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Quantized charge-pumping in higher-order topological insulators
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We study the quantized charge pumping of higher-order topological insulators (HOTIs) with edge-corner
correspondences based on the combination of the rotation of in-plane magnetic field and the quantum spin Hall
effect. The picture of a specific charge pumping process is uncovered with the help of the nonequilibrium Green’s
function method. Significantly, we demonstrate that the quantized charge pumping current is achieved without
the participation of bulk states, and the charges move along the boundary of the sample. Furthermore, the effects
of external parameters on the pumping current is also studied. We find that the magnitude and direction of the
pumping current can be manipulated by adjusting the coupling strength between the leads and sample. Our paper
deepens the understanding of the charge pumping in HOTIs and extends the study of their transport properties.
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I. INTRODUCTION

As the analog of classical pumping, quantum charge pump-
ing is one of the most important transport phenomena in
condensed-matter physics [1–21]. The combination of topol-
ogy and charge pumping has attracted significant interest over
the past decades [4–20]. In the study of the quantum Hall
[22,23] and quantum spin Hall effects [24–26], the pump-
ing process can be used to identify the quantization of their
topological invariants and suggests the existence of extended
edge states in the bulk gap. For the one-dimensional samples,
the topological order can always be identified with the help
of quantized charge pumping [20,27]. These studies strongly
suggest that the quantized charge pumping is closely related
to the intrinsic topological features.

Generally, topological insulators [22–26] exhibit the bulk-
boundary correspondence, where the quantized properties can
be characterized by bulk states [22]. Therefore, the bulk states
always directly participate in the charge-pumping process to
demonstrate their topological natures. Recently, the concept
of higher-order topological insulators (HOTIs) [28–56] has
been put forward, which goes beyond the conventional bulk-
boundary correspondence. Specifically, the nth-order HOTI
in d dimension captures the topological states in its (d −
n)-dimensional boundaries [28–30] with n > 1. For two-
dimensional HOTIs, their bulk and edge states are both
gapped. However, the zero-energy states locate at the corners
of the samples [50–52]. Notably, one of the specific features
of HOTIs is that the conventional bulk-boundary correspon-
dence could collapse [50] and the corner states characterizing
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the unconventional topological order of HOTIs could move
along the edge of the sample by only manipulating the edge
states’ mass domain walls [51]. Therefore, a quantized charge
pumping without the participation of bulk states may exist.
Although the charge pumping in HOTIs has been studied
very recently [33,34], the combination of charge pumping and
HOTIs associated with such unique features is rarely reported.

In this paper, we propose the charge-pumping process by
manipulating the mass domain walls sitting at the edge of two-
dimensional HOTIs [see Fig. 1(a)], which is closely related
to the unique features of HOTIs. We uncover that the major
characteristic of such a pumping process is that the electrons
will be transferred from one corner to its opposite one along
the edge instead of through the bulk of the sample. Moreover,
the dependence of the external parameters on the pumping
current is studied. We find both the magnitude and the direc-
tion of the pumping current can be efficiently manipulated.
In particular, by adjusting the coupling strength between the
leads and sample or the leads’ voltages, the current reversal is
available.

The rest of this paper is organized as follows: In Sec. II,
we present the model and the methods. In Secs. III and IV, we
demonstrate the charge pumping process in HOTIs. In Sec. V,
the manipulation of the pumping currents is studied. Finally,
a brief discussion and summary are presented in Sec. VI.

II. MODEL AND METHOD

A. Model

We consider a modified Bernevig-Hughes-Zhang model
with Hamiltonian [51]:

Hc =
∑

i

{
T0c†

i ci + [
Txc†

i+δx
ci + Tyc†

i+δy
ci + H.c.

]}
, (1)
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FIG. 1. (a) Schematic diagram of the mass domains for HOTIs.
The domain wall ensures the bound states of HOTIs as shown in
the right figure. The pink arrows shows the direction of the in-plane
magnetic field. (b) The eigenvalues versus angle θ = 2π f τ with
sample size N×N = 20×20. f is the rotational frequency and τ

denotes the time. (c)Zero-modes’ eigenstates for θ marked in (b) with
upper: θ = π/4; lower: θ = π/2.

where T0 = −Bsin(θ )τ0σx + Bcos(θ )τ0σy + mτzσ0 and
Tx/y = t

2τzσ0 + λ
2i τxσx/y. σx,y,z (τx,y,z) are Pauli matrices in

spin (orbital) spaces. σ0 (τ0) is the 2×2 identity matrix. B is
in-plane magnetic field. θ = 2π f τ denotes the orientation of
B varying from 0 to 2π . f is the rotational frequency and τ

denotes the time. Parameters are fixed at m = t , λ = t , and
B = 0.5t throughout the paper. t is the energy unit with t = 1.

Due to the in-plane magnetic field B, mass domain walls
sitting at the boundary of the sample appear [51]. As shown in
Fig. 1(a), a sample with disk geometry possesses the gapless
helical edge states when B = 0. After considering the in-plane
magnetic field B, the interaction between opposite spins leads
to the band gap for the helical edge states. To be concrete,
mass terms are introduced into the effective model for the
helical edge states. Further, the group velocity of helical edge
states changes its sign along the direction of B, which re-
verses the sign of the mass. The gapped helical edge state
with opposite sign of mass [mass > 0 in the green region and
mass < 0 in the gray area, see Fig. 1(a)] ensures the existence
of the corner states characterizing the topological natures of
HOTIs [51].

For simplicity, we consider a square sample, and its eigen-
values versus θ are shown in Fig. 1(b). By checking their zero-
energy wave function distributions [see Fig. 1(c)], one ob-
serves that the corner states emerge in a certain angle θ . These
results indicate that the bound states protected by the mass
domain walls rotate with the in-plane magnetic field, as shown
in Fig. 1(c). Thus, the charges carried by the bound states
rotate by varying θ , which gives rise to the study of charge
pumping in HOTIs without the participation of bulk states.

B. Method

The charge-pumping current is calculated by employing
the nonequilibrium Green’s function method [57,58]. Taking a

square sample with size Nx = Ny = N as an example, Eq. (1)
is rewritten as

Hc =
N∑

n,m=1

T0c†
n,mcn,m +

N∑
m=1

N−1∑
n=1

Txc†
n+1,mcn,m

+
N∑

n=1

N−1∑
m=1

Tyc†
n,m+1cn,m + H.c. (2)

Its matrix form, Hc can be written as Hc = X̂ †HcX̂ with
the basis X̂ = [c1,1;α, c1,2;α, . . . , cn,m;α, . . . , cN,N ;α]T . α stands
for the orbital and spin freedoms of T0/x/y. Supposing the
eigenequation is Hcψ j = Ejψ j , one has

HcS = Sdiag[E1, E2 · · · E4N2 ]. (3)

S = [ψ1, ψ2, . . . , ψ4N2 ] is constructed by the eigenvectors
ψ j . The coefficient 4 originates from the size of T0/x/y. Con-
sidering X̂ = SK̂ with basis K̂ = [b1, b2, . . . , b4N2 ]T , one has

Hc = X̂ †HcX̂ = K̂†S†HcSK̂ =
4N2∑
j=1

Ejb
†
jb j . (4)

Here, Ej is the eigenvalue of the jth eigenstate. Thus, the
following relation is ensured for each basis:

cn,m;α =
4N2∑
j=1

ψ j (n, m; α)b j . (5)

ψ j (n, m; α) is the component of the wave function of the jth
eigenvector at site (n, m; α).

The Hamiltonian of the leads and their couplings to the
sample can be expressed as [57]

Hel =
∑
β,k

{
εβ,ka†

β,kaβ,k +
∑

q

tβ[a†
β,kcq + H.c.]

}
. (6)

q = (1, 1) ≡ ∑
α

(1, 1; α) and (N, N ) ≡ ∑
α

(N, N ; α) for the

left and right leads, respectively. β = L/R stands for the
left/right lead. After considering Eq. (4), the above equa-
tion can be rewritten as

Hel =
∑
β,k

{
εβ,ka†

β,kaβ,k +
4N2∑
j=1

tβ[ψ j (oβ )a†
β,kb j + H.c.]

}
.

(7)

For simplicity, we set oL = (1, 1) and oR = (N, N ), which
determines the coupling between the left/right lead and the
sample’s corresponding sites, as shown in Fig. 3(b).

When the variation of θ is sufficiently slow, one can
consider that the physical quantities and the eigenfunctions
are almost unchanged within the time interval [τ, τ + �τ ]
with �τ → 0. These considerations are consistent with the
requirement of the adiabatic approximation. Based on these
considerations, this problem can be treated as time indepen-
dent. Providing that the occupation number [57] of electron
for the jth energy level for the central region is nj = 〈b†

jb j〉,
the Heisenberg equation of motion can be simplified as
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[59,60]:

dn j

dτ
= 1

ih̄
〈[b†

jb j,Hc + Hel]〉. (8)

The total occupation number n j and the components for the
leads n j,L/R under the adiabatic approximation satisfy the fol-
lowing forms [58] (see Appendices A and B for more details):

dn j

dτ
= 1

h̄
(̃L fL + ̃R fR) − 1

h̄
(̃L + ̃R)n j,

dn j,L/R

dτ
= 1

h̄
̃L/R[ fL/R(Ej ) − n j], (9)

where ̃L = L|ψ j (1, 1)|2 and ̃R = R|ψ j (N, N )|2. h̄ is
the reduced Planck’s constant. For one-dimensional metallic
leads, the related linewidth function can be set as L/R =
2πρ|tL/R|2 with the constant ρ the density of states for the
leads [57], which represents the coupling between the leads
and the sample. Since the similarity transformation S leads
to L/R → ̃L/R, the density of states for the sample plays
key roles, among which |ψ j (1, 1)|2 and |ψ j (N, N )|2 are the
electron density of the jth eigenvectors for sites (n, m) =
(1, 1) and (N, N ), respectively. fL/R = [1 + e

EF +VL/R
kBT0 ]−1 is the

Fermi-Dirac distribution function. VL/R is an additional volt-
age potential on the left/right lead, kB is the Boltzmann
constant. T0 is the temperature and is fixed to T0 → 0.

Generally, the current for the jth eigenvalue can be repre-
sented as

I j,L/R = e f
∮

dn j,L/R, (10)

with IL/R = ∑4N2

j=1 I j,L/R, which is a function of n j . The inte-
gration is over one period. The occupation number nj can be
obtained by solving Eq. (9) self-consistently in one period,
and the current is available as well. Importantly, to capture
the adiabatic charge pumping, dτ = 10−6s is adopted here-
after. Supposing [0, 2π ] is divided into l intervals, one has
f ≈ 1/(ldτ ). The variation of dτ does not change the main
results of this paper. Due to the existence of band gaps [see
Fig. 1(b)], n j for both bulk and edge states are insensitive
to the rotational angle θ , and the corresponding I j,L/R can be
neglected. We next only pay attention to the charge pumping
of zero-energy modes, which is closely related to the corner
states of the HOTIs.

III. ELIMINATING THE INFLUENCE
OF FINITE-SIZE EFFECT

Significantly, a constrain in our numerical method should
be considered. If ψ j describes a corner state, such a cor-
ner state must be isolated. Fortunately, this condition can be
easily satisfied in realistic samples. The environment (e.g.,
disorder, the coupling between the leads, etc.) will induce the
energy difference, and their values are much larger than the
coupling strength between two corner states. Nevertheless,
to simulate a faithful charge pumping process, one should
eliminate the finite-size effect in numerical calculations. Due
to the finite-size effect, there exists a weak coupling between
the zero-energy corner states, which can be dealt with by
the degenerate perturbation. Such a degenerate perturbation

FIG. 2. The voltage potential HU is introduced to eliminate the
degenerate perturbation between two corners due to the finite-size
effect. HU satisfies Eq. (11). (a) The evolution of the corner states
with U = 0.01t . (b-1) shows the degenerate point of eigenvalues in
(a). (b-2) and (b-3) are two possible evolution paths by increasing θ .
(c) is the obtained evolution path based on the adiabatic features of
the pumping process. (d)–(j) are the wave functions for the red and
blue lines in (c) by varying θ .

dramatically changes the definition of the n j = 〈b†
jb j〉 and

significantly influences the charge pumping as follows.
Taking θ = 0.25π as an example, the zero-energy states

for different corners can be marked as |1, 1〉 and |N, N〉. After
considering the coupling strength � induced by the finite-size
effect, the effective perturbation Hamiltonian for these zero-
energy modes reads [0 �

� 0 ]. For � = 0, its eigenfunctions

are |ϕ1〉 = |1, 1〉 = [1, 0]T and |ϕ2〉 = |N, N〉 = [0, 1]T , with
eigenvalues ε1 = ε2 = 0. T stands for the transpose. By con-
trast, for � �= 0 (no matter how weak � is), the degenerated
zero energy states are lifted by the degenerate perturbation
and the eigenfunctions become |ϕ1,2〉 = 1√

2
[|1, 1〉 ± |N, N〉].

Then, a well-defined nj = 〈b†
jb j〉 for each corner state is not

available. More importantly, the charge hopping between the
sample and the left/right lead will happen nonlocally when
� �= 0. Such a nonlocal feature is improper since the transport
between the leads and the sample occurs locally in the exper-
iment. As a result, � and the degenerate perturbation should
be eliminated to simulate the experimental setups.

To overcome such a problem, we introduce an additional
perturbation in Eq. (2), where a step potential along the x di-
rection is adopted (see Appendix C for more discussions) [61]:

HU =
∑
n,m

2U

[
1

2
− �

(
N

2
− n

)]
τ0σ0c†

n,mcn,m. (11)

U represents the small voltage potential and �(N/2 − n) is
the step function. Figure 2(a) plots the eigenvalues versus θ

for the corner states with U = 0.01t .
The second question is that the evolution of eigenvalues

of the corner states versus θ intersects two times during one
pumping cycle after considering Eq. (11) [see Fig. 2(a)]. The
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evolution paths are ambiguous at the crossing points, where
there are two possible cases [see Fig. 2(b)]. Nevertheless,
the charge pumping process should preserve the adiabatic
features [23] with the eigenfunctions evaluated continuously.
Based on the continuity condition of eigenfunctions, one is
able to identify the correct evolution path by comparing the
overlap of wave functions. Specifically, we denote the eigen-
functions for the green, orange, and purple dots in Fig. 2(b-1)
as ψθ, j , ψθ+δθ, j , and ψθ+δθ, j+1. Since |〈ψθ, j |ψθ+δθ, j+1〉|2 >

|〈ψθ, j |ψθ+δθ, j〉|2 for δθ → 0, the eigenfunctions evolve along
the path shown in Fig. 2(b-3).

Now, we capture the reasonable eigenvalue and eigen-
vector evolutions for different corner states as shown in
Figs. 2(d)–2(j). The colors of the plots, marked in red and
blue, correspond to the red and blue eigenvalues shown in
Fig. 2(c), respectively. It is obvious that the wave functions
for different corners are completely decoupled. Furthermore,
the wave functions are always localized at the edge or corner
rather than the bulk, which is unique for the HOTIs. Based on
the above results, we can study the charge pumping in realistic
samples.

IV. QUANTIZED CHARGE PUMPING BASED
ON THE MASS DOMAIN WALLS OF HOTI

As presented in the previous section, the domain wall-
protected boundary states rotate with magnetic field. When
a lead is coupled with the sample, the charges carried by
the bound states will jump into the lead or vice versa, and
the charge pumping current becomes available. In this sec-
tion, we present the picture of quantized charge pumping
based on the corner states of HOTIs. Figure 3(b-1) displays
the schematic diagram of the charge-pumping setup. The
leads’ Fermi energy is fixed to EF = 0 with VL/R = 0, and the
linewidth function is set as L = R =  = 10−6t [58] unless
otherwise noted.

Before proceeding, we have a few remarks based on
Eq. (9), which are important to clarify the charge-pumping
process. (i) The pumping current IL/R and the occupation
number n j dramatically depend on ̃L/R = L/R|ψl/r |2. Here,
ψl = ψ j (1, 1) and ψr = ψ j (N, N ). This implies that the cor-
responding ̃L/R is nonzero if ψl,r �= 0. For ̃L/R �= 0, the
sample can exchange charges with the leads. (ii) Aside from
̃L/R, the variation of n j also relies on the relative values of the
eigenvalue Eθ, j for the sample and the Fermi energy EF for
the leads, as shown in Fig. 3(c). When the leads are coupled
with the sample’s eigenvectors with ψl/r �= 0, electrons will
transfer from the lead to the sample in the case of Eθ, j < EF .
Alternatively, electrons will be transferred from the sample to
the lead when Eθ, j > EF .

Now we demonstrate the pumping process by manipulating
the bound states of the domain wall-protected HOTIs. For
simplicity, we only pay attention to one of the corner states
( j = 2N2 for θ = 0) since they are decoupled, and the rest of
the cases can be analyzed in a similar manner. We display the
evolution of several typical quantities in Figs. 3(a-1)–3(a-5).
It plots the wave functions coupled to the left/right lead
|ϕr/l |2 ≡ |ψθ, j;r/l |2; the corresponding eigenenergy E ≡ Eθ, j

and the occupation number ne ≡ n j . Here, n j is calculated
numerically by solving Eq. (9) self-consistently.

FIG. 3. (a-1) is the evolution of the varied charge density �nr,l

versus θ = 2π f τ for the right lead (red) and left lead (blue), re-
spectively. f = 104 is adopted without specific statement. (a-2) The
evolution of the occupation number ne versus θ . (a-3) and (a-4) are
the eigenstates |ϕl |2 and |ϕr |2 for the eigenenergy shown in (a-5),
respectively. (a-5) is the eigenenergy versus θ . Since the two curves
in Fig. 2(e) can be analyzed in a similar manner, we only pay
attention to one of the curves. The corresponding wave functions
for different θ are shown in (b-1)–(b-5). The blue and red marks
denote the left and right leads and the contact points. The parameters
are U = 0.01t , EF = 0, and  = 10−6t . (c) shows three schematic
diagrams of charge transfer processes for typical θ in (a). The solid
(dashed) circle indicates that the energy level is filled (empty) with
ne = 1 (ne = 0). The red solid lines mark the energy for the sample
and the lead. From left to right: Electron transfer is forbidden; from
sample to lead; from lead to sample.

At the beginning of the pumping with θ = 0, states with
energy E smaller than EF are occupied (i.e., ne = 1), and the
wave function |ϕr,l |2 is concentrated at the lower boundary
[see Figs. 3(b) and 3(c)]. Although the eigenstates are coupled
with the right leads [̃R �= 0], charge exchange is not available
since the state is fully occupied with ne = 1 and E < EF .
With the increasing of θ , the corner state localized at (N, N )
emerges and correspondingly |ϕr |2 reaches its maximum. By
further increasing θ , the wave function gradually extends
along the x direction and moves toward the higher energy.
Notably, for the critical θ = π/2 where E = EF , the wave
functions are still coupled to the right lead with |ϕr |2 �= 0
[see Figs. 3(a-3) and 3(b-3)]. Therefore, the charge will be
transferred from the sample to the right lead [see Fig. 3(c)]
when θ > π/2, which corresponds to the discharging process
with �nr ≡ dn j,R = −1. Then, the state is empty, and ne

drops to zero [see Fig. 3(a-2)].
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TABLE I. Several typical charge exchange processes for differ-
ent θ in Fig. 3(a). E is the energy plotted in Fig. 3(a-5). EF is
the Fermi energy for the leads. The first row shows the θ for the
corresponding quantities. For instance, ne is the occupation number
slightly before θ ( i.e., θ − δθ ).

θ θ θ θ − δθ Events at θ

ϕr �= 0 ϕl = 0 E < EF ne = 1 no charge exchange
ϕr �= 0 ϕl = 0 E > EF ne = 1 discharge at right lead
ϕr = 0 ϕl = 0 E > EF ne = 0 no charge exchange
ϕr = 0 ϕl �= 0 E > EF ne = 0 no charge exchange
ϕr = 0 ϕl �= 0 E < EF ne = 0 charge at left lead
ϕr = 0 ϕl = 0 E < EF ne = 1 no charge exchange

A similar analysis can be applied for the remaining half of
the cycle, and the charging process is achieved at the left lead.
In simple terms, the whole pumping process is to discharge at
the right and charge at the left lead, as summarized in Table I.
Consequently, one electron is transferred from the left lead
to the right one during each cycle. Because of the existence
of two equivalent energy levels, the system pumps a total of
two electrons, which is quantized in one period. We have to
emphasize that the charge is carried by the corner states and
does not pass through the bulk during the pumping process,
which is unique for HOTIs.

V. MANIPULATING THE PUMPING CURRENT

Having established the picture of the charge-pumping pro-
cess in HOTIs, we investigate the effect of external parameters
on the pumping current in this section. Since the conservation
of current, i.e., one has IL = −IR, we only focus on IL in the
following.

As illustrated in Fig. 4(a), the current IL in the left lead is
zero when the voltage potential U = 0 because the degener-
ate perturbation between different corners does not allow the

FIG. 4. (a) Pumping current I = IL versus Fermi energy E for
different U . (b) Pumping current I versus (E ,V ) with ±V/2 the
additional voltage potential on left (−V/2) and right leads (V/2) with
VL/R = ±V/2. (c) I versus E and log10[].  is the linewidth function
for leads, which denotes the coupling strength between the leads and
the sample. (d) The sample size dependence of I versus E .

charging and discharging processes to occur independently.
As clarified in Sec. III, such a case cannot happen in realistic
materials. However, once the voltage potential U is intro-
duced, the charge pumping appears and gives rise to plateaus
of quantized currents, even for U = 0.01. By further increas-
ing U , the quantized current plateau becomes wider because
the energy range of the E − θ curve broadens, as shown in
Fig. 3(a-5). Besides, the current I is almost unchanged by
increasing N [see Fig. 4(d)], manifesting that the quantized
charge pumping is insensitive to the sample size N .

When the voltage potentials VL = −V
2 and VR = +V

2 for
the leads are considered, the effective Fermi energy for the
leads are modified to EF + VL/R. As shown in Fig. 4(b), V can
adjust the quantized pumped current I and can even reverse
the sign of I . Compared with V = 0 in Fig. 3(a), V changes
the relative energy between the leads and the sample, thus
affecting the charging and discharging processes. For V < 0,
the jump point of nj shifts to smaller (larger) θ [lower (higher)
energy] for the right (left) lead, which maintains the direction
of the pumping current. While for V > 0, the jump point of
n j moves toward larger (smaller) θ for the right (left) lead.
When EF − |VL| < |U | and EF + |VR| > |U |, the direction of
the pumping current should be reversed since the discharging
process in the right lead is unavailable.

Interestingly, similar phenomena can also be observed in
Fig. 4(c), where the coupling strength  for the leads can
also adjust the magnitude and direction of I . The reversal of I
induced by  is seldom reported in previous studies and will
be analyzed in detail below.

First, we need to rule out the influence of finite-size effect
and rotational frequency f . Figure 5(a) shows the pumping
current I versus log10[] for different sample sizes N . As
N increases, the reversal persists, demonstrating that the re-
versal is not attributed to the finite-size effect. Importantly,
since the wave functions of the bound states become more
localized for a larger sample size, ̃L/R = |ϕl/r |2 decreases
in this case. Thus, the critical point, where I changes its sign,
moves toward higher . Similarly, the variation of rotational
frequency f does not affect the current reversal either [see
Fig. 5(b)]. Nevertheless, the lower the frequent f is, the easier
it is for leads to exchange charges with the sample, namely,
decreasing f is equivalent to enhancing , and the critical
point shifts toward the lower  as f decreases [see Fig. 5(b)].

According to the above results, the reversal of I only de-
pends on the  and it is a physically reliable process. We then
investigate the occupation number ne versus (θ, log10[]).
Comparing Figs. 5(a) and 5(c), it is clear that I deviates from
the quantized value when the occupation number ne versus
θ significantly changes. Besides, ne changes its value as 

decreases in some regions. The state which is originally occu-
pied (ne = 1) becomes empty (ne = 0), and the empty state
is occupied. Accordingly, the current is reversed since the
occupation numbers are approximately opposite for large and
small .

For the sake of clarity, we plot ne,�n and |ϕl/r |2, E in
Figs. 5(d-1)–5(d-5) in the case of weak coupling  = 10−9t ,
which accounts for the current reversal. We start from the
point with ne = 1 such as θ = 0.25π . As θ exceeds 0.5π ,
the energy of the bound state E surpasses the leads’ Fermi
energy EF . Therefore, the occupation number ne starts to
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FIG. 5. (a) Pumping current I versus log10[] for different sam-
ple sizes N . (b) I versus log10[] for the frequency f with θ = 2π f τ .
(c) Occupation number ne for eigenvalue Ej=2N2 versus angle θ

and log10[]. (d-1)–(d-5) The ne,�n and |ϕl/r |2, E versus θ . The
parameters are the same with Fig. 3 except  = 10−9t . (e) shows
three schematic diagrams of charge transfer process for different θ

in (d).

decrease, which seems to be the same as the case of  =
10−6t . Nevertheless, unlike the case with larger  [see
Fig. 5(d-3)], ne does not directly reduce from one to zero.
The occupation number only changes slightly with |�n| 	 1
[see Figs. 5(d-1) and 5(d-2)]. Thus, an almost fully filled state
preserves when it leaves the right lead although E > EF is
achieved.

Continuing to increase θ , the remaining electrons should be
released in the left lead since E > EF still holds. Because of
the sufficiently long discharge time in the left lead, almost all
the charges are released in the left lead [see Figs. 5(d-2) and
5(c)]. Similarly, an almost empty state leaves the left lead with
the charging process negligible. Thus, the charge pumping
processes in the left and right leads are opposite to those in
Fig. 3(a), which induces the reversal of the pumping current.
In short, the reversal of the pumping current arises from the
insufficient discharge and charge processes in the right and
left leads, respectively.

VI. CONCLUSION

In summary, the quantized charge pumping in HOTIs is
studied. We found an interesting charge pumping process
based on the unique topological natures of the HOTIs, which
is distinct from the widely studied ones. The charges only
shift along the sample’s boundary, and the bulk states do not
directly participate in the pumping process. Significantly, the
bulk states ensure the existence of gapped edge states, so
the high-order topological order is essentially required for
the pumping process. Furthermore, the manipulations of the

pumping current by external parameters are also uncovered.
We find that the direction of the pumping current strongly
depends on the coupling strength and the chemical potential
of the leads. Our paper extends the understanding of exotic
transport properties in HOTIs.
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APPENDIX A: THE DETAILS OF THE
DERIVATION OF EQ. (9)

We present the details of the deviations for Eq. (9) [58,62].
Based on the adiabatic approximation, one has

dn j

dτ
= 1

ih̄
〈[b†

jb j,Hc + Hel]〉

=
∑

k

1

ih̄
〈−tLψ j (oL )a†

Lkb j + t∗
Lψ∗

j (oL )b†
jaLk〉

+
∑

k

1

ih̄
〈−tRψ j (oR)a†

Rkb j + t∗
Rψ∗

j (oR)b†
jaRk〉

= IL j + IR j . (A1)

Here, one sets IL j = ∑
k

1
ih̄ 〈−tLψ j (oL )a†

Lkb j + t∗
Lψ∗

j (oL )

b†
jaLk〉 and IR j = ∑

k
1
ih̄ 〈−tRψ j (oR)a†

Rkb j + t∗
Rψ∗

j (oR)b†
jaRk〉.

Noticing
∫

dE
2π

G<
j,Lk (E ) = i〈a†

Lkb j〉 and
∫

dE
2π

G<
Lk, j (E ) =

i〈b†
jaLk〉, IL j is simplified:

IL j =
∫

dE

2π h̄

∑
k

[tLψ j (oL )G<
j,Lk (E )

− t∗
Lψ∗

j (oL )G<
Lk, j (E )]. (A2)

Based on the contour-ordered Green’s function [59], one has

G<
j,Lk (E ) = G<

j j (E )t∗
Lψ∗

j (oL )ga
Lk,Lk (E )

+ Gr
j j (E )t∗

Lψ∗
j (oL )g<

Lk,Lk (E ); (A3)

G<
Lk, j (E ) = g<

Lk,Lk (E )tLψ j (oL )Ga
j j (E )

+ gr
Lk,Lk (E )tLψ j (oL )G<

j j (E ). (A4)

It leads to

IL j =
∫

dE

2π

1

h̄

{
G<

j j (E )
[
�a

L j (E ) − �r
L j (E )

]
+ �<

L j (E )
[
Gr

j j (E ) − Ga
j j (E )

]}
. (A5)

The self-energy satisfies

�r
L j (E ) =

∑
k

t∗
Lψ∗

j (oL )gr
Lk,Lk (E )tLψ j (oL )
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= − i

2
L|ψ j (oL )|2; (A6)

�a
L j (E ) =

∑
k

t∗
Lψ∗

j (oL )ga
Lk,Lk (E )tLψ j (oL )

= i

2
L|ψ j (oL )|2; (A7)

�<
L j (E ) =

∑
k

t∗
Lψ∗

j (oL )g<
Lk,Lk (E )tLψ j (oL )

= iL|ψ j (oL )|2 fL(E ). (A8)

Here, L = 2πρL|tL|2. Then, Eq. (A5) can be rewritten as

IL j =
∫

dE

2π

1

h̄
iL|ψ j (oL )|2{G<

j j (E )

+ fL(E )
[
Gr

j j (E ) − Ga
j j (E )

]}
. (A9)

The lesser Green’s function in Eq. (A9) gives rise to∫
dE

2π
G<

j j (E ) = i〈d†
j d j〉 = in j . (A10)

The second term in Eq. (A9) can be calculated as follows:∫
dE

2π
fL(E )

[
Gr

j j (E ) − Ga
j j (E )

]
=

∫
dE

2π
fL(E )

{
1

E − Ej + iL |ψ j (oL )|2
2 + iR|ψ j (oR )|2

2

− 1

E − Ej − iL |ψ j (oL )|2
2 − iR|ψ j (oR )|2

2

}

=
∫

dE

2π
fL(E )

−i j

(E − Ej )2 + 2
j /4

. (A11)

One sets  j = L|ψ j (oL )|2 + R||ψ j (oR)|2|. Supposing  j

is small, one considers that fL(E ) is almost unchanged for
E ∈ [Ej − �E , Ej + �E ], which is ensured by the adiabatic
approximation. Thus, one has fL(E ) = fL(Ej ). Based on these
considerations, the above integral gives rise to

fL(Ej )
∫

dE

2π

−i j

(E − Ej )2 + 2
j /4

= −i fL(Ej ). (A12)

Based on Eqs. (A10) and (A12), Eq. (A9) (a similar formula
for IR j) can be rewritten as

IL j = 1

h̄
L|ψ j (oL )|2{ fL(Ej ) − n j};

IR j = 1

h̄
R|ψ j (oR)|2{ fR(Ej ) − n j}. (A13)

Finally, one has

dn j

dτ
= IL j (t ) + IR j (t )

= 1

h̄
L|ψ j (oL )|2{ fL(Ej ) − n j}

+ 1

h̄
R|ψ j (oR)|2{ fR(Ej ) − n j}. (A14)

The above equation can be solved self-consistently.

FIG. 6. The variation of the two terminal transmission coef-
ficient T = Tr[LGrRGa] versus θ and energy E . Here, Gr =
[E + iη − Hc − �L − �R]−1. Hc is given in Eq. (2). L/R = i[�L/R −
�†

L/R] is the linewidth function of the leads and �L/R is the self-
energy. The positions of the leads are the same as those in the
main text. The white lines give the eigenvalues of Hc. The dashed
lines are the eigenvalues of the corner states. The voltage poten-
tial is also considered in our calculations. The sample size is set
as Nx = Ny = 20.

APPENDIX B: DISTINCTIONS BETWEEN EQ. (8) AND
THE STANDARD LANDUER-BÜTTIKER FORMULA

We present the two terminal transport simulations by
adopting the standard Landuer-Büttiker formula [47] with
transmission coefficient T = Tr[LGrRGa]. The leads’ po-
sitions are the same as those in the main text. As plotted in
Fig. 6, the corner states gives no two-terminal conductance for
any θ ∈ [0, 2π ]. Thus, the quantized current should only be
contributed from the pumping process, where the charges car-
ried by the corner states shift along the boundary of the sample

FIG. 7. (a), (c) The variation of the eigenvalues E and the eigen-
vectors |ϕr/l |2. |ϕr |2 and |ϕl |2 are the eigenvalues for sites connected
to the right and left leads [the red and blue dots in (d)], respectively.
(b) The current I versus the Fermi energy E for the schemes of the
voltage potentials in (d).
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by varying the magnetic-field direction θ and exchange at the
leads.

Actually, for the standard Landuer-Büttiker formula, one
assumes that a low-frequency (ω ≈ 0) voltage with V ∼ eiωτ

is applied only on the leads [59]. Thus, the eigenvalues of
the central region are almost unaffected with the variation

of τ , and the equation of motion dNβ,k

dτ
= d〈a†

β,kaβ,k〉
dτ

is defined
on the leads [distinct from Eq. (8)] [59]. Then, the standard
Landuer-Büttiker formula is obtained [59]. Instead, the adia-
batic variations of θ (τ ) change the eigenvalues here. It induces
the change of the occupational number n j = 〈b†

jb j〉 in the cen-

tral region instead, which is correlated to the charge-pumping
process.

APPENDIX C: HU DEPENDENT

We adopted the potential scheme shown in Fig. 7(d). We
notice that the crossings still exist [see Fig. 7(a)] for the
considered potential scheme. Typically, the charging and dis-
charging processes are modified due to the variation of HU .
However, the quantization of current I is almost unaffected, in
general [see Fig. 7(b)].
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