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Recombination with plasmon emission in HgTe/CdHgTe multiple quantum well heterostructures
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The work is devoted to the theoretical study of the process of recombination of nonequilibrium charge carriers
with the emission of plasmons in structures with two and three quantum wells, and also in an infinite number
quantum-well structure under conditions of inverse band population. The plasmon spectra in these structures have
been calculated. The dependence of the average probability of electron recombination with plasmon emission
on the concentration of nonequilibrium carriers for three temperatures has been found. It has been shown that an
increase in the number of quantum wells leads to a slight increase in the average recombination probability.
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I. INTRODUCTION

The problem of creating semiconductor sources of stim-
ulated radiation in the mid-infrared (IR) range was largely
solved by the advent of quantum-cascade lasers. However,
quantum-cascade lasers do not work in the region of 30–
45 μm [1] due to the strong phonon absorption of the material
of these lasers in said region. Therefore, the search for sources
of radiation generation in this region of the spectrum is an
urgent task at present. One of the promising systems in which
the generation of radiation in this range is possible are the
HgTe/CdHgTe quantum well (QW) heterostructures. There
are three main advantages of such structures. First, in such
structures, it is possible to change the band gap from zero
to values exceeding 1 eV by changing the parameters of the
QW, which makes it possible to generate radiation in the
mid-IR range [2–5]. Second, due to the features of the band
structure of a narrow-gap QW, Auger recombination is sup-
pressed there [2]. This recombination mechanism is often the
main obstacle in the creation of semiconductor lasers in the
mid-IR range, in which generation proceeds due to interband
transitions. Third, the technology for growing such structures
has been well developed by now [6,7]. The use of these ad-
vantages has led to obtaining stimulated emission from such
structures in the wavelength range of 2.5–31 μm [2,8].

One of the main obstacles to the creation of interband
semiconductor lasers is the processes of nonradiative recom-
bination. The study of their features will make it possible
to develop recommendations for creating the most efficient
laser structures. In narrow-gap HgTe QW, recombination
with the emission of two-dimensional (2D) plasmons can
play an important role. Sometimes the rate of this recom-
bination can exceed the rate of Auger recombination [9].
This recombination mechanism was previously studied in
single-layer graphene [10]. However, despite the extensive
study of plasmons in multilayer graphene [11,12] and other
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2D materials [13,14], carrier recombination with plasmon
emission has not been studied in them. This recombina-
tion mechanism was studied in structures with single HgTe
quantum wells [9,15]. However, for lasers in the long-
wavelength part of the IR range, as a rule, structures
containing several closely spaced QWs are used, which makes
it possible to increase the gain [2]. Note that there have
been proposals to use HgTe QW structures to generate and
amplify two-dimensional plasmons [16]. It was shown re-
cently that multi-quantum-well (MQW) structures have some
advantages over single-QW structures for the generation of
two-dimensional plasmons [17].

The phenomena of recombination of nonequilibrium carri-
ers with the emission of plasmons in MQW structures have not
been studied. Filling this gap is the main task of the present
work. In this paper, the probabilities of electron recombination
with plasmon emission are calculated under conditions close
to laser generation, when the concentrations of nonequilib-
rium electrons and holes are many times greater than the
concentrations of equilibrium carriers.

II. CALCULATION MODEL

A. Electronic states in quantum well
and plasmon dispersion relation

Consider a structure consisting of an arbitrary number of
identical HgTe QWs equidistant from each other by a distance
d and separated by a barrier Cd0.7Hg0.3Te (see Fig. 1). Barriers
of this compound are most often used in real HgTe/CdHgTe
structures [2,3]. A plasmon with wave vector q and frequency
ω propagates in the QW plane. To find the characteristics of
plasmons, it is necessary to calculate the electron polarizabil-
ity of a 2D electron gas. To calculate the polarizability, it is
necessary to find the characteristics of the electron states in
the QW.

To calculate the characteristics of electron states in a QW,
we used the Kane model with allowance for deformation
effects. The calculated spectrum of electrons in a 5-nm QW
surrounded by Cd0.7Hg0.3Te barriers is shown in Fig. 2. Note
that the band gap of such a QW (35 meV) corresponds to the
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FIG. 1. Sketch of the structure under study (for example, a struc-
ture with three HgTe QWs is shown).

region of the GaAs restrahlen band. We assume in calculations
that the structure under study was grown on a relaxed CdTe
buffer on the (013) plane. This corresponds to experimentally
studied structures [3,4]. We also assume that the distance
between the QWs is much larger than the localization scale
of the electron wave function. Therefore, electron tunneling
between QW can be neglected, and the electron spectrum can
be considered as the spectrum of electrons in each separated
QW. We have neglected the effects that lead to the removal
of the spin degeneracy of subbands, which are associated
with a decrease in symmetry at the heterointerfaces and the
absence of an inversion symmetry in the crystal lattice when
we have found the states of electrons in a QW. We note that it
was experimentally shown in Ref. [18] that the value of spin
splitting in subbands of the conduction band of narrow-gap
HgTe QWs is small. The method for calculating the electronic
spectrum within the framework of this model is described in
more detail in Ref. [19].

Note that, upon optical excitation when the photocarriers
excited only in QWs, the carrier concentrations in different
quantum wells differ only slightly due to the small absorp-
tion coefficient of light by the quantum well (∼1%) [20,21].

FIG. 2. Electron spectrum in a 5-nm HgTe QW surrounded with
Cd0.7Hg0.3Te barriers. The lattice temperature is T = 4.2 K. The
straight arrow schematically shows the transition of an electron from
the conduction band to the valence band with the emission of a
plasmon with energy h̄ω (wavy arrow).

Therefore, we assume the concentration of nonequilibrium
carriers to be the same for all quantum wells. The position
of quasi-Fermi levels in the bands was calculated at a fixed
2D concentration of nonequilibrium charge carriers ns. To
describe the distribution function of nonequilibrium carriers in
subbands, we use the approximation under which nonequilib-
rium carriers obey the Fermi-Dirac statistics with an effective
temperature Teff . In the considered range of concentrations
and effective temperatures, nonequilibrium electrons are lo-
cated only in the lower subband of the conduction band, and
nonequilibrium holes are located in the upper valence sub-
band. Therefore, we consider only the upper subband of the
valence band and the lower subband of the conduction band.

If we consider plasmons for which the product of the wave
vector and the distance from the surface of the heterostructure
to the nearest QW is much greater than one, then the influence
of the surface on the properties of plasmons can be neglected.
In this case, the medium in which the QWs are located can
be considered unlimited. Obviously, in such a medium there
is always a plane of symmetry. In the case of an odd number
of QWs, this plane is located in the plane of the central QW,
and in the case of an even number of QWs, the plane is
located in the center between N/2 and N/2 + 1 QWs. When
we are finding the plasmon spectrum, we assume that the
QW thickness is much smaller than the characteristic plasmon
wavelengths. Within this approximation, the polarizability of
nonequilibrium carriers can be written as a sum:

χ� (q, ω, z) = χ (q, ω)
∑

n

δ(z − nd ), (1)

where χ (q, ω) is the polarizability of nonequilibrium carri-
ers in a single QW HgTe, δ(z) is the Dirac delta function,
n takes the values −(N − 1)/2,−(N − 1)/2 + 1, . . . , (N −
1)/2 (where N is the number of QWs), and d is the distance
between QWs. Note that the plane z = 0 in Eq. (1) coincides
with the symmetry plane of the structure.

The polarizability of nonequilibrium carriers in a single
QW with allowance for spatial dispersion can be found using
the Lindhard formula [22]. We have used an approximation
according to which the total polarizability of a 2D system
is the sum of the polarizabilities of electrons in the conduc-
tion band and holes in the valence band, i.e., χ = χc + χv .
We neglected the interband contribution to the polarizability.
By comparing the plasmon dispersions obtained in this work
and the results obtained in Ref. [23] with allowance for the
interband contribution to the polarizability, one can see that
the interband contribution to the polarizability of electrons
in a quantum well is rather small and has little effect on the
plasmon dispersion law. Generalizing the Lindhard formula
for the case of a finite frequency of electron scattering in a 2D
electron gas [9], we obtain

χc,v (q, ω)

= 2e2

q2(2π )2

∫
d2k

fc,v (k) − fc,v (k + q)

εc,v (k + q) − εc,v (k) − h̄ω − ih̄νc,v
,

(2)

where e is the electron charge, fc,v (k) = (1 + exp[(εc,v (k) −
Fc,v )/kBTeff ])−1 is the Fermi-Dirac distribution function for
electrons in the valence and conduction bands (kB is the
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Boltzmann constant, Fc,v is the quasi-Fermi level in the con-
duction and valence bands), εc,v (k) is the electron energy with
wave vector k in the conduction and valence bands, h̄ω is the
plasmon energy, and νc,v is the phase relaxation frequency
for the off-diagonal density matrix component. An estimate
of this frequency can be obtained from the carrier mobilities
[μc,v ≈ e/(νc,vm∗

c,v)] (m∗
c,v is the electron and hole effective

masses at the Fermi level).
In a heterostructure with N QWs, there are N solutions

of Maxwell’s equations for plasma oscillations. If all QWs
are the same, then all plasmon modes can be separated into
two groups: symmetric and antisymmetric. For symmetric
modes, the electric field projection onto the QW plane has the
following property: E||(z) = E||(−z), and for antisymmetric
modes the property is E||(z) = −E||(−z). Plasmons whose
field component E|| does not have zeros will be referred to
below as nodeless, otherwise these will be referred as nodal.
From Maxwell’s equations one can obtain dispersion relations
for plasmons in a MQW structure. For a structure with two
QWs, the dispersion relation for the symmetric plasmon mode
has the following form [24–26]:

1 + 4πχ (q, ω)

κ(ω)
Q + tanh

(
Qd

2

)
= 0, (3)

and similarly for the antisymmetric mode:

1 + 4πχ (q, ω)

κ(ω)
Q + coth

(
Qd

2

)
= 0, (4)

where κ(ω) is the permittivity of the barriers, Q2 = q2 −
ω2κ (ω)/c2.

In a structure with three QWs, there are two symmetric
modes and one antisymmetric mode. The dispersion relation
for antisymmetric plasmon can be obtained from Eq. (4) with
the change d/2 → d . Symmetric modes are found from the
following relations:

4πχ

κ(ω)
Q[1 − exp(−2Qd )]

= −2 − exp(−2Qd ) ± exp(−Qd )
√

8 + exp(−2Qd ), (5)

where the plus corresponds to the nodeless mode, and the
minus corresponds to the mode with two zeros (nodes). A
general method for obtaining the dispersion relations for each
plasmon mode in a structure with N QWs is given in the
Appendix.

A structure with an infinite number of QWs is transla-
tionally invariant along the z direction; therefore, according
to Bloch’s theorem, E||(z + d ) = exp(iqzd )E||(z). In such a
structure, there is an infinite number of plasmon modes, each
of which is characterized by a wave vector with q and qz

components.

The dispersion relation in such a structure was obtained in
Ref. [27], and also, within the framework of the hydrodynamic
model, this equation was obtained in Ref. [28]:

cos(qzd ) − cosh(Qd ) − 2πχ

κ(ω)
Q sinh(Qd ) = 0. (6)

We have used the frequency dependence of the permittiv-
ity of the Cd0.7Hg0.3Te solid solution, taken from Ref. [29],
obtained from a study of reflection spectra:

κ(ω) = κ∞ +
8∑

j=1

S jω
2
T j

ω2
T j − ω2 − i
 jω

; (7)

the parameters κ∞, S j , ωT j , and 
 j were taken from Ref. [29].
Calculating the polarizability of a 2D electron gas using

the formula (2) and substituting it into the dispersion equa-
tions (3)–(6), one can find the plasmon spectra in MQW
structures.

B. Plasmon quantization and probability of recombination with
plasmon emission

Plasmons with energies exceeding the effective band gap
can be emitted during the recombination of nonequilibrium
carriers. The effective band gap Egeff (q) equals to the mini-
mum energy of a plasmon with the wave vector q at which
it can be emitted as a result of an interband electron tran-
sition [16]. To find the probability of recombination with
plasmon emission, it is necessary to quantize the plasmon
field. Note that the interband electron transitions proceed
mainly due to the electric field component lying in the QW
plane. Since the z component of the electric field changes sign
in the QW, the corresponding overlap integral is small.

In a medium with the permittivity κ̃, the plasmon field
energy with the wave vector q is represented as [30]

Hq = 1

8π

∫
d3r

(
∂ (ωκ̃)

∂ω
E

2
q + H

2
q

)
, (8)

where Eq and Hq are the period-averaged plasmon electric
and magnetic fields.

It should be noted that in Refs. [9,15] a mistake was made
when calculating the energy of the plasmon field—16π was
written in the denominator of this formula instead of 8π . This
error led to a twofold increase in the recombination probabil-
ity of nonequilibrium carriers with plasmon emission.

For the permittivity in the QW plane, it is necessary to take
into account the term caused by the polarization of charge
carriers in the QW. The permittivity can be represented by the
following expression:

κ̃ =
{

κ + 4πχ
∑
n

δ(z − nd ) for component Eq in QW plane;

κ for component Eq ⊥ QW plane.
(9)

The expression for the electric field component of the mth plasmon mode lying in the QW plane in a system of N QWs can be
written as

E||(m, r, t ) = q
q

[Eq exp(iqρ − iωt ) + E∗
q exp(−iqρ + iωt )] fm(z), (10)
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FIG. 3. Plasmon spectra in the double-QW structure (a). For
comparison, the spectrum of plasmons in the single-QW structure
is shown. Plasmon spectra in the triple-QW structure (b). The inset
in panel (b) shows the plasmon spectra in the wave-vector interval
0 � q � 0.1 nm−1 The solid lines show the plasmon spectra at a
concentration ns = 8 × 1011 cm−2, and dashed lines correspond to
ns = 4 × 1011 cm−2. Teff = 4.2 K.

where ρ is the projection of the radius vector r onto the QW
plane, and fm(z) is the function characterizing the dependence
of the electric field of the mth plasmon mode on the coordinate
z. Let us choose m so that the number of nodes in the mode
equals to m − 1. In the approximation used, the value of the z
component of the electric field is also needed to calculate the
energy of the plasmon field. Using Maxwell’s equations, the
following expression can be found for it:

Ez(m, r, t ) = q

iQ2

∂E||(m, r, t )

∂z
. (11)

In a structure with a single QW, there is only one mode
(m = 1), and f1(z) has the form f1(z) = exp(−Q|z|). Aver-
aging Eq. (10) over the oscillation period and substituting
it into Eq. (8), as well as neglecting the contribution of the
magnetic field, we obtain the following expression for the

plasmon energy in a structure with one quantum well:

H1QW
q = |Eq|2Sω

∂χ

∂ω
, (12)

where S is the area of the QW.
Let us estimate the contribution of the discarded term.

From Maxwell’s equations, the following relation is obtained:
|H (z)| = ωκ

cq |Ez(z)|. Using this relation and Eq. (11), as well
as the quasistatic approximation in which Q ≈ q, we find the
following estimate for the contribution of the magnetic field

to the plasmon energy: S |Eq|2
q ( ωκ

cq )2. The ratio of this energy to

energy (12) is ( ωκ
cq )2(qω

∂χ

∂ω
)−1. In order to estimate the value

of qω
∂χ

∂ω
, we neglect the spatial dispersion of the polarizability

and the Drude losses. In this case qω
∂χ

∂ω
= −2χq. From the

dispersion relation for plasmons in a single-QW structure
(1 + 2πχq/κ = 0), we get the following: −2χq = κ/π . We
consider plasmons with energies greater than the energy of
a longitudinal optical phonon in the barriers, since only such
plasmons participate in recombination. In this case |κ| < κ∞,
where κ∞ is the high-frequency barrier permittivity. There-
fore, the considered ratio is less than the value πκ∞( ω

cq )2.
From Fig. 3, we can estimate the squared ratio of the phase
velocities of the plasmon and the photon as ( ω

cq )2 ∼ 10−6. For
CdHgTe κ∞ ∼ 9, and the relation under consideration is less
than 10−4.

Consider a double-QW structure. In this structure, there is
one symmetric mode (nodeless) and one antisymmetric mode
(nodal). The function fm(z) for a symmetric plasmon has the
following form:

f1(z) =

⎧⎪⎨⎪⎩
exp(q[z + d/2]), z < −d/2;

cosh(qz)/ cosh(qd/2), d/2 � z � d/2;

exp(−q[z − d/2]), z > d/2;

(13)

and for an antisymmetric plasmon,

f2(z) =

⎧⎪⎨⎪⎩
exp(q[z + d/2]), z < −d/2;

− sinh(qz)/ sinh(qd/2), d/2 � z � d/2;

− exp(−q[z − d/2]), z > d/2;

(14)

For both symmetric and antisymmetric plasmons in a
double-QW structure, the plasmon energy has the following
form:

H2QW
q = 2|Eq|2Sω

∂χ

∂ω
. (15)

In a triple-QW structure, there are three types of
plasmons—one antisymmetric plasmon and two symmetric
plasmons. For all types of plasmons, the vectors E|| on the
outermost QWs in this structure are equal in absolute value.
On the central QW, E|| is nonzero only for symmetric plas-
mons. Symmetric plasmons are represented by a nodeless
mode (m = 1) and a two-node mode (m = 3). The function
fm(z) for a symmetric plasmon has the following form:

f1,3(z) =
{[

1 + β±−10
2[1−exp(−2qd )]

]
exp(−qz) − (β±−10) exp(qz)

2[1−exp(−2qd )] , 0 � z � d;

exp(−q[z − d]), z > d;
(16)

165307-4



RECOMBINATION WITH PLASMON EMISSION IN … PHYSICAL REVIEW B 106, 165307 (2022)

where β± = 8 + exp(−2qd ) ± exp(−qd )
√

exp(−2qd ) + 8,
β+ corresponds to the nodeless mode (m = 1), and β− cor-
responds to the mode with two nodes (m = 3).

The function f2(z) for antisymmetric plasmons in a struc-
ture with three QWs is obtained from Eq. (14) by replacing
d/2 → d .

In a triple-QW structure, the expression for the field energy
of antisymmetric plasmons is similar to the expression (15).
The energy of symmetric plasmons is equal to

H3QW
q = 1

2
S|Eq|2 ∂χ

∂ω
β±. (17)

In a structure with an infinite number of QWs, the wave-
vector component qz can be used instead of the mode number
m, and then the function fqz (z) is used instead of the function
fm(z). If z = 0 corresponds to the position of the QW, then the
expression for the function fqz (z) in the interval 0 < z < d has
the following form:

fqz (z) = sinh[q(d − z)] − exp(iqzd ) sinh(qz)

sinh(qd )
. (18)

Using Eq. (18), one can obtain an expression for the energy
of the plasmon in a structure with an infinite number of QWs:

HMQW
q = |Eq|2V ω

∂χ

∂ω
, (19)

where V is the volume of the structure.
Following the standard field quantization procedure [31],

one can write an expression for the plasmon electric field
component operator Ê|| in terms of the creation and annihila-
tion plasmon operators ĉ†

q and ĉq. In the case of a single-QW
structure, the operator of the plasmon electric field component
has the following form:

Ê||(m, r, t ) =
∑

q

q
q

√
h̄

S

(
∂χ

∂ω

)−1

[ĉq exp(iqρ − iωt )

+ c.c.] fm(z), (20)

where c.c. is the term that is Hermitian conjugate to the first
term.

For a double-QW structure the expression for the field
component operator Ê|| for both symmetric and antisymmetric
plasmons is

Ê||(m, r, t ) =
∑

q

q
q

√
h̄

2S

(
∂χ

∂ω

)−1

[ĉq exp(iqρ − iωt )

+ c.c.] fm(z). (21)

In the triple-QW structure, the field amplitude at the central
QW differs from the field amplitude at the outermost QWs.
The expression for the operator of the plasmon electric field
component Ê|| has the following form:

Ê||(m, r, t ) =
∑

q

q
q

√
2h̄

Sβ±

(
∂χ

∂ω

)−1

[ĉq exp(iqρ − iωt )

+ c.c.] fm(z). (22)

In a structure with an infinite number of QWs, Ê|| in the
interval 0 < z < d is given by

Ê||(qz, r, t ) =
∑

q

q
q

√
h̄

V

(
∂χ

∂ω

)−1

[ĉq exp(iqρ − iωt )

+ c.c.] fqz (z), (23)

In the jth QW, the interaction operator of an electron with
an electromagnetic wave in the dipole approximation can be
written as Ĥ int

j = iev̂Ê||(z j )/ω, where v̂ is the electron veloc-
ity operator, and z j is the coordinate of the jth QW. Using the
golden Fermi rule, we obtain an expression for the probability
of transitions of electrons from the lth subband (l includes
spin indexes) with the emission of a 2D plasmon in the jth
QW:

Wl j (k) = 1

h̄ω2

Se2

2π

∑
l ′

∫
d2q|E||(z j )vk,l;k−q,l ′ |2(Nq + 1)

× δ[εl (k) − εl ′ (k − q) − h̄ω(q)][1 − fl ′ (k − q)],

(24)

where vk,l;k−q,l ′ is the matrix element of the velocity operator
calculated between the initial state of the electron in the lth
subband in the conduction band with the wave vector k and
its final state with the wave vector k − q in the l ′th subband
of the valence band, εl and εl ′ are the electron energies in the
initial and final states, fl ′ (k − q) is the electron distribution
function in the l ′th subband of the valence band, and Nq is the
plasmon occupation number.

The occupation numbers of plasmons at the chosen lat-
tice temperature can be considered to be equal to zero. The
plasmon spectrum can be assumed to be isotropic [9], so it
is convenient to integrate Eq. (24) in polar coordinates. It is
necessary to integrate this expression over the value of the
plasmon wave vector lying in the QW plane within the range
from 0 to qmax, where qmax is the maximum value of the plas-
mon wave vector, which is determined by the onset of Landau
damping. In the case of calculating the probability of recombi-
nation of nonequilibrium carriers with plasmon emission in a
structure with an infinite number of QWs, it is also necessary
to consider integration over the qz components in the range
from −π/d to π/d . The expression for the recombination
probability will have a form similar to Eq. (24), with the only
difference being that the double integral should be replaced
by a triple integral over all components of the plasmon wave
vector: qx, qy, and qz.

The average probability of recombination with plasmon
emission in the jth QW is defined as

W j = 1

(2π )2ns

∑
l

∫
d2k Wl j (k) fl (k)

= 1

(2π )2ns

∫
d2k W (k) fc(k), (25)

where W (k) is the average probability of recombination of
an electron with the wave vector k. Summation in Eq. (25) is
carried out only over spin indexes.

Note that in a double-QW structure the average probability
of recombination with plasmon emission is the same for both
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QWs, since the modules E|| are the same on each QW. For the
same reason, in a triple-QW structure, the average probability
of recombination with plasmon emission is the same for the
edge QWs, but differs from the probability of recombination
in the central QW. The average probability of nonequilibrium
carrier recombination with the plasmon emission in a structure
with an infinite number of QWs is the same in each QW,
since the values of E|| on each QW differ by the phase factor
exp(iqzd ).

III. RESULTS AND DISCUSSION

A. Plasmon dispersion relations

By numerically solving Eqs. (3)–(6), we found the dis-
persion plasmon relations in MQW structures, which are
shown in Fig. 3. The distance d between the QWs is chosen
to be 30 nm. Often similar distances between QWs have
experimental structures [2,3]. The effective temperature of
nonequilibrium carriers Teff was assumed to be the same for
electrons and holes. The phase relaxation frequency of the
off-diagonal density matrix component for electrons in the
conduction band, h̄νc, was assumed to be 1 meV, and for holes
in the valence band, h̄νv = 2 meV. It should be noted that h̄ν

has little effect on the real part of the plasmon frequency. The
lattice temperature was taken to be 4.2 K.

As the effective temperature of nonequilibrium charge
carriers increases from 4.2 to 77 K, the value of qmax de-
creases due to Landau damping, which starts at lower values
of the wave vectors. Figure 3 shows that an increase of
the nonequilibrium carrier concentration leads to an increase
of the plasmon phase velocity. The plasmon spectrum has
two groups of branches: low-frequency branches and high-
frequency branches, formed due to interaction with optical
phonons of barriers [9,10]. The high-frequency branch of the
spectrum starts from the energy of the longitudinal optical
phonon in CdHgTe, while the low-frequency branch starts at
the origin and at low energies its dependence is proportional to√

q [17,23]. In this work, we considered only high-frequency
branches, since the energy of plasmons of the low-frequency
branch is less than the effective band gap in the QW, Egeff (q).
Only those plasmons whose energy is above Egeff (q) can
participate in interband transitions of electrons. For this rea-
son, plasmons of the low-frequency branches of the spectrum
cannot participate in recombination.

For comparison, the plasmon dispersion spectrum in
a single-QW structure is shown in Fig. 3(a) (black
line). The plasmon spectrum in a single-QW structure
HgTe/Cd0.7Hg0.3Te with a width of 5 nm and a concentration
of nonequilibrium charge carriers ns = 4 × 1011 cm−2 was
calculated in Ref. [9]. As the plasmon wave vector q increases,
the plasmon spectra in MQW structures approach the plasmon
spectrum in a single-QW structure, which can be seen from
Fig. 3(a). This is explained by the fact that the plasmon fields
are localized on a scale of the order of 1/q near each QW
in the direction z. When the condition qd 
 1 is satisfied,
the plasmon fields correspond to the fields of noninteracting
plasmons in single QWs.

Figure 4 shows the spectra of plasmons in a structure
with an infinite number of QWs. It can be seen from this

FIG. 4. Plasmon spectra in a structure with an infinite number of
QWs. Solid lines show plasmon spectra at concentration ns = 8 ×
1011 cm−2, and dashed lines show spectra at concentration ns = 4 ×
1011 cm−2. Teff = 4.2 K. The inset shows the plasmon spectra in the
wave-vector interval 0 � q � 0.1 nm−1.

figure that the phase velocity of the plasmon decreases as the
wave-vector component qz increases. A feature of plasmons
with qz = 0 in a structure with an infinite number of QWs
is that their spectrum starts from a certain frequency close
to the “effective” plasma frequency for the chosen structure
parameters [28].

It can be seen from Figs. 3 and 4 that with an increase
in the concentration of nonequilibrium carriers, the value of
q corresponding to the intersection of Egeff (q) and h̄ω(q)
decreases. It means that the laws of energy and momentum
conservation during interband electron transitions with the
plasmon emission begin to be fulfilled at lower values of q.

Figures 5 and 6 show the dependencies of the plasmon
electric field component lying in the QW plane on the co-
ordinate z in the double- and triple-QW structures for two
values of the plasmon wave vector q. It can be seen from these
figures that, as the plasmon wave vector increases, the field
component E|| is localized more strongly near each QW.

B. Recombination with plasmon emission

The dependencies of the average recombination probability
W on the nonequilibrium charge carrier concentration ns at
two effective temperatures, 4.2 and 77 K, have been calculated
by using Eq. (25) (see Fig. 7).

It can be seen from this figure that an increase in the
number of QWs has little effect on the average probabil-
ity of recombination with the emission of plasmons in the
considered range of effective temperatures of nonequilib-
rium carriers. As the effective temperature of nonequilibrium
carriers increases, the average probability of recombination
decreases. This decrease can be due to the influence of two
factors: an increase in the population of electronic states in
the valence band with increasing temperature and a decrease
in qmax due to Landau damping. To clarify the role of these
factors, we present the dependence W (k) in Fig. 8 calculated
for different temperatures and qmax.

For Teff = 4.2 K we considered two cases. In the first case,
we considered qmax = 0.19 nm−1 (solid line in Fig. 8), this is
the maximum value of the plasmon wave vector that can be
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FIG. 5. Dependencies of E||(z) in a double-QW structure: panel
(a) corresponds to the symmetric mode, and panel (b) corresponds to
the antisymmetric mode.

emitted during the interband electron transition at the chosen
temperature and concentration of nonequilibrium carriers. In
the second case, we limited qmax to 0.117 nm−1 (dashed line
in Fig. 8). This value of the wave vector corresponds to the
maximum value of the plasmon wave vector at the chosen
concentration ns and Teff = 77 K. As can be seen from Fig. 8,
the exclusion from consideration of plasmons whose wave
vectors lie in the Landau damping region has little effect
on the recombination probability. Comparing the dashed and
dotted lines, it can be seen that the recombination probability
decreases mainly due to an increase in the population of the
final states into which electrons pass after the emission of a
plasmon with an increase in the effective temperature to 77 K
(dotted line in Fig. 8).

From Fig. 7(a) it can be seen that the dependence of the
average probability of recombination with plasmon emission
in the vicinity of a concentration equal to 3 × 1011 cm−2 has
a maximum. A further decrease in the average probability
of recombination with an increase in the concentration of
nonequilibrium carriers is explained by a decrease in the “ef-
fective” density of final states in the valence band, into which
electron transitions occur after the emission of plasmons. The
physical meaning of the effective density of final states is
that it is the totality of all states in the valence band, where
an electron with a wave vector k transits after the emission
of plasmons with all allowed wave vectors q. The effective

FIG. 6. Dependencies of E||(z) in a triple-QW structure: panel
(a) corresponds to the symmetric mode (nodeless), panel (b) cor-
responds to antisymmetric mode, and panel (c) corresponds to the
symmetric mode (nodal).

density of final states is represented by the following expres-
sion:

DoS f (k) = 2

(2π )2

∫
d2qδ[εc(k) − εv (k − q) − h̄ω(q)].

(26)

From Figs. 7(b) and 7(c) one can see a smooth decrease
in the average recombination probability as the concentration
of nonequilibrium carriers decreases from 1012 to 4 × 1011

cm−2. The absence of a maximum at a given temperature is
explained by a decrease in the occupation of the final hole
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FIG. 7. Dependencies W (ns ) in the 5-nm HgTe QW: (a) Teff =
4.2 K, (b) Teff = 77 K, and (c) Teff = 300 K. IN QW denotes the
infinite number QW structure; insets show dependencies in the region
of small W (ns ).

states, which is more pronounced at low concentrations of
nonequilibrium carriers. An increase in the concentration of
nonequilibrium carriers leads to an increase in the population
of the final states in the valence band. Therefore, in Figs. 7(b)
and 7(c) we see a gradual decrease in the average recombina-
tion probability with decreasing concentration ns.

The rapid decrease in the average probability of recom-
bination at concentrations approximately less than 3 × 1011

cm−2 (Teff = 4.2 K) and 4 × 1011 cm−2 (Teff = 77 and 300 K)
is due to the fact that plasmons are “turned off” from re-
combination, the energies of which become lower than the

FIG. 8. Dependencies W (k) for different qmax and Teff (ns = 3 ×
1011 cm−2).

effective band gap Egeff . The laws of conservation of energy
and momentum for interband transitions of electrons with the
emission of plasmons with such energies are not satisfied.

IV. CONCLUSION

In conclusion, we briefly present the main results of the
work.

A method is proposed for finding the dispersion relation for
each plasmon mode in a structure with N QWs. Plasmon fields
are quantized in structures with two, three, and an infinite
number of QWs.

The dependence of the average probability of recombina-
tion with the emission of plasmons on the concentration of
nonequilibrium charge carriers at effective temperatures of
nonequilibrium carriers of 4.2, 77, and 300 K is calculated.
It has been found that, with an increase in the number of
QWs in the HgTe/Cd0.7Hg0.3Te heterostructure, the average
probability of recombination of nonequilibrium carriers with
plasmon emission increases insignificantly and remains of the
same order as the average probability of recombination in
a structure with a single QW. At 4.2 K, the dependence of
the average recombination probability on the concentration
of nonequilibrium carriers is nonmonotonic and has a max-
imum at a concentration of nonequilibrium carriers close to
3 × 1011 cm−2. With a further increase in concentration, the
average recombination probability decreases due to a decrease
in the effective density of hole states in the valence band, into
which electrons pass after the emission of a plasmon. At 77
and 300 K, the average probability of recombination increases
with an increase in the concentration of nonequilibrium carri-
ers, since the population of hole states, into which electrons
pass after they emit a plasmon, increases.

As the concentration of nonequilibrium carriers decreases
approximately from 3 × 1011 cm−2 at 4.2 K and 4 × 1011

cm−2 at 77 and 300 K, the average probability of recombi-
nation with the emission of plasmons rapidly decreases due
to the fact that plasmons with energies less than Egeff (q)
cannot be emitted, since for these transitions with the emission
of plasmons with such energies the energy and momentum
conservation laws are not satisfied.

165307-8



RECOMBINATION WITH PLASMON EMISSION IN … PHYSICAL REVIEW B 106, 165307 (2022)
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APPENDIX

The transfer matrix method can be used to calculate the
plasmon dispersion relation in structures containing N QWs.
The use of this method for calculating the characteristics of
plasmons is discussed in detail in Refs. [32–34]. The matrix
describing the propagation of E||(z) in the region enclosed
between two neighboring QWs has the following form:

F =
(

exp(Qd ) 0

0 exp(−Qd )

)
. (A1)

The matrix describing the connection of E||(z) to the left
and to the right of a QW has the following form:

M =
(

1 + 2πχQ/κ (ω) 2πχQ/κ (ω)

−2πχQ/κ (ω) 1 − 2πχQ/κ (ω)

)
. (A2)

In a structure with N identical QWs, the transfer matrix
allows one to relate the solutions at the point z = −(N −
1)d/2 − 0 and the point z = −(N − 1)d/2 + N + 0. It can be
represented as

T = (MF )N−1M. (A3)

It is easy to see that each element of the transfer matrix
Ti, j , including T1,1, is a polynomial of degree N in the variable
2πχ

κ(ω) Q, which can be written as

T1,1

(
2πχ

κ(ω)
Q

)
=

N∑
n=0

cn(d, Q)

(
2πχ

κ(ω)
Q

)n

, (A4)

where cα (d, Q) are the polynomial coefficients. The spectra of
plasmonic modes in the structure with N QWs are found from
the condition T11( 2πχ

κ(ω) Q) = 0. Polynomial (A4) has N roots

for the variable 2πχ

κ(ω) Q, which can be denoted Xm(d, Q) (m is
the mode number). Having found the roots of the polynomial,
the dispersion equation can be rewritten as

N∏
m=1

(
2πχ

κ(ω)
Q − Xm(d, Q)

)
= 0. (A5)

The equality to zero of each factor (A5) is the dispersion
relation for the corresponding plasmon mode.
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