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Time-dependent transport in graphene Mach-Zender interferometers
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Graphene nanoribbons provide an ideal platform for electronic interferometry in the integer quantum Hall
regime. Here, we solve the time-dependent four-component Schrödinger equation for single carriers in graphene
and expose several dynamical effects of the carrier localization on their transport characteristics in pn junctions.
We simulate two kinds of Mach-Zender interferometers (MZI). The first is based on quantum point contacts and
is similar to traditional GaAs/AlGaAs interferometers. As expected, we observe Aharonov-Bohm oscillations
and phase averaging. The second is based on valley beam splitters, where we observe unexpected phenomena
due to the intersection of the edge channels that constitute the MZI. Our results provide further insights into the
behavior of graphene interferometers. Additionally, they highlight the operative regime of such nanodevices for
feasible single-particle implementations.
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I. INTRODUCTION

Monolayer graphene is widely known to present anoma-
lous half-integer quantum Hall effect [1–5], with conductance
σ = 4(n + 1

2 ) e2

h̄ . This happens because Landau levels (LL) in
the integer quantum Hall (IQH) regime in graphene possess
SU(4) symmetry: they are fourfold degenerate in the spin
and valley degrees of freedom, and the zeroth LL falls on
the Fermi level. When degeneracy is lifted and the SU(4)
symmetry is broken, it is also possible to observe the usual
integer quantum Hall effect (IQHE) [6–12] with the con-
ductance σ = n e2

h̄ . LL splitting also allows to observe many
kinds of collective excitations, such as magnons [13–15],
valley skyrmions [16], and even strain-induced pseudomag-
netoexcitons [17]. For these reasons, graphene has recently
raised much attention in the field of electronic quantum optics
[18–26] in the integer and fractional quantum Hall regimes
[20], and offers promising perspectives for quantum compu-
tation as well [27]. The degeneracy lifting of LLs implies
the presence of a gap between the conduction and valence
bands of graphene, which is in general present in experimental
conditions, although specific production techniques such as
encapsulation with hexagonal boron nitride (hBN) [28,29] are
able to produce high-purity graphene samples with essentially
no gap. Very clean pn junctions in nanoribbons of monolayer
graphene are then created, to study transport phenomena in
the quantum Hall regime: among these, the coexistence be-
tween edge states and snake states along pn junctions [30–39],
and the occurrence of Klein tunneling through electrostatic
barriers [19,39–42].

The gap in graphene encapsulated with, e.g., hBN is
very small (of the order of tens of meV), in contrast with
the semiconductor gap in GaAs/AlGaAs heterostructures
[29]. Thus, in graphene monolayers both electroniclike and

holelike states are available for transport at the same time,
even considering very small voltage gradients in the system.
This has proved to be detrimental for Mach-Zender interfer-
ometers (MZI) which exploit external metallic gates to create
quantum point contacts (QPC) because of backscattering at
the edge of the ribbon and/or below the electrostatic gates
[43–47]. Instead, the most recent implementations of MZIs in
graphene exploit the valley degrees of freedom of the elec-
tronic wave function. This means creating devices that have
no equivalent in GaAs/AlGaAs heterostructures. Because of
this, graphene has become of great interest in the context of
valleytronics [48], a kind of electronics that stores information
in the valley degrees of freedom. Recent implementations
of MZIs in monolayer graphene are in fact characterized by
valley beam splitters (VBS) at the edge of armchair nanorib-
bons [18,21,23,49,49–51]. The arms of these MZIs are the
two copropagating edge channels (one for each valley) that
are formed along a pn junction when valley degeneracy is
lifted for the zeroth Landau level (LL). These kinds of in-
terferometers present visibilities up to 98% when working
with delocalized currents [18,21]. Hybrid monolayer-bilayer
interfaces also present valley-polarized channels and operate
in a similar manner [25].

In our study we simulate the dynamics of localized car-
riers in armchair nanoribbons of monolayer graphene. In
this way, we aim to characterize the functional regimes of
MZIs for future implementation in single- and few-carrier
interferometry [26,52]. Our approach consists in numerically
integrating the exact time-dependent Schrödinger equation for
a single electron in the IQH regime in graphene through
the split-step Fourier method [53–56]. We simulate the full
two-dimensional system in real space, in order to capture the
behavior of the wave packet in the most realistic and immedi-
ate way. Our group has previously performed various studies
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for MZIs in GaAs/AlGaAs heterostructures, where the dy-
namics of the propagating carriers is limited to the conduction
band [57–61]. Here we include the whole band structure in
the proximity of the valleys in the Brillouin zone, and con-
sider the electronic wave function as a four-component spinor
(see the Appendix for a detailed derivation). This allows
us to take into account the sublattice and valley degrees of
freedom.

This paper is organized as follows. In Sec. II we first
introduce the theoretical description of the IQHE in graphene
armchair nanoribbons, then we show the numerical model
at the base of our simulations. In Sec. III A we observe the
possible transport regimes of localized carriers along pn and
npn junctions, and then in Sec. III B we characterize the be-
havior of quantum point contacts in graphene. In Sec. III C we
describe a first MZI with QPCs and report Aharonov-Bohm
oscillations and phase averaging. In Sec. III D we study a MZI
made with VBSs and characterize its behavior in our regime
for single-particle transport. Finally, in Sec. IV we draw our
conclusions.

II. PHYSICAL SYSTEM AND NUMERICAL MODEL

Monolayer graphene consists of a triangular lattice with
lattice vectors a = a(1, 0) and b = a(1/2,

√
3/2). The unit

cell presents two carbon atoms: the first located at (0,0) be-
longing to sublattice A, and the second at d = a(0, 1/

√
3)

belonging to sublattice B. The lattice parameter is a = √
3 A,

with A = 1.422 Å being the carbon-carbon bond length [62].
The last valence band and first conduction band of graphene
can be found through the tight-binding model for nearest-
neighbor hopping [8,62,63]. The bands touch at the corners of
the hexagonal Brillouin zone, at which points their dispersion
is linear and Dirac cones are observed. Only two valleys in
the BZ are inequivalent: we call them K = 2π

a
√

3
( 1√

3
, 1) and

K ′ = 2π

a
√

3
(− 1√

3
, 1). In total, the electronic wave function �

is written in terms of the sublattice (A/B) and valley (K/K ′)
degrees of freedom. Thus, � is a spinor with a total of four
components, � = (ψK

A , ψK
B , ψK ′

A , ψK ′
B ). Our calculations are

performed within the k · p approximation, in which the bands
are approximated by a linear dispersion near the valleys. For
the sake of simplicity of notation, in place of the absolute
wave vector k we define the relative vector with respect
to K/K ′ as q = k − K (K ′). This way, the electronic 4 × 4
Hamiltonian has the shape of a Dirac Hamiltonian for mass-
less particles:

Ĥ = h̄vF

⎛
⎜⎝

0 −qx + iqy 0 0
−qx − iqy 0 0 0

0 0 0 qx + iqy

0 0 qx − iqy 0

⎞
⎟⎠

= h̄vF
(−qxσ

AB
x ⊗ σ KK ′

z − qyσ
AB
y ⊗ 1KK ′)

, (1)

where vF = 3at
2

1
h̄ is the Fermi velocity, with t = 2.7 eV the

hopping parameter of graphene [62]; σ AB
x/y are the Pauli ma-

trices on the sublattice isospin basis; σ KK ′
z and 1KK ′

are
the z Pauli matrix and identity matrix on the valley isospin
basis, respectively. A term equal to Mσ AB

z ⊗ 1KK ′
can also

be added, thus introducing an energy difference between

sublattices A and B. This corresponds to the action of a field
that couples to the sublattice degrees of freedom, an impor-
tant phenomenon to consider in experimental realizations of
monolayer graphene samples [8,29,64,65]. We will call M
a mass term since it opens a gap of Eg = 2M between the
valence and conduction bands and introduces an effective
mass.

Note that in our treatment we neglect the real spin degrees
of freedom. However, it has been shown that interchannel
scattering is suppressed for opposite spins [9]. Thus, states
with opposite spins behave independently of each other and
do not interfere. Consequently, the results of our simulations
are valid separately for any value of the spin.

A. IQH regime in armchair nanoribbons

A graphene ribbon is defined by an infinite length in the y
direction and a limited width L in x. The edges of the ribbon
are made up of unsaturated carbon atoms. In the case of an
armchair nanoribbon, each edge consists of alternating atoms
from both sublattices: half belong to A and half to B. The
total A/B components of � in an armchair nanoribbon are a
specific combination [66] of ψ

K/K ′
A/B , more specifically,{

ψA(r) = 1√
2

(
eiK·rψK

A (r) − ieiK′ ·rψK ′
A (r)

)
.

ψB(r) = 1√
2

(
ieiK·rψK

B (r) + eiK′ ·rψK ′
B (r)

)
.

(2)

The finite range x ∈ [0, L] of the ribbon imposes ψA/B to
vanish at the edges of the ribbon. Consequently, the following
boundary conditions apply:⎧⎪⎪⎨

⎪⎪⎩
ψK

A (0, y) = iψK ′
A (0, y),

ψK
B (0, y) = iψK ′

B (0, y),
ψK

A (L, y) = iei(K ′
x−Kx )LψK ′

A (L, y),
ψK

B (L, y) = iei(K ′
x−Kx )LψK ′

B (L, y),

(3)

where we used Ky = K ′
y to simplify the phase factor in y. The

problem simplifies if we define a new spinor ϕ in an extended
real space x ∈ [−L, L] [66]:

ϕ(x, y) =
{

eiKxx�K (x, y), 0 � x � L
eiK ′

xx�K ′
(−x, y), −L � x < 0.

(4)

The boundary conditions in Eq. (3) directly translate to ϕ(x, y)
being continuous in x = 0 and periodic in [−L, L]. The
Hamiltonian for ϕ reads as

Ĥ =
(

V (|x|, y) + M h̄vF (−kx + iky)
h̄vF (−kx − iky) V (|x|, y) − M

)
. (5)

In the most general case M �= 0 and V (x, y) is an external
electrostatic potential. Note that Eq. (5) is written in terms
of the absolute wave vector k, to take into account the rela-
tive phase factors for different valleys. We can introduce an
external magnetic field B = Bẑ by using the Landau gauge
A = B|x|ŷ; the absolute value comes from the mirrored na-
ture of our system in the x direction. Then, we perform the
Peierls substitution k → k + eA/h̄, and consider the ansatz
ϕn,k (x, y) = eikyϕn,k (x). Let us consider a translationally in-
variant potential V (x, y) = Vx(x) and rewrite the wave vectors
as kx/y = −i ∂

∂x/y : in this way, the x component ϕn,k (x) be-
comes the eigenvector of an effective one-dimensional (1D)
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Hamiltonian

Ĥ eff =
(

Vx(|x|) + M ivF
(

∂
∂x + 1

l2
m

(|x| − x0)
)

ivF
(

∂
∂x − 1

l2
m

(|x| − x0)
)

Vx(|x|) − M

)
.

(6)

In Eq. (6), lm = √
h̄/eB is the magnetic length; x0 = −h̄k/eB

is the center of the effective linear confinement term induced
by the magnetic field on the x direction. Notice that x0 is
coupled to the quantum number k, which is the wave vector
in the y direction. The cyclotron frequency of the system is
defined as ωc = √

2vF /lm.
The energies of the LLs in “bulk” are the eigenvalues of

Ĥ eff when x0 is sufficiently away from the edges. If Vx is
constant and null [8,64],

En = ±
√

(h̄ωc)2n + M2, (7)

and the components of the eigenstates are solutions of the
quantum harmonic oscillator with frequency ωc [67]. Specif-
ically, ϕn,k (x) = (φn−1(x − x0), φn(x − x0))T for the K valley
(x0 > 0) and ϕn,k (x) = (φn(x − x0), φn−1(x − x0))T for the K ′
valley (x0 < 0), where T indicates the transpose. The expres-
sion in Eq. (7) means that the distance between subsequent
LLs decreases for higher values of n. This is in contrast to the
traditional case in GaAs/AlGaAs heterostructures, in which

E remains constant [60]. Additionally, there are an infinite
number of negative energies for holelike states, and for M = 0
there is no zero-point energy and E0 = 0. Notice also that all
LLs are two times degenerate in the valley degrees of freedom
except for LL+

0 and LL−
0 , which split when M �= 0 to generate

the expected gap of Eg = 2M [8].

B. Localized Gaussian wave packets of edge states

When x0 approaches the ribbon edges, an additional term
ε(k) is added to Eq. (7). As shown in Fig. 1(a), this causes
positive LLs to bend upwards and negative LLs to bend down-
wards, thus generating dispersion of opposite sign. The term
ε(k) is also known to lift the valley degeneracy of LLs at the
edges of armchair nanoribbons [67], as is our case. Figure 1(b)
shows that a nonconstant Vx also bends the LLs, although all
in the same direction. Either at the ribbon edges or near a
potential step, the eigenstates are also modified [66–68]. Here,
an analytical expression for ϕn,k (x) does not exist, thus, the
solutions of the Hamiltonian in Eq. (6) must be computed
numerically. In these cases, the total electronic wave function
ϕn,k (x, y) takes the name of edge state. Following from the
initial ansatz, an edge state is localized in the x direction but
delocalized in the y direction.

We aim to study the temporal evolution of localized wave
packets. Since edge states are plane waves in the y direction,
we build a localized packet through a linear combination of
multiple edge states with fixed n:

ϕn,α (x, y) =
∫

dk F (k, k0
α, σα )ϕn,k (x)eiky . (8)

More specifically, we choose a Gaussian weight function
F (k, kα

0 , σ α ) = C exp[−σ 2
α (k − k0

α )2], and set n = 0; C is a
normalization factor. This ensures a Gaussian shape of the
wave packet also in real space along direction y. The index

FIG. 1. LL of a graphene armchair nanoribbon defined in
x ∈ [0, 200] nm, with magnetic field B = 5 T and mass gap
Eg = 20 meV. (a) LL at the edge of the nanoribbon with no ad-
ditional electrostatic potential. The blue region corresponds to the
energies below the Fermi level. The black dotted line represents
the position of the edge. (b) LL at the center of the nanoribbon in
presence of a smooth electrostatic barrier [see Eq. (11)] of height

V = 100 meV and slope S = 0.33 nm−1. The red and blue regions
indicate the p and n regions.

α refers to the region where ϕn,α is initialized: here V (x, y)
must be translationally invariant. The values of k0

α and σα are
the central wave vector and the real-space broadening of the
packet, respectively. Due to the dispersion of the LLs near
the edges and/or a potential barrier, the carrier assumes a
group velocity vg. The slope of the bands is not constant,
so that it is possible for the wave packet to lose its shape
in time. Previous reports on two-dimensional electron gases
(2DEG) in GaAs/AlGaAs heterostructures [57,59,61] indi-
cate that a Gaussian distribution preserves its shape in a more
efficient way with respect to other energy distributions, such
as Lorentzian or exponential.

III. RESULTS

In all reported simulations we set the real-space broaden-
ing of our Gaussian wave packet to σα = 30 nm. Such value
corresponds to an energy broadening of σ E � 7.63 meV.
Considering three standard deviations around the central
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FIG. 2. Time-dependent simulations of a Gaussian wave packet of edge states in armchair nanoribbons. See also the Supplemental Material
[69] for an animation of the particle dynamics. The writings in bold are the times at which each image of the packet (dark red) was taken. 
V is
the height of the potential barrier between the p region (red) and n region (blue). The dashed gray lines are a guide for the eyes. (a)–(c) Evolution
along a sharp pn junction; the central energies of the packet are (a) E 0 = 51.4 meV and (b), (c) E 0 = 77.5 meV. (d) Evolution along a smooth
pn junction with slope S = 0.33 nm−1 [see Eq. (11)] and central energy E 0 = 241 meV. (e), (f) Evolution along a npn junction of width

y = 200 nm with sharp barriers, with central energy of the wave packet E 0 = 77.5 meV.

energy E0, this means injecting a particle with an energy
interval of ∼45.8 meV. This uncertainty would be ideal for
single-particle experiments since it allows to maintain a filling
factor ν = 1 at B = 5 T, and also grants an adequate shape
retention of the wave packet in time. We did not observe
significant differences in the results with other values of
σα ∈ [10, 40] nm. We also fixed δx = δy = 0.5 nm, small
enough to guarantee a good discretization, but suitable for a
real-space numerical simulation. The time-dependent simula-
tions were performed through the split-step Fourier method
adapted to graphene nanoribbons (see Appendix for a detailed
derivation). The time step δt was set such that each exponent
in the Trotter-Suzuki factorization was small enough to justify
the approximation. This means δtVmax/h̄ 
 2π .

A. Evolution along a pn junction

1. From edge states to snake states

We start the descriptions of our simulations by defining a
functional regime for coherent transport of edge states along
a pn junction. Previous studies also report the physics of
transport phenomena for delocalized currents in graphene
pn junctions [30–39]. In contrast, our results provide the

time-resolved evolution of the carrier, taking its real-space
dispersion into account, and consequently exposing the dy-
namics of a single quasiparticle rather than a continuous
current. We call Vp and Vn the potential in the p and n regions,
respectively. Figures 2(a)–2(c) show the time evolution of
a Gaussian wave packet along a potential step for different
values of Vp. Animations of these and following simulations
are available as Supplemental Material in Ref. [69]. The wave
packet is initialized on the left edge of the ribbon away from
the junction, with central energy Vn < E0 < Vp, and the mass
term is set to M = 0. In Figs. 2(a)–2(c) we use a sharp poten-
tial barrier with increasing height 
V = Vp − Vn. For small

V , the wave packet continues traveling along the junction,
and is highly localized along the barrier [Fig. 2(a)]. As 
V
increases, the carrier can penetrate more and more inside the
barrier, and its path curves due to the Lorentz force. In a
semiclassical picture, the curvature radius in a region with
potential V is the cyclotron radius [39]

rc = |p|
|q|B = |E0 − V |

vF |q|B , (9)

obtained by considering the linear approximation valid
near the Fermi energy |E0 − V | = vF |p|, with p the linear
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TABLE I. Values of the ratio rc/lm for each simulation reported
in Fig. 2. The first line reports which subimage from (a) to (f) the
values refer to; p and n zones refer to the p region (red) and n region
(blue) of the junctions.

Fig. 2 (a) (b) (c) (d) (e) (f)

p zone 0.386 1.37 3.36 2.06 11.3 39.1
n zone 0.408 0.616 0.616 1.92 0.616 0.616

momentum. If Vn < E0 < Vp, as is our case, the incoming car-
rier occupies electronlike states in the n region, and holelike
states in the p region. Consequently, the effective charge q is
negative in the n region, but positive in the p region. This is
why the curvature of the path changes every time the packet
hits the junction. Because of their specific shape, the paths in
Figs. 2(b) and 2(c) take the name of snake states.

Our results confirm that both edge states and snake states
can be present in the motion of a localized carrier in graphene.
The observed transport regimes are always defined by the ratio
between the cyclotron radius rc and the magnetic length lm:

rc

lm
= |E0 − V |

vF
√

h̄|q|B . (10)

The semiclassical picture only holds when rc/lm � 1. Notice
that the ratio of Eq. (10) is in general different for the p and
n zones. Table I reports the values of rc/lm for all the trials
shown in Fig. 2. We see that snake states become more and
more defined as the ratio increases at least in one region.
Otherwise, when rc/lm 
 1 in both regions [Fig. 2(a)], edge
states are observed.

Finally, in Fig. 2(d) we use a smooth, Fermi-type barrier in
the y direction,

V (y) = Vn + 
V
1

e−Sy + 1
, (11)

with height 
V = 0.5 eV and slope S = 0.33 nm−1. The
smoothness of this potential profile represents experimental
conditions more realistically than the sharp case, and the
smoothness parameter S depends on the distance between the
top gate and the device [51]. Although it is possible to increase
the sharpness of the potential profile by positioning the top
gate closer to the nanoribbon [18,51], it is virtually impossible
to eliminate the processes that smoothen the pn junction [51].
Under these conditions, now the barrier presents a finite width:
as a consequence, the wave packet is partially reflected every
time it hits the junction. This is coherent with previous studies
describing Klein tunneling in graphene pn junctions [36,37]:
fixing the incident angle (here 90◦), the reflection coefficient
increases with the width of the barrier. In Fig. 2(d) the ratio
rc/lm is similar in both regions, so that we observe similar
skipping orbits on both sides of the barrier.

2. Tunneling through a npn junction

We also simulate npn junctions, i.e., transport in the pres-
ence of potential barriers of height 
V and with a short length
along the y direction, 
y. In this section we always use sharp
barriers. Figures 2(e) and 2(f) show two different simulations
with increasing 
V and fixed 
y = 0.2 μm. In both cases we

set rc/lm � 1 in the p region, as shown in Table I. Addition-
ally, we consider values of rc > 
y. Figure 2(e) shows that
in these conditions the wave packet cannot complete its path
and is reflected back inside the p zone. The carrier is reflected
each time it hits the barriers: eventually it does reach the other
edge of the ribbon, but in a longer time than in cases (a)–(d).
Finally, Fig. 2(f) shows that for very high 
V the wave packet
can tunnel through the barrier.

We explain the behavior in Fig. 2(f) as a process of elastic
scattering between all available LLs, also called equilibration
[9,10,18,44]. When a particle with energy Vn < E0 < Vp hits
the barrier, it can scatter and partially fill the available hole-
like LLs within the barrier. A higher barrier implies more
available LLs: due to the slope of LLs near a potential step,
the carrier will scatter further and further inside the barrier.
Eventually, the carrier scatters so deep inside the barrier that
LLs of the second barrier become available. The slope of
these LLs prevents carriers to proceed along the junction, so
that the motion continues along the edge. Other than with a
high 
V , this can also happen with a narrow junction, i.e.,
with small 
y. It is known that electrons in graphene can
perfectly tunnel through potential barriers (Klein tunneling),
specifically because of the presence of holelike states within
the barrier itself [32,39,41,42,70]. However, we are not aware
of an experimental observation of this specific phenomenon
for single particles in the IQH regime in graphene.

B. Quantum point contacts

An important block used to build electronic interferometers
in graphene is the quantum point contact (QPC) [10,44,71].
We simulated the behavior of QPCs in graphene using narrow
constrictions of the electrostatic potential V . To suppress the
scattering in multiple holelike LLs we work in the edge-state
regime illustrated in the previous section, by setting the height
of the potential barrier to 
V = 100 meV; additionally, we
set M = 0. Figure 3(a) shows a QPC: when the initial packet
(I) meets the constriction, the chiral nature of edge states only
allows the carrier to be transmitted along the same potential
profile (T ) or reflected along the other barrier (R). Previous
studies on QPCs in GaAs/AlGaAs heterostructures [57,58]
proved that the reflection and transmission coefficients depend
on the wave vector of each component of the wave packet.
However, in the k intervals we considered for our wave pack-
ets the band dispersion is nearly linear. As a consequence, the
same empirical formula also applies for the energies:[

r(E )
t (E )

]
= 1√

e±α(E−EQPC ) + 1
. (12)

The parameters α and EQPC depend on the specific QPC: on
its width LQPC, the height of the potential V , and the slope of
the barrier S. The setup of Fig. 3(a) allows us to find the nu-
merical values of the weights F T/R(E ) for the transmitted and
reflected components through projection on the eigenstates
ϕn,k (x). The transmission probability is then evaluated as

T (E ) = |t (E )|2 = |F T (E )|2
|F (E )|2 , (13)

where F (E ) is the Gaussian weight used for the initialization.
The same for the reflection probability R(E ).
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FIG. 3. (a) Simulation of the scattering by a QPC. The potential profile is drawn in red. “I” stands for the initial wave packet before going
through the QPC; “T ” and “R” and the transmitted and reflected parts, respectively. (b) Transmission curves of three different QPCs with width
LQPC = 5 nm (QPC1), LQPC = 0 nm (QPC2), and LQPC = −5 nm (QPC3). The points are the numerical data obtained from the projection of
the transmitted wave function ϕT , the solid line is the fit. The curves were obtained for wave packets of central energy 58.2 meV (QPC1),
49.8 meV, (QPC2) and 41.8 meV. (c) Transmission and reflection curves of QPC2 using a sharp barrier and a smooth barrier with slope
S = 0.33 nm−1 [see Eq. (11)]. The points are the numerical data obtained from the projection of the transmitted and reflection wave function
ϕT/R, the solid line is the fit. The central energy of the wave packet is 49.8 meV.

Figure 3(b) shows the numerical fit for the transmission
probability T (E ) of three different QPCs with sharp barriers.
The first, QPC1, is “open”: it has a width of LQPC = 5 nm
and the potential barriers constituting the QPC do not touch
each other. This is the usual conformation of a QPC which has
been studied and implemented in GaAs/AlGaAs heterostruc-
tures as well [57,58,60]. In the second one, QPC2, we set
LQPC = 0 nm: the barriers touch each other and the QPC is
“closed.” In the third one, QPC3, the barriers overlap and
LQPC = −5 nm. Surprisingly, even in the last two cases the
transmission probability is non-negligible. In fact, holelike
states below the closed barriers are available, and the wave
packet is able to scatter through them and cross the barrier
through Klein tunneling. This was not a possibility for 2DEG
in gapped materials since the carrier could only occupy states
that are energetically allowed, i.e., outside of the barriers.

Coherently with previous results for GaAs/AlGaAs het-
erostructures [57,58], Fig. 3(b) shows that transmission
increases with the energy. Furthermore, transmission curves
shift to higher energies as the QPC closes, maintaining sim-
ilar slopes. This means that although Klein tunneling helps
increasing transmission, the wave packet still needs more and
more energy to be transmitted through progressively closing
gates, at least in the functional edge-state regime we consid-
ered. Finally, Fig. 3(c) compares transmission and reflection
curves for a sharp barrier and a smooth barrier with slope
S = 0.33 nm−1. Both curves are obtained for QPC2. We see
that a smoother barrier not only changes the slope of the
curves but also shifts the value of E0 to lower energies. As
a consequence, components with lower energies are able to
transmit through the QPC: the wave packet behaves as if the
effective width of the QPC were larger.

C. MZI with quantum point contacts

We simulate a first type of MZI using two QPCs. Fig-
ure 4 shows a schematic representation of our interferometer.
The electronic wave packet is emitted at the source (S). The

first QPC separates the wave packet into left and right paths
(L/R), which constitute the arms of the interferometer. The
two parts of the wave packet ϕR and ϕL later reunite at the
second QPC, and can interfere. Eventually, the carrier can
be detected either at detector D1 or D2. Our group has stud-
ied similar single-particle interferometers in GaAs/AlGaAs
heterostructures as well [57,58,60]. For graphene, however,
several studies [43–47] show how the presence of ribbon

FIG. 4. Schematic representation of the first MZI simulated,
made with QPCs. The potential profile is drawn in red. S stands
for source; QPC1/2 are the quantum point contacts at the ends of
the interferometer; D1/2 are the detectors; L and R stand for the
left and right arms of the interferometers, respectively. See also the
Supplemental Material [69] for video animations of the wave packet
propagating for three different MZI areas.
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FIG. 5. Curves of the transmission probability at detector D1 of the MZI shown in Fig. 4. The points are the numerical data, the solid line is
the fit. The curves obtained with a sharp barrier and a smooth barrier of slope S = 0.33 nm−1 [see Eq. (11)] are reported in purple and orange,
respectively. (a) Aharonov-Bohm oscillations at fixed magnetic field B = 5 T and varying the area between the arms of the interferometers. The
area was modified either by changing the length of both arms (“Both”) or one at a time (“Left” and “Right”) (b) Aharonov-Bohm oscillations
at fixed area A = 40 × 103 nm2 and varying the magnetic field. (c) Phase-averaging curves obtained by fixing both the magnetic field B = 5 T
and the area A = 50 × 103 nm2, and varying the path difference 
l . “G. Mod.” stands for Gaussian modulation.

edges may be detrimental for the implementation of such
interferometers, due to backscattering under the gates. To re-
duce this phenomenon, we keep the arms of the interferometer
away from the edges. We believe that the potential profile we
considered can at least partially bypass these backscattering
processes, in light of various experiments in edgeless geome-
tries that allow for extremely clean measurements [72,73]. We
work again in the edge-state regime, by setting a barrier of

V = 100 meV, and setting M = 0. We select the “closed”
QPC2 from the previous section (LQPC = 0 nm). Then, we
initialize the wave packet in order to have an approximate
43%–57% splitting (sharp barrier) and 44%–56% splitting
(smooth barrier) after the first QPC. This way, being close
to the ideal case of 50%–50% splitting, we ensure a non-
negligible interference at the end of the interferometer.

In Fig. 5 we show the transmission probability T through
the second QPC obtained from our simulations. Notice that
T is equivalent to the probability of detecting the carrier at
D1. For each trial we consider both cases with a sharp barrier
and a smooth one with slope S = 0.33 nm−1. Figures 5(a)
and 5(b) show Aharanov-Bohm oscillations when varying the
area of the MZI and the magnetic field, respectively. The
deviation from the expected period is around 3.5% when
varying the area in presence of smooth barriers; in all other
cases it remains below 0.5%. A reason behind the discrepancy
may lie in the spatial spread of the carrier, as well as in the
central position xR/L of the wave packets along the arms of
the interferometers, which in general may add an additional

phase. However, note that in all cases the considered flux is
approximately 50 to 60 times the unit flux �0 = e/h̄, so that
these errors are still negligible. The overall visibility is very
high, reaching an approximate value of 81% for the sharp
barrier, and 73% for the smooth barrier. Taking into account
the nonideal splitting of the wave packet into the two paths
of the interferometer, these values correspond to, respectively,
98.8% and 95% of the maximal obtainable visibilities. Under
this aspect, our results are coherent with previous experimen-
tal measurements of interferometers in graphene, which show
a much higher visibility with respect to 2DEG in gapped
semiconductors [18,21].

Aharonov-Bohm oscillations have been observed in mul-
tiple experiments with interferometers in graphene working
with delocalized currents [18,21–23,44,49,71]. However, the
broad energy distribution of our localized wave packet al-
lows us to show an additional phenomenon, detrimental to
the visibility, called phase averaging [74,75]. This effect is
shown in Fig. 5(c): here, we maintain a constant flux �

through the arms of the interferometers by fixing both the
area and magnetic field. We change the length of the left and
right paths of the interferometer separately, thus introducing
an optical path difference 
l . For delocalized currents, this
would just mean a relative phase of 
θ = (2π
l/L + θ0).
For the case of localized particles instead, we need to take
account of how much ϕR and ϕL overlap when they reunite.
In fact, when |
l| is close to zero, ϕR and ϕL arrive at the
second QPC simultaneously and overlap completely. Instead,
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a value of |
l| � 0 introduces a significant delay between
the two, thus reducing the overlap between ϕR and ϕL, and
consequently the interferometer’s visibility. Eventually, when

l is too large, they arrive at the second QPC separately
and no longer interfere. The overall modulation F avg of the
transmission coefficient T comes from the convolution of the
weight functions of ϕR and ϕL. If we consider both of them to
maintain a Gaussian shape after the splitting, this reads as

F avg(
l ) = (F R ∗ F L )(
l ) = Ce
− (
l−
l0 )2

4(σ2
R+σ2

L ) , (14)

where σR/L are the real-space broadening in the y direction; C
is a normalization factor. Notice the presence of an additional
path difference 
l0, which is generally different from zero.
This additional relative phase may be due to the centers xR/L

of each packet being generally displaced from the center of
the barrier, an effect which modifies their effective paths. In
Fig. 5(c) are drawn the fits of our data with the equation

T (
l ) = T0 + F avg(
l )
T sin

(
2π
l

L
+ θ0

)
, (15)

which agree well with our results. Note that 
l0 and θ0 are
both relative phases. However, 
l0 appears due to the lo-
calization of the packets, and influences the superposition of
ϕR/L . Instead, θ0 is a relative phase in the interference, and
would also be present in the case of delocalized currents. The
important thing to notice from Fig. 5(c) is the shift of the
Gaussian modulation between the cases of sharp and smooth
barriers: these are respectively centered around 
lsharp

0 �
12 nm and 
lsmooth

0 � 25 nm. In fact, a smooth potential
implies a lower slope of the bands and a smaller group ve-
locity: vg = − 1

h̄
∂E (k)

∂k ranges from v
sharp
g = 7.25 × 105 m/s to

vsmooth
g = 6.97 × 105 m/s. Thus, the intrinsic delay increases

in the case of smooth barriers.

D. MZI with valley beam splitters

Finally, we simulate the evolution of Gaussian wave pack-
ets in a MZI built with valley beam splitters (VBS). For these
simulations we still consider the edge-state regime; addition-
ally, we induce a mass gap by setting M �= 0. This way, the
valley degeneracy of LL+/−

0 is lifted. At the edge of the ribbon,
LL+/−

0 have opposite curvatures and carry edge states with op-
posite chirality. Along a potential barrier instead, LL+/−

0 bend
the same way: as a consequence, electronlike and holelike
ESs propagate in the same direction. Under these conditions,
VBSs appear where the potential barrier meets the edge of
the ribbon [18,21]. This phenomenon occurs at every inter-
section between the potential gates and the physical edge of
the device, as described and measured in Ref. [18]. There,
VBSs were created at the border separating two regions of
different filling factors, which in turn were created by suit-
able top gates. In fact, when the Fermi level crosses multiple
channels it allows for equilibration processes between edge
channels, but only if they are running along the physical
edges. Our setup is shown in Fig. 6: the electron is initialized
at source S at the edge of the ribbon. Due to the nature of
the armchair edge, the electronic state is in a superposition
of valley K and K ′ [66,67]. Once the carrier evolves and

FIG. 6. Schematic representation of the second MZI, made with
VBSs. The potential profile of the gate is drawn in red. S stands
for source; VBS1/2 are the valley beam splitters at the ends of the
interferometer; D1/2 are the detectors; the K and K ′ arms of the
interferometer are represented as orange and blue lines, respectively.
See also the Supplemental Material [69] for video animations of
the wave packet propagating for three different intensities of the
magnetic field.

meets the potential barrier (at VBS1), it can scatter elastically
between the available LL+/−

0 states, and consequently splits in
the two components �K and �K ′

, belonging to the K and K ′
valleys, respectively. Consequently, �K and �K ′

travel along
two distinct paths, until they reunite at VBS2, i.e., where the
potential profile meets the edge again. Here, �K and �K ′

interfere, and the carrier can be detected either at D1 or D2.
The setup shown in Fig. 6 is similar to several experimental
implementations of MZIs with VBSs [14,18,21,49]. However,
these devices worked along the full nanoribbon width. Instead,
we decided to set both VBSs on the same edge by setting a
potential profile which defines a region that does not reach the
opposite edge of the ribbon. Our simulations show that two
fully functional VBSs are formed in this case as well. With
this setup, we are able to change the length of the interferom-
eter’s arms by manipulating the dimensions Lx and Ly of the
gate, as defined in Fig. 6.

We first characterize the behavior of a VBS in presence
of a localized wave packet. Table II shows the splitting
percentages of the packet into the transmitted K compo-
nent (T VBS) and reflected K ′ component (RVBS). Notice
that the percentages do not sum up to 100% due to a
small splitting into the other LLs. In contrast with the
case of QPCs, transmission and reflection of the wave
packet do not depend on its initialization energy E0. In-
stead, T VBS and RVBS only depend on the value of the
mass term M and the slope of the barrier S. To be more
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TABLE II. Values of the transmission (T VBS) and reflection (RVBS) probabilities of different VBSs. Eg is the energy gap between LL+/−
0 ; S

is the slope of the barrier [see Eq. (11)], ‘Sharp’ being a sharp barrier; E0 is the central energy of the simulated wave packet.

Eg (meV) 10 20 20 20 20 20 40 40 40 40

S (nm−1) Sharp Sharp 0.50 0.33 0.25 0.10 Sharp Sharp Sharp 0.33
E0 (meV) 48.84 48.84 48.84 48.84 48.84 48.84 42.71 48.84 56.78 48.84
T VBS(%) 46.83 43.66 42.69 41.78 40.78 34.82 37.19 37.41 37.32 33.95
RVBS(%) 52.97 55.92 56.79 57.55 58.32 63.05 61.56 61.52 61.58 64.73

specific, T VBS decreases as Eg = 2M increases and as the
potential gets smoother: in both cases, this happens be-
cause the separation between LL+/−

0 increases. The limit of
50%–50% would be restored when M = 0 and degeneracy
is not lifted. Overall, our results are coherent with what has
been reported in Ref. [51], which showed that the behavior of
MZIs with VBSs only depends on the electrostatic setup of
the device.

Then, we measure the probability of detecting the carrier
at D1, that is, the overall transmission probability T through
the interferometer. For these trials we select a case with
T VBS � 44%, RVBS � 56% for the sharp barrier and T VBS �
42%, RVBS � 58% for the smooth barrier. Figure 7(a) shows
Aharonov-Bohm oscillations as a function of the gate dimen-
sion Ly and fixed Lx and magnetic field B. The period LT

y of
the oscillations tells us the mean value of the distance between
the channels throughout the whole interferometer: δsharp =

(2.169 ± 0.003) nm and δsmooth = (3.084 ± 0.008) nm. Co-
herently with the results in Table II, δsharp < δsmooth because
the separation of LL+/−

0 increases for smooth barriers. Note
that these δ’s are much smaller than the values reported in
literature for delocalized currents [18,21,51], which are of
the order of δ ∈ [50, 110] nm. We relate this discrepancy to
the specific regime we simulate, suitable instead for localized
particles. However, the values of δ we found are coherent
with the results of a recent study in a similar system [25]. We
were also able to obtain a separation as large as δ ∼ 12 nm as
well; however, this implied a value of T VBS < 5%. Figure 7(b)
shows Aharonov-Bohm oscillations as a function of the mag-
netic field B. Changing B modifies the LL dispersion, although
slightly, thus changing the separation of LL+/−

0 along the
barrier. This may modify the behavior of the first VBS, which
would explain the slight discrepancy between the numerical
data and the fit.

FIG. 7. (a)–(c) Curves of the transmission probability at detector D1 of the MZI shown in Fig. 6. The points are the numerical data, the
solid line is the fit. “Sharp” stands for a sharp barrier; “Smooth” for a barrier of slope S = 0.33 nm−1. (a) Aharonov-Bohm oscillations at
fixed magnetic field B = 5 T and dimension along x of the gate, Lx = 50 nm, while varying Ly. (b) Aharonov-Bohm oscillations at fixed gate
dimensions Lx and Ly with varying magnetic field B. (c) Transmission curves with a sharp barrier for different values of Ly, observed by varying
Lx at fixed B = 5 T. (d), (e) Respectively frequency and visibility of the Aharonov-Bohm oscillations obtained with a sharp barrier for different
values of Lx , observed by varying Ly at fixed B = 5 T.
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Figure 7(c) shows the overall transmission probability T
as a function of the horizontal gate dimension Lx for various
values of Ly. The nontrivial behavior of T along the Lx axis is
a consequence of how the separation δ between the channels
varies along the interferometer’s arms. To be more specific,
the distance δy between the spatial centers of �K and �K ′

along Ly oscillates as a function of the length of Lx. We find
δy to have a periodicity of LT

x � 992 nm, and observe that the
edge channels cross for certain values of Lx. Figure 7(d) shows
the frequencies of the Aharonov-Bohm oscillations along Ly

for different values of Lx. The graph compares the numerical
data with the expected values, f = eB|δy|/h̄, obtained from
a previous fit of δy. The data differ from the fit only when
the frequencies are small: in this interval, δy is close to zero,
and we believe the energy broadening of the packets may
affect the oscillations. A further confirmation of this comes
from Fig. 7(e), in which we observe a significant drop in the
visibility in the same interval.

In other words, we suggest that the edge channels in
graphene MZIs do not have a trivial shape. On the contrary,
they oscillate when propagating along the x direction, that
is, along a zigzag direction orthogonal to the armchair edges
of the ribbon. Instead, the same edge channels do not oscil-
late in the armchair direction. The oscillation along x is of
the order of few nanometers, which is why its effects were
negligible in previous implementations [18,21] with a mean
δ ∈ [50, 110] nm. On the contrary, our interferometer works
with a much smaller separation between the channels, and we
are able to observe crossing between edge channels.

IV. CONCLUSIONS

The time-dependent simulations we reported show the
functional regimes for the transport of localized wave packets
of edge states in MZIs in graphene. Up to now there have
been several studies on the behavior of such interferometers
with delocalized currents [14,18,21,44]. Instead, by taking
into account the real-space dispersion of the carrier, we were
able to study the specific behavior of localized quasiparticles
in the scope of possible future single- and few-particle imple-
mentations of the same devices [26,52]. We solved the exact
time-dependent Schrödinger equation in order to observe the
real-time evolution of the particle in real space and describe
its dynamics. We first showed that it is possible to control
the transport regime of single particles along graphene pn
junctions through the interplay between the energy of the
injected carrier and the height of the junction itself. More
specifically, we showed that the tuning of the cyclotron radius
of the carrier in both regions of the junction makes it possi-
ble to either observe semiclassical snake-state trajectories or
edge-state behavior. We also provided proof of the same phe-
nomena that have been previously observed for delocalized
currents, such as Klein tunneling through a finite potential
barrier and the related dependence of the reflection coefficient
on the smoothness of the barrier [36,37]. We then studied the
behavior of single-particle transport in two kinds of MZIs. The
first MZI is built with QPCs: these interferometers have been
widely studied in systems of GaAs/AlGaAs heterostructures
[60]. In graphene, the same devices are subject to detrimental
effects due to channel scattering at the physical edges of the

device [44,47]. However, we showed that it is possible to sup-
press such effects with the use of an appropriate gate shape.
Thus, we observed clear, high-visibility Aharonov-Bohm os-
cillations. Additionally, we have showed the occurrence of
phase averaging [74,75] caused by the characteristic energy
spread of localized carriers. This phenomenon is not present
for a delocalized current, but it will become crucial in devis-
ing future single- and few-particle interferometers since it is
detrimental to the visibility. The second kind of MZI is built
with VBSs and reproduces those used in recent experimental
studies [14,18,21]. In this paper, we propose a geometry for
this device, which allows to design the length of the arms of
the interferometer regardless of the width on the graphene
nanoribbon. This way, it allows for additional freedom in
engineering the devices. That said, while the scattering pro-
cesses of QPCs strongly depend on the energy of the injected
carrier, the transmission and reflection coefficients of VBSs
only depend on the electrostatic setup of the device [51]. To
obtain a splitting close to the ideal 50%–50% in presence of
localized carriers, we have found that one needs to work with
clean graphene samples with small energy gaps and poten-
tial barriers as sharp as possible. Overall, we have studied a
regime that is different to those previously observed: while in
Ref. [21] the channel separation is as large as δ ∼ 110 nm,
we have considered a situation with δ of the order of a few
nanometers. By doing so, we could see that this distance is
not constant along the zigzag direction, and influences the
interference nontrivially. To our knowledge, this phenomenon
has not been previously reported. Our results imply the pres-
ence of nontrivial transport processes that occur along a pn
junction, with non-negligible effects in the specific regime
considered for single-particle transport.

APPENDIX: SPLIT-STEP METHOD IN GRAPHENE

Once the initial state of the system ϕ(x, y; t0) is defined,
its temporal evolution is obtained by integrating the time-
dependent Schrödinger equation. To do so, we define an
evolution operator

Û (
t ) = e− i
h̄ Ĥ
t , (A1)

where Ĥ is the Hamiltonian in Eq. (5), independent of time;

t is the total evolution time step. To apply the evolution
numerically, we exploit the split-step Fourier method through
the Trotter-Suzuki factorization [53–56] for infinitesimal
δt = 
t/N → 0. We rewrite Ĥ from Eq. (5) as a sum of
multiple noncommuting terms:

Ĥ = V̂ (|x|, y) + T̂x(kx ) + T̂y(ky) + V̂B(|x|) , (A2)⎧⎨
⎩

V̂ (|x|, y) = V (|x|, y) × 1AB + Mσ AB
z ,

T̂x/y = −h̄vF kx/yσ
AB
x/y.

V̂B(|x|) = − h̄vF
l2
m

|x|σ AB
y .

(A3)

In Eq. (A3), σ AB
x/y/z are the Pauli matrices on the sublattice

basis; 1AB is the identity matrix. The operator V̂ is a block-
diagonal potential term which includes the mass term M.
T̂x/y are off-diagonal kinetic operators linear in kx and ky,
respectively. Finally, V̂B is the magnetic potential, nondiagonal
as well: it is linear both in |x| and B. The Trotter-Suzuki
factorization provides the following approximation for
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Û (
t ):

[e− i
h̄ Ĥδt ]N = e− i

h̄ V̂ δt
2 [e− i

h̄ T̂xδt e− i
h̄ T̂yδt

× e− i
h̄ V̂Bδt e− i

h̄ V̂ δt ]N e+ i
h̄ V̂ δt

2 . (A4)

The addition of the two-dimensional Fourier transform F
allows us to switch from real space (x, y) to the reciprocal
space (kx, ky), where the locality of T̂x/y can be exploited. Vice
versa for the antitransform F−1. The final evolution operator
reads as

Û (
t ) = e− i
h̄ V̂ δt

2 [F−1e− i
h̄ T̂xδt e− i

h̄ T̂yδt

× Fe− i
h̄ V̂Bδt e− i

h̄ V̂ δt ]N e+ i
h̄ V̂ δt

2 . (A5)

Since V̂ is block diagonal, its exponentiation is trivial. On the
contrary, the exponential of the nondiagonal T̂x/y and V̂B leads

back to the exponentiation of σx/y [54]: the results are 2 × 2
block operators with all elements different from zero. The
main consequence of the shape of the operators in Eq. (A5)
is that the evolutions of the two components of the spinor
ϕ are coupled: so, they must be carried out at the same
time.

The definition of ϕ in the previous section requires a mir-
rored space in the x direction. Thus, a real ribbon defined
in [0, Lx] × [−Ly/2, Ly/2] corresponds to an actual simu-
lated space defined in [−Lx, Lx] × [−Ly/2, Ly/2]. The Fourier
transforms needed for the split-step method are performed
through the fast Fourier transform algorithm, allowing us
to impose periodic conditions in both the x and y direc-
tions. However, the simulated space is still a nanoribbon
of finite width because of how we defined the problem
for ϕ.
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