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Nontrivial quantum geometry of degenerate flat bands
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The importance of the quantum metric in flat-band systems has been noticed recently in many contexts such
as the superfluid stiffness, the dc electrical conductivity, and ideal Chern insulators. Both the quantum metric
of degenerate and nondegenerate bands can be naturally described via the geometry of different Grassmannian
manifolds, specific to the band degeneracies. Contrary to the (Abelian) Berry curvature, the quantum metric of
a degenerate band resulting from the collapse of a collection of bands is not simply the sum of the individual
quantum metrics. We provide a physical interpretation of this phenomenon in terms of transition dipole matrix
elements between two bands. By considering a toy model, we show that the quantum metric gets enhanced,
reduced, or remains unaffected depending on which bands collapse. The dc longitudinal conductivity and the
superfluid stiffness are known to be proportional to the quantum metric for flat-band systems, which makes them
suitable candidates for the observation of this phenomenon.
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Introduction. The quantum metric provides a measure of
distance between wave functions in the study of phase transi-
tions [1–3] and is crucial in the modern theory of polarization
[4] due to its relation to the size of maximally localized Wan-
nier functions [5,6]. Recently, nontrivial relations between the
quantum metric and the Berry curvature have been understood
via the underlying Kähler geometry of the space of quantum
states [7–9] and have been successfully applied to ideal Chern
bands and fractional Chern insulators [10–15]. In materials
with highly quenched bandwidth, the quantum metric yields
the dominant contribution to the superfluid stiffness [16–26]
and the dc electrical conductivity [27]. Here, inequalities for
the quantum metric related to the Chern number [7,8,11,28],
the Euler characteristic [29], or obstructed Wannier functions
[30] result in lower bounds with direct implications for moiré
materials such as twisted bilayer graphene [29,31,32] and un-
twisted heterostructures with flat bands such as rhombohedral
trilayer graphene [27]. Especially in the last years, connect-
ing the newly identified importance of the quantum metric
in many fields with new insights on fundamental properties
of the quantum metric has been established as a powerful
research direction [33–66].

Geometric quantities such as the quantum metric arise
naturally in the description of interband effects in multiband
systems. Interband transitions are described by the prod-
uct of two Berry connection coefficients, defining transition
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dipole moments. In transport, such transitions can be induced,
for instance, by finite frequencies of the external electric
fields [67–74] or virtual band excitations [27,75,76]. Similar
contributions are also found for nonuniform electric fields
[77,78] and in spectroscopy [79–84]. For two-band systems,
the symmetric and antisymmetric parts of the transition dipole
moment are proportional to the quantum metric and the Berry
curvature, respectively. Since every transition between pairs
of bands might be weighted differently, for instance, due to
different band occupations, such an identification is possible
only in special situations for more than two bands [27], which
make general multiband systems promising candidates for
new quantum geometric phenomena.

In this paper, we analyze the quantum geometry of de-
generate bands by using their relation to the geometry of
Grassmannians. It has been noticed before by Peotta and
Törmä [16] that the quantum metric is not additive upon
collapse of a collection of bands. However, the physical im-
plications have not been investigated so far. The recently
discovered quantum metric contribution to the dc electri-
cal conductivity [27] provides a simple theory, which yields
a physical quantity proportional to the integrated quantum
metric for flat bands and captures the crossover between non-
degenerate and (effectively) degenerate bands. For a flat-band
toy model, we show that the quantum metric gets enhanced,
reduced, or remains unaffected, due to the nontrivial quantum
metric of the collapsed bands and, as a consequence, the
dc longitudinal conductivity, which we calculate following
Ref. [27], exhibits the same behavior. Our results are directly
applicable to all the physical observables related to the quan-
tum metric, such as the superfluid stiffness.

The Bloch bundle. We give a self-contained review of the
differential geometry of band theory (see also the Supplemen-
tal Material (SM) [85]), which is the framework we use. The
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profitable relation between geometry and quantum mechanics
has already been used in different contexts [7–9,73,86–93].
Under the assumption of short-range hopping amplitudes, a
tight-binding Hamiltonian with N internal degrees of freedom,

H =
∑

k

N∑
i, j=1

�
†
i,k Hi j (k) � j,k, (1)

gives rise to an N × N Hermitian matrix H (k) =
[Hi j (k)]1�i, j�N , which smoothly depends on momentum
k ∈ BZd over the d-dimensional Brillouin zone BZd . Here,
�

†
i,k and �i,k are fermionic creation and annihilation operators

at k and internal degree of freedom i, respectively. For fixed k,
the Hermitian matrix H (k) acts on the vector spaces of Bloch
wave functions denoted by Ek. The collection of all these
vector space forms the Bloch (vector) bundle E π−→ BZd .
The bundle E comes equipped with a connection ∇—known
as the Berry connection. It is related to the position operator
in the Bloch representation by r = i∇. In the global gauge of
E provided by �

†
i,k|0〉, i = 1, . . . , N , ∇ is simply the exterior

derivative d = ∑d
j=1 dk j

∂
∂k j

. Since d2 = 0, this connection is
flat, i.e., it has no curvature, which is consistent with the fact
that position operators commute.

The Hermitian matrix H (k) is diagonalized by the uni-
tary matrix U (k) = [|u1,k〉, . . . , |uN,k〉] involving Bloch wave
functions |um,k〉 as columns. Whereas H (k) and its spectrum,
i.e., the energy bands Em(k), are smooth and globally defined,
U (k) does not need to be smoothly defined globally. In fact, at
each momentum, it is defined up to multiplication on the right
by a unitary matrix preserving the diagonal matrix of eigenval-
ues of H (k). Thus, the Bloch Hamiltonian induces a splitting
of the vector space Ek

∼= CN into mutually orthogonal vector
subspaces with dimensions given by the degeneracies of the
eigenvalues at that point k ∈ BZd . Provided the eigenvalues
do not cross, these decompositions glue together and provide
a splitting of the Bloch bundle E into vector subbundles of
ranks given by the degeneracies of the bands. If we write the
Berry connection ∇ on E using the local frame field provided
by U (k), we find nontrivial local connection coefficients, i.e.,
a (local) gauge field

A(k) = U (k)−1dU (k) = [〈um,k|d|un,k〉]1�m,n�N . (2)

The quantity A is the pullback of the Maurer-Cartan 1-form of
U(N ) under the locally defined map k �→ U (k). The nonvan-
ishing of A does not violate the flatness of the connection on
E , since dA + A ∧ A = 0.

Insulators. For band insulators, the ground state is ob-
tained by filling the entire bands below the Fermi level EF .
The Fermi projector associated with these occupied bands
PF (k) = �(EF − H (k)), with � the Heaviside step function,
provides a splitting of the Bloch bundle as

E = Im(PF ) ⊕ Ker(PF ) = Im(PF ) ⊕ Im(QF ), (3)

where QF (k) = IN − PF (k) with identity matrix IN . The oc-
cupied Bloch bundle Im(PF ) is the vector subbundle of
E whose fiber at k is the image Im[PF (k)]. Im(QF ) and
Ker(PF ) are defined similarly. Although E is a trivial vector
bundle, the subbundles Im(PF ) and Im(QF ) are not neces-
sarily trivial, leading to rich topological effects such as the

quantum anomalous Hall effect [94,95]. The Fermi projector
defines a map PF : BZd → GrNocc (CN ), where GrNocc (CN ) =
U(N )/[U(Nocc) × U(N − Nocc)] denotes the Grassmannian of
Nocc-dimensional subspaces of CN with Nocc being the number
of bands below EF .

Berry curvature and quantum metric. For a smooth or-
thogonal projector P : BZd → Grr (CN ) of some rank r, the
Berry connection ∇ on E does not necessarily preserve the
sections of Im(P) because the components of Eq. (2), for |un,k〉
taking values in Im(P) and |um,k〉 in Im(Q), can be nontrivial.
The composition P∇, acting on sections of Im(P) ⊂ E , de-
fines the projected Berry connection which, in general, is no
longer flat. Its curvature, known as the Berry curvature, is the
2-form [85]

� = (P∇) ∧ (P∇) = PdP ∧ dPP. (4)

The Abelian Berry curvature is F = Tr(�), where the trace is
taken over the internal indices.

We obtain further insights and properties by exploring the
role of the map P to the relevant Grassmannian. If one recalls
the definition of the Fubini-Study Kähler form ωFS on the
Grassmannian—a Kähler manifold [96]—one finds that F
equals the pullback under P of 2iωFS [8,9],

F = 2iP∗ωFS = Tr(PdP ∧ dP). (5)

Furthermore, the pullback of the Fubini-Study metric gFS of
the Grassmannian defines the quantum metric,

g = P∗gFS = Tr(PdPdP) = 1
2 Tr(dPdP). (6)

Using the Cauchy-Schwarz inequality associated with
the Hermitian form gFS + iωFS of the Grassmannian,
it follows that gii(k)gj j (k) − gi j (k)gi j (k) � |F i j (k)/2|2
for i, j ∈ {1, . . . , d} with g = ∑

i, j gi jdkidk j and
F = (1/2)

∑
i, j F i jdki ∧ dk j [8]. This identity implies an

inequality between the Chern number and the quantum
volume [7–9,97] and

gii(k) + gj j (k) � |F i j (k)|, (7)

which generalizes the result known for two [28] to d dimen-
sions. Equation (7) has been used to identify lower bounds on
quantities involving the quantum metric [16,27].

Isolated bands. The previous results can be directly ap-
plied to other relevant projectors. When an energy band n
is isolated, i.e., it does not cross any other band, there is
a well-defined orthogonal projector Pn(k) at each k ∈ BZd

with fixed rank Nn ∈ {1, . . . , N}, which corresponds to the
band degeneracy. Pn(k) defines a map Pn : BZd → GrNn (CN ).
For a nondegenerate band Nn = 1, Pn assigns the ray asso-
ciated with the corresponding Bloch wave function |un,k〉 of
H (k) to each k ∈ BZd . We have Gr1(CN ) ∼= CPN−1, which
is commonly known as Bloch sphere for a two-band system.
For an Nn-fold degenerate band, the map Pn gives rise to
an associated vector bundle Im(Pn)

π−→ BZd whose fibers
are spanned by an orthonormal basis of corresponding Nn

eigenfunctions |uns,k〉, s = 1, . . . , Nn. Using Eqs. (6) and (5),
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the explicit formulas for the quantum metric and the Abelian
Berry curvature of band n are [85]

gn(k) =
Nn∑

s=1

d∑
i, j=1

〈∂iuns,k|Qn(k)|∂ juns,k〉dkidk j, (8)

Fn(k) =
Nn∑

s=1

d∑
i, j=1

〈∂iuns,k|Qn(k)|∂ juns,k〉dki ∧ dk j, (9)

where Qn(k) = IN − Pn(k) and ∂i ≡ ∂/∂ki, i = 1, . . . , d .
Nonadditivity of the quantum metric. Let us consider a

split band projector, i.e., an orthogonal projector Pn of rank
Nn which decomposes into the sum of mutually orthogonal
projectors

Pn(k) = P1(k) + P2(k), (10)

with P1 and P2 having ranks N1 and N2, respectively. This
situation occurs when two bands described by P1 and P2

(effectively) degenerate into one by tuning some external
parameter. The main result that we want to emphasize, pre-
viously noted in [16], is that the quantum metric gn of a split
band is not generally the sum of the quantum metrics g1, g2 of
each of the individual bands. Instead,

gn = g1 + g2 + Tr(dP1dP2). (11)

This additional term can even render gn = 0 if P1 + P2 is a
constant projector, i.e., if Im(Pn) is a trivial bundle [85]. In
contrast, the Abelian Berry curvature Fn of the split band is
equal to the sum of the Abelian Berry curvatures of each band.
The upper results can be easily generalized to multiply split
bands.

We now give a physical interpretation of the nonadditivity
property. If we write Pi(k) = ∑Ni

m=1 |uim,k〉〈uim,k|, i = 1, 2,
then the mixed term Tr(dP1dP2) can be written as

Tr(dP1dP2) = −2
N1∑

s=1

N2∑
l=1

|〈u2l,k|d|u1s,k〉|2, (12)

which is the sum of the squares of all possible transition
dipole matrix elements i〈u2l,k|∂ j |u1s,k〉, s = 1, . . . , N1, l =
1, . . . , N2, j = 1, . . . , d , between the two bands. The nonva-
nishing of this contribution tells us that, if P1(k) and P2(k)
described isolated degenerate bands separated by some gap,
then states can be excited from one band to another induced,
for instance, by finite frequencies of the external electric fields
or virtual band excitations.

DC electrical conductivity. We apply the general results
presented above to the dc electrical conductivity tensor σ i j ,
which relates the current and the external electric field via
J i = ∑d

j=1 σ i jE j . The conductivity tensor can be conve-

niently decomposed into σ i j = σ
i j
intra + σ

i j,s
inter + σ

i j,a
inter [75]. In

the following, we focus on the (symmetric) quantum metric
contribution [27,75],

σ
i j,s
inter = e2

h̄

∫
dd k

(2π )d

N∑
n,m=1

n =m

winter,s
nm (k) gi j

nm(k), (13)

with electric charge e, reduced Planck’s constant h̄,
and summation over pairs of the N bands. We have

gi j
nm(k) ≡ Re [ri

nm(k) r j
mn(k)] involving the transition

dipole matrix element ri
nm ≡ i〈un,k|∂i|um,k〉 [cf. Eq. (2)].

Each transition is weighted by winter,s
nm (k) ≡ −π (En,k −

Em,k )2
∫

dε f ′(ε)An(k, ε)Am(k, ε), where An(k, ε) =

/{π [
2 + (ε + μ − En,k )2]}−1 is the spectral function
of band n with chemical potential μ and phenomenological
relaxation rate 
. f (ε) = [exp (ε/kBT ) + 1]−1 is the Fermi
function with Boltzmann constant kB and temperature T .
We present the analogous results for the intraband and the
(antisymmetric) Berry curvature contribution σ

i j
intra and σ

i j,a
inter

in the SM [85].
Conductivity of degenerate bands. We consider r isolated

bands. Each band n is Nn-fold degenerate with En,k ≡ E(ns),k,
where s = 1, . . . , Nn. We notice that winter,s

nm ≡ winter,s
(ns)(ml ) only

depends on the degenerate eigenvalues and are, thus, equal for
all s = 1, . . . , Nn and l = 1, . . . , Nm. In particular, interband
transitions within a degenerate band vanish. Using this, we
equivalently write the formula in Eq. (13) as

σ
i j,s
inter = e2

h̄

∫
dd k

(2π )d

r∑
n,m=1

n =m

winter,s
nm (k) ĝ i j

nm(k), (14)

with summation only over pairs of the r different degenerate
subspaces and

ĝ i j
nm(k) ≡

Nn∑
s=1

Nm∑
l=1

Re [i〈uns,k|∂iuml,k〉i〈uml,k|∂ juns,k〉], (15)

which includes the remaining summation within the two
involved degenerate subspaces. We prove that ĝ i j

nm is invari-
ant under U(Nn) × U(Nm)-gauge transformations [85], which
shows the gauge-invariance of the conductivity in Eq. (13) and
each term in Eq. (14).

As a first application, we study a system composed
of two independent copies of a single system with Bloch
Hamiltonian H (k), with N nondegenerate bands. Then, the
eigenvalues En,k of the Hamiltonian H ′(k) ≡ H (k) ⊕ H (k)
are twofold degenerate with eigenvectors |un1,k〉 = (|un,k〉, 0)
and |un2,k〉 = (0, |un,k〉), where |un,k〉 is the corresponding
eigenvector of H (k). From Eq. (15) it follows that ĝ

′i j
nm =

2 ĝ i j
nm, which is the expected trivial enhancement. Whereas the

intraband contribution σ
i j
intra of an Nn-degenerate band n is al-

ways enhanced by a factor Nn in relation to the nondegenerate
case [85], this is, however, not generally true for the quantum
metric contribution in Eq. (14) as we will see in the following.

Underlying Grassmannian geometry. Using Eqs. (8) and
(15), the relation between ĝ i j

nm involving a specific degenerate
band n and the quantum metric components gi j

n induced by the
projection Pn(k) = ∑Nn

s=1 |uns,k〉〈uns,k| onto this band is

r∑
m=1
m =n

ĝ i j
nm(k) = gi j

n (k). (16)

This shows the close relation between the gauge-invariant
transition dipole moments defined in Eq. (15) involving an Nn-
fold degenerate band and the geometry of the corresponding
Grassmannian GrNn (CN ).
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The conductivity in Eq. (14) and the identity (16) differ
by the transition-dependent weights winter,s

nm . These weights
drastically simplify for a clean metal and in flat-band systems.
In presence of a (d − 1)-dimensional Fermi surface, we have

σ
i j,s
inter = −2
e2

h̄

r∑
n=1

∫
dd k

(2π )d
f ′(En,k − μ) gi j

n (k), (17)

if the band gaps are small on the scale of 
 and the metric
is almost constant on the momentum scale, in which the
variation of the dispersion is of order 
 [27,75,98]. We see
that each band contribution involves the quantum metric that
corresponds to the underlying Grassmannian. Since the intra-
band contribution scales as 1/
 in the clean limit, significant
corrections due to the quantum metric are expected only for
small band gaps � ∼ 
, for instance, at the onset of order
at quantum critical points [98,99]. Let us assume an Nf -fold
degenerate flat band f , which is well isolated from all other
bands n = f with |En,k − E f | � 
. We set the chemical po-
tential to μ = E f and obtain [27]

σ
i j,s
inter = 2

π

e2

h̄

∫
dd k

(2π )d
gi j

f (k) ≡ 2

π

e2

h̄
gi j

f , (18)

where we introduced the quantum metric gi j
f of the flat band

integrated over the Brillouin zone. The result in Eq. (18) also
holds for almost flat bands with |E f ,k − μ| � 
. We see that
the dominant contribution to the longitudinal conductivity of
the flat band is given by the quantum metric of the underlying
Grassmannian, since the quasiparticle velocities ∂iE f ,k = 0
(≈0) of an (almost) flat band is strongly suppressed [27].

Nontrivial degenerate flat bands. We construct a three-
band toy model H (k) with topologically nontrivial flat bands
in two dimensions. Let us consider �nk = �dk/| �dk| with �dk =
(sin kx, cos ky, 1 − cos kx − cos ky). We use a spin-1 irre-
ducible representation of SU(2),

S1 = 1√
2

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦, S2 = 1√

2

⎡
⎣ 0 i 0

−i 0 i
0 −i 0

⎤
⎦,

S3 =
⎡
⎣−1 0 0

0 0 0
0 0 1

⎤
⎦, (19)

in order to define the projectors

P0(k) = 1 − h2
k, P±(k) = 1

2

[±hk + h2
k

]
, (20)

where hk = �nk · �S with �S = (S1, S2, S3). These projectors cor-
respond to the three momentum-independent eigenvalues 0
and ±1 of hk [85]. We will use the three band energies εn

in

H (k) =
∑

n=−,0,+
εn Pn(k) (21)

to discuss the impact of degeneracy on the longitudinal con-
ductivity of flat bands. We have σ xx

intra = 0 and calculate the
longitudinal conductivity σ xx = σ xx,s

inter via Eq. (13) at zero tem-
perature.

In Fig. 1, we show σ xx as a function of the energy level ε−
for different 
. We fix the chemical potential μ to the flat-band
energies ε0 = −0.5 (a) and ε+ = 0.5 (b). In Fig. 1(a), we

FIG. 1. The longitudinal conductivity σ xx of a flat band is pro-
portional to the corresponding integrated quantum metric gxx

f (dashed
lines). When the bands become degenerate, we find a pronounced
drop for μ = ε0 (a) and peak for μ = ε+ (b). In the inset, we show
the energy levels of the three bands.

find a drop of σ xx when ε− = ε0. In contrast, we find a peak
when ε− = ε+ in Fig. 1(b). Via Eq. (18), we can relate this
behavior to the different quantum metrics of nondegenerate
and degenerate bands [85]. If |ε0/+ − ε−| � 
, the flat band at
energy ε0/+ is isolated and nondegenerate. We have (a) σ xx =
4 gxx

0 = 4 c and (b) σ xx = 4 gxx
+ = 2 c in units e2/h, where

c = ∫
d2k

(2π )2 ∂x�nk · ∂x�nk ≈ 0.454. If |ε0/+ − ε−| � 
, the flat
band is isolated and twofold degenerate. We have (a) σ xx =
4 gxx

(−0) = 2 c and (b) σ xx = 4 gxx
(+−) = 4 c.

In Fig. 2, we show σ xx as a function of the relevant energy
scale 
. We fix μ = 1 to the highest band 1. The band gap
to the middle band 2 and lowest band 3 are �12 = 0.1 and
�13 = 10, respectively. Using Eq. (18), we can relate the ob-
tained conductivity plateaus to the integrated quantum metric,
i.e., σ xx = 4 gxx

1 for 
 � �12 and σ xx = 4 gxx
(12) for �12 � 
 �

�13 in units e2/h. Here, we have an effective twofold degen-
eracy of bands 1 and 2 set by the scale 
 > �12. In agreement
with Fig. 1, we recover the drop and rise of the conductivity in
Figs. 2(a) and 2(b), respectively. We have gxx

+ = gxx
(+0) = c/2

[85], so that the conductivity does not change between the
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FIG. 2. The longitudinal conductivity σ xx as a function of a phe-
nomenological band broadening 
 for different relative position of
the three bands. We understand the value of the observed plateaus
(dashed lines) by the quantum metric of the involved one, two,
or three bands (inset). The crossovers are given by the band gaps
(vertical lines).

nondegenerate and degenerate band in Fig. 2(c). We discuss
the crossover behaviors in the SM [85].

Superfluid stiffness. The step from Eq. (13) to Eq. (14) and
the application of identity (16) can be analogously used for
the superfluid stiffness tensor Di j

f of a degenerate flat band f
[16,18,100], where we find

Di j
f = 4e2Uν(1 − ν)

h̄2

∫
dd k

(2π )d
gi j

f (k), (22)

with coupling strength U and filling factor of the band ν. Here,
the relevant reference scale for the flat-band degeneracy is
U instead of the phenomenological relaxation rate 
. Thus,
we can directly apply Eqs. (7) and (11). Inequalities of the
form given in Eq. (7) were used to derive lower bounds for
the superfluid stiffness [16]. The nonadditivity property of
the quantum metric will manifest itself in the nonadditivity,
under (effective) band collapse, of the superfluid stiffness
Di j

f . Our result is consistent with previous work where the
importance of band degeneracy for the superfluid stiffness
was noticed before [16]. It is crucial for twisted bilayer
graphene [29].

We note that it has been shown recently that the so-called
minimal quantum metric, the metric with minimal trace,
should be considered when computing of the superfluid stiff-
ness Di j

f [23].
Conclusions. We have shown how the nonadditivity of the

quantum metric upon collapse of a collection of bands mani-
fests itself in physical observables (such as the dc electrical
conductivity and the superfluid stiffness). We have given a
physical interpretation for the term responsible for failure of
additivity in terms of transition dipole matrix elements be-
tween two bands. We suggest that this distinguished property
may be used to infer quantum metric effects. Furthermore, it
provides a new purely quantum-geometrical mechanism for
manipulating measurable quantities by changing the under-
lying degeneracy. It would be interesting to study the effect
of nonadditivity of the quantum metric in disordered systems
and in systems with interactions. Several direct measurements
of the quantum metric have been reported recently [101–108],
which might serve as a good starting point for an experimental
verification of this effect.
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