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Enhanced Dirac node separation in the strained Cd3As2 topological semimetal

G. Krizman ,1 J. Bermejo-Ortiz,2 M. Goyal,3 A. C. Lygo,3 J. Wang,4 Z. Zhang,5

B. A. Assaf,4 S. Stemmer ,3 L. A. de Vaulchier,2 and Y. Guldner2

1Institut für Halbleiter und Festkörperphysik, Johannes Kepler Universität, Altenbergerstrasse 69, 4040 Linz, Austria
2Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL,

CNRS, Sorbonne Université, 24 rue Lhomond 75005 Paris, France
3Materials Department, University of California, Santa Barbara, California 93106, USA

4Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
5Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA

(Received 4 May 2022; revised 6 September 2022; accepted 21 September 2022; published 6 October 2022)

In topological semimetals, nodes appear at symmetry points in the Brillouin zone as a result of band inver-
sion, and yield quasirelativistic massless fermions at low energies. Cd3As2 is a three-dimensional topological
semimetal that hosts two Dirac cones responsible for a variety of quantum phenomena. In this work, we
demonstrate the strain tuning of the Dirac nodes of Cd3As2 through a combination of magneto-optical infrared
spectroscopy and high-resolution x-ray-diffraction studies performed on epitaxial films. In these thin films, we
observe a giant enhancement of the node separation in momentum space by close to a factor of 4. A combination
of experimental measurements and theoretical modeling allows us to relate the origin of this enhancement to a
strengthening of the topological band inversion driven by lattice strain. Our results demonstrate how strain can
be used as a knob to tune the topological properties of semimetals and to potentially enhance their performance
and response for various applications.
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I. INTRODUCTION

Semimetals are materials that host a band overlap in their
electronic structure while retaining a low density of state at the
Fermi energy. With the rise of topological phases of matter,
new semimetals were discovered, with peculiar band cross-
ings [1]. In three dimensions, such band crossings can occur at
a finite number of points in the Brillouin zone, yielding what is
referred to as Dirac or Weyl fermions [2–4] The main distinc-
tion between the two classes lies in the fact that Weyl fermions
are intrinsically helical and exhibit spin-momentum locking.
They generally occur in pairs of opposite helicity. Their prop-
erties have attracted tremendous attention. They are thought to
host a chiral anomaly manifesting as a negative magnetoresis-
tance [4–6] and have also been found to yield strong nonlinear
optical effects [7,8], thermoelectric effects [9], efficient spin-
charge conversion [10,11], and spin transport [12].

Cd3As2 was among the first discovered topological
semimetals [13,14]. This high-quality stoichiometric mate-
rial possesses two Dirac nodes. Thus, it is a first-choice
system to study Weyl node physics in its simplest form.
It crystallizes in a tetragonal structure that remains nearly
cubic. Its electronic structure is well described by a modi-
fied Kane model similar to that of strained III–V and II–VI
semiconductors [14–16]. In this model, two s−like (S) and
six p−like bands [light hole (LH), heavy hole (HH), and
split off (SO)] interact near the � point. In Cd3As2, a band
inversion brings the s-like band below 4 of the p−like bands
yielding a semimetal similar to HgTe [17,18]. However, the

natural tetragonality of Cd3As2, i.e., the lattice elongation
along the z//[001] direction, lifts the degeneracy of LH and
HH causing them to cross at finite kz. This effect yields two
Dirac nodes in Cd3As2 with strongly electron-hole asym-
metric dispersions, and a node separation governed by the
splitting of the p−like bands and the tetragonal distortion
[Fig. 1(a)]. This asymmetric picture of the band structure of
Cd3As2 is reproduced in magneto-optical measurements by
independent groups [19,20], density-functional theory calcu-
lations, [13,21,22] scanning tunneling microscopy [23], and
early angle-resolved photoemission measurements [3]. The
fact that the origin of the node separation in Cd3As2 can be
traced back to specific band and structural origins [14,20,24]
makes it a prototypical topological semimetal ideal for band
engineering.

Here, we demonstrate such a band engineering by lattice
strain in Cd3As2 thin films grown by molecular-beam epi-
taxy on Al1−xInxSb buffer layers on (001) GaSb substrates.
Using magneto-optical infrared spectroscopy measurements
and k.p modeling, we reveal a large enhancement of the
Dirac nodes separation driven by this lattice strain [Fig. 1(b)].
This translates into an enhancement of the Weyl node sep-
aration in Cd3As2. Our findings are compared to previous
measurements on unstrained films for which the Dirac node
separation is found to be much smaller [Fig. 1(a)] [20]. They
are corroborated by temperature-dependent x-ray diffraction
and magneto-optical measurements that can only be con-
sistently explained by the picture and band ordering shown
in Fig. 1(b).
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FIG. 1. Band dispersion of (a) pristine (c/2a ≈ 1.005) and (b)
compressively strained Cd3As2 in the (001) plane achieved in this
work (c/2a ≈ 1.023). The bands are labeled in the standard no-
tation of the Kane model, LH: light holes, HH: heavy holes, S:
s-like band, SO: split-off band. Energy is taken to be 0 at the
HH band edge. � represents the position of the LH band edge,
and quantifies the LH-HH splitting; Eg is the energy gap between
HH and S.

II. STRAIN CHARACTERIZATION

Following what is shown in the following work [25],
(001)−oriented Cd3As2 thin films (200 nm) are grown using
molecular-beam epitaxy on III–V substrates. We focus on two
(001)-oriented layers grown on a 2−μm−thick Al1−xInxSb

buffer layer with x = 0.5 as discussed in Ref. [26], which are
150 and 200 nm thick.

X-ray diffraction (XRD) is carried out at the Advanced
Photon Source at Argonne National Lab using beamline
33-ID-D. XRD patterns obtained at different temperatures
are shown in Fig. 2(a). The Cd3As2 (00 16) Bragg peak can
be seen at lower diffraction angle than the (004) peaks of
the buffer layer and the GaSb substrate. We first analyze the
lattice parameters of Cd3As2 at high temperature. At 260 K,
we find the out-of-plane parameter c = 25.660 ± 0.005 Å.
A reciprocal-space map obtained at 260 K near the GaSb
(224) peak is shown in Fig. 2(c) and allows us to determine
the in-plane lattice parameter a = 12.540 ± 0.003 Å from the
(44 16) peak of Cd3As2. From Fig. 2(b), we find that the
Cd3As2 epilayer remains coherently strained to the underlying
buffer layer that has an in-plane lattice parameter abuffer =
a
2 = 6.27 Å. Comparing c/2a to what is found for bulk single
crystals near room temperature and at 100 K from previous
works [27] (abulk = 12.67 + ±0.01 and cbulk = 25.48 ± 0.02)
confirms that the unit cell is compressively strained in the
plane, and elongated along the c axis. The tetragonality c/2a
of the crystal is enhanced from 1.0055 (300 K) [27] or 1.0064
(100 K) [28] in (unstrained) bulk single crystals to more than
1.023 in our strained film. As detailed in Appendix A, we
evaluate the strain tensor as εxx = εyy = −1.0 ± 0.1% and
εzz = +0.7 ± 0.1% when comparing our lattice parameters to
those of pristine Cd3As2 from Ref. [27]. The reciprocal maps
in Figs. 2(b) and 2(c) show that the high compressive biaxial
strain is maintained in our 200-nm-thick epilayer, as denoted
by the sharpness of the peak attributed to the Cd3As2 lattice.
Such a coherent compressive strain over a large thickness was
previously reported in III–V heterostructures [29].

The Cd3As2 peak shifts towards higher Bragg angles at the
low temperature as seen in Fig. 2(a) indicating a reduction of
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FIG. 2. (a) Temperature-dependent specular x-ray-diffraction patterns taken using a beam energy of 20 keV. (b) Reciprocal-space maps
obtained about the GaSb (224) peak at 20 K and (c) at 260 K. L and K are the Miller indices. (d) Integrated intensity of the Cd3As2 and buffer
layer shown in the RMSs at two different temperatures vs K. (e) Experimental ratio c/2a (blue squares) vs temperature compared to Ali et al.
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FIG. 3. Magneto-optical spectra in midinfrared (a) and far infrared (b). (c) Fan chart showing data as the black points and calculated
magneto-optical transitions in red and blue, corresponding to the two spin-components.

c (thermal contraction). To analyze the temperature depen-
dence of a, reciprocal-space maps (RSMs) were obtained
down to 20 K near the GaSb (224) peak [see Figs. 2(b)
and 2c)]. Qualitatively, it is clear that the Cd3As2 (44 16)
maintains its alignment with the buffer-layer peak in the
in-plane direction, indicating that the two have the same
a-lattice constant, even at low temperature. The integrated
intensity of the (44 16) sample and the buffer-layer peaks
as function of Miller index K are then determined by iso-
lating a region of interest that excludes the GaSb peak.
Curves of this integrated intensity versus K are shown for
T = 260 K and T = 20 K in Fig. 2(d) and from which
a slight reduction of the a-lattice constant can be ex-
tracted at each temperature. Visually, it is obvious that the
a-lattice constant is slightly smaller at low temperature.
Combining the lattice constants obtained from the Cd3As2

(00 16) and (44 16) peaks at various-temperature RSMs ob-
tained at various temperature between 260 and 20 K, we track
the variation of the tetragonality given by the ratio c/2a down
to low temperatures of interest. c/2a decreases as temperature
drops, but remains much larger than what is found in bulk
single crystals or relaxed layers. This means that beyond the
intrinsic distortion of Cd3As2 yielding c/2a ∼ 1.006 [28],
we have achieved a significant additional biaxial compressive
strain resulting in 1.020 < c/2a < 1.024. Furthermore, the
slight reduction of the tetragonality as temperature decreases
is attributed to the difference between the thermal expan-
sion coefficients of the buffer and Cd3As2 layers [30,31].
The lower thermal contraction of Al1−xInxSb induces a small
biaxial tensile stress on Cd3As2.

III. STRAIN EFFECTS ON THE BAND STRUCTURE

We next study the electronic structure of this highly
compressively strained Cd3As2 film using magneto-optical
infrared spectroscopy measurements that are carried out at
various temperatures. We use a Fourier transform infrared
spectrometer coupled to a cryostat equipped with a 15-T coil,
as in our previous works [20]. Detection is carried out using
a composite Si bolometer and a HgCdTe detector. Magneto-

optical spectra obtained at 4.2 K in the midinfrared are shown
in Fig. 3(a) and those in the far infrared in Fig. 3(b). Tran-
sition minima in Figs. 3(a) and 3(b) are due to inter-Landau
level transitions, whose study versus magnetic field aims to
extract the zero-field band properties, mainly Eg and � both
defined in Fig. 1. The energy positions of the minima versus
magnetic field are extracted and plotted in Fig. 3(c). To model
these magneto-optical transitions, an eight-band Kane model
is utilized [15,19] and carefully detailed in Appendixes B1-
B2 and C [15,17,32,33]. The tetragonal distortion inherent
to Cd3As2 introduces a crystal-field splitting δ into the Kane
model [15,33]. This parameter is directly proportional to the
tetragonality c/2a determined by XRD:

δ = 3b
(

1 − c

2a

)
, (1)

where b < 0 is a shear deformation potential, as it is defined
in Ref. [34]. It creates a direct relation between the crystalline
and the electronic properties of the material. δ is the main
parameter that contributes to the nonzero splitting of LH and
HH, which we call here � (see Fig. 1). However, the spin-orbit
parameter �, responsible for the splitting between LH and
SO, can also play a crucial role in � because strain induces
a coupling between the LH and SO bands (see Appendix B4)
[34,35]. The magnitude of the energy splitting responsible for
the Dirac node creation is given by

� = −� + δ

2
+ 1

2

√
(� − δ)2 + 4

δ�

3
. (2)

In most semiconductors [36,37], � is large enough [or δ is
small enough (� � δ)] to neglect its influence on � and one
finds � ≈ −2δ/3 = −2b(1−c/2a); see Fig. 1(a). As we will
see later, the temperature dependence of the magneto-optical
oscillations determined in this work shows that the effect of
� in Eq. (2) is non-negligible for highly strained samples; see
Fig. 1(b).

The experimental data allow us to extract with precision
the band parameters. In particular, the positions of the bands
are given by the extrapolation to zero field of the two series
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FIG. 4. Magneto-optical measurements at different temperatures from 50 to 200 K. Dots represent the experimental data. Solid lines
correspond to the calculated inter-Landau level transitions using the fitting parameters listed in Table I.

of magneto-optical oscillations [see Fig. 3(c)]. At 4.2 K we
find Eg = −110 meV, implying that S lies below HH, and
most importantly � = −75 meV demonstrating the enhanced
LH-HH splitting. The slope of the transitions at high energy
(the bending of transitions “1-0” and “2-1” in blue with in-
creasing magnetic field) allows an accurate determination of
� = 220 meV (independently from δ) in excellent agreement
with density-functional theory calculations [13,21]. The fit
thus results in δ = 150 meV following Eq. (2). This value is
considerably enhanced compared to other works, performed
on relaxed samples and single crystals, that give δ < 30 meV
[19,20,23,32]. Therefore, the corresponding Dirac node spac-
ing found in this work is 0.04 Å−1 [see Fig. 1(b)], which
is four times greater than in relaxed layers or bulk crystals
[see Fig. 1(a)]. This is directly due to the much more pro-
nounced tetragonality of the sample studied here, as shown by
Eq. (1). A deformation potential b = −2.1 ± 0.5 eV recon-
ciles all these results and demonstrates the strain origin of the
enhanced Dirac node separation. The determination of such
deformation potential b with respect to a cubic lattice allows
for a direct comparison with other semiconductors. This pa-
rameter is universal and accounts for the effect of a (001)
biaxial strain applied to any diamond and zinc-blende cubic
lattices, i.e., it determines the strength of the p-type bands
splitting under applied strain [34,35]. For diamond semicon-
ductors, one can find in the literature b = −2.1 eV for Si, or
b = −2.5 eV for Ge [38]. Zinc-blende semiconductors (GaAs,
InAs, InSb, AlSb, InP, …) show −2 < b < −1.3 eV [38].
Therefore, by determining b = −2.1 eV, this work establishes
Cd3As2 as a highly strain-sensitive material.

IV. TEMPERATURE DEPENDENCE OF Cd3As2

BAND STRUCTURE

Magneto-optical measurements have been performed up to
T = 200 K. The analysis conducted in Sec. III for T = 4 K is
repeated for each temperature. This process results in optimal

fits that are presented in Fig. 4. For each temperature, a great
agreement is obtained with the experimental data, which allow
an accurate determination of the band parameters: Eg, δ, �,

and P⊥ (or v), whose values are listed in Table I. The energy
gap Eg and the in-plane matrix elements P⊥ are found to be
almost temperature independent. The variations of δ(T ) and
�(T ) can be unraveled by focusing on the first interband
transition (labeled 1-2 in red in Figs. 3(c) and 4) as displayed
in Fig. 5(a).

The temperature dependence of the magneto-optical oscil-
lations highlights the strong influence of the split-off band
on �. By increasing the temperature, the first interband tran-
sition undergoes a redshift as seen in Fig. 5(a), meaning
that |�| is decreased as represented by the fits in Fig. 5(b).
From the XRD measurements showing a slight increase of
the tetragonality [see Fig. 2(e)], we know that δ increases by
∼15 meV between 4 and 200 K, as demonstrated by Eq. (1).
This results in a slight increase of |�| with temperature;
however, we unambiguously observe the opposite behavior,
meaning that the evolution of �(T ) is mainly governed by
�(T ); see Eq. (2). Overall, the measured evolution of �(T )
can only be explained by a decreasing � when the temperature
is increased, going from 220 to 120 meV at 4 and 200 K,
respectively. This evolution also confirms that the LH and HH
(p−like) bands must lie above the S and SO bands.

TABLE I. Band parameters leading to the best fit of the magneto-
optical data in temperature.

T (K) Eg (meV) � (meV) δ (meV) v (×106 m/s)

4 −110 ± 2.5 220 ± 10 150 ± 5 0.97 ± 0.01
50 −107 ± 2.5 180 ± 10 155 0.97 ± 0.01
100 −107 ± 2.5 160 ± 10 158 0.96 ± 0.01
150 −105 ± 2.5 140 ± 10 162 0.95 ± 0.01
200 −105 ± 5 120 ± 20 165 0.95 ± 0.01
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FIG. 5. (a) Magneto-optical spectra at B = 15 T for different
temperatures, placing the attention on the first interband absorption
(black arrow) that is redshifted when temperature is increased. (b) Fit
of the first interband at each temperature, giving accurately |�|(T )
from the extrapolation at zero field. (c) Band structure resulting from
the magneto-optical fits at different temperature.

The fits result in the determination of the band structure
plotted in Fig. 5(c). One can note the nearly temperature-
independent Dirac node spacing, due to the increased
band-edge mass when �(T ) is decreased. Interestingly, at
100 K, we find � ≈ δ ≈ 160 meV, meaning that the LH-SO
mixing is unusually strong. Indeed, we determine that the
SO component weights from 11% at 4 K to 30% at 200 K
on the LH band edge (see Appendix B4). For temperature
higher than 100 K, the curvature of the S band is even re-
versed as seen in Fig. 5(c). This phenomenon appears when
� < −3Eg/2 and is an original consequence of (i) the small
spin-orbit parameter found in this compound and (ii) its in-
verted band structure (see Appendix B3).

V. CONCLUSION

We have thus shown that the Dirac nodes in Cd3As2 can
be tuned by strain. By understanding the intrinsic tetragonal
distortion of Cd3As2 to be the cause of Dirac nodes creation,
we have been able to enhance the separation of these Dirac
nodes using compressive biaxial strain. XRD and magneto-
optical spectroscopy have probed the giant strain-induced
enhancement of this separation. Our work thus demonstrates
that many properties of Cd3As2 that are driven by its topolog-
ical band structure can be largely enhanced by strain. Those

may include nonlinear optical phenomena [7] and spintronic
conversion [12].

The temperature dependence of the Cd3As2 band structure
that we elucidate strongly reinforces our analysis and high-
lights the importance of the often-neglected strain-induced
mixing of the LH and SO bands. This mixing is of interest as it
drastically alters, among others, the spin properties (g factor)
and is therefore important to consider for the conception of
efficient quantum-dot based spin qubits when LH states are
involved [16,39–42]. This unique property certainly requires
further investigations in Cd3As2 films.
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APPENDIX A: STRAIN CHARACTERIZATION

The strain is determined with respect to a bulk Cd3As2,
lattice parameters of which are measured in Ref. [27]. A
pristine Cd3As2 crystallizes in a tetragonal lattice with abulk =
bbulk = 12.67 Å and cbulk = 25.48 Å. The XRD measurements
presented in the main text give, at high temperature, a = b =
12.540 ± 0.003 Å and c = 25.660 ± 0.005 Å. Therefore, the
lattice mismatches between our strain epilayers and the bulk
are calculated as

ε‖ = a − abulk

abulk
= −0.010 ± 0.001

ε⊥ = c − cbulk

cbulk
= +0.007 ± 0.001.

The in-plane strain in our samples is thus compressive and
around 1%. From the determination of ε‖ and ε⊥, one can
deduce the Poisson ratio of Cd3As2 under a (001) biaxial
strain (at room temperature):

λ = 2
C12

C11
= ε⊥

ε‖
= 0.7

APPENDIX B: MODIFIED KANE MODEL

1. Band structure of tetragonal Cd3As2

The tetragonal lattice of Cd3As2 being nearly cubic,
we model this system with the Kane Hamiltonian devel-
oped for cubic lattices, in which a biaxial strain has been
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implemented [15,32–35]:

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eg P⊥k− −P⊥k+ 0 0 0 0 P‖kz

P⊥k+ − h̄2k2
z

2m̃ 0 0 0 0 0 0

−P⊥k− 0 − 2�
3

√
2�
3 0 0 0 0

0 0
√

2�
3 −(

δ + �
3

)
P‖kz 0 0 0

0 0 0 P‖kz Eg P⊥k+ P⊥k− 0

0 0 0 0 P⊥k− − h̄2k2
z

2m̃ 0 0

0 0 0 0 P⊥k+ 0 − 2�
3

√
2�
3

P‖kz 0 0 0 0 0
√

2�
3 −(

δ + �
3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

with k± = (kx ± ky)/
√

2 and kz along the [001] di-
rection. The matrix is given in the following basis:
i|S ↓〉, |(X−iY ) ↓〉/√2, − |(X + iY ) ↓〉/√2, |Z ↑〉, i|S ↑〉,
|(X + iY ) ↑〉/√2, |(X−iY ) ↑〉/√2, |Z ↓〉.

Eg is the band gap separating the S band from the HH
band. A negative energy gap means that the S band lies below
the HH band. Because the spin-degenerate HH band has no
kz-interaction with the other bands considered in this model,
its kz dispersion is flat in the Kane model. However, second-
order interactions with other remote bands at higher or lower
energies induce a small negative parabolic curvature for the
HH bands, given by the effective mass m̃ > 0. This work
does not pretend to provide any determination for m̃ as the
magnetic field is applied along the z direction and thus only
probes the in-plane motions of electrons. We arbitrarily fix
it to 0.40 m0 all over the paper. P⊥ and P‖ are, respectively,
the in-plane and out-of-plane Kane matrix elements. They are
related to the electron velocity as they follow v = √

2/3P⊥/h̄
[20]. � is the spin-orbit parameter.

δ is the crystal-field splitting that models the tetragonal
distortion. In fact, it is the energy lifting of the |Z〉 orbital (due
to the lattice elongation along z) compared to the other two
p-type orbitals |X 〉 and |Y 〉. This distortion has two effects:
(i) the LH band is shifted away from the HH band and thus,
under a compressive biaxial strain (δ > 0), makes the two
Dirac nodes appear; and (ii) the Hamiltonian is no longer
diagonalizable in a good basis of Bloch functions; thus, the
LH and SO bands are mixed [35].

At k = 0, Eq. (B1) gives the twofold-degenerate four band
energies:

E (S) = Eg

E (HH ) = 0

E (LH ) = −�+δ
2 + 1

2

√
(� − δ)2 + 4 δ�

3

E (SO) = −�+δ
2 − 1

2

√
(� − δ)2 + 4 δ�

3

. (B2)

2. Deviation from a cubic lattice

In this model, the tetragonal deformation is considered
with respect to a cubic lattice of parameter a0, and underlies
in the parameters Eg and δ. They can be revealed explicitly by
replacing

Eg(ε̃⊥) = Eg(ε̃⊥ = 0) + A(2 − λ)ε̃⊥ − b(1 + λ)ε̃⊥
δ = 3b(1 + λ)ε̃⊥

, (B3)

where A and b are the hydrostatic and shear deformation
potentials [34,35]; λ depends on the elastic constants (λ =
2C12/C11 for the distortion along [001] of our case). Note that
ε̃⊥ corresponds to the in-plane lattice mismatch with respect
to a cubic lattice. It is given by

ε̃⊥ = 2a − a0

a0
,

with a0 = c−2aλ
1+λ

, the lattice parameter considering a cubic
crystal. Therefore, one can write

ε̃⊥ = 1 − χ

λ + χ
,

where we have defined the tetragonality as χ = c/2a. Because
its value remains close to 1, Eq. (B3) can be simplified into

Eg(ε̃⊥) = Eg(ε̃⊥ = 0) + A(2 − λ)ε̃⊥ − b(1 − χ )

δ = 3b(1 − χ ). (B4)

The value of b can be accurately extracted from our XRD
and magneto-optical measurements that give, respectively, χ

and δ. The hydrostatic deformation potential A can be deduced
from the Poisson ratio of Cd3As2 determined in Appendix A.
The band edges versus tetragonality (deviation from cubic) are
calculated using Eq. (B2) and Eq. (B4) and plotted in Fig. 6
for λ = 0.7.

3. kz Dispersion

At k⊥ = 0, beside the HH band which is a parabolic band

(E = − h̄2k2
z

2m̃ ), the three other dispersions are solutions of

(E − Eg)[3E (� + E ) + δ(2� + 3E )] = (2� + 3E )P2
‖ k2

z ,

which gives the behavior shown in Fig. 1. A Taylor expansion
near Eg gives the parabolic band-edge mass of the S band:

h̄2

2m∗ = P2
‖

2� + 3Eg

3Eg(� + Eg) + δ(2� + 3Eg)
.

The S band reverses its curvature for � < −3Eg/2, as
observed in temperature [see Fig. 5(c)].

4. LH-SO mixing

The band energies obtained at k = 0 show that the mixing
of LH and SO corresponds to an avoided crossing between
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FIG. 6. Band edges of Cd3As2 vs its tetragonality. λ = 0.7 is
used for this figure, which gives A = −1.6 eV. The other parame-
ters are determined as b = −2.1 eV, Eg(ε̃⊥ = 0) = −90 meV, and
� = 220 meV.

two levels of energy, −� and −δ [see Eq. (B2)]. The Bloch
functions are mixed at k = 0 following [35]

|SO〉 = −β
∣∣ 3

2 ; ± 1
2

〉 + α
∣∣ 1

2 ; ± 1
2

〉
,

|LH〉 = α
∣∣ 3

2 ; ± 1
2

〉 + β
∣∣ 1

2 ; ± 1
2

〉
,

with |J; ±mJ〉 the Bloch functions basis for the cubic case,
|α|2 + |β|2 = 1, and

α = 2|δ|
3
√

n(n−p)

β = − δ
|δ|

√
n−p
2n

with n =
√

p2 + 8

9
δ2 and p = � − δ

3
.

5. Modeling an anisotropic in-plane strain

We consider here the effects of an anisotropic in-plane
strain on Cd3As2 band structure, i.e., εxx �= εyy. This situation
is not realized in the present experimental work, but worth
being theoretically addressed as it is experimentally feasible

FIG. 7. Calculated dispersions of Cd3As2 using parameters listed
in Table I at T = 4 K. Black dots are the dispersions under a homoge-
neous in-plane strain, while red lines are the dispersions considering
a huge anisotropic in-plane strain.

[43]. Bir and Pikus have determined that such a strain in-
duces a k-independent interaction M between p-type bands
[34]. Therefore, the HH and LH band crossing is lifted by
an anisotropic in-plane strain. Figure 7 shows the vanishing
Dirac nodes under this crystal deformation. These disper-
sions have been calculated using the Bir and Pikus strain
Hamiltonian [34,44], which gives an interacting gap 2M that
writes as

2M ∼ −
√

3b(εxx − εyy).

APPENDIX C: LANDAU LEVELS AND
MAGNETO-OPTICAL OSCILLATOR STRENGTH

Under an applied magnetic field along [001]//z, we perform
the following Peierls substitution in the Hamiltonian (B1):
k+ = ξaᵀ and k− = ξa, with ξ = eB/h̄ the inverse square
magnetic length and a and aᵀ the usual ladder operators. The
Hamiltonian (B1) is then projected in a harmonic oscillator
functions basis and gives

HB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eg P⊥ξ
√

n + 1 −P⊥ξ
√

n 0 0 0 0 P‖kz

P⊥ξ
√

n + 1 − h̄2k2
z

2m̃ 0 0 0 0 0 0

−P⊥ξ
√

n 0 − 2�
3

√
2�
3 0 0 0 0

0 0
√

2�
3 −(

δ + �
3

)
P‖kz 0 0 0

0 0 0 P‖kz Eg P⊥ξ
√

n P⊥ξ
√

n + 1 0

0 0 0 0 P⊥ξ
√

n − h̄2k2
z

2m̃ 0 0

0 0 0 0 P⊥ξ
√

n + 1 0 − 2�
3

√
2�
3

P‖kz 0 0 0 0 0
√

2�
3 −(

δ + �
3

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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FIG. 8. Calculated Landau levels of Cd3As2 giving the best fit of
the magneto-optical data at T = 4 K. Spins are in color and some
Landau-level indices are written at the right of the figure.

where n = −1, 0, 1, . . . The magneto-optical transitions oc-
cur at kz = 0, where the joint density of states is maximal. The
Landau levels are calculated by diagonalizing HB(kz = 0).
The latter can be decoupled in two 4 × 4 blocks, whose eigen-
values correspond to the two spin components plotted in red
and blue in the main text. The Landau levels corresponding to
the fit performed at T = 4 K [see Fig. 3(b) of the main text]
are given in Fig. 8.

We write the initial and final Landau levels involved in a
magneto-optical transitions as the following:

|i〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1,n|n〉
α2,n|n + 1〉
α3,n|n − 1〉
α4,n|n − 1〉

α5,n|n〉
α6,n|n − 1〉
α7,n|n + 1〉
α8,n|n + 1〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and | f 〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1,n|m〉
β2,n|m + 1〉
β3,n|m − 1〉
β4,n|m − 1〉

β5,n|m〉
β6,n|m − 1〉
β7,n|m + 1〉
β8,n|m + 1〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The oscillator strengths of the transitions are proportional
to |〈 f |d±|i〉|2, where d± is the dipole operators of the σ+ and
σ− light polarization used in our case (Faraday geometry).

FIG. 9. Calculated magneto-optical transitions between the
Landau levels shown in Fig. 8. The corresponding oscillator strengths
of the transitions are given using a color scale, in units of
×108 m²/s². Only the transitions having a matrix element above
5000 × 108 m2/s2 are considered.

These operators write as

d± = ε±.v = 1

h̄

∑
j=x,y,z

ε j
∂Hk

∂k j
,

with ε± = (1/
√

2; ±i/
√

2; 0) for the σ+ and σ− polarization.
Calculations give simply

|〈 f |d+|i〉|2 = 2P2
⊥

h̄
|β∗

1,n+1α2,n − β∗
3,n+1α1,n

+ β∗
5,n+1α7,n + β∗

6,n+1α5,n|2,

|〈 f |d−|i〉|2 = 2P2
⊥

h̄
| − β∗

1,n−1α3,n − β∗
2,n−1α1,n

+ β∗
5,n−1α6,n + β∗

7,n−1α5,n|2.
The oscillator strengths of the most probable magneto-

optical transitions have been calculated and are shown in
Fig. 9 using a color scale. They greatly confirm our analysis
presented in Fig. 3 of the main text, showing the most proba-
ble transitions. From the matrix elements, the selection rules
can be deduced and lead to transitions between Landau levels
of identical spin and indices that differ by 1 (n → n ± 1).
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