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Ab initio guided minimal model for the “Kitaev” material BaCo2(AsO4)2: Importance of direct
hopping, third-neighbor exchange, and quantum fluctuations
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By considering two ab initio-based complementary approaches, we analyze the electronic structure and extract
effective spin models of BaCo2(AsO4)2, a honeycomb material which has been proposed as a candidate for
Kitaev physics. Both methods show that the dominant direct hopping makes the bond-dependent Kitaev term
negligible, diverting the material away from the sought-after spin-liquid regime. As a result, we present a
simple three-parameter exchange model to describe the interactions of the lowest doublet of the honeycomb
cobaltate BaCo2(AsO4)2. Remarkably, it is the third-neighbor interactions, both isotropic and anisotropic,
that are responsible for the standout double-zigzag ground state of BaCo2(AsO4)2, stabilized by quantum
fluctuations. A significantly large third-nearest-neighbor hopping, observed ab initio, supports the importance of
the third-neighbor interactions in the stabilization of the unique ground state of BaCo2(AsO4)2.
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I. INTRODUCTION

In the search for material realizations of Kitaev quantum
spin liquids [1], a whole family of honeycomb cobaltates,
including BaCo2(AsO4)2, BaCo2(PO4)2, CoTiO3, and many
others [2–20], was proposed to host dominant nearest-
neighbor Kitaev exchange couplings, following the concept
that Co2+ ions (3d7) in an octahedral crystal field environment
with total spin S = 3/2 and orbital angular momentum leff =
1 build spin-orbit coupled jeff = 1/2 doublet states. However,
this proposal was recently put into question by a combination
of first-principles-based calculations with single-site exact di-
agonalization and two-site perturbation theory [21]; it was
found that the Kitaev term favoring a spin-liquid ground state
must be rather small.

In the present work we perform a detailed analysis of the
electronic structure within density functional theory (DFT)
employing the projector augmented-wave [22] basis as im-
plemented in VASP, as well as the full potential local orbital
(FPLO) basis [23]. We further use two ab initio-based com-
plementary approaches to extract effective spin models for the
honeycomb cobaltate BaCo2(AsO4)2. One is based on total
energy calculations of various magnetic configurations within
DFT + U + spin-orbit coupling (SOC) and mapping into
a spin model to extract the exchange tensor elements, and
the second method is based on the projED method [24,25]
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recently introduced by some of the authors, which consists
of a combination of DFT calculations, exact diagonalization
(ED) of extracted generalized relativistic Hubbard models on
finite clusters, and projection to low-energy spin Hamiltoni-
ans. We find that the Kitaev model is hardly applicable for
a description of the magnetic properties of BaCo2(AsO4)2,
which is supported by both ab initio calculations and the
phenomenology of BaCo2(AsO4)2.

One of the peculiarities of BaCo2(AsO4)2 is the long
search for the correct magnetic ground state. Early works sug-
gested that the ground state is an unusual long-range ordered
spiral state with in-plane ordering vector Q = (0, π/3) [13].
However, more refined neutron scattering data later showed
that the ground state is instead a collinear double-zigzag state
[15] with the + + −− pattern of zigzag chains with the mag-
netic moments approximately parallel to the chain direction.
Since the model including isotropic exchange between the
nearest and third-nearest neighbors (J1-J3 model) does not
reproduce this experimentally established magnetic order, the
Hamiltonian requires extra terms beyond the isotropic third-
neighbor interaction in order to describe the ground state of
BaCo2(AsO4)2. Indeed, ab initio studies in this work and in
earlier works [21] indicate a significant role of anisotropic
couplings associated with the spin-orbital jeff = 1/2 moments
of 3d7 Co2+. This is further supported by the finite-energy
gap observed in inelastic neutron scattering data and tera-
hertz spectroscopy, although the small magnitude of this gap
(∼1.45 meV [15]) places constraints on the magnitude of
anisotropic terms.
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FIG. 1. (a) The band structure and (b) partial densities of states
of BaCo2(AsO4)2 at the GGA level.

In this paper we extensively study the phase diagram of
the general eight-parameter model to identify which exchange
parameters are essential in the stabilization of the double-
zigzag state. We find that it is the third-neighbor isotropic
and anisotropic terms that are crucial and make up a min-
imal model required to describe the magnetic properties of
BaCo2(AsO4)2. Even though the ab initio parameter sets yield
the zigzag ground state, they are close to the phase boundary.
Therefore, we argue that there can be additional corrections,
such as magnetoelastic coupling, which can tune the cal-
culation towards the experimentally observed double-zigzag
ground state.

II. DFT: CRYSTAL-FIELD AND HOPPING PARAMETERS

We start with the analysis of the on-site Hamiltonian ob-
tained in nonmagnetic DFT using both maximally localized
Wannier functions [26] within VASP [27] and FPLO [23,28]
basis sets. All calculation details are given in the Supplemen-
tal Material (SM) [29] (see also Refs. [30–41] therein).

The crystal structure of BaCo2(AsO4)2 is characterized by
the R3̄ space group. It consists of stacked honeycomb layers
of edge-sharing CoO6 octahedra along the c axis separated by
bilayers of opposite-facing AsO4 tetrahedra with Ba atoms in
between. The cubic crystal field of the O6 octahedron around
Co splits the Co 3d orbitals into eσ

g and t2g states, and the latter
are then further split by additional trigonal distortions into
lower-lying eπ

g and a1g states because of the layered structure
[see the inset in Fig. 1(b)]. In Ref. [21], these splittings were
estimated by rescaling values (to fit available experimental
data) obtained from N th muffin-tin orbital calculations, lead-
ing to 735 meV for the eσ

g -a1g splitting and to 94 meV for

FIG. 2. Sketch illustrating two dominating hopping processes
according to DFT calculations. (a) Direct nearest-neighbor overlap of
two xy orbitals. (b) Largest contributions for third-nearest neighbors
corresponding to hoppings between x2-y2 orbitals via O 2p states.

the splitting within t2g (a1g-eπ
g ). Our DFT (VASP) calculations

give similar results, 818 and 122 meV, respectively, without
any additional renormalization. Interestingly, with the FPLO
basis, Wannier projection [36] leads to somewhat larger val-
ues of 963 and 133 meV. However, it should be emphasized
that in all cases the latter t2g splitting is comparable to the
atomic spin-orbit coupling constant λCo ≈ 60 meV defined
by HSOC = λ S · L, suggesting strong deviations from ideal
jeff = 1/2 moments at the Co sites. This finding is also con-
sistent with the strong reported anisotropy of the g tensor
(gab ∼ 2gc) [15].

We utilized several approaches for the nearest-neighbor
hopping integrals: Wannier function projection [26], projected
localized orbitals [35] as implemented in VASP, and FPLO
[36]. Notably, all approaches we used led to the same con-
clusions. For instance, for the bond depicted in Fig. 2(a), the
direct xy/xy hopping t ′ ∼ −300 meV dominates over hop-
pings via xz and yz orbitals, t ∼ 50 meV, which are associated
with electron transfer via ligand p states; the local coordinate
system shown in Fig. 2(b) is chosen. Similar findings were
recently reported for Na2BaCo(PO4)2 [42] and other edge-
sharing Co compounds [43]. Already, this fact reveals that
one of the key assumptions used in [2], κ = |t ′/t | < 1, is far
from being fulfilled. This results in a small Kitaev exchange
for the first-nearest neighbors, as we will demonstrate in the
next section. It is worth mentioning that a large xy/xy hopping
not only affects exchange coupling but also strongly changes
the electronic structure. One can clearly observe the formation
of two isolated branches of Co t2g bands in Fig. 1, where each
of the t2g orbitals has a direct overlap with the corresponding
orbital on one of the neighboring Co sites. Indeed, the gap
between these bands closes if the direct xy/xy hopping is set
to zero, as explained in the SM.

Another very important feature, which becomes evident al-
ready on the DFT level, is that hopping between third-nearest
neighbors t3 is not small. The most important contribution
comes from hopping between eg orbitals, which strongly hy-
bridize with ligand p orbitals. This leads, for example, to
an effective hopping t x2−y2/x2−y2

3 ≈ 124 meV [see Fig. 2(b)].
This hopping is associated with an antiferromagnetic J3 that
may be comparable to the nearest-neighbor exchange J1. This
finding contradicts the assumption [2,3,44] that longer-range
couplings should be suppressed in 3d7 compounds as a result
of stronger Coulomb interactions and smaller d orbitals local-
izing the moments in comparison to traditional 4d5 and 5d5
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Kitaev candidate materials. In fact, the partial filling of the eg

orbitals in 3d7 Co2+ provides additional long-range exchange
pathways. Large hopping between the third-nearest neighbors
is also reflected in the electronic structure of BaCo2(AsO4)2.
It results in the formation of the bonding and antibonding eg

states, as discussed in the SM, which is clearly seen in Fig. 1.

III. AB INITIO EXCHANGE PARAMETERS

Due to the interplay of crystal field and SOC, the magnetic
interactions of effective doublets are defined by the symmetry
of the lattice. The symmetry of edge-sharing CoO6 octahedra
results in the extended Kitaev-Heisenberg model [45], which
has been discussed for BaCo2(AsO4)2 [3]. Explicitly, the ex-
change Hamiltonian is given by

Ĥcubic =
∑

〈i j〉n

Jn Si · S j + KnSγ

i Sγ

j + �n
(
Sα

i Sβ
j + Sβ

i Sα
j

)

+ �′
n

(
Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ

j + Sβ
i Sγ

j

)
, (1)

where the sum is taken over the three types of bonds of the
honeycomb lattice, {α, β, γ } = {x,y,z} for the Z-type bond
and interactions on the X and Y bonds are obtained through
a cyclic permutation [45,46] [see Fig. 3(a)]. Note that this
model uses cubic axes {x,y,z}, which are shown in Figs. 2
and 3(a) and are related to the ion-ligand bonds. In accordance
with neutron studies and ab initio results below, we antic-
ipate that first-neighbor (n = 1) and third-neighbor (n = 3)
couplings are dominant.

For our purpose, it is also convenient to refer the interac-
tions alternatively to the crystallographic axes {x, y, z}, which
are defined by the honeycomb plane of magnetic ions, shown
in Fig. 3(a). The Hamiltonian in that reference frame is given
by

Ĥcryst =
∑

〈i j〉n

Jn
(
Sx

i Sx
j + Sy

i Sy
j + 
nSz

i Sz
j

)

− 2J (n)
±±

[(
Sx

i Sx
j − Sy

i Sy
j

)
cα − (

Sx
i Sy

j + Sy
i Sx

j

)
sα

]

− J (n)
z±

[(
Sx

i Sz
j + Sz

i Sx
j

)
cα + (

Sy
i Sz

j + Sz
i Sy

j

)
sα

]
, (2)

where cα ≡ cos ϕα and sα ≡ sin ϕα with the bond-dependent
phases ϕα ={0, 2π/3,−2π/3} for the three types of first- and
third-neighbor bonds [45,47]. The exchange parameters of
the extended Kitaev-Heisenberg model (1) and anisotropic-
exchange model in the crystallographic axes (2) are related
through a simple linear transformation:

Jn = 1
3 (2Jn + 
nJn + 2J (n)

±± −
√

2J (n)
z± ),

Kn = −2J (n)
±± +

√
2J (n)

z± ,

�n = 1
3

( − Jn + 
nJn − 4J (n)
±± −

√
2J (n)

z±
)
,

�′
n = 1

6

( − 2Jn + 2
nJn + 4J (n)
±± +

√
2J (n)

z±
)
. (3)

We use a variety of approaches to estimate the magnetic
exchange couplings. Conventional DFT calculations underes-
timate the effect of strong Coulomb correlations, which must
be taken into account for extraction of the exchange interac-
tion in transition metal oxides. We therefore first computed
the magnetic interactions based on a DFT(GGA)+U+SOC

TABLE I. The dependence of exchange interaction parameters
on on-site Coulomb U computed from DFT+SOC+U total energy
in the extended Kitaev model. Intra-atomic Hund’s exchange was
chosen to be JH = 0.9 eV.

U

5 eV 6 eV 7 eV

J1 (K) −61.0 −40.9 −37.6
K1 (K) 0.3 2.2 5.3
�1 (K) −2.2 −1.7 −1.8
�′

1 (K) 5.1 4.0 3.2

J3 (K) 31.4 24.6 18.7
K3 (K) −0.2 0.2 −0.2
�3 (K) −4.5 −6.0 −4.5
�′

3 (K) −3.6 −2.3 −1.8

calculation of total energies of four noncolinear magnetic
configurations [41], where GGA is the generalized gradient
approximation. These results are complemented by extraction
of the couplings from exact diagonalization of two-site clus-
ters, which are described below.

For the total energy DFT(GGA)+U+SOC calculations,
the most important exchanges for the first- and third-nearest
neighbors are summarized in Tables I and II in terms of
both extended Kitaev and crystallographic parametrizations
(other constants were found to be small, e.g., J2 ∼ 0.2 K). The
calculations were performed for several values of the on-site
Hubbard repulsion parameter U , but all of them demonstrate
that (i) the Kitaev exchange is small for both the first- and
third-nearest neighbors and that (ii) there is a strong exchange
coupling with third-nearest neighbors. Both factors strongly
suppress formation of a spin-liquid state and are compatible
with a previous neutron scattering analysis, which suggested
J1 ∼ −38 K and J3 ∼ +10 K [14], as well as more recent
data [48], which estimated J1 ∼ −88 K, J3 ∼ +29 K, and
J (1)
±± ∼ −0.6 K. We note, however, that large XXZ anisotropy

estimated from experiment (
 ∼ 0.37 [14] and 
1 ∼ 0.16
[48]) is not reproduced in this approach.

TABLE II. The dependence of exchange interaction parameters
on on-site Coulomb U in the crystallographic parametrization. Intra-
atomic Hund’s exchange was chosen to be JH = 0.9 eV.

U

5 eV 6 eV 7 eV

J1 (K) −63.6 −42.3 −37.4

1 0.87 0.85 0.88

J (1)
±± (K) 2.4 1.5 0.8

J (1)
z± (K) 3.5 3.7 4.9

J3 (K) 35.2 28.2 21.3

3 0.67 0.62 0.62

J (3)
±± (K) 0.3 1.2 0.9

J (3)
z± (K) 0.3 1.8 1.2
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TABLE III. Exchange interaction parameters (in K) computed
from exact diagonalization of the effective d-orbital model. Values
in parentheses include estimated corrections for omitted ligand ex-
change processes.

JH,t2g

0.7 eV 0.9 eV

U = 3.25 eV U = 5 eV U = 6 eV U = 7 eV

J1 (K) −107 (−127) −37 (−57) −18 (−38) −8.8 (−29)
K1 (K) 32 13 6.5 3.4
�1 (K) 28 (35) 14 (21) 8.0 (15) 4.8 (12)
�′

1 (K) 9.4 (16) 7 (14) 4.0 (11) 2.4 (9)

J3 (K) 43 30 27 24
K3 (K) −0.6 −0.4 −0.3 −0.3
�3 (K) −20 −12 −10 −8.9
�′

3 (K) −21 −12 −11 −9.2

In order to further examine the magnetic couplings, we em-
ployed a complementary approach similar to that in Ref. [21]:
exact diagonalization of the five-d-orbital model on two sites
[24,25]. For this purpose, we employ hopping integrals ob-
tained from VASP and take the fully spherically symmetric
form [49] of the on-site Coulomb interactions with Slater pa-
rameters F4/F2 = 0.625, F0 ≡ U and F2 ≡ 14J/(1 + 0.625)
set according to U = 5 to 7 eV, and JH,t2g = 0.9 eV. The
results are shown in Table III. For the purpose of compar-
ison, results for Coulomb parameters equivalent to those in
Ref. [21] (U = 3.25 eV, JH,t2g = 0.7 eV) are also shown. We
note that this approach neglects an important contribution
to the exchange involving multiple holes on a given ligand,
which can be corrected using expressions from perturbation
theory [3,43,50]. This leads to shifts of the nearest-neighbor
couplings J1 → J1 + δJ, �1 → �1 + δ�, and �′

1 → �′
1 + δ�

that can be estimated from the trigonal crystal field splitting
and realistic metal-ligand hopping parameters (see [3,43]). In
this case, a rough estimate is δJ ∼ −20 K and δ� ∼ +7 K.
Both corrected and uncorrected results are given in Tables III
and IV.

The ED + perturbation theory results are essentially
compatible with the DFT results above; ferromagnetic J1

dominates the couplings, while the anisotropic couplings
K1, �1, �

′
1 > 0 are all of smaller but similar magnitude. The

main difference is that the XXZ anisotropy is considerably
stronger in ED results, with corrected values of 
1 ranging
between 0.2 and 0.5. This anisotropy originates from the
effects of local trigonal crystal field on the jeff = 1/2 mul-
tiplet structure, which may not be completely captured in
one-electron methods such as DFT+U+SOC. On the other
hand, cluster approaches, such as our ED method, tend to have
difficulties with long-range interactions. This fact is embodied
by surprisingly large J3, which is comparable to J1, as can be
seen in Table IV.

Thus, both calculation methods rather guide than provide
exact estimates of exchange constants. It is important that
our methods and the perturbation theory of Ref. [21] give
consistent results, which is not always the case for Kitaev
materials (for Li2IrO3 see Refs. [25,51], and for α-RuCl3 see

TABLE IV. Exchange interaction parameters computed from
exact diagonalization of the effective d-orbital model. Values in
parentheses include estimated corrections for omitted ligand ex-
change processes.

JH,t2g

0.7 eV 0.9 eV

U = 3.25 eV U = 5 eV U = 6 eV U = 7 eV

J1 (K) −113 (−140) −42 (−69) −21 (−48) −11 (−38)

1 0.58 (0.51) 0.36 (0.31) 0.24 (0.23) 0.11 (0.19)

J (1)
±± (K) −12 −4.5 −2.4 −1.4

J (1)
z± (K) 6.2 2.7 1.2 0.4

J3 (K) 64 42 37 33

3 ∼0 0.14 0.16 0.18

J (3)
±± (K) 0.1 ∼0 ∼0 ∼0

J (3)
z± (K) −0.60 −0.36 −0.30 −0.26

Ref. [52]). However, both approaches place the system in a
region of zigzag order for all of the presented parameter sets,
rather than the double-zigzag observed in BaCo2(AsO4)2. In
the next section we show that these parameter sets are, in
fact, close to the boundary of the double-zigzag phase, and
extensively study the full phase diagram in order to establish
which of the parameters of the model would tune the ground
state towards the experimentally established one.

IV. PHASE DIAGRAM

We now investigate the minimal set of interactions that
is compatible with the ground state phenomenology of
BaCo2(AsO4)2 [16]. We start with the isotropic XY J1-J3

model, guided by ab initio sets presented above, and study
phase transitions when the anisotropic-exchange terms of the
full eight-parameter model (2) are added to the Hamiltonian
one at a time, using the classical Luttinger-Tisza (LT) method
[53]. We should note that in frustrated magnets with broken
continuous symmetry, incommensurate spiral states given by
Luttinger-Tisza approach cannot satisfy local spin constraints
and thus are not exact classical ground states [54]. How-
ever, even though the LT method breaks down, it can still
point to regions of exotic ground states on the phase diagram
[46,55,56]. Therefore, we use the LT method in this section as
a guide for the search of classical ground states beyond fer-
romagnetic and zigzag phases by plotting the ordering vector
selected by LT, and we take the boundary of stability of the
LT method as an indicator of the regions of the phase diagram
which can host the double-zigzag state (which is studied in
detail in the next section).

Corresponding phase diagrams are shown in Fig. 3, where
we plot the ordering vector (0, Qy) as an intensity map, and
the regions where the LT method breaks down are shown
by white dashed lines. As depicted in the Brillouin zone in
Fig. 3(b), Qy = 0 corresponds to a ferromagnetic (FM) state,
Qy = 2π/3 corresponds to a zigzag state, and the spiral state
originally proposed for BaCo2(AsO4)2 interpolates between
these states with 0 < Qy < 2π/3. The J1-J3 model is known
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FIG. 3. (a) Honeycomb lattice with three types of bonds; cubic
axes {x,y,z} and crystallographic axes {x, y, z} are also presented.
(b) Brillouin zone of the honeycomb lattice with high-symmetry
points indicated. (c)–(f) Classical phase diagram of the model (2)
calculated with the Luttinger-Tisza method for J1 < 0, J3 > 0, 
 =

1 = 
3. The ordering vector of the classical spiral state Qy is
represented by the color intensity map. A sketch of the zigzag is
shown as an inset. The state shown with gray has a non-zero Qx

component of the ordering vector and thus is not related to the ground
state of BaCo2(AsO4)2.

to host this spiral state for 0.25|J1| < J3 < 0.4|J1| [57], as
shown in Fig. 3(c), and the addition of XXZ anisotropy (with

 = 
1 = 
3) does not alter the relative stabilities of the
phases compared to the pure Heisenberg J1-J3 model.

In contrast, the addition of anisotropic first-neighbor J (1)
±±

and J (1)
z± exchange terms stabilizes the zigzag state [see

Figs. 3(d) and 3(e)]. However, the J (3)
±± interaction promotes

non-FM and nonzigzag states, shown in gray in Fig. 3(f).
However, LT suggests states with the ordering vector near the
K point with a nonzero Qx component; thus, this region is not
relevant to the ground state of BaCo2(AsO4)2, and we do not
go into the specifics of its structure.

Finally, we also considered phase diagrams starting from
the DFT and ED parameters. For this purpose, we use the
results for U = 5 eV in each case, as the corresponding inter-

FIG. 4. Luttinger-Tisza J3-J (3)
z± phase diagrams for U = 5 eV sets

of parameters from Tables I and III. DFT and ED parameter sets are
indicated with yellow dots.

actions are closest in magnitude to the experimental estimates
[14,48]. Results are shown in Fig. 4 with respect to tuning
J3 and J (3)

z± . The latter third-neighbor interaction was selected
because it tends to stabilize the (0, Qy) spiral when added to
the both the isotropic J1-J3 and ED models. As can be seen,
both ab initio parameter sets predict the zigzag as a ground
state, but both lie relatively close to the boundary of the
zigzag state. While we find that various modifications of these
parameters may stabilize the spiral phase (such as increasing
J (3)

z± with respect to the ED couplings), the discrepancy is
most likely attributable to an overestimation of third-neighbor
couplings. That is, rescaling of J3 shifts both parameter sets
towards the spiral state. As we show in the next section, the
spiral is, indeed, replaced by the unique double-zigzag state
in a more careful study of the classical ground state and when
quantum fluctuations are taken into consideration.

V. DOUBLE-ZIGZAG STATE

In order to search for the double-zigzag state and explore
quantum effects on the relevant phases, we focus on a reduced
three-parameter J1-J3-J (3)

z± model as a minimal Hamiltonian
for BaCo2(AsO4)2:

Ĥmin =
∑

〈i j〉1

J1
(
Sx

i Sx
j + Sy

i Sy
j

) + J3

∑

〈i j〉3

(
Sx

i Sx
j + Sy

i Sy
j

)

− J (3)
z±

[(
Sx

i Sz
j + Sz

i Sx
j

)
cα + (

Sy
i Sz

j + Sz
i Sy

j

)
sα

]
. (4)

We take easy-plane anisotropy 
1 = 
3 = 0. This choice of
minimal interactions is sufficient to provide a wide region
of stability for the double-zigzag phase, although it neglects
many interactions relevant to the real material.

First, the LT phase diagram of the model (4) presented in
Fig. 5(a) points to a state with the (0, Qy) ordering vector.
However, since the incommensurate spiral state given by LT
does not satisfy the strong local spin length constraint, we
perform a more focused study of the classical ground state.
We use a quasi-one-dimensional cluster, periodic in the x axis,
using the fact that spin modulation is only along the y axis,
as suggested by the (0, Qy)-spiral state from LT calculations.
The results of classical energy minimization on a 24-unit
cell cluster are shown in Fig. 5(b), where the color intensity
illustrates the magnitude of the Qy ordering vector. We can see
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FIG. 5. (a) Luttinger-Tisza phase diagram of the XY (i.e., 
 = 0) J1-J3-J (3)
z± model (4) calculated with the Luttinger-Tisza method for

J1 < 0, J3 > 0. The ordering vector of the classical state Qy is represented by the color intensity map. (b) Classical phase diagram of the model
(4) with the same notation for the intensity map. (c) DMRG phase diagram of the model (4) for S = 1/2. The gray areas indicate regions of
the intermediate phases which are beyond the scope of this work. (d) Example of the DMRG calculation for a representative parameter set
J3 = J (3)

z± = 0.5|J| which exhibits a double-zigzag ground state.

that, compared to the LT method, the double-zigzag state is,
in fact, stabilized in the phase diagram of the J1-J3-J (3)

z± model
for J (3)

z± � 0.2, while the spiral state is stable for J (3)
z± � 0.2.

Moreover, it is known that there are strong renormal-
izations of phase diagrams of frustrated quantum S =
1/2 models relative to the classical S → ∞ approximation
[46,58–67]. In order to study the model (4) in the quantum
limit in the context of jeff = 1/2 moments of BaCo2(AsO4)2,
we employ the density matrix renormalization group (DMRG)
[68] using the ITENSOR library [69] on a 192-site S = 1/2
cluster with open boundary conditions using 20 sweeps with
error <10−4 and a random initial state. (We have also studied
clusters of other sizes and with periodic boundary conditions;
they all yielded very similar results.) The phases were iden-
tified by the maximum value of spin-spin correlator S (k)
calculated at �, K , M, and (0, π/3), where

S (k) =
∑

i, j

〈Si · S j〉eik(ri−r j ). (5)

The phase diagram, obtained with the DMRG in the quan-
tum S = 1/2 limit, is shown in Fig. 5(c). The ordering vector
is shown by the color intensity, the same as in Figs. 5(a)
and 5(b); the phases in gray are intermediate between FM,
double zigzag, and zigzag, but their characterization is beyond
the scope of this work. Note that our investigative DMRG
calculation is unable to give a conclusive result in the region
of multiple-phase competition for J (3)

z± < 0.1|J1|. Nonetheless,
we can see that the double-zigzag state is stable in a wider
region of the phase diagram for S = 1/2, relative to classical
model predictions. This fact implies that quantum fluctuations
play a significant role, which is captured by the DMRG. This
mechanism is generic and applies beyond the minimal model.
Such fluctuations are known to stabilize collinear orders in
frustrated systems, such as the field-induced up-up-down state
in the triangular lattice antiferromagnet [70,71], honeycomb
J1-J2 model [72], and anisotropic-exchange model on a trian-
gular lattice [56,58,73].

An example of the spin orientations obtained with the
DMRG for the representative parameter set J3 = J (3)

z± =
0.5|J1| is shown in Fig. 5(c). This observed spin structure
is precisely the same as that measured in the latest neutron
data [15], the + + −− double-zigzag structure. Moreover, an
out-of-plane canting of the spins around 5◦ was also reported
[15]. We also observe the out-of-plane canting, induced by the
anisotropic J (3)

z± term, which couples in-plane and out-of-plane
spin components. However, the canting in our DMRG calcu-
lation not only has opposite signs between chains of opposite
directions but also has different signs between the A and B
sublattices of the honeycomb lattice.

Finally, we remark on an additional mechanism that
may stabilize the mysterious double-zigzag structure. Our
DFT+U+SOC calculations (U = 6 eV) show that the zigzag
is the ground state magnetic structure with the double zigzag
being 1.2 meV/f.u. higher in energy for the experimental
crystal structure. However, relaxation of the atomic positions
completely changes the situation: the double-zigzag order
becomes more stable than the spiral by 0.2 meV/f.u. (≈1
K/Co). The task of deciphering the origin of the stabilization
of the double-zigzag structure from ab initio calculations is
extremely complicated due to a tiny total energy difference
(corresponding hopping parameters and nearest-neighbor ex-
change constants can be found in the SM), but one can
conclude with certainty that (i) the system is on the border
between two magnetic phases and phase separation or the
presence of different domains is not excluded and (ii) the
magnetoelastic coupling is important in BaCo2(AsO4)2 [74].

VI. CONCLUSIONS

By means of ab initio band structure, Luttinger-Tisza, and
DMRG calculations we studied the electronic and magnetic
properties of BaCo2(AsO4)2, a candidate material for the
realization of the celebrated Kitaev model. While previous
theoretical results [3] and experimental data [20] suggested
a dominant Kitaev interaction, promising proximity to the
spin-liquid regime, in this paper we showed that this notion
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is not supported by either phenomenology or various ab initio
methods.

Instead, DFT and ED in this paper establish that large
direct exchange due to t2g orbitals strongly suppresses
anisotropic contributions to the exchange interaction between
nearest neighbors, in agreement with Ref. [21]. Moreover,
there is also substantial coupling with third-nearest neighbors,
such that J3 > 0.3|J1|. These two findings together make the
formation of a spin-liquid state unfavorable, driving the sys-
tem towards the long-range ordered state.

However, proposed ab initio models do not yield the unique
double-zigzag ground state of BaCo2(AsO4)2. Through an
extensive search over the eight-parameter phase space we
established a minimal model that hosts the double-zigzag state
in a wide range of parameters. Remarkably, quantum fluctua-
tions inherent in jeff = 1/2 magnets strongly affect the ground
state of the proposed model and stabilize the double-zigzag
magnetic structure previously observed experimentally. We

showed that proposed parameter sets from ab initio calcula-
tions are near the boundary of the double-zigzag state, and we
suggest that magnetoelastic coupling can play a crucial role
since the double-zigzag state can be stabilized by optimization
of the crystal structure in DFT+U+SOC calculations.
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[40] T. Dordević, BaCO2(AsO4)2, Acta Crystallogr., Sect. E 64, i58
(2008).

[41] H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and X. G.
Gong, Predicting the spin-lattice order of frustrated systems
from first principles, Phys. Rev. B 84, 224429 (2011).

[42] C. Wellm, W. Roscher, J. Zeisner, A. Alfonsov, R. Zhong, R. J.
Cava, A. Savoyant, R. Hayn, J. van den Brink, B. Buchner,
O. Janson, and V. Kataev, Frustration enhanced by Kitaev ex-
change in a j̃eff = 1

2 triangular antiferromagnet, Phys. Rev. B
104, L100420 (2021).

[43] S. M. Winter, Magnetic couplings in edge-sharing high-spin d7
compounds, J. Phys. Mater. 5, 045003 (2022).

[44] Y. Motome, R. Sano, S. Jang, Y. Sugita, and Y. Kato, Materi-
als design of Kitaev spin liquids beyond the Jackeli-Khaliullin
mechanism, J. Phys.: Condens. Matter 32, 404001 (2020).

[45] J. G. Rau and H.-Y. Kee, Trigonal distortion in the honeycomb
iridates: Proximity of zigzag and spiral phases in Na2IrO3,
arXiv:1408.4811.

[46] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee, Generic Spin Model for
the Honeycomb Iridates beyond the Kitaev Limit, Phys. Rev.
Lett. 112, 077204 (2014).

[47] J. Chaloupka and G. Khaliullin, Hidden symmetries of
the extended Kitaev-Heisenberg model: Implications for the
honeycomb-lattice iridates A2IrO3, Phys. Rev. B 92, 024413
(2015).

[48] T. Halloran, F. Desrochers, E. Z. Zhang, T. Chen, L. E. Chern, Z.
Xu, B. Winn, M. Graves-Brook, M. Stone, A. I. Kolesnikov, Y.
Qui, R. Zhong, R. Cava, Y. B. Kim, and C. Broholm, Geomet-
rical frustration versus Kitaev interactions in BaCo2(AsO4)2,
arXiv:2205.15262.

[49] S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of
Transition-Metal Ions in Crystals (Academic Press, New York,
1970).

[50] M. Lines, Magnetic properties of CoCl2 and NiCl2, Phys. Rev.
131, 546 (1963).

[51] S. Nishimoto, V. M. Katukuri, V. Yushankhai, H. Stoll, U. K.
Rößler, L. Hozoi, I. Rousochatzakis, and J. V. D. Brink,
Strongly frustrated triangular spin lattice emerging from triplet
dimer formation in honeycomb Li2IrO3, Nat. Commun. 7,
10273 (2016).

[52] P. A. Maksimov and A. L. Chernyshev, Rethinking α-RuCl3,
Phys. Rev. Res. 2, 033011 (2020).

[53] J. M. Luttinger and L. Tisza, Theory of dipole interaction in
crystals, Phys. Rev. 70, 954 (1946).

[54] Y.-D. Li, X. Wang, and G. Chen, Anisotropic spin model
of strong spin-orbit-coupled triangular antiferromagnets, Phys.
Rev. B 94, 035107 (2016).

[55] I. Rousochatzakis, U. K. Rössler, J. van den Brink, and M.
Daghofer, Kitaev anisotropy induces mesoscopic z2 vortex
crystals in frustrated hexagonal antiferromagnets, Phys. Rev. B
93, 104417 (2016).

[56] P. A. Maksimov, Z. Zhu, S. R. White, and A. L. Chernyshev,
Anisotropic-Exchange Magnets on a Triangular Lattice: Spin
Waves, Accidental Degeneracies, and Dual Spin Liquids, Phys.
Rev. X 9, 021017 (2019).

[57] E. Rastelli, A. Tassi, and L. Reatto, Non-simple magnetic order
for simple Hamiltonians, Phys. B+C (Amsterdam, Neth.) 97, 1
(1979).

165131-8

http://arxiv.org/abs/arXiv:2106.13418
https://doi.org/10.1103/PhysRevB.104.134425
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1743
https://doi.org/10.1002/pssb.201800684
https://doi.org/10.1103/PhysRevB.93.214431
https://doi.org/10.1016/j.cpc.2014.05.003
https://doi.org/10.1103/PhysRevB.54.11169
http://link.aps.org/supplemental/10.1103/PhysRevB.106.165131
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1088/1361-648X/aae80a
http://arxiv.org/abs/arXiv:2111.09652
https://doi.org/10.1103/PhysRevB.88.035107
https://doi.org/10.1063/1.5143061
https://doi.org/10.1107/S1600536808025865
https://doi.org/10.1103/PhysRevB.84.224429
https://doi.org/10.1103/PhysRevB.104.L100420
https://doi.org/10.1088/2515-7639/ac94f8
https://doi.org/10.1088/1361-648X/ab8525
http://arxiv.org/abs/arXiv:1408.4811
https://doi.org/10.1103/PhysRevLett.112.077204
https://doi.org/10.1103/PhysRevB.92.024413
http://arxiv.org/abs/arXiv:2205.15262
https://doi.org/10.1103/PhysRev.131.546
https://doi.org/10.1038/ncomms10273
https://doi.org/10.1103/PhysRevResearch.2.033011
https://doi.org/10.1103/PhysRev.70.954
https://doi.org/10.1103/PhysRevB.94.035107
https://doi.org/10.1103/PhysRevB.93.104417
https://doi.org/10.1103/PhysRevX.9.021017
https://doi.org/10.1016/0378-4363(79)90002-0


AB INITIO GUIDED MINIMAL MODEL FOR … PHYSICAL REVIEW B 106, 165131 (2022)

[58] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev,
Topography of Spin Liquids on a Triangular Lattice, Phys. Rev.
Lett. 120, 207203 (2018).

[59] Z. Zhu and S. R. White, Spin liquid phase of the s = 1
2 J1 − J2

Heisenberg model on the triangular lattice, Phys. Rev. B 92,
041105(R) (2015).

[60] P. M. Cônsoli, L. Janssen, M. Vojta, and E. C. Andrade,
Heisenberg-Kitaev model in a magnetic field: 1/s expansion,
Phys. Rev. B 102, 155134 (2020).

[61] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca, Spin
liquid nature in the Heisenberg J1 − J2 triangular antiferromag-
net, Phys. Rev. B 93, 144411 (2016).

[62] J. B. Fouet, P. Sindzingre, and C. Lhuillier, An investigation
of the quantum j1-j2-j3 model on the honeycomb lattice, Eur.
Phys. J. B 20, 241 (2001).

[63] S.-S. Gong, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher,
Phase diagram of the spin- 1

2 J1-J2 Heisenberg model on a hon-
eycomb lattice, Phys. Rev. B 88, 165138 (2013).

[64] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and M. P. A.
Fisher, Plaquette Ordered Phase and Quantum Phase Diagram
in the Spin- 1

2 J1−J2 Square Heisenberg Model, Phys. Rev. Lett.
113, 027201 (2014).

[65] S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Global phase
diagram of competing ordered and quantum spin-liquid phases
on the kagome lattice, Phys. Rev. B 91, 075112 (2015).
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