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Nonreciprocal charge current in a bulk Rashba semiconductor above the band crossing point
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We calculate the nonreciprocal charge current in a bulk semiconductor with Rashba spin-orbit coupling
subjected to crossed electric and magnetic fields. By using a second-order distribution function derived in a
perturbative approach that considers the change in the local electron energy induced by the electric field, we find
that, in contrast with previous theoretical estimates, a charge current proportional to the applied magnetic field
exists for all values of the chemical potential, above or below the band crossing point (BCP), the energy where
the two chiral conduction bands intersect. The persistence of the quadratic electric current across the BCP is a
consequence of the chiral dependence of the relaxation times, an effect neglected before.
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I. INTRODUCTION

After being at the center of many theoretical and experi-
mental investigations of magnetic and transport phenomena
in two-dimensional zinc-blende quantum wells with inversion
asymmetry [1,2], the Rashba interaction [3] has been more
recently playing a prominent role in new, interesting physics
occurring in three-dimensional systems. In these materials,
inversion asymmetry along the c axis creates a large Rashba
coupling between the electron momentum and its spin in the
plane perpendicular to the axis that dominates the observed
phenomenology in many experimental settings [4–7].

One of the most important experimental manifestations
of the inversion symmetry breaking in these systems is the
existence of the nonreciprocal charge transport, characterized
by different rightward- and leftward-propagating currents [8].
Systems that support this unidirectional effect are currently
being considered for potential application of unidirectional
magnetoresistance in the absence of a ferromagnetic layer.

In the presence of crossed electric and magnetic fields, say
Ex and By, the nonreciprocal resistance Rnr is given by [9,10],

Rnr(I, B) = γ R0IxBy, (1)

where R0 is the resistance at zero magnetic field and Ix is the
electric current along the x̂ direction. This result represents the
first-order correction to Ohm’s law, which takes into account
an expression for the electric current in a conductor of cross
section A of the form I = jxA = A(σ1Ex + σ2E2

x ). σ1 and σ2

are the linear and quadratic conductivities, the existence of
the latter being conditioned by the application of a magnetic
field along a perpendicular direction. This is easy to under-
stand considering that the magnetic field which couples with a
spin along the same direction through the Zeeman interaction,
shifts the momentum in the orthogonal direction on account
of the spin-orbit interaction. Depending on the direction of Ix,
Rnr can be positive or negative, thus increasing or decreasing
the overall resistance.

The coefficient of nonreciprocity γ is expressed in terms
of σ1 and σ2 as

γ = − 1

ABy

σ2

(σ1)2
. (2)

The topic of the nonreciprocal current was revisited more
recently in connection with the inversion symmetry breaking
in systems with large spin-orbit coupling, such as bulk-Rasha
semiconductors. The existence of the currents and their de-
pendence on the electric and magnetic fields in agreement
with Eq. (1) was confirmed experimentally in BiTeBr [10]
and in room-temperature α-GeTe [11]. In both cases, the
experiments were done in the transport regime corresponding
to an equivalent two-dimensional (2D) potential μ below the
band crossing point (BCP), the energy value that designates
the intersection of the 2D chiral conductivity bands at zero
momentum, p = 0.

The theoretical estimate of σ2 that determines the coef-
ficient γ , presented in the same references, indicated that a
second-order charge current exists only for a chemical poten-
tial μ below BCP. For μ above BCP, the nonlinear charge
current simply disappears generating a step-like discontinu-
ity around BCP. In Ref. [11] it was further posited that this
discontinuity diminishes at finite temperatures, even though
below BCP σ2 is temperature independent.

The discontinuity in σ2 is surprising considering that all the
other variables in this problem, such as electron velocities,
single-particle energies, and the linear conductivity σ1 are
continuous functions of the chemical potential. Although the
result was attributed to the existence of two Fermi surfaces
with opposite helicities above BCP [10,11], the cancellation
remains a mathematically disturbing event since a response
function such as a conductivity should be continuous.

σ2 is calculated straightforwardly in a semi-classical trans-
port theory that sums the velocities of each state multiplied by
a corresponding distribution function quadratic in the electric
field. In Refs. [10,11], calculations were performed using a
second-order distribution function derived iteratively from the
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Boltzmann transport equation, δ f (2)
it (p) = (eτE · ∇p)2 f 0(εp),

where f 0 is the equilibrium Fermi distribution function of an
electron of momentum p and τ is the relaxation time.

In this paper we propose an alternative calculation that
uses a second-order distribution function derived in an ap-
proximation that considers the change in the local energy
of the particle, δ f (2)(εp) = 1

2 (eE · vpτ )2( d2 f 0

dε2
p

) [12], where

vp is the electron velocity. This choice is motivated by the
observation that the iterative solution δ f (2)

it does not satisfy
self-consistently the collision term of the Boltzmann transport
equation, and in this sense it is not correct. Moreover, for μ

above the BCP, it diverges at the origin in the momentum
space, a technical difficulty that precludes the incorporation in
the second-order current calculation of a multiband relaxation
time whose chiral-dependent part would select exactly the di-
vergent terms. Here we show that it is precisely this previously
neglected feature of the problem that guarantees the continuity
of σ2 across BCP.

II. HAMILTONIAN

A conduction electron of momentum p = {px, py, pz} and
spin σ = {σx, σy, σz} in a bulk Rashba semiconductor placed
in a magnetic field B = (0, By, 0) is described by a Hamilto-
nian [10]

H0 = p2
z

2m‖
+ p2

x + p2
y

2m⊥
+ α(pxσy − pyσx ) − Byσy, (3)

where m‖ and m⊥ are the effective masses along the ẑ axis
and in the x̂-ŷ plane, while By is a contracted notation for the
Zeeman splitting, gμBByσy/2 with μB the Bohr magneton and
g the effective gyromagnetic factor. α is the Rashba coupling
constant. m⊥α2/2 can range in value from several meVs like
in the zinc-blende quantum well structures to tens of meV bulk
polar semiconductors. In the following considerations, it is as-
sumed that the spin-orbit coupling is the dominant interaction
in comparison with the Zeeman splitting, m⊥α2/2 � By.

A unitary transformation px → px − By/α, py →
py, pz → pz modifies the Hamiltonian to

H = p2
z

2m‖
+ 1

2m⊥

(
px − By

α

)2

+ p2
y

2m⊥
+ α(pxσy − pyσx ),

(4)
a form which permits an exact diagonalization in the spin
space. (There is no loss of generality in this problem in choos-
ing only a By magnetic field. An in-plane magnetic field of
arbitrary direction, with nonzero components Bx and By shifts
both momenta to px − By/α and py + Bx/α. The calculation
of the electric currents, obtained by summing the momenta
along the x and y directions proceeds in an identical fashion.)

Since the momenta along the three coordinate axes are
good quantum numbers, in the following considerations we
replace the corresponding operator in the expression of the
Hamiltonian by its eigenvalue. The single-particle energies
are obtained as

Eξ = p2
z

2m‖
+ 1

2m⊥

(
px − By

α

)2

+ p2
y

2m⊥
+ ξαp, (5)

p

��E

Region I

Region III

Region II

FIG. 1. The energy spectrum of the Rashba system. The three
marked regions determine the particulars of the transport phe-
nomenology as a function of the chemical potential μ.

where p =
√

p2
x + p2

y and ξ = ±1. The eigenfunctions, nor-

malized to a volume V , are

|u+〉 = eip·r
√

2V

(
1

−ieiϕ

)
, |u−〉 = eip·r

√
2V

(−ie−iϕ

1

)
, (6)

where tan ϕ = −px/py.
Since the interesting physics in this problem concerns the

x̂-ŷ dynamics, we eliminate the energy associated with the
longitudinal direction and write εξ = Eξ − p2

z/2m‖. The two-
dimensional energy spectrum is therefore written as

εξ = 1

2m⊥

(
p + ξmα + By

α
cos ϕ

)2

+ B2
y

2m⊥α2

− 1

2m⊥

(
By

α
cos ϕ + m⊥ξα

)2

. (7)

These equations describe two paraboloids centered at

pcenter = −ξm⊥α − By

α
cos ϕ, (8)

of minima

εmin,ξ = B2
y

2m⊥α2
sin2 ϕ − m⊥α2

2
− ξBy cos ϕ, (9)

as shown schematically in Fig. 1
The two Fermi surfaces intersect at p = 0, when EBCP =

B2
y

2m⊥α2 . This energy value denotes the band crossing point
(BCP) [11] or the Dirac point in Ref. [18]. In the following
considerations, we shift the origin of the 2D energy at this
value.

The Fermi momenta are calculated from εξ = μ, where
μ is the effective 2D chemical potential obtained from the
true three-dimensional (3D) potential by subtracting the ki-
netic energy along the c axis. Since the Fermi momenta are
positively defined, for energies below the BCP, they are de-
termined exclusively by the ξ = −1 paraboloid’s intersection
with the constant μ plane as shown in Fig. 1.

The position of the chemical potential determines the
various dynamic regimes of this problem. Following the well-
established discussion lines [10,11], we differentiate three
regions.
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Regions I and II correspond to chemical potential values
below BCP, i.e., μ < 0. In region I μ satisfies

−mα2

2
− By � μ � −mα2

2
+ By. (10)

In this situation, the Fermi surface ξ = −1 is not totally
enclosed, the angular distribution of the electron states being
limited to the interval [ϕmin, 2π − ϕmin], where

ϕmin = arccos
m⊥α2

2 + μ

By
, (11)

a result obtained from a linear approximation in the magnetic
field of Eq. (9).

The corresponding Fermi momenta for η = ±1 are given
by

pη
− = m⊥α − By

α
cos ϕ + η

√
2m⊥μ +

(
By

α
cos ϕ − m⊥α

)2

.

(12)
Region II is reached when the chemical potential satisfies

−m⊥α2

2
+ By � μ � 0, (13)

indicating that the ξ = −1 Fermi surface is completely en-
circled. Therefore, ϕ ∈ [0, 2π ]. The Fermi momenta are the
same as in Eq. (12).

In region III the chemical potential is above the BCP, μ >

0 and both Fermi surfaces for ξ = ±1 participate in transport
with Fermi momenta

pξ =
√

2m⊥μ +
(

By

α
cos ϕ + ξm⊥α

)2

− ξm⊥α − By

α
cos ϕ.

(14)
Since the energy width of region I is of the order By, much

smaller than m⊥α2/2, in the following considerations we will
neglect it and refer only to the region below the BCP (region
II) and the region above the BCP (region III).

III. TRANSPORT FORMALISM

In the presence of an electric field, the electron distribution
function fp satisfies

ṗ · ∇p fp =
(

∂ fp

∂t

)
coll.

. (15)

With ṗ = −eE, the first-order correction is obtained by ap-
plying the derivative ∇p to the equilibrium Fermi distribution
function written for energy εp, f 0(εp) = [eβ(εp−μ) + 1]−1. The
collision integral in Eq. (15) is calculated using a linear so-
lution of the type δ f (1)

p = C(εp)∇pεp · E(−df 0/dεp) and the
result is expressed in terms of a relaxation time τ ,

(
∂ fp

∂t

)
coll.

= −δ f (1)
p

τ
. (16)

The first-order solution to the Boltzmann transport equa-
tion (BTE) is therefore [13]

δ f (1)
p = eτvp · E

df 0

dε
, (17)

where vp = ∇pεp is the electron velocity.
To obtain the second-order distribution function, an itera-

tive algorithm based on the BTE was proposed in Ref. [14]
and subsequently used in many applications that dealt with
nonlinear transport effects, including the nonreciprocal cur-
rent problem [10,11,15]. In this approach, δ f (2)

p = (eτE ·
∇p)2 f 0

p . In Ref. [12] we showed that this result violated the
linearity premise underlying the relaxation time approxima-
tion of the collision integral. Consequently, we suggested a
different procedure for generating the second-order distribu-
tion function in a semi-classical approximation, based on the
local perturbation of the single-particle distribution function
induced by the external fields. Thus, the addition of an electro-
static potential V (r) = −E · r, modifies locally the electron
energy to ε̃p = εp + eE · r, a change considered weak in re-
spect to the Fermi energy. the electron distribution function is
just the Fermi function written for the local energy

f̃p(r) =
{

1 + exp

[
εp − εF + eE · r

kBT

]}−1

. (18)

Equation (18) can be expanded in a series of terms propor-
tional to powers of the electric field. When the linear terms
are constrained to replicate the solution of the BTE, it is found
that r = vpτ , a result which establishes the spatial range of
the approximation. τ is the relaxation time obtained in the
Boltzmann approximation, given by

h̄

τ
= ν0

∫
|Vp,p′ |2(1 − cos θpp′ )dθpp′ , (19)

with ν0 the density of states at the Fermi surface and |Vp,p′ |2 is
the scattering matrix element of an electron of initial and final
momenta, p and p′, respectively.

With this, the second-order distribution function becomes

δ f (2)
p = 1

2kBT
(eτE · vp)2 tanh

εp − εF

2kBT

(
− ∂ f 0

p

∂εp

)
. (20)

As we show below, using Eq. (20) to evaluate the nonrecip-
rocal current is a key step in recovering the continuity of
quadratic conductivity across BCP.

For an electric field parallel to the x̂ axis, the electron
velocity vx is, from Eq. (7),

vx =
(

px

m⊥
+ By

α

)
+ ξαpx/p. (21)

It is useful to express the velocity as a function of the chemical
potential since, in the end, these values will enter the cal-
culation. Consequently, below the BCP the velocity is, from
Eq. (7), written for ξ = −1,

vxη = η
1

m⊥

√
2m⊥μ +

(
By

α
cos ϕ − m⊥α

)2

× cos ϕ + By

m⊥α
sin2 ϕ. (22)
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Above the BCP, from Eqs. (7), (21), and (14), the velocity is

vxξ = 1

m⊥

√
2m⊥μ +

(
By

α
cos ϕ + ξm⊥α

)2

× cos ϕ + By

m⊥α
sin2 ϕ. (23)

To round up the general presentation of the transport for-
malism, we introduce the chiral-dependent relaxation times
obtained by generalizing the relaxation time calculation [13]
to a two-band conduction regime in a system with Rashba
interaction as discussed in Refs. [16,17] whose approach
we adapt to a two dimensional system. (Even though below
BCP there is only one Fermi surface associated with ξ = −1
because the electron velocity at the Fermi level is η = ±1
dependent, two different relaxation times are involved). We
anticipate that their inclusion in the calculation is essential in
this problem.

Thus, in first order in α, for a chiral index λ (ξ above BCP
and −η below BCP), the relaxation time Eq. (19) becomes

h̄

τλ

= h̄

τ

(
1 + λ

m⊥α

2p0

)
, (24)

with

p0 =
√

(m⊥α)2 + 2m⊥μ. (25)

We anticipate that the proper consideration of the chiral
effect on the relaxation time does not have any effect on the
linear conductivity calculation, while it is essential in obtain-
ing a correct value for the quadratic term σ2.

IV. CHARGE CURRENTS

A. Linear charge currents

The first-order current below BCP is calculated from
Eqs. (12), (17), and (22),

j (1)
x,< = −e

∑
p∈[p−

−,p+
−]

vxηδ f (1)
p

= (e2Ex )

(2π h̄)2

∑
η=±1

ητη

∫ 2π

0

[
v2

xη pη
−

d pη
−

dε

]
μ

dϕ

= e2Exτ

2π h̄2 α
√

(m⊥α)2 + 2m⊥μ. (26)

Here
∑

p∈[p−
−,p+

−] → ∑
η=±1 η.

Above the BCP, currents are evaluated using Eqs. (23) and
(14)

j (1)
x,> = −e

∑
ξ=±1

∑
p

vxξ δ f (1)
p

= e2Ex

(2π h̄)2

∑
ξ=±1

τξ

∫ 2π

0
dϕ

∫ ∞

0

[
v2

xξ pξ

d pξ

dε

](
−df 0

dε

)
dε

= e2Ex

(2π h̄)2

∑
ξ

τξ

∫ 2π

0

[
v2

xξ pξ

d pξ

dε

]
μ

dϕ

= e2Exτ

2π h̄2m⊥
[(m⊥α)2 + 2m⊥μ]. (27)

From Eqs. (26) and (27), we determine the linear conduc-
tivities

σ1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e2τ

2π h̄2 α
√

(m⊥α)2 + 2m⊥μ, μ < 0,

e2τ

2π h̄2m⊥
[(m⊥α)2 + 2m⊥μ], μ > 0.

(28)

As expected there are no first-order contributions in the
magnetic field and σ1 is continuous across BCP.

B. Billinear electric currents

The nonreciprocal currents Ex and linear in By are now cal-
culated using the second-order distribution function Eq. (20).
Because δ f (2)

p is proportional with tanh[(εp − μ)/2kBT ]
which cancels at μ, the summation algorithm uses the Som-
merfeld expansion [13].

Below the BCP is computed with input from Eqs. (22)
and (12). In the final steps of the calculation we linearize the
results in the magnetic field and introduce p0 from Eq. (25).
Thus,

j (2)
x,< = −e

∑
p∈[p−

−,p+
−]

vxηδ f (2)
p

= −e3E2
x

48h̄2

∑
η

ητ 2
η

∫ 2π

0

d

dε

[(
pη

−
d pη

−
dε

v3
x

)]
μ

dϕ

= −e3E2
x

48h̄2

∑
η

τ 2
η

∫ 2π

0

[
3

p0

m⊥
cos3 ϕ + 2ηα cos3 ϕ

− By

p0
(cos4 ϕ − sin2 ϕ cos2 ϕ)

− 2η
By

m⊥α
(cos4 ϕ − 3 sin2 ϕ cos2 ϕ)

]
dϕ

= πe3τ 2E2
x

16h̄2

By√
(m⊥α)2 + 2m⊥μ

. (29)

The result in Eq. (29) has the same energy dependence as in
Refs. [10,11], but differs slightly in magnitude, with a leading
numerical prefactor of π/16 = 0.2 versus 3/8π = 0.12 in
Refs. [10,11]. On account of the angular integral effectively
canceling all the η-dependent terms in the current kernel, the
chiral component of the relaxation time does not affect the
final result. This situation changes dramatically for μ above
BCP, when considering chiral-dependent relaxation times is
essential in preserving the continuity of the charge current.

When μ > 0, the nonreciprocal current is evaluated from
Eqs. (23), (14), and (25),

j (2)
x,> = −e

∑
p,ξ

vxξ δ f (2)
p

= −e3E2
x

48h̄2

∑
ξ

τ 2
ξ

∫ 2π

0

d

dε

[
pξ

d pξ

dε
v3

xξ

]
μ

dϕ

= −e3E2
x

48h̄2

∑
ξ

τ 2
ξ

∫ 2π

0

[
3

p0

m⊥
cos3 ϕ − 2ξα cos3 ϕ
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FIG. 2. The 2D second-order conductivity in Eq. (31) (a) is com-
pared with the result of Ref. [10] (b). Continuity across the μ = 0
point replaces the step function discontinuity.

+ 3ξ
By

p0
(cos4 ϕ − sin2 ϕ cos2 ϕ)

+ 2
By

m⊥α
(3 sin2 ϕ cos2 ϕ − cos4 ϕ)

]
dϕ

= −πe3E2
x

32h̄2

By

p0

∑
ξ

ξ

(
1 − ξ

m⊥α

p0

)

= πe3τ 2E2
x

16h̄2

m⊥αBy

(m⊥α)2 + 2m⊥μ
. (30)

In the second to last line of Eq. (30), the linearized (in
m⊥α/p0) expression of τ 2

ξ was introduced from Eq. (24).
Thus, the quadratic conductivities are

σ2 =
{

πe3τ 2

16h̄2
By√

(m⊥α)2+2m⊥μ
, μ < 0,

πe3τ 2

16h̄2
m⊥αBy

(m⊥α)2+2m⊥μ
, μ > 0.

(31)

In the limit of μ → 0, σ2 is continuous across BCP. Es-
sential for this result is the presence of the chiral correction
to the relaxation time. Otherwise, j (2)

x,>BCP would be zero, the

result of Refs. [10,11]. Incorporating these relaxation times in
a formalism based on the iterative solution for δ f (2)

p is impos-
sible because that function exhibits a divergence at p = 0 that
would couple exactly into the chiral dependence of the times
leading to an overall divergent result. In Fig. 2 we compare
the two expressions for the second-order conductivity in the
second and third regions.

From Eqs. (28) and (31) a general expression can be in-
troduced for the quadratic conductivity in terms of the linear
conductivity

σ2 = e5τ 3

32h̄4

α

σ1
By, (32)

while a corresponding coefficient of nonreciprocity results
from Eq. (2)

γ = − 1

A

e5τ 3

32h̄4

α

σ 3
1

. (33)

V. CONCLUSION

Using a quadratic distribution function derived in a local
energy approximation, δ f (2)(εp) in Eq. (20), we calculated
the second-order charge current in a Rashba semiconductor
under crossed electric and magnetic fields. While a uniband
relaxation time suffices for calculating σ2 below the BCP
since no additional contributions to the current arise from
the chiral corrections, considering a chiral-dependent relax-
ation rate is essential for assuring the continuity of σ2. The
nonreciprocal current above BCP decreases with μ and is
independent of temperature, another characteristic feature of a
totally degenerate system. Although we chose not to undergo
the calculation here, σ2 can be evaluated analytically in region
I as well by using the same general algorithm used in calculat-
ing the current below BPC, but with a modified angular range
ϕ ∈ [ϕmin, 2π − ϕmin], where ϕmin is given in Eq. (11)

The rectification current is thus expected to occur in all
noncentrosymmetric semiconductors with spin-orbit interac-
tion in the presence of crossed electric and magnetic fields,
regardless of the position of the effective 2D chemical po-
tential μ relative to BCP. Since this is determined by the
electron concentration (doping level), the number of favorable
situations can be quite big. Prime candidates for observing
this phenomenon are zinc-blende quantum wells with Rashba-
Dresselhaus coupling, where the 2D chemical potential is
always positive. Further, polar Rashba semiconductors like
those used in Refs. [10,11] can be driven in a regime with
positive μ. Experimentally, this situation was already real-
ized in BiTeI in Ref. [18] where samples with n = 4.6 ×
1018 cm−3 and n = 8.3 × 1018 cm−3 were found to have an
effective 2D chemical potential below BCP, while those with
n = 4.2 × 1019 cm−3 and n = 6.7 × 1019 cm−3 had a μ above
BCP. Similarly, this effect should also be detected in the
surface Weyl states of 3D topological insulators, as discussed
in Ref. [15] where the effective 2D chemical potential can be
driven through doping above the band crossing point.
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