0.6 —0.0]
8 —03

0.4 204
a 1 g —0.5]
02 L ] 0.2[ 0.6/
0.0 — 0.0 =10

1.2 g g g g g 1.2

o
1.0} 1 1.0 ——1.0

08} ] =~os L5 1
3
S 3 —20

206 I - Y py

. 204 ,

0.4} ] ) ]

"o HL ° 02//
00k - 0.9

0.0 02 04 06 08 1.0 12 00 02 04 06 08 10 12
w (eV) w (eV)

FIG. 4. The dependence of ®,,(w) and ®,,(w) on the tilt param-
eter. ®,,(w) and ®,,(w) are plotted by utilizing the relations given in
Egs. (57)—(59). In the numerical calculation, the chemical potential
issettou =0.2eV.

TP (.1, A) =8 (52)

JE2—1)32A Ll
H w2 w2

which indicate that both I'° (w7, A) and Fg,(u, t,A) are
divergent when the cutoff A is taken to be infinity.
For the type-III phase (r+ = 1), the intraband contributions

read
1 2A —
o, t, A) = 6“[‘/ M—aICCOS,/ /j\} (53)

D
Lyt A) = — arccos ( ), (54)
which in the limit A — oo reduce to be

P = 3 Z_A_
St A) =8u -\ 1], (55)

Ty (.1, A) = 8, (56)

indicating that F (u,t, A) is divergent but F (,LL, t,\)
is convergent. By further analyzing TP (u, t A) and
Fy‘?v(u, t, A) around ¢ = 1, it can be seen that when the tilted
Dirac band undergoes a Lifshitz transition from the type-I
phase to the type-II phase, the Drude contribution FD v, 1, )
is continuous, whereas FD (u, t, A) changes from convergent
to divergent.

For convenience, we plot the dependence of the real part
of LOCs on the tilt parameter ¢ in Fig. 4 after introducing the
relation

Reaji (@) _ Y5 (s + 2 Doy 5)
oo Uy
with
(@) = TB(0) + T2 (1, 1, A)S(w), (58)
Py (@) = T (@) + T (1, 1, A)s(w), (59)

and utilizing the analytical expressions listed in Secs. III and
V. For numerical evaluation, we replace the Dirac é func-
tion in the Drude conductivity with Lorentzians according to
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8(x) = (n/m)/(x* + n*) with n — 0. Note that all of the
analytical results are independently confirmed by the direct
numerical evaluation.

VI. SUMMARY AND CONCLUSIONS

In this work, we theoretically investigated the LOCs in the
type-1, type-II, and type-III phases of 2D tilted Dirac energy
bands. For the undoped case, the interband LOCs are con-
stants either independent of the tilt parameter in both type-I
and type-III phases, or determined by the tilt parameter in
the type-II phase. For the doped type-I or type-II phase, the
interband LOCs are anisotropic and share two critical bound-
aries at w = w(¢) and @ = w,(t) confirmed by the JDOS.
The tilt parameter ¢ and chemical potential u can be extracted
from optical experiments by measuring the positions of these
two peaks and their separation Aw(t) = w,(t) — w;(t). With
increasing the tilt parameter ¢ this separation becomes larger
in the type-I phase whereas smaller in the type-II phase. At
large photon energy regime, the interband LOCs decay to
certain asymptotic values which are exactly the same as that in
the undoped case. The Drude conductivity is also anisotropic
and sensitive to the structure of the Fermi surface. The relation
TP (i, t, A)/TD (,t, A) = 1/+/1 — 12 always holds for the
type-1 phase. In the type-II phase, the Drude conductivity
is closely related to the momentum cutoff A. When the 2D
tilted Dirac band undergoes a Lifshitz transition, Fg (u,t, A)
is always convergent and continuous, but I" BC(M, t, A) change
from convergent in the type-I phase to divergent in the type-1I
phase.

Through the shapes, asymptotic background values, critical
boundaries, and their separation in the optical conductivity
spectrum, such as obtained from the transmissivity and reflec-
tivity measured by optical spectroscopy [86—89], the type of
tilted Dirac bands can be determined in very clean samples
at extremely low temperature. These quantities can hence be
taken as experimental signatures of the Lifshitz transition
in the 2D tilted Dirac materials. It is emphasized that the
asymptotic background values of LOC do not depend on

J

the chemical potential, temperature, disorder, and band gap
[30,79,85-87,90,97]. This can be physically understood by
noticing that at large photon energy regime the chemical po-
tential, temperature, disorder, and band gap can be considered
to be overwhelmingly small compared to the photon energy
o or the energy &’ (k,, ky), and hence can be safely neglected
in analyzing the asymptotic behavior of LOCs. Consequently,
the asymptotic values of LOC are robust against thermal
broadening or disorder, although the sharp critical boundaries
in the LOCs may not survive. Hence, the physics of Lifshitz
transition can still be experimentally realized even in the pres-
ence of impurity and/or thermal broadening.

From a comprehensive comparison of LOCs [22,26—
28,30,31,84-88,90], it can be concluded that the parameters
of specific 2D Dirac materials, such as different anisotropic
Fermi velocities and band gaps, do not qualitatively affect the
essential physical behaviors. Due to the underlying intrinsic
similarities of 2D tilted Dirac bands, the results of this work
are expected to be qualitatively valid for a great number of
2D tilted Dirac materials, including o-(BEDT-TTF),I3, 8-
Pmmn borophene, «-SnS,, TaCoTe,, TalrTe4, and different
compounds of 17" transition metal dichalcogenides.

Note added. Recently, a related paper appeared [98], which
also examines similar topics, such as the effects of different
tilting and anisotropic Fermi velocity on the optical response
in 2D tilted Dirac materials and confirms partial findings
discussed herein.
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APPENDIX A: DEFINITION AND PARTICLE-HOLE SYMMETRY OF LOC AND JDOS

In this Appendix, we give the definition of LOC and JDOS, and prove their particle-hole symmetry.

1. Definition and particle-hole symmetry of LOC

Within linear response theory, the LOC for the photon frequency w and chemical potential u is given by

Ujj(wa n) = g Z UJI'(J'((U’ ),
k=%

where

o= [ [
JiN o) o

27 J_s 27 ==

lkxykv, — ’)(»/ kmkv,
S S F kL k) ] = ek o ). 1]

(AD)

A2
w + et (ky, ky) — €X' (ky, ky) +in (A2)

Here we keep the explicit dependence of u temporarily for the sake of proving the particle-hole symmetry. In these two equations,
Jj = x, y refer to spatial coordinates, the conduction band and valence band are denoted, respectively, by A =+ and A = —,
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denotes a positive infinitesimal, and f(x, ) is the Fermi distribution function. In addition, f(x, ©), 8,’} (ky, ky), and F, H’ (ky, ky)
are given as

1
flx,n)= , (A3)
1 +exp[B(x — w)]
et (ky, ky) = Ktvyk, + A Z(ky, ky), (A4)
F(k k)—év2{1+ ’M} (A5)
A 12 (ke k)P )7
&2 v2k? + v2k? ktvyk,
Fi3) (ke ky ——v2{t2 14+ +1+M’M+ A+ —”}
Fh ) 27 ( ) [Z(ky, k)] A )Z(kx,k)
2 v2k2 _ U2 2 Kt k
2 2 ;XX yoy vy
=— 02780 + 1 — AN ——2 L 4408, ——— 1, A6
2 y{ “ [Z(ke, k)P . Z(kx,kﬂ} (ho)

where B = 1/kgT and Z(k,, ky) = ,/vZkZ + v)z,kyz. It can be verified that

fo, ) =1-f(—=x, —p), (A7)
eb(ke, ky) = —e) (ky, ky), (A8)
fif(kx,k )=F (ke k) = “”(kx,k )- (A9)

By utilizing these relations, we have

dk, +°°dk ke, Ky ,é k.. k),
o 1) = / Zzszi/(kx,k) /e ( -] = fler e k). ]

2 k=% A== A= ka,ky)_g,)(”/(kx,ky)-i-ln
i [T dk, oodky fl=el G, k), =] = f[ = ek (e, ky), —12]
=8 FEH (ks ky
g“”/—w 27 o ZZZ e T e k)] — [— el )] +

Lok [T dky i Fleiethn k), —p] = flei e k). —1]
—gsw/_oo o /_oo 2 2 2 2 e ) e T e (k)] i

k=% A== N=

T dk, [T dky i) fletthe, k), =] = flex Ghes k) — 1]
—g%/_m el ZZZf (ke k) :

2 et on o + et (ky, ky) — e (ky, ky) + in
i [0 dk, [T dk, Hhys ky), — 1] — fed (key ky), —t
ol [T [T RS S bl Gl
o J_ o 27 J_ ey o + gt (ky, ky) — & (ky, ky) + in
=0ji(w, — 1), (A10)

which indicates o;;(w, u) respects the particle-hole symmetry, namely,
ojj(w, ) =0jj(w, —pu) = ojj(w, |1]). (A11)

Keeping this property of o;;(w, i) in mind, we can safely replace u in all of 0 (@, ), o7, (w, ), and f(x, ) by || since
we are only concerned with the final result of o;;(w, n). Hereafter, we restrict our analysis to the n-doped case (i > 0). For
simplicity, we further denote 0;;(w, n) = 0;;j(®), 0’.<.(w, nw) = a‘.‘.(a)), and f(x, u) = f(x). Consequently, we have

dk, [+ dk, ky, ky ¥ (ks Ky,
0jj(@) = 0jj(w, 1) = g;— f }ZZZFQ;J kx,k) [8( o] = e y)./*]

2 i v + & (ke ky) — &7 (ky, ky) + i
=e /+°° =N dky =3P Z Tt G k)= e tle k)] = /1o (ke )] (A12)
= gsa) oo 27 J_o o an Ky, Ky 8,)(‘(kx, ky) — 8,)(”/(kx, k) + in,
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. 00 dk +00 dk kx,k l)(\, kx,k. ’
ojj(@) = oj;(w, 1) = w/ Z Z‘F;){/](kxyk\’) [8 ( ) 1] = e ke k) 1]

E3 A=+ A= + &) (ke, ky) — &) (ke, ky) +im
i dk, +°°dk My, k)] = Fled (ke Ky
Ei/ i ZZ]—-:){/j(kx,k) f[s;((x \)] fl;gk(x »)] . (A13)
@)oo 2T Jooo + e (ke ky) — &7 (ke ky) + i7]

A==

2. Definition and particle-hole symmetry of JDOS
The JDOS for the photon frequency w and chemical potential p is given by

J(@, 1) =g Y T, w), (Al4)
k=%
where
d’k _ _ N
Je(w, p) = / Ty e (ke k) = £ (ko) = HO = e (ke k)] = Ot = & (ks )1 (A15)

Here we keep the explicit dependence of p temporarily for the sake of proving the particle-hole symmetry.
After introducing &, = v.k, and k = vyky, the JDOS can be written as

Je(@, 1) = = dkedky8[8] (ky, ky) — 8, ke, k) — 0O — & (ke k)] — Ol — & (ke k)1

zj;/dk dkyS[&] (ke ky) — 87 (ke, ky) — 0O — & (ke, k)] — Ol — &5 (ke, k)1, (A16)

where Jo = 1/(2v,vy) and &} (ky, ky) = rtky + A, /k2 + k2.
In the polar coordinate, 5¢(1€x, Izy) = [A + «tsin ¢]12 and E;L (lzx, l;y) — & (lzx, l;y) = 2k. Solving the equation

& ke, k) = [A + ct sin @lkr (i, 2, 1) = i, (A17)
we have the Fermi wave vectors
- _ I _osgn(u)lpl |l
kF (Ka )\'5 M) - . - . - .
A4ktsing A+«ktsing  sgn(w)r 4 sgn(w)kt sin ¢
= ];}K«*’A(M)[("D(l - t)S)»,Sgn(p,) + ®(t - 1)(8A,sgn(u) + SA,—sgn(u))] (A18)
satisfying the relation
ki (=) = kg 7). (A19)

From the above two relations, the JDOS can be rewritten as

J(@, 1) =0MOB(1 —1) + 6 — DT (@, p) = OOIO1 — 1)+ O — D1 Y Je(w, 1)
k=%
=061 -1+ 6@ —1)] Z ;7—; / dkydky8[2k — (Ol — & (ke k)] — Ol — & (ke )1}
=000 —t)—/ f dkedky812k — 0] Y >~ Olw — 2kp (i, &, 10)]

k=% A=+

+ 606 - 132 / / dldl 312k — 0] Y Y Osgn(lkg (0 — K ()1}0lw — 2k (e, A, )]

K=+ A==
_®(t)®(l—t)—/ f dhdk,8[2k — w]ZZ@[w—ZkK (1)85..sgn(so))
k=% A==
+ 6000 -3 [~ [ akak ok - o) ¥ Y etsentoliy G0 - ko)
Kk==% \=%4
x {Ofw — 2k5" ()8, sen(u)] — Olw — 2K ()85, sen(—pu)1}- (A20)
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Consequently, we have

T(w, —p) = ®(t)®(1—t)—/ / dkdky812k — 0] Y > Olw — 2K (= 10)83 sgn(—pn)]

k=% A==+
+ OO — 1)—/ / dhkdk, 82k — w ZZ@{sgn(—u)[lég—(—u)—12;*(—“)]}
k=% A==+
x {00 — 2k (=118 sgn (-] — Ol — 2k (= 1)8, ~sen(- ]}
=010 —t)—/ / dkdky812k — 0] Y > O — 2k (10)8 1. sgn) ]

k=% A==+

+@(z)®(r—1)—/ / dk.dk,812k — 0] Y > " Of—sgn(u) [k () — k" (w)]}

k=% A==+

x {Ofw — 2k (W8 sen ] — O — 2k (WS sen—0 ]}

=061 —z)—/ / dkedky812k — 0] Y >~ O — 2k (1085 sgny |

K==+ A==+

+®(¢)®(z—1)—/ / dk.dk,812k — 0] Y > Ofsgn(u)[ky ™ (w) — kit (w)]}

K== A=t
X {8[“) - 2];;’1(“)5%5@(#)] - @[a) - ZIE;’A(M)(SA,sgn(—u)]}
=T (0, p). (A21)
Obviously, J (w, 1) respects the particle-hole symmetry, namely,
J(w, pn) =T (@, —pn) = J (o, [u)). (A22)

Keeping this property of J(w, 1) in mind, we can safely replace u in all of J(w, n), J¢(w, 1), and ®(x, u) by |u| since
we are only concerned with the final result of 7 (w, ). Hereafter, we are allowed to restrict our analysis to the n-doped case
(e > 0). For simplicity, we further denote 7 (w, ) = J (), Ji (0, 1) = Je(w), and O(x, n) = O(x).

APPENDIX B: DETAILED CALCULATION OF LOC

In the following, we present the detailed calculation of them in the n-doped case (i > 0). Before doing that, we factor the
ratio vy /v, or v, /vy out from the original expressions in order to simplify the calculation. This way, the original expressions in
the anisotropic model (v # v, and v, > 0) are converted to be the rescaled forms in the isotropic model (v, = vy, and v, > 0).
Next we focus on the interband part and intraband part of LOC, respectively.

1. Calculation of interband LOC

After substituting k. = vk, and lzy = vyk, into Eq. (10) and expressing it in terms of k= . /12)% + 123 and ¢ = arctan(lzy /I;x),
the original expressions in the anisotropic model are converted to be the rescaled forms in the isotropic model as
dk.d flxtk, — k] — flxtk, + k] .
Reo g, (@) = / 1 by }"( I (v, Ky) 4 - 4 Sl — 241, (B1)

TV Vy

where
. v2k?
F% ke, ky) = 400% = 4ogv? sin’ ¢,

v2k2
KW(kx,k ) = 4Go—k = 4(70v cos’ ¢.

As a consequence, the ratio vy /v, or v, /v, can be factored out from the original expressions as
Uy
Reoy gy (@) = 90~ xx(IB)(a)) (B2)

v
Reay, gp)(@) = Gov_ryy(IB)(w), (B3)

165404-12



SIGNATURES OF LIFSHITZ TRANSITION IN THE ... PHYSICAL REVIEW B 106, 165404 (2022)

where two dimensionless auxiliary functions
+o0 ];d]; 2T 2 d
FEX(IB)(Q)) = / - / Mg[
0 @ Jo 0

100 FAT p3T/2 win2
= / kdk @3@ — 2K fl(kt sing — 1] — fl(kt sing + D]}, (B4)
0 w J_zn

+00 T AT £37/2 A2
M ()= @ cos ¢d¢3
yy(IB) 0 o J . T

are introduced for convenience. The ratio v, /vy in Reo)fx(m)(w) and v, /vy in RerKy(Im(CU) are totally different in the anisotropic
model but the same in the isotropic model. Therefore, the calculation of Reafx(IB)(a)) and Reo",‘y(lB)(w) boils down to calculating

w — 2k){fl(kt sing — 1)k] — f[(kt sing + 1)k]}

[w — 2k1{f[(kt sin ¢ — k] — fl(xt sinp + 1)k]} (B5)

T, qp)(@) and T, p (). Integrating over k leads us to
1 37/2 (32 d
[ ap) (@) = 4_1/; , WV[(M sing — 1)%] — f[(/ct sin ¢ + 1)%“
T2 2
l/ M{f[(m sing — DZ | = f[tersing + D2 | + f[ (—xtsing = DT] = f(—ersing + DT ]},

o 4 —7/2 4

and hence
F;E(w) = gs[F;;C(IB)(w) + F;((IB)(CU)]
T2 in2 b d
- / M{f[(t sing — 1)9] _ f[(; sin ¢ + 1)9] + f[(—t singp — 1)9] - f[(—z sing + 1)9]},
—/2 T 2 2 2 2
which includes the contribution of different valleys, where g, = 2 is the degeneracy parameter of spin. Parallel procedures give
rise to

TR (@) = gL gy (@) + Ty g (@)]
- /m COSZ—(Pd(P{f[(t sin¢p — 1)9] —f[(t sin ¢ + 1)9] +f[(—t sin ¢ — 1)9] —f[(—t sin ¢ + 1)‘3]} (B6)
B —m/2 T 2 2 2 2 ’

In order to obtain the analytical expressions, we perform the integrations over ¢ at zero temperature where the Fermi
distribution function f(x) can be replaced by the Heaviside step function ®[u — x] and consequently have

I8 () :/_n/z 25“‘2—"5‘!‘/’{@[“ ~(tsing — l)g] - @[M — (tsing + 1)%“

/2 Y4
_ ]1%{@[M—(m—1)%]—@)[#—0)6—}-1)%]} (B7)

and

o= [ 20 ol ing - 12] - ofu - sing + 03]

:/_11 2—”;)“2‘“{@[“—(”—1)%]-@[M—(zx+1)§]}. (BS)

After rewriting the Heaviside step function, we get

P (w) = L2 {®|:—x + ujotl 1} - ®|:—x + uje -1 1}}
XX t t

1wV —x2
D2 o) - O—x+£.]) (B9)
= ——{O[—x —O[—x+&_
1 w1 —x? "
and
1 /1 _ 42
I8 (w) = / m—x“{®[—x+§+]—®[—x+sf]}, (B10)
—1
with &, = 2£2 90

By imposing constraints on the integration interval via the Heaviside step function, F%’? (w) can be obtained for the type-I,
type-II, and type-III Dirac bands as follows. h
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a. Interband LOC for type-1 phase
For the type-I phase (0 < < 1), due to &, = Qu/w + 1)@ > 1, we have ®[—x + &;] = 1. The energy w have three
regions determined by the Heaviside step function ®[—x + &€_], which are 0 < w < 2 for O—x+ £ ]=lat—1<x<1,

t+1
2 o< BforO—x+&]=lat—1<x<£ ,ando > 2 for O—x+&]=0at —1 < x < 1. The I'®(«) are given

t+1 t—1
by
L 2324y 0, 0<w<w(t)
Th@=1-[ ——=0[-x+&]=11-G6G_(§), o) <o <o) (B11)
1T/ — X2 1, w = wy(t)
and
12 /1= %2d 0, 0<w<w()
M) =1 —[ SR el e 1= {1-GiE), o) <o <o) (B12)
-1 4 1, o > w(t),
where
O)
1) =2u——-,
w (1) Ay

o(t) =2M®(t)[®(1 SLO (U ”]

1—1¢ t—1
1 arcsinx = x+/1—x2
Gal) =5 + ——— & ———. (B13)

b. Interband LOC for type-1I phase

At the type-II phase (r > 1), the Heaviside step function ®[—x + &,] is equal to 1, when 0 < w < % for x € (—1, 1),

and when w > 12_—"1 for x € (—1,&,). The second Heaviside step function satisfies @[—x +£&_] =1 when 0 < w < ti_—“l for

x € (—1,1), and when w > t2+—“l for x € (—1, £_) so that there are three regions of the energy w, which are 0 < w < z2+_M1’ % <
w < 127“1 and w > 12_—"1 So, we have
U 224y 0, 0<w<w(®)
M@ = | = (Olx+ 6] - Ol + &) = {1 - G-, o <o<o) (Bl
-1Vl —x Y1 XG (&), @ = m(0)
and
12 /T = 2d 0, 0<w<w()
r'®(w) = / — Ol + £ = Ol £} = {1 - GLE). o) S @ <o) (BLS)
-1

Zx=ﬂ:1 xG1(6y), o= wlr).

c. Interband LOC for type-III phase

For the type-III phase (f = 1), due to &, =2u/w+ 1 > 1, we have ©O[—x 4+ &,] = 1, and now the §_ is §_ =2u/w — 1.
The energy w has two regions by solving the Heaviside step function ®[—x + £_] = 1 or 0, which are 0 < w < pu and w > pu.
The I''%(w) are given by

U 2x2dx 0 0<w<
MBw)y=1-| =2 _@[-x+£]=1" ® B16
xx(a)) i ,—1—)62 [ )C+E 1 {l—G(E), o>u ( )
and
' 2J/1 — x2dx 0 0<w<
IB 1 _ _ s M
e ”5—]‘{1—@(&_), 0> u. BID

2. Detailed calculation of intraband LOC
After substituting k. = vk, and lzy = vyk, into Eq. (11) and expressing it in terms of k= . /12; + ];yz and ¢ = arctan(lzy /I;x),

the original expressions in the anisotropic model are converted to be the rescaled forms in the isotropic model as

dk.dk, df 8} (ky, ky)]

KA _ FK3jj T T
Reofji @)= dru, r (k"’ky)[_ 45 By) ]8(”)’ B19)
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with
272
XX

i
FE ke k) = 4oy vk — 4ogv? cos? ¢,

)\.Kl‘k )
2] = 4001) (sin ¢ + Akt)“,

K2
K”(kx,k)—4aov ( +];—)2'+2 T

where &*(k,, k,) = ktk, + Mk.
At zero temperature, the Fermi distribution function f(x) can be replaced by the Heaviside step function ©[x — x], then the
derivative reduces to §[u — ~,’}(kx, ky)]. In the polar coordinate, we obtain

oovy [T, . 37/2 ~
Rea;XjD)( w)=——= kdk f cos’ pde [ — (kt sing + A)k]8(w)
T Vy Jo -2

+00 w/2
_ 0% lédIE/ cos® ¢ d{8[i — (it sind + A)k] + 8l — (—kct sin ¢ + MENS (), (B19)
T Uy Jo \ /271/2
+00 T
Reay“vg))(w) b kdk / (sin ¢ + Arkt)>dps[ — (kt sin g + 1)k18(w)
T Vx Jo —1/2
400 /2
- ‘:T—O% / %dl%/ (sin @ + Akt)2dp{8[u — (kt sing + A)k] + 8[u — (—«t sing + MDE}S(@).  (B20)
x Jo —x/2

As a consequence, the ratio v, /v, or v, /v, can be factored out from the original expressions as

Reo}, ) (@) =gs[Reo i (@) + Rea 1 (0)] = 06— 0 DA 1 A)S(w), (B21)
Rea)y ) (@) =gs[Rea ) (@) + Reo, ) ()] = O'OU—XFEV‘/\(,LL,I, M) (w), (B22)
where two dimensionless auxiliary functions
8 +oo /2 5
M, t, A) =—/ kdk/ cos®pd¢ 8[p — (tsing + k], (B23)
T Jo -2
8 +00 o /2 5
oM (a1, A) =— / kdk/ (sing + At)’d¢ 8] — (¢ sing + A)k] (B24)
T Jo —7/2

are introduced for convenience. The ratio v,/v, in Rea}, (@) and v, /v, in Reoy; 1, (w) are totally different in the anisotropic
model but the same in the isotropic model. Therefore, the calculation of Reojg\x(D)(a}) and v, /vy in Reayy(D)(w) boils down to
calculating I'®*(p, £, A) and I”yDy’A(u, t, A).

a. Intraband LOC for type-I phase
For the type-I phase (0 < ¢ < 1), by replacing sin ¢ with x and integrating over k, we get

1
D,sgn(u) :S_M \/l—xz _ 1 —41—12 )
FXX (M’t’A) dx SM s (B 5)
~1 [1+ sgn(u)ex)? 21 — 12
D,sgn(1t) 8,U« ! dx [x + Sgn(u)t]2 1 =1 —1¢2

Py 0n 6 A) = 2 = 8 (B26)

—1 [T+ sgn(p)rx] [ —x2 t

Utilizing the relations
A Ux 1D sgn(u) _ 4
RCO'XX(D)(CU) = O'()U_Fxx’ (/L, t, A)S(w) = O’OFNI(S(Q)), (B27)
y
Reo — g 2 pDosen() _ A
€0y, ) (@) = UOU—FW (i, 1, A)d(w) = o9 ?Nzé(w), (B28)
we have
1—+/1—12
Ni=2m e (B29)
vy 124/1 —1?
1—-v1—1¢2
N2 = Zﬂ_y—tz : (B30)
Uy
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FIG. 5. Schematic diagram of the limitation of the angle ¢ imposed by the delta function in the n-doped case (i > 0). In the k = +1 valley
shown in (a), the angle ranges from ¢, to & 4 |¢;| for A = 4, but becomes (¢,, m — ¢,) for A = —. The case for k = — is shown in (b) for
reference. The corresponding optical transitions at the « = + valley are referred to in (c).

These expressions of Drude conductivity yield the numerical results of Drude weight in the Ref. [27], namely, N; = 4.686 and
N, = 2.673 after substituting the parameters of 8-Pmmn borophene (v, = 0.86vf, v, = 0.69vp, and v; = 0.32vF with vy =
10%m/s).

In the limit # — 0, we recover the result for ordinary Dirac cone,

TR0 (0t =0, A) = TS0 (1 = 0, A) = 4 = 4y sgn(pe). (B31)

In the limit# — 1~, we have
roset oyt =17, A) — oo, (B32)
TS0t =17, A) = 8 = 8 sgn(u). (B33)

b. Intraband LOC for type-1I phase

For the type-II phase (t > 1), there is not only an electron pocket but also a hole pocket at one valley. We take k = +1 and
© > 0 as an example. In the polar coordinates, there are constraints on the values of k and ¢. For A = +1, Knin = w/t+1),
¢ € (¢1, T + |¢1]) where ¢, is determined by (¢ sin¢; + 1)A = u, where A is the cutoff of k. The cut-off A is a measure of
the density of states due to electron and hole Fermi pockets [79]. For A = —1, Kmin = w/(t—1), ¢ € (¢2, T — ¢2), where ¢,
is obtained by solving (¢ sin ¢, — 1)A = pu. The schematic diagrams of these constraints in the polar coordinate are explicitly
shown in Fig. 5.

Consequently, for A = +1, Fgg*(u, t, A) is given by

8 A o /2 5
2% (u,t, A) = —/ kdk/ cos’pdep [ — (¢ sin + 1)k]
¢

LAYIES! |
g8 A . ! ~
=3[ kar | V1= 2dx sl — (x+ DA
T Jpfa+) [/ A)=11(1/1)
8 1 VI =2
= —xde@[A - L] (B34)
7T Jign-nay @x+1) t+1
Similarly, for A = —1, T2 (i, 1, A) reads
8 ! JI 2
T Jigay+nas @x—1) r—1

As a consequence, I BC(/L, t, A) can be written as

T (.t A) =Tp (., A) + T H (.1, A)

8 1 1 —x2 1 1 — 2
= L tave[a- L)+ [ T o[- 2]
7T i m-nag @x+1) r+1 [(w/my+1101 /0 X — 1) r—1
A B(u,t,A)

8w 2
=—|A(u, t, A)— —C(u,t,N)|, B36
n[(ut ey Gl )} (B36)
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where

s Lo (roxny
A(u,t, A) = — 1= <—) s
X:iZt tA

R G s
R b SV/CI W (e

1
B(u.1,A) =5 1n

1
Cluit, A) =) = arccos ad (B37)

x==x
Similarly, FyDy(;L, t, A) can be written as

D _ 1Dh+ D,—
Fyy(,U», t’ A) - Fyy (M’ ta A) + Fyy (,U», t’ A)

SM{/ 1 (x +1)? m /' 1 (x —1)? m
2 dx@[A——]—i— dx@[A——]
7 igm-nam L+ 1= 42 L+t [/ arrnasn (@ =172 T =52 t—1

8 2A
= —M[(Iz — DA, t, A)— + V> = 1B(p,t, A) + C(u, t, A)}. (B38)

b4 2

Keeping the order of O(1) of A, we have
Ji2—12A 1
Co(u,t, A) = 8u[ e I—Q}, (B39)
b V@ =132A 1

.1, A) =38u s + 2| (B40)

¢. Intraband LOC for type-111 phase
For the type-III phase (r = 1), T ") (u, 7, A) and Ty 8% (11, £, A) can be given by

8 ! V1—x2 16 2A /
rose ¢, A) = —Mf x2 dx @[A — ﬁ = 2 122 1 arccos
T Jny-1 (1+x)
16u 2A — 1
_ B41
|: / arccos /2A (B41)

1 (x+1)7? w1 8w M
FD sgn(u)( f A) — _/ —  — ~ dx @[A — —] — — arccos (— — 1)
- T Jon-1 A +x)2 /1 =52 2 T A
8 — A
= 2 arccos (M ) (B42)
T A

Keeping the order of O(1) of A, we have

; 2A — 2A
roe 1, A) = —“[ | == — arceos | = } [ [=— - 1} (B43)
7T 2

‘ 8 A
RS0 (1, A) = ?“ arccos (“ N ) — 8. (B44)

and

APPENDIX C: DETAILED CALCULATION OF JDOS
In the following, we present the detailed calculation of JDOS in the n-doped case [ > 0, namely, sgn(u) = +] for the type-I,
type-II, and type-III Dirac bands.

1. Calculation of JDOS for type-I phase

_ For the type-I phase (0 < < 1), the conduction band is partially occupied by electrons, and the Fermi wave vectors are
k§’+(u) = n/(xt sing + 1). Due to the Pauli blocking, the energy of the photon must excite electrons from the valence band to
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the conduction band above the Fermi surface, which requires w > &} [ky ()] — &7 [k ()] = 2k () = 2/ (xt sing + 1)
with ¢ € [0, 27r]. The JDOS at the +« valley can be written as

2
Te(w) = {2 / kd/%f dp 82k — )0 — 2k * ()]
0 0

+o00 2
— @/ IEdIE/ d¢6(2]€—w)®|:a)—,2—ui|
0 0

2w ktsing + 1
w (32 2
_jog/n/quj@[w_fctsind)—i—l}
[l Jaefe— B N
~ Y% )2 ¢ @ ktsing + 1 @ —ktsing +1 ) el

As aresult, J(w) = g,8,Ji (@), where g, = 2 denotes the valley degeneracy. After introducing x = sin ¢, one can obtain

_ _ w ! dx 2,“ 2“’
70 =saeio =3 [ Eslefo- 25 o= 2]

o ' dx 2 0, 0<w<w@)
=Jo—/ ®[w— ]=Jow LSE (1) < @ < (1) (C2)
T V= tr 1 L © > o(0),
where
2u + w O()
§r = —, (C3)
) t
1) = 22 (C4)
@ 7
1 Ml PN
-1 O63F¢-1)
wr(t) =21 + . (CS5)
1—1t t—1
In addition, it is easy to obtain for the untilted case (¢ = 0) that
2
_ w _ 0, O<w<?2u
@ =i [T asor0- 2= g0l 04 (©6)

2. Calculation of JDOS for type-II phase

For the type-II phase (r > 1), the valence band is partially occupied by holes, and the electron transition area will be restricted
by a valence band and a conduction band. In order to conveniently describe the integration area of JDOS in k space, we introduce
two angle parameters ¢; and ¢,, which are obtained by solving (¢ sin¢; + 1)A = pand (7 sin¢ — 1)A = p, respectively, where
A is the cutoff of k, as shown in Fig. 5. The photon energy contributed to the LOC is limited to 2k“ Tw) <ow< 2k§ (w).

In the polar coordinate, the JDOS for the ¥ = + valley and the x = — valley can be respectlvely written as

T+|¢1] A T—$2
Ti(w) = Jo {/ %dl%/ de 82k — w)Blw — 2k F ()] — / IEdIE/ d¢ 82k — w)Olw — 212;»—(,@]}
27 \Jpsa+1 ¢ Py )

Jo A Y . 5 21 A i . 2
=—{/ kdk/ d¢8(2k—w>@[w—.—}—/ kdk/ dqsa(zk_w)@[w_,—“
27 Upsan 1 rsing + 1 w/(t—1) ) tsing — 1

J"{fA /Ed/%/mdw(z/} )@[ 21 ] /A %d/%/ﬂ/zdw(zl% )o[ 21 “ (C7)
= — —0)B|lw— ——— | — —w)0®|lw— ——
T w/(t+1) . [Sin¢ + 1 w/@—1) ) tSin¢ -1

and
%{ —¢1 5 |: 2/~‘L :|
J- kdk dpsQk —w)®|lw — ————
(@) = W/ +1) 77:/2 ¢ @O —tsing + 1
A _ 2
/ kdkf d¢8(2k—a))®[a}— —:H, (C8)
w/=1) ) —tsing — 1

where O[A — 5] and ©[A — ;] are omitted here.
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By replacing sin ¢ with x and integrating over k, we get

J (@) =gs[T+ (@) + T_(w)]
w ! dx 21 ! dx 21
S Y N Y00 [ Y 788 |
[ 4 Wiy p-nasm V1 —x2 ltx + 1 [/ M)+11(1/1) V1 — X2 lex — 1]
~lw/M-110/) g ) /M g )
ra| [ e e oo =]
4 | J_ 1 —x2 —tx + 1| -1 1 —x2 —tx—1

jw{/l dx ®|: 21 :| /1 dx O|: 21 :“
72 L L - P
7T Ui a-nagm V1 —x2 tx+1 [(w/M)+1101/10) 1 — x? tx—1

© 0, w < w(t)
=Jo— 4 arccos &_, w1 (t) Lw < wt) (C9)
arcsin&, —arcsiné_, w = w,(t).

3. Calculation of JDOS for type-III phase
For the type-III phase (f = 1), we can easily obtain that

o ! dx 2u w [T gy 2
T@ =g | —@[w——}j—/ ®|:a)— }
“2m (w/n)—-1 V1 —x? x+1 27 |, /T — 2 —x+1
w 1 dx 2/,L w |0 ® < |
=T Ol - =50\ C10
jo” /(M/A)l V1—x2 |:a) x+1i| ‘7071 {arccos’g‘, w > . (C10)

APPENDIX D: THE RELATIONSHIP BETWEEN JDOS AND THE INTERBAND LOCs

In this Appendix we will give the connection between the interband part of the optical conductivity Rea}}3 (w) and the JDOS.

For the convenience of the following elaboration, we introduce a temporary auxiliary function J; (w). The JDOS can be written
as J(w) = (0Jy) x Jp(w).

The complete formalisms for Reo (w) and Reafy (w) are as follows (at zero temperature 7 — 0):

Reo“"®)(w) = 2000’1

dk viky — v3kT | Ol — & (ky, k)] — O — & (ky, ky
{i e G = O = 5 e Bt - 2200, k)

Q2 (2t k)P 2
% V22— R @[ — e — O — et (ke ke,
:2001}371{%(60) [ d% vk = ;®[u e (ke k)] — Op — &} (kx’k>')]3[w—22(kx,ky)]}
Qr)? [Z(ky, ky)] @
— o0 [2vfn‘7”(“’) - ﬁck(w)}, (D1)
w Uy
. d’k vk — 0kT | Ol — &7 (e, ky)] — Olp — & (ke, ky)]
Reoy "™ () = 200v]7 (2n)2{ e kyy)]é } —— Y28[w — 22 (ke ky)]
= 0y |:2vy27'rM + ﬂﬁ,{(w)], (D2)
w Uy
where
2 2k2 _ 2k2 o _ o+
@) = zmxvy/ d°k vik; — v, ] Olu — & (ky, ky)] — Olp — g (kx’ky)]a[w—ZZ(kx,kV)]. (D3)
Q) [Z(ky, ky)] @ )
The final formalism for Reo | (w) are
Reaif(a)) =g Z Rea;;(IB)(a)) =0y |:2v§ngs Z Je (@) — & Z &.C,((w):|
k=1 =11 ¢ P
2
= o [Zv,%n@ - ﬁﬁ(w)} = 00[2”” (@J) T (@) — EL(w)]
w Uy w Uy
202 N N »
= ao[ B2 ) — ”—ﬁ(w)} = 00T (@) — L(@)] = 09— [M + L(w)], (D4)
w 2mv, Vy vy vy | Jow
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Yy

ReoB(w) = g, Z Rea}'fv(m)(w) = 0y |:2fo@ + ﬂﬁ(a))]
’ 1)

k=1 Ux
=%ﬂumm+£wn=%ﬂP3@+cwﬂ, (D)
Ux v L Jow
namely,
M =72 L),
1)
B, . _ J()
IH(w) = oo + L(w), (D6)
where
L) =g Y Le(w). (D7)
Kk=%1
After analysis and calculation similar to Reo;;(w), we can get
L(w) = ! | 1_—2xzdx{®[—x +&]1-0O[—x+E&1} (D8)
I RV i o

Using the approach discussed in Appendix B for the Heaviside step functions at different tilt types, we can obtain analytical
results for £(w). For type-I phase (0 < ¢ < 1), the analytical expression of L(w) is given as

0

R
»C(w)=; —&\J1-£2,

07

0<w<w(t)
o1(f) < 0 < o (1) (D9)
w = wH(t).

For the type-II phase (+ > 1), the analytical expression of L(w) takes the form

0,
L(w) = 1 —£&_ )1 —¢&2,

0<w<w(t)

b
B/l -8 — 51— 0> o)

For the type-III phase (t = 1), the auxiliary function £(w) can be written as

07

I
Llw) = E{—s_

I_EE’

w1(t) < 0 < w(t) (D10)
O<w<pu
(D11)
w = U
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