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Introducing internal degrees of freedom in the description of topological insulators has led to a myriad of
theoretical and experimental advances. Of particular interest are the effects of periodic perturbations, either in
time or space, as they considerably enrich the variety of electronic responses, with examples such as Thouless’s
charge pump and its higher-dimensional cousins, or higher-order topological insulators. Here, we develop a
semiclassical approach to transport and accumulation of general spinor degrees of freedom, such as physical
spin, valley, or atomic orbits, in adiabatically driven, weakly inhomogeneous insulators of dimensions 1, 2, and
3, under external electromagnetic fields. Specifically, we derive the spinor current and density up to third order
in the spatiotemporal modulations of the system and relate the induced responses to geometrical and topological
objects—the spinor-Chern fluxes and numbers—defined over the higher-dimensional phase space of the system,
i.e., its combined position-momentum-time coordinates. Furthermore, we provide a connection between our
semiclassical analysis and the modern theory of multipole moments by introducing spinor analogs of the electric
dipole, quadrupole, and octupole moments. The results are showcased in concrete tight-binding models where
spinor transport and accumulation are calculated analytically.
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I. INTRODUCTION

The topological and geometrical aspects of condensed
matter systems have yet to be fully explored, even at the
single-particle level [1–3]. A prominent platform for probing
such physics with electromagnetic fields involves spatially
homogeneous electronic insulators, due to the fact that con-
tributions from the Fermi surface vanish. In such gapped
systems, the electronic spectrum can be associated with a
global quantity defined over the entire momentum space—
the topological index. Interestingly, this index manifests in
quantized responses to the applied electromagnetic fields,
e.g., the Hall effect [4,5] or the Streda response [6]. Fol-
lowing several decades of research, many topological aspects
of momentum space are well understood using rigorous
mathematical methods, such as K theory [7–10], nonlin-
ear σ model analysis [11–13], and dimensional reduction
[2,14,15], that rely on a combination of local symme-
tries, symmorphic or nonsymmorphic crystalline symmetries
[16–18], or even quasiperiodicity [19,20] to classify electronic
systems.

In recent years, theoretical and experimental studies
in ultracold atoms [21–26], photonics [27–32], mechani-
cal systems [33–40], electrical circuits [41–46], and moiré
heterostructures [47] have shown enormous capabilities in
simulating exotic quantum phenomena. In particular, the
induced responses that arise in systems subject to time-
dependent modulations were shown to depend on topo-
logical aspects that go beyond the traditional momentum-
space description. An archetypical example is Thouless’s

one-dimensional (1D) charge pump [5,22,23,27,28,48], where
the adiabatic and periodic modulation of the system’s param-
eters results in the transport of a quantized amount of charge
across the otherwise insulating bulk; such quantization was
shown to be related to a first Chern number defined over
the combined momentum-time manifold. Taking these con-
cepts to two and three dimensions led to topological charge
pumps with high-dimensional topological responses, associ-
ated with the second and third Chern numbers, respectively.
Such responses have a plethora of corresponding boundary
physics, including effects with codimension greater than 1
[2,21,32,49,50].

Complementary to topological charge pumps are the newly
found higher-order topological insulators (TIs), where the
ground state is characterized by the existence of fractional
boundary charges with codimensions greater than 1 [51–59].
Such states can be classified by their electric multipole
moments that take quantized values when constrained by sym-
metries. The appearance of nontrivial electric multipoles and
localized charges finds numerous manifestations in crystalline
materials [60–64], as well as in photonic lattices [32,65],
metamaterials [33,66], electrical circuits [42,43], and super-
conductors [15,67].

An alternative description of higher-order TIs is found
within the semiclassical theory, where physical observables
were shown to depend on the topological aspects of the en-
tire phase space, i.e., the combined position-momentum-time
manifold [50,68–76]. For example, charge transport and ac-
cumulation were shown to depend on geometrical quantities,
called Chern fluxes, that become quantized and fractional
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when global symmetries are imposed; these are related to
quantized changes of the electric multipoles and, hence, to
localized charges [77].

Generalizing the description to other internal degrees of
freedom beyond charge offers new possibilities in engineering
next-generation devices using topological quantum states. For
example, the coherent control and manipulation of physical
spins finds numerous applications in spintronics and has mo-
tivated the search of dissipationless spin currents in quantum
dot structures [78], in spin-Hall systems, such as doped GaAs
[79–82], in higher-order topological spin models [83,84], and
in 1D topological spin pumps [85–89]. The last is the analog
of Thouless’s 1D charge pump with a direct relation between
spin transport and a first spin-Chern number defined over the
system’s parameter space. However, largely unexplored are
the topological signatures of spin observables combined with
spatiotemporal modulation in higher dimensions.

Here, we derive the transport and accumulation of general
degrees of freedom, dubbed “spinor” degrees, in adiabatically
driven, weakly inhomogeneous insulators of dimensions 1, 2,
and 3, under external electromagnetic fields. We start by re-
viewing the semiclassical description of crystalline materials
and show how the equations of motion of an electron wave
packet lead to charge transport and accumulation. We then
extend this framework to include spinor degrees of freedom
and derive the spinor transport and accumulation up to third
order in perturbation theory. We find that these are related
to topological and geometrical quantities—the spinor-Chern
numbers and fluxes—that are defined over the entire phase
space of the system. Similar to charge responses, we obtain
generalizations of topological spinor pumps, the spinor-Hall
effect, spinor-higher-order TIs, and spinor-axion responses.
Finally, we decompose the derived corrections into spinor
analogs of the electric multipole moments, thus establishing
a direct relation between macroscopic properties of the ma-
terial and the spinor-topological aspects of phase space. We
showcase our results in concrete tight-binding Hamiltonians,
where we focus on physical spin.

II. SEMICLASSICAL APPROACH

In this section, we review the semiclassical description
of electrons in insulating materials under general perturbing
fields and show how the geometrical properties of phase space
manifest as corrections to charge transport and accumulation
[50,68–75]. Depending on the dimensionality of the system,
the equations of motion will include effects up to third order in
the perturbing fields [5,50,73,90], as it is only at this order that
electronic responses of three-dimensional (3D) materials can
be well captured. Once the semiclassical theory of the charge
degree of freedom is reviewed, we will extend it to general
spinor degrees and straightforwardly apply it to dimensions 1,
2, and 3 in Sec. III.

The semiclassical theory offers an intuitive picture for
describing transport and accumulation of charged particles
moving in insulators that are subject to weak spatiotempo-
ral modulations. It describes the particles as wave packets
that adiabatically move in phase space with respect to a lo-
cal eigenbasis [see Fig. 1(a)]. Specifically, the wave packet
is assumed to have well-defined center-of-mass coordinates

FIG. 1. Semiclassical theory. (a) The electron is represented by
a wave packet with well-localized center-of-mass coordinates that
moves in the phase space of the system. Its trajectory is defined by
the anomalous forces and velocities that arise due to the geometry
of phase space [cf. Eq. (2)]. The length scale L defined by the
perturbing fields is assumed to be much longer than the width l of
the wave packet, such that a local Hamiltonian can always be defined
[cf. Eq. (1)]. (b) For canonical coordinates, the phase-space volume
element is constant. When transforming to physical coordinates,
it is modified according to the curvature tensors appearing in the
equations of motion [cf. Eq. (7)].

ξ = (r, k, t ), where r denotes the position, k the crystal’s
quasimomentum, and t the time, such that its dynamics can
be perturbatively expanded at small distances as

Ĥ ≈ Ĥ0 + Ĥ ′. (1)

Here, Ĥ0 is the unperturbed Hamiltonian and Ĥ ′ are higher-
order corrections. In this case, the wave packet is built directly
from the N eigenstates

|n(ξ)〉 ≈ |n0〉 + |n′〉
of a set of isolated energy bands of Ĥ , where |n0〉 are the
eigenstates of Ĥ0 and |n′〉 are higher-order corrections.

For more details on the construction of the wave packet
and the derivation of its equations of motion up to third order,
see Refs. [50,68–75,91,92] and Appendix A. Here, we directly
use the resulting velocity and force equations describing the
center-of-mass evolution,

ṙi = ∂kiE − �kik j k̇ j − �kir j ṙ j − �kit ,

k̇
i = −∂riE + �rik j k̇ j + �rir j ṙ j + �rit , (2)

where rnm = 〈n|r̂|m〉 and knm = 〈n|k̂|m〉 are the matrix
representations of the wave packet’s center-of-mass
position and momentum, the energy dispersion
Enm = 〈n(ξ)|Ĥ0 + Ĥ ′|m(ξ)〉 is calculated up to a sufficiently
high order in perturbation theory, and Einstein’s summation
convention is assumed. The curvature tensors are defined as

�ξμξν
= ∂ξμ

Aξν
− ∂ξν

Aξμ
, (3)

where

Anm
ξμ

= 〈n(ξ)|i∂ξμ
|m(ξ)〉 (4)
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is the so-called connection and ξμ denotes the μth coordi-
nate in phase space. Depending on the particular directions
involved, we dub �kik j the “momentum (Berry) curvature”
and �rir j the “position curvature,” while �kir j , �kit , and
�rit are dubbed the mixed momentum-position, momentum-
time, and position-time curvatures. Without loss of generality,
throughout the paper we assume that the connection in posi-
tion coordinates is given by the sum of the electromagnetic
vector potential A and deformation vector potential V , i.e.,
Ari = −Ai + Vi. For simplicity, we further assume that V
gives rise to a flat curvature in position-time coordinates,
as such effects are equivalently described by the magnetic
�rir j ≡ Bji and electric �tri ≡ Ei fields (up to a minus sign
difference).

The equations of motion (2) exhibit the usual dependence
on the group velocity ∂E

∂ki
[93] and force ∂E

∂ri
, while the cur-

vature tensors �ξμξν
appear as “anomalous velocity” and

“anomalous force” terms that modify the trajectories of the
wave packet depending on the geometrical structure of phase
space [94–96]. For example, the anomalous velocity �kik j k̇ j

can be understood as a momentum-space analog of the mag-
netic Lorentz force where �kik j plays the role of a magnetic
field in momentum space. This gives rise to the quantum Hall
effect [4,5] and can be used to map out the distribution of the
momentum curvature over energy bands [94–96].

Assuming that energy bands are uniformly filled up to
some spectral gap, the associated charge density and current
read

ρparticle =
∫
T d

dd k

(2π )d
Tr D(ξ), (5)

jparticle =
∫
T d

dd k

(2π )d
Tr D(ξ)ṙ, (6)

respectively, where the integral runs over the entire d-
dimensional Brillouin zone denoted by the d-torus T d , the
trace is performed over the set of occupied states, and D(ξ)
is the modified density of states. The latter is a consequence
of the underlying geometry of phase space, as it takes into
account the change in the number of available states when
nontrivial curvature tensors are included [73,74,97–100] [see
Fig. 1(b)]. This change can be classically understood from
Liouville’s theorem, which states that if the dynamics are
Hamiltonian, the phase-space volume element is conserved
when transforming from canonical to physical coordinates.
Using generalized Peierls substitutions [97–100], we note that
the physical coordinates (r, k) are related to the canonical
coordinates (R, K ) by r = R − Ak and k = K − Ar , where
Ar (Ak) is the position (momentum) connection [cf. Eq. (4)].
The extent by which the physical coordinates deviate from
being canonical is quantified by the curvature tensors �ξμξν

[cf. Eq. (3)], and the change of phase-space volume ele-
ment is described by the Jacobian of the transformation [98],
given by

D(ξ) =
√√√√det

(
�(r) −1 − �(kr)

1 + �(kr) �(k)

)
, (7)

where 1 is the identity matrix and �(k), �(r), and �(kr) are an-
tisymmetric matrices with components �kik j , �rir j , and �kir j ,
respectively. The total change in phase-space volume is found
by tracing D(ξ) over the occupied energy bands, as done in
Eq. (5).

In fermionic systems, the particle density ρparticle is propor-
tional to the charge accumulation induced by charged carriers.
However, we emphasize that the semiclassical formalism can
straightforwardly be applied to a uniformly filled set of bands
of bosons [74]. As we will see in Sec. III, the semiclas-
sical approximation of the particle density at first order in
perturbing fields gives rise to a quantized particle accumu-
lation with codimensions 1, i.e., the ground state supports
states that are localized in one dimension but extended in
the other directions. This is closely related to the soliton
solutions found in Ref. [101] in the context of high-energy
physics. At second order it results in the Streda formula [6],
and in a quantized charge accumulation with codimensions
2 [15,51,60,66,77,102]. Finally, third-order terms give rise to
axion responses in the spatial domain [2,14,103], and quan-
tized charge accumulation with codimensions 3 [55].

Next, the particle current of Eq. (6) is calculated by
integrating the corresponding velocity ṙi over the entire d-
dimensional Brillouin zone, weighted by the density of states
D(ξ). The velocity of the wave packet in phase space is found
by recursively solving differential equations (2) up to a par-
ticular order, while the density of states is given in Eq. (7).
The induced corrections are hence classified into density-type,
Lorentz-type, or mixed Lorentz-density-type responses, de-
pending whether they result from the density of states, the
velocity, or a combination of the two [21,32,50].

As we will see in Sec. III, the corrections to the particle
current of an insulating ground state give rise to Thouless’s 1D
charge pump [5,27,48] and to the quantum Hall effect [4,5],
both having a characteristic first Chern number response. At
higher orders, we recover two-dimensional (2D) topological
charge pumps and axion field effects, where the associated re-
sponses are determined by a second Chern number [2,14,49].
Finally, third-order corrections give rise to 3D topological
charge pumps and a third Chern number response [50,75].

A. Spinor current and density

We generalize the semiclassical description of charge
transport and accumulation to other quantum numbers, which
we generally dub “spinor degrees of freedom.” These degrees
can represent various particle properties, e.g., charge, physical
spin, valley index, or any other internal degree. The derivation
of the current and density follows a similar procedure, with
the difference now that all quantities are defined with respect
to the spinor operator Ŝ:

ρŜ =
∫
T d

dd k

(2π )d
TrSD(ξ), (8)

jŜ =
∫
T d

dd k

(2π )d
TrSD(ξ)ṙ, (9)

where S is the matrix representation of the operator Ŝ with
components Snm = es〈n(ξ)|Ŝ|m(ξ)〉, and es is the value of
the associated spinor charge. Even though the formalism is
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generic to any operator Ŝ , here we focus on physical spins
in concrete tight-binding models and analytically calculate
the induced responses. By exploiting the full breadth of these
corrections, we engineer dynamical systems, where the quan-
tized spin transport and accumulation are related to nontrivial
topological indices defined over the system’s phase space.

B. Geometrical definitions

Before continuing, it is useful to define general geometrical
and topological quantities in phase space that will later appear
as physical corrections to spinor transport and accumulation.
For a uniformly occupied set of eigenstates, we define the
spinor analogs of Chern numbers, sub-Chern numbers, and
Chern fluxes in arbitrary dimensions. Unless otherwise stated,
we assume ξ can be mapped on a torus.

First, the first spinor-Chern number is defined as

c1 = 1

2π

∫
T 2

d2ξTrS�ξμξν
, (10)

where the integral is taken over a 2D closed surface in the
(ξμ, ξν ) plane, denoted here by T 2. We note that the de-
gree of freedom S is used in a generic way to represent
any type of quantum number. For example, when it corre-
sponds to physical spins, this topological index—called the
first spin-Chern number—takes integer values and governs the
robust quantization of spin conductance in the 2D spin-Hall
effect [79–82,104–106], and the quantized spin transport in
1D topological spin pumps [89]. Alternatively, when S is
proportional to the identity, the above equation is reduced
to the well-known first Chern number which determines the
2D quantum Hall effect [4,5], the center-of-mass drift of an
atomic cloud [107], the dynamical vortex trajectories of a
quenched cold-atom gas [108], the heating rate of shaken
systems [109–111], and the charge transport of 1D topological
charge pumps [22,23].

The second spinor-Chern number emerges in a four-
dimensional (4D) manifold and it is given by the antisymmet-
ric product of two 2-forms,

c2 = 1

32π2

∫
T 4

d4ξεαβγ δTrS�ξαξβ
�ξγ ξδ

, (11)

where T 4 denotes the 4D closed manifold and where εαβγ δ

is the Levi-Cività symbol defined in the 4D ξ-coordinate
space. When S corresponds to the charge degree of free-
dom, it is exactly the second Chern number appearing in the
nonlinear 4D quantum Hall response of a system with four
spatial dimensions [14,73,90,112,113], in the bulk transport
of two-dimensional topological pumps [21], as well as in
the dynamics of internal states in Bose-Einstein condensates
[114,115].

Finally, the relevant topological invariant in a six-
dimensional (6D) manifold is the third spinor-Chern number

c3 = 1

(2π )3

∫
T 6

d6ξ
1

23 · 3!
εαβγ δεζ TrS�ξαξβ

�ξγ ξδ
�ξεξζ

,

(12)

where the 6D ξ-coordinate space is denoted by T 6 and where
we have introduced the 6D Levi-Cività symbol εαβγ δεζ . The
third spinor-Chern number is inherently a 6D topological

invariant as it vanishes for systems with fewer than six dimen-
sions. It underlies the 6D quantum Hall effect and it manifests
in the charge transport of 3D topological charge pumps [50].

For a given set of ξ coordinates, it is important to remem-
ber that all lower-dimensional topological indices can still
be defined, but now with respect to the various subdimen-
sional manifolds [116]. In practice, each set of states in a
D-dimensional coordinate space is characterized by a set of
first spinor-Chern numbers, associated with each possible 2D
plane; a set of second spinor-Chern numbers, associated with
each possible 4D subvolume; all the way up to the D/2-th
spinor-Chern number (where D is even) that characterizes
the entire manifold of states. We dub such lower-dimensional
quantities “sub-spinor-Chern numbers.” Notably, these are
not integer valued as the integrals run over the entire D-
dimensional space. Instead, they depend both on the relevant
lower-dimensional spinor-Chern numbers as well as on the
volume of the coordinate space perpendicular to the selected
submanifold [73,74].

Analogously to the spinor-Chern numbers, the first spinor-
Chern flux is defined as

�1 = 1

2π

∫
C

dC TrS�ξμξν
, (13)

where �ξμξν
is the curvature in the (ξμ, ξν ) plane, and C is

an open integration domain with volume element dC. This
quantity is related to the first spinor-Chern number, but now
the integration domain runs over a subvolume C of the entire
two-dimensional manifold.

Going up in dimensionality, the second and third spinor-
Chern fluxes are defined as

�2 = 1

32π2

∫
C

dCεμνσρ TrS�ξμξν
�ξσ ξρ

, (14)

�3 = 1

(2π )3

∫
C

dC 1

23 · 3!
εμνσργ δ TrS�ξμξν

�ξσ ξρ
�ξγ ξδ

,

(15)

where C is the associated integration domain with volume
element dC. In the definitions of the spinor-Chern fluxes,
the integration domain C does not cover the entire manifold;
hence, such expressions are generally not quantized. However,
as we will later see, global symmetries can constrain the
allowed values of these quantities to support only discrete
fractions.

In the following, we will use the terms “spin-Chern num-
ber” to indicate the case where Ŝ corresponds to physical
spin, “Chern number” when Ŝ corresponds to charge, and
“spinor-Chern number” whenever we consider general de-
grees (analogously for the remaining geometrical definitions).

III. DRIVEN, INHOMOGENEOUS INSULATORS UNDER
ELECTROMAGNETIC FIELDS

In this section, we use the semiclassical approach (cf.
Sec. II) to calculate the spinor transport and accumulation
induced by weakly perturbing a crystal in momentum, posi-
tion, and time. In practice, these perturbations correspond to
external electromagnetic fields, weak spatial inhomogeneities,
and adiabatic drives, respectively. We start by calculating
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the quantized spinor transport in an adiabatically driven one-
dimensional Hamiltonian where we obtain the same results
as originally derived for a spin model in Ref. [89] using
a quantum-mechanical approach. Then, we derive the cor-
rections to the density of states and calculate the spinor
accumulation on a domain wall induced by weakly modulat-
ing the system in space. Finally, we generalize the description
to dimensions 2 and 3, and showcase the results in concrete
tight-binding models where the responses are calculated ana-
lytically.

Our semiclassical derivation shows that spinor (and in
particular spin) transport and accumulation are proportional
to geometrical and topological quantities defined over the
system’s phase space—the spinor-Chern numbers and spinor-
Chern fluxes. We explore the various manifestations of these
quantities in driven, inhomogeneous crystals under elec-
tromagnetic fields and, in particular, relate them to the
spatiotemporal modulations of spinor analogs of the electric
multipole moments. As such, we provide a complete descrip-
tion of transport and accumulation of noninteracting electrons
in perturbed crystalline insulators and illuminate a fundamen-
tal connection between the topological aspects of phase space
and physical observables.

A. In one dimension

In the following, we derive the corrections to the spinor
current and density of a one-dimensional adiabatically driven
insulator with weak spatial inhomogeneities using the semi-
classical approach of Sec. II. First, we calculate the spinor
transport in a periodically driven Hamiltonian and show its
relation to the temporal change of a spinor-dipole moment.
Similar to the 1D Thouless charge pump, the spinor transport
after a cycle is found to be quantized and equal to a first
spinor-Chern number defined in the phase space of the system.
We extend these results to derive the spinor accumulation on a
domain wall created by smoothly modulating the Hamiltonian
in position and find that it is related to a geometrical property
of phase space—the first spinor-Chern flux. Even though such
a quantity is generally not quantized, we show that under
global symmetry constraints it can become quantized and lead
to a fractional spinor accumulation localized at the interface.
The relation to the spatial modulation of the spinor-dipole
moment is also discussed.

To illustrate our results, we consider a tight-binding model
describing spinful electrons moving on a 1D lattice [see
Fig. 2(a)], with Hamiltonian

H = HKE + Hd + Hh + HSO. (16)

The first term is the kinetic energy, given by

HKE = J
∑
n,α

(c†
n+1,αcn,α + H.c.), (17)

where J is the hopping amplitude, n is the position vector,
α = {↑,↓} is the spin index, and the lattice spacing is taken
to be unity. The kinetic energy term describes hopping of
electrons with spin α between neighboring sites. The hopping

FIG. 2. The model Hamiltonian in one dimension. (a) Sketch of
the tight-binding model [cf. Eq. (16)]. Electrons with spin α tunnel
to the nearest neighbor with amplitude J± = J ± �J , denoted by
single or double black lines. The spin-orbit coupling is denoted by
the purple and green lines. The light (dark) blue sites denote a stag-
gered potential with positive (negative) sign. (b) The bulk spectrum
of H (k, φ) [cf. Eq. (22)] as a function of quasimomentum k and
the internal parameter φ. The spectrum is composed by four bands
that become degenerate at the high-symmetry points. (c) The open
boundary spectrum of the Hamiltonian showing bulk (gray), and
codimension-1 (purple) states. (d) The probability distribution of the
two lowest energy boundary modes shown in blue and orange. Each
state is localized at opposite boundaries, resulting in a vanishing
electric dipole moment. (e) The spin density of the ground state
at half filling showing spin accumulation at the boundary. For the
simulations in (c), (d), and (e) we have used J/10 = λ1 = λ2 = λ3 =
J − �J = 0.1, and h0 = 0.5, while for (b) we have used h0 = 0.05
to accentuate the effect of spin-orbit interaction.

amplitudes are dimerized by the second term in H , given by

Hd =
∑
n,α

(−1)n�J (c†
n+1,αcn,α + H.c.). (18)

The next term is a staggered on-site potential

Hh = h
∑
n,α,β

(−1)nταβ
z c†

n,αcn,β , (19)

that couples antiferromagnetically to the spin. Finally, the last
term is given by

HSO =
∑
n,α,β

iλ · ταβ (c†
n+1,αcn,β − c†

n,αcn+1,β ), (20)

where λ = {λ1, λ2, λ3} is a vector characterizing the spin-
orbit interaction and τ = {τx, τy, τz} are the Pauli matrices
representing the spin degree.

The tight-binding model (16) is based on the antiferromag-
netic spin- 1

2 chain describing a class of crystalline materials
that can be manipulated by external electromagnetic fields
[88,89]. For example, metallic ferromagnetic compounds,
such as Cu benzoate [117,118] and Yb4As3 [119], develop
a staggered on-site potential when a perpendicular uniform
magnetic field is applied; as a consequence, the material
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becomes insulating. This is due to the Néel ground state
induced by the competition between Dzyaloshinskii-Moriya
interactions and a nonzero gyromagnetic tensor. Additionally,
ferroelectric materials, such as MnI2 and oxides ABO2 with
A = Cu, Ag, Li, or Na and B = Cr or Fe, were shown to
have an exchange interaction that depends on the applied
electric field [120–123]. The ferroic properties of engineered
materials can be deployed in the design of experiments where
electromagnetic fields act as control knobs to the system’s
parameters.

Motivated by the above discussion, we assume that the
dimerization amplitude and staggered on-site potential depend
on an external parameter φ through

�J = �J0 cos(φ) and h = h0 sin(φ), (21)

where �J0 and h0 are constants. Furthermore, we assume
that spatiotemporal variations of φ are smooth enough such
that the dynamics are well approximated by the first-order
semiclassical equations (cf. Sec. II). The bulk spectrum of
the Hamiltonian as a function of the external parameter φ is
calculated by introducing periodic boundary conditions and
applying Bloch’s theorem to obtain the diagonalized Hamilto-
nian in terms of the quasimomentum k.

Since the dimerization by �J enlarges the unit cell by an
additional orbital index, we express the Bloch Hamiltonian on
a cross product of Pauli matrices, representing the combina-
tion of spin τ and orbital degrees σ. In a suitable gauge, this
is given by

H (k, φ) = d · γ + D · �, (22)

where

d = {h, J+ + J− cos(k), J− sin(k)},
D = {λ1 sin(k),−λ1 + λ1 cos(k), λ2 sin(k),

− λ2 + λ2 cos(k), λ3 sin(k),−λ3 + λ3 cos(k)} (23)

are real-valued vectors with J± = J ± �J ,

γ = {τz ⊗ σz,1 ⊗ σx,1 ⊗ σy} (24)

are three 4 × 4 anticommuting Hermitian matrices
{γμ, γν} = 2δμν , and

� = {τx ⊗ σx, τx ⊗ σy, τy ⊗ σx,

τy ⊗ σy, τz ⊗ σx, τz ⊗ σy} (25)

are six 4 × 4 Hermitian matrices representing the spin-orbit
interaction.

The bulk energy spectrum of the Bloch Hamiltonian (22)
has four bands which can be intuitively described in the
low-energy limit by displaced Dirac-like cones in the (k, φ)
parameter space [see Fig. 2(b)]. The ground state at half filling
is conducting only when h = �J = 0, while a nonzero dimer-
ization parameter �J or staggered potential h induces a gap
around zero energy. The spectrum has a twofold degeneracy
in the entire Brillouin zone when |λ| = 0, which is lifted to
isolated points when |λ| > 0.

The open boundary spectrum of the Hamiltonian is com-
posed by the aforementioned bulk bands, in addition to two
degenerate pairs of codimension-1 states [see Fig. 2(c)]. Each
pair disperses as a function of φ and merges into the bulk

bands by crossing the gap. The probability distribution of
these states is fully localized on the boundary with an expo-
nential decay depending on the proximity to the bulk bands.
It is important to note that each pair has states localized at op-
posite boundaries; hence, their combination induces a zero net
charge polarization [see Fig. 2(d)]. On the other hand, the spin
density associated to the operator Ŝ = τz ⊗ 1 exhibits spin
localization at the boundaries and, hence, induces a nonzero
spin polarization [see Fig. 2(e)].

Determining the global symmetries of the system is crucial
when characterizing the band structure. For h = 0, Hamilto-
nian (22) has both time-reversal (TR) symmetry �=iKτy⊗1

and chiral symmetry χ = 1 ⊗ σz for any value of �J . On the
other hand, the system has only TR symmetry in the entire
parameter space, i.e.,

�−1H (k, φ)� = H (−k,−φ), (26)

that is preserved for any value of |λ|, h, and �J . As such, the
ground state can be decomposed into “spin sectors,” namely,

|ψ1(k, φ)〉 = �|ψ2(−k,−φ)〉,
|ψ2(k, φ)〉 = −�|ψ1(−k,−φ)〉, (27)

formed by the TR-invariant partners in the (k, φ) parameter
space. Classifying the topological properties of Hamiltoni-
ans depending on their dimensionality and symmetries has
been well studied using various theoretical methods [2,7–13].
In our case, the parameter space of the system provides an
increased dimensionality that, in fact, can be ascribed a Z2 in-
dex. Below, we show that this topological invariant appears as
a first-order correction to the spin transport and accumulation
induced by an adiabatic drive, or weak inhomogeneities.

1. Transport

The 1D model of Eq. (16) can be adiabatically pumped by
slowly changing the external parameter φ(t ) over time, i.e., by
temporally modulating the on-site energy and hopping terms
in a periodic fashion [cf. Eq. (21)]. At each time t , the Hamil-
tonian is assumed to be diagonalized by a set of instantaneous
bands, which now define a curvature tensor in the momentum-
time coordinates �nm

kt = iφ̇(〈∂φn|∂km〉 − 〈∂kn|∂φm〉), where
|n〉 denotes the set of occupied Bloch bands. The spinor cur-
rent associated to the ground state at half filling [cf. Eq. (9)] is
given by

jŜ = 1

2π

∫
T1

dk TrS�tk, (28)

where Ŝ = 1 ⊗ 1 (= σz ⊗ 1) is the charge (physical spin)
degree of freedom and the integration of the momentum k is
over a T1-torus representing the entire 1D Brillouin zone.

When the time evolution is periodic, the spinor transport
after a pump period T , taken to be unity for simplicity, is
equal to

�qŜ =
∫ T

0
dt jŜ =: c1. (29)

Since the integration is over the closed momentum-time
manifold, the transport of �qŜ spinor charges associ-
ated to Ŝ is proportional to a first spinor-Chern number
c1 ∼ ∫

T2 dkdφ TrS�kφ defined in the (k, φ) parameter space.
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FIG. 3. Wannier centers and polarization. (a) The Wannier cen-
ters of the two occupied bands as a function of the external parameter
φ (cf. Appendix B). Each center “winds” around the unit cell after
each cycle. Crucially, the sum of the two vanishes as expected for
the charge degree of freedom, i.e., when Ŝ = 1 ⊗ 1, but becomes
nonzero for physical spin Ŝ = τz ⊗ 1. (b) The derivative of the
spin-dipole moment with respect to the external parameter φ. The
area under the graph is an integer equal to 1, and is related to the
first spin-Chern number of the (k, φ) parameter space [cf. Eq. (32)].
For the simulations we have used J/10 = J − �J = h0/5 = 0.1, and∑

i |λ| = 0.

Following the modern approach to the definition of po-
larization, the bulk spinor transport must be induced by the
temporal gradient of the associated spinor-dipole moment
density P Ŝ (cf. Appendix B), i.e.,

�qŜ =
∫

T
dtṖ Ŝ . (30)

For example, when Ŝ = 1 ⊗ 1 it corresponds exactly to the
electric dipole moment, while for Ŝ = τz ⊗ 1 it is the polar-
ization of physical spin [89]. Comparing with Eq. (29), the
first spinor-Chern number c1 is identified with the contribution
from a temporally modulated spinor-dipole moment density,
i.e.,

c1
!=

∫
T

dtṖ Ŝ . (31)

The above equality is a natural outcome of the semiclassical
formalism: it relates a topological quantity in the system’s
parameter space—the first spinor-Chern number c1—to a
macroscopic property of the material—the rate of change of
the spinor-dipole moment P Ŝ .

For the Bloch Hamiltonian of Eq. (22), the first Chern num-
ber associated to the charge degree, i.e., when Ŝ = 1 ⊗ 1, is
identically zero due to the trace properties of the γ matrices.
Indeed, the electric dipole moment is decomposed into two
equal but opposite contributions that originate from the two
occupied Bloch states [see Fig. 3(a)]. Each set of negative-
energy (equivalently for positive-energy) bands can be written
as a direct sum of two orthogonal eigenvectors that are mixed
according to the strength of the spin-orbit interaction λ. Im-
portantly, TR symmetry allows for the decomposition of the
polarization into contributions from the two spin sectors [cf.
Eq. (27)], where each sector “winds” as a function of the
external parameter φ. As these contributions have opposite
signs, the net electric dipole moment vanishes—a conse-
quence of TR symmetry.

On the other hand, the transport of physical spin, i.e., when
Ŝ = τz ⊗ 1, calculated using the eigenvectors of Appendix C,

FIG. 4. (a) The domain wall created by the parameter φ(r). Also
shown, the region C enclosing the domain wall. (b) Sketch of the spin
accumulation supported on the domain wall.

becomes

c1 = 1

4π

∫
T2

dφdkd̂ · (∂kd̂ ∧ ∂φ d̂) = 1, (32)

where d̂ = d/|d| and, now, the integration runs over a T2-
torus representing the momentum space and the periodic time
evolution. Importantly, the first-order contributions to the first
spin-Chern number (32) from a nonzero spin-orbit interaction
|λ| > 0 vanish (see Appendix D). As a consequence, a quan-
tized amount of physical spin will be transported after each
cycle, equal to the winding number of the map d̂ from the
torus T2 to the 2-sphere. From a macroscopic perspective, the
winding number manifests in the spin-dipole moment density
that acquires nonzero values and winds once as a function
of φ [see Fig. 3(b)]. Even though the spin current of our
model has a simple analytic solution, we note that for more
complicated band structures, numerical tools can be used to
calculate the relevant quantities from first principles [55,124–
127]. Interestingly, when |λ| is sufficiently large with respect
to the spectral gap, a topological phase transition may occur
as the spin-Chern number changes to zero.

2. Accumulation

Before focusing on the spinor degree of freedom, we
briefly mention that the question of charge accumulation on a
domain wall created by a spatially modulated 1D Hamiltonian
has been previously studied in the context of high-energy
physics in Ref. [101]. The system was shown to support a
nontrivial solution, called a soliton, which is exponentially
localized on the domain wall and results in a fractional charge
accumulation of 1/2. As we will see here, the fractional accu-
mulation of charge, and more generally of a spinor degree of
freedom, is related to the first spinor-Chern flux defined over
the momentum-position coordinates of the system.

In order to observe nontrivial effects in spinor accu-
mulation, the Hamiltonian is now modulated in position
by introducing a spatial dependence in the external pa-
rameter φ(r), e.g., by changing the on-site energy and
hopping terms in Eq. (16) over position space. Specifically,
we assume that φ(r) acquires continuous values between
zero and π [see Fig. 4(a)], with smooth enough modula-
tions as compared to the size of the wave packet. In this
regime, the curvature tensor of the local bands is given by
�nm

rk = i∂rφ(〈∂φn|∂km〉 − 〈∂kn|∂φm〉) and the induced spinor
density at half filling [cf. Eq. (8)] by

ρŜ = − 1

2π

∫
T1

dk TrS�rk, (33)
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where the integration of the momentum k is over the entire 1D
Brillouin zone denoted by T1. The total spinor accumulation
qŜ in a region C enclosing the domain wall is, thus, given by

qŜ =
∫

C
drρŜ =: −�1, (34)

where �1 ∼ ∫
T1×[0,π] dkdφ TrS�φk is the first spinor-Chern

flux attached to the 2D Dirac-like cones in the (k, φ) pa-
rameter space [cf. Fig. 2(b)]. We emphasize that Eq. (34) is
valid for any insulating ground state and is not limited to
Hamiltonian (22).

Within the classical approach of multipole moments,
Eq. (34) can be alternatively described by the spatial gradi-
ent of a bulk spinor-dipole density, i.e., qŜ = − ∫

C dr∂rP Ŝ ,

where P Ŝ is again the spinor-dipole moment density (cf.
Appendix B) and C is the integration domain over space
(related to an integration over φ by the appropriate coordinate
transformation). Consequently, the first spinor-Chern flux �1

is identified with the contribution from a spatially modulated
spinor-dipole moment density, i.e.,

�1
!=

∫
C

dr∂rP Ŝ . (35)

Similar to the derivation of spinor transport, the above equa-
tion leads to a fundamental connection between an abstract
geometrical quantity and an electronic property of the mate-
rial.

In general, the integration domain C in Eq. (34) does not
necessarily cover a closed manifold in the (k, φ) parameter
space; therefore, �1 is not expected to be quantized. However,
under symmetry constraints the first spin-Chern flux of the
tight-binding model of Eq. (22) can, in fact, become quantized
and lead to a fractional spin accumulation localized at the
domain wall. Specifically, the first spin-Chern flux correct up
to first order in the spin-orbit interaction (cf. Appendix D) is
given by

�1 = 1

4π

∫
T1×[0,π]

dkdφ d̂ · (∂kd̂ ∧ ∂φ d̂), (36)

where T1 × [0, π ] represents the one-dimensional Brillouin
zone T1 and the integration region [0, π ] in the φ pa-
rameter space. The integrand in the above equation is
relatively featureless except around two isolated points
(k0, φ0) = (π,±π/2), where the band gap becomes a min-
imum. The curvature around these points defines a two-
dimensional monopole in the (k, φ) parameter space that
carries a finite spin given in the linearized regime by

1

π

∫ �

0
dδkdδφ

h0(
δk2 + δφ2 + h2

0

)3/2

h0
�

→0+
= 1

2
, (37)

where � is a cutoff energy, and δk = vk (δφ = uφ)
is the linearized momentum (external parameter) with
v = J (u = −2�J0) the associated Fermi velocity. Impor-
tantly, in its chiral limit, i.e., when h0/� → 0, the expression
for the first spin-Chern flux and, hence, the amount of spin
that is supported on the domain wall become quantized and
equal to 1/2 [see Fig. 4(b)]. Indeed, the bulk spin-dipole
moment of each spin sector changes by a fractional amount
between φ = 0 and π [cf. Fig. 3(a)], as a consequence of

chiral symmetry χ . On the other hand, the electric dipole
moment vanishes in the entire parameter space, as it is given
by the sum of two equal but opposite contributions. The latter
is also reflected in the trivial first Chern flux associated to the
charge degree of freedom.

B. In two dimensions

In this section, we use the semiclassical theory to establish
a connection between quantized spinor transport (accumula-
tion) in 2D insulators and the spinor-Chern numbers (fluxes)
characterizing the system’s phase space. We illustrate this
connection by calculating the spin current up to second order
in the adiabatic driving of a concrete tight-binding model
describing spinful electrons on a square lattice. In particular,
we show that the transported spin after a pump cycle is propor-
tional to not just the first sub-spin-Chern number (discussed in
Sec. III A), but also to a second spin-Chern number defined
over the four-dimensional parameter space of the system.
Similarly, the spin density is related to the first and second
spin-Chern fluxes that give rise to nonzero spin accumulation
at the edges and corners, respectively. Finally, we decompose
the spin transport and accumulation in terms of modulations
of spin-multipole moments and propose a dynamical scenario
where an adiabatically driven, weakly inhomogeneous 2D
crystal exhibits a quantized spin transport and fractional spin
accumulation with codimensions 2.

A tight-binding model that contains all necessary ingre-
dients is shown in Fig. 5(a). It describes noninteracting
spinful electrons on a 2D square lattice with Hamiltonian
H = HKE + Hd + Hh + HSO. The first term is the kinetic en-
ergy, given by

HKE =
∑
n, j,α

Jj
(
eiAj c†

n+ê j ,α
cn,α + H.c.

)
, (38)

where indices i ∈ {x, y} run over two directions, Ji is the
hopping amplitude in the ith direction with unit vector êi,
n = (nx, ny) is the position vector in the 2D lattice, α is the
spin index, A = (0,−πnx ) is a static vector potential, and the
lattice spacing is taken to be unity. The kinetic term describes
hopping of electrons with spin α between neighboring sites
on a square lattice with π -flux quanta per plaquette. Similar
to the one-dimensional case of Eq. (16), the second term in H
defines the dimerization of the hopping amplitudes in the two
directions:

Hd =
∑
n, j,α

(−1)n j �Jj
(
eiAj c†

n+ê j ,α
cn,α + H.c.

)
. (39)

The next term is a checkerboard on-site potential
Hh = h

∑
n,α,β (−1)nx+nyτ z

αβc†
n,αcn,β that couples antifer-

romagnetically to the physical spin, while the last term is
given by

HSO =
∑

n, j,α,β

iλ j · ταβeiAj
(
c†

n+ê j ,α
cn,β − c†

n,αcn+ê j ,β

)
, (40)

where λi = {λi
1, λ

i
2, λ

i
3} is an arbitrary vector characterizing

the spin-orbit interaction along the ith direction and it plays a
role similar to Dzyaloshinskii-Moriya interaction.

Our tight-binding modeling is motivated by recent exper-
iments in 2D magnetic SrIrO3 and SrTiO3 materials [128]
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FIG. 5. The model Hamiltonian in two dimensions. (a) Left: The
tight-binding lattice showing electrons with spin α tunneling to the
nearest neighbor in the ith direction with amplitude J±

i = Ji ± �Ji,
denoted by single and double lines. The light (dark) blue sites denote
an on-site potential with positive (negative) sign depending on α.
The τz component of the spin-orbit interaction in the different di-
rections is denoted by the green (purple) curved lines. The lattice
is additionally threaded by a strong magnetic field of π -flux quanta
per plaquette. Right: The tight-binding lattice describing hopping
between spin-up and -down electrons, denoted by the yellow and
orange sites, respectively. The τx (τy) component of the spin-orbit
interaction in the different directions is denoted by the green (gray)
and black (purple) lines. (b) The bulk spectrum of the Hamiltonian
H (k, φ) at φ = (0, 0) showing four doubly degenerate bands. (c) The
bulk spectrum as a function of the external parameters showing
the four 4D Dirac-like crossings where the mass term is propor-
tional to h0. Each point in the φ plane represents the bulk spectrum
in the entire Brillouin zone k, projected onto the perpendicular
axis. (d) The open boundary spectrum of the Hamiltonian showing
bulk (gray), edge (blue and orange), and corner (purple) states.
The inset shows a schematic representation of the different states
found in the open boundary spectrum. For all simulations we used
Ji/10 = Ji − �J0

i = 0.1. In (b) we used λx
1/6 = λ

y
2/3 = 0.1 to em-

phasize the effect of spin-orbit coupling in the different directions.
In (c) and (d) we used λx

1 = λ
y
2 = 0.1 where the former has h0 = 0.1

and the latter h0 = 0.5. The remaining parameters are set to zero.

where a highly efficient control of the antiferromagnetic order
was demonstrated using a uniform magnetic field. Alterna-
tive implementations may also be found in piezoelectric and
piezomagnetic crystals, where electric and magnetic proper-
ties are controlled by lattice deformations. With these studies
in mind, we assume that the dimerization parameter and on-

site checkerboard potential depend on two external parameters
φ = (φx, φy),

�Ji = �J0
i cos(φi ) and h = h0

∏
i

sin(φi), (41)

where the spatiotemporal variations of φ are smooth enough
such that the system can be expanded in terms of a local
Hamiltonian and the semiclassical dynamics are well captured
within second-order perturbation theory (cf. Sec. II).

The momentum-space Hamiltonian as a function of the
external parameters φ is given by

H (k,φ) = d · γ + D · �, (42)

where, now, d and D are 5- and 12-vectors, respectively,

d = {h, J+
x + J−

x cos(kx ), J−
x sin(kx ),

J+
y + J−

y cos(ky), J−
y sin(ky)},

D = {
λx

1 sin(kx ),−λx
1 + λx

1 cos(kx ), λx
2 sin(kx ),

−λx
2 + λx

2 cos(kx ), λx
3 sin(kx ),−λx

3 + λx
3 cos(kx ),

λ
y
1 sin(ky),−λ

y
1 + λ

y
1 cos(ky), λy

2 sin(ky),

−λ
y
2 + λ

y
2 cos(ky), λy

3 sin(ky),−λ
y
3 + λ

y
3 cos(ky)

}
,

with J±
i = Ji ± �Ji, and

γ = {τz ⊗ σz ⊗ 1,1 ⊗ σx ⊗ 1,1 ⊗ σy ⊗ σz,

1 ⊗ σy ⊗ σy,1 ⊗ σy ⊗ σx}
are five 8 × 8 anticommuting Hermitian matrices
{γμ, γν} = 2δμν . Finally, the spin-orbit interaction is
represented by twelve 8 × 8 unitary matrices:

� = {τx ⊗ σx ⊗ 1 , τx ⊗ σy ⊗ σz, τy ⊗ σx ⊗ 1,

τy ⊗ σy ⊗ σz, τz ⊗ σx ⊗ 1 , τz ⊗ σy ⊗ σz,

τx ⊗ σy ⊗ σy, τx ⊗ σy ⊗ σx, τy ⊗ σy ⊗ σy,

τy ⊗ σy ⊗ σx, τz ⊗ σy ⊗ σy, τz ⊗ σy ⊗ σx}.
The energy spectrum of Hamiltonian (42) has eight bands

[see Fig. 5(b)]. Each set of positive- and negative-energy
bands can be written as a direct sum of two orthogonal
groups of eigenvectors that are coupled by the spin-orbit
interaction. Each pair of groups remains degenerate in the
entire Brillouin zone when the spin-orbit interaction vanishes,∑

i|λi| = 0; otherwise, the degeneracy survives only at iso-
lated points. At half filling the system is conducting only when∑

i |�Ji| = h = 0, and insulating if either the staggered po-
tential h or the dimerization parameters �Jx or �Jy become
nonzero [see Fig. 5(c)].

Introducing open boundary conditions and solving for the
eigenenergies, we find that in addition to the bulk bands, the
spectrum has two sets of codimension-1 (edge) states: (i) right
and left localized states and (ii) top and bottom localized states
[see Fig. 5(d)]. As a function of φ, the edge states disperse
and merge into the bulk bands without crossing the gap. Each
set of right and left or top and bottom states is localized in
opposite sites of the crystal; hence, their sum vanishes when
calculating the charge polarization of the ground state at half
filling. Similarly, the spin-density distribution of edge states
has vanishing contribution to the total spin polarization.
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The spectrum supports an additional set of codimension-2
states localized at the corners. In contrast to the codimension-
1 states, as a function of φ the corner states disperse, merge
with edge or bulk states, and most importantly cross the gap.
However, such spectral flow does not induce any net charge
transport since the states that cross the gap are made up of
two electrons and two holes; on the other hand, a heat and
spin transport is expected to show nontrivial effects.

Hamiltonian (42) has TR symmetry � = iKτy ⊗ 1 ⊗ 1

and chiral symmetry χ = 1 ⊗ σz ⊗ 1 for any value of �Ji and
λi, only when h = 0. Additionally, the Hamiltonian has charge
conjugation symmetry C = iKτy ⊗ σz ⊗ 1 in the entire phase
space; i.e.,

C−1H (k,φ)C = −H (−k,−φ), (43)

for any value of �Ji, λi, and h. Hence, the occupied subspace
of Bloch states can be partitioned into conjugate partners with
a characteristic 4D Z2 index [13]. As we show below, this
index emerges in the second-order corrections to the spin
transport and accumulation that is induced by spatiotemporal
modulations of the crystal.

Since the dimensionality of phase space can now sup-
port a variety of nontrivial curvatures, here we summarize
their physical origins. As discussed in Sec. III A, adiabatic
drives give rise to mixed momentum-time curvatures �kit ,
while weak inhomogeneities give rise to momentum-position
curvatures �kir j . Any weak external magnetic field that
threads the insulator is incorporated via the position curvature
�rir j ≡ Bji, and electric fields via the mixed position-time cur-
vature �tri ≡ Ei. Finally, a momentum curvature �kik j arises
as the relevant geometrical quantity in momentum space.

1. Transport

The topological corrections to electronic charge transport
up to second order have been extensively studied using the
semiclassical theory [70,73,74,129–132]. At first order, Hall
currents were shown to be related to a first Chern number
in momentum space, while second-order effects gave rise to
2D topological charge pumps with a second Chern number
response. The relation of these indices to robust boundary
physics, namely, to codimension-1 and -2 states, has been
demonstrated in cold atomic clouds [21–26], photonic lat-
tices [27–32], metamaterials [33–40], and electrical circuits
[41–46]. Here, we extend this description to spinor degrees
and derive the spinor-Hall effect, as well as 2D topological
spinor pumps. Specifically, we show how a first and second
spinor-Chern number manifest as corrections to the spinor
current and highlight the relation to the quantized changes of
spinor-multipole moments.

The semiclassical equations of motion (2) valid up to
second order in perturbation theory result in a nonvanishing
spinor current [70],

ji
Ŝ =

∫
T2

d2k

(2π )2
Tr S

(
�tki−εi jεlm�tkl �r j km + εi j�kxky E j

)
,

(44)

where the mixed time-position curvature is replaced by the
electric field �tri ≡ Ei, the integration domain is over a
T2-torus representing the 2D Brillouin zone, εxy = 1 is the

two-dimensional Levi-Cività tensor, and S is the matrix repre-
sentation of the spinor operator in the basis of occupied states.
The spinor current has contributions from (i) a curvature in
(t, ki ) coordinate space representing the adiabatic drive of the
�Ji dimerization parameter, (ii) a product of curvatures in the
(r, k, t ) coordinate space from the simultaneous drive and de-
formation of the crystal, and (iii) a combination of momentum
curvature and applied electric field. When Ŝ represents the
charge degree, the latter is reduced to the usual quantum Hall
response where the current depends on the first Chern number
in momentum space, c1 ∼ ∫

T2 d2k�kxky . Analogously, when
Ŝ is the spin degree we obtain the quantum spin-Hall effect
with a spin-current response proportional to a Z2 topological
index c1 ∼ ∫

T2 d2kτz�kxky . As these Hall effects are well es-
tablished, we omit them for the remaining calculations.

The transport of spinor charges in the ith direction after a
pump cycle t ∈ [t0, t0 + T ] is given by

�qi
Ŝ =

∫
T,V

dtd2r ji
Ŝ = ci

1−ci
2, (45)

where the integral runs over a period T and the volume of the
unit cell, V ∈ [0, lx] × [0, ly], is hereafter taken to be unity
for simplicity. Remarkably, we find that the perturbative cor-
rections to the spinor transport are proportional to topological
quantities defined in the system’s phase space. Namely, at first
order we find a first sub-spinor-Chern number ci

1, defined as

ci
1 = 1

(2π )2

∫
T,V,T2

dtd2rd2k Tr S�tki . (46)

At second order, a second spinor-Chern number arises,
defined as

ci
2 = 1

(2π )2

∫
T,V,T2

dtd2rd2kεi jεlm Tr S�tkl �r j km . (47)

The above equation indeed defines the set of second spinor-
Chern numbers that characterize the momentum-position-
time coordinate space [cf. Eq. (11)] since terms proportional
to �tr j will vanish in the absence of external electromagnetic
field perturbations.

Extending the electric polarization in macroscopic mate-
rials to higher spinor-multipole moments, we decompose the
bulk spinor current as

ji
Ŝ = ∂tP Ŝ

i −∂t∂r jQŜ
i j, (48)

where P Ŝ is the spinor-dipole moment density vector, and QŜ
i j

is the spinor-quadrupole moment density in position space (cf.
Appendix B). Equations (44) and (48) establish a fundamental
connection between topological quantities defined in the sys-
tem’s phase space and the modulations of the spinor-dipole
and spinor-quadrupole moment densities, namely,

ci
1−ci

2
!=

∫
T,V

dtd2r
(
∂tP Ŝ

i−∂t∂r jQŜ
i j

)
. (49)

We emphasize that the above equation is independent of the
particular Hamiltonian and can be used as a general geo-
metrical definition of the spinor-multipole moments in two
dimensions—a definition that eliminates any gauge ambigu-
ity, as it is based on integrated differences.
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Focusing on our specific tight-binding model of Eq. (42),
nontrivial spinor currents can be induced by adiabatically
driving and periodically modulating in space the external
parameters φ. For simplicity, we assume φ̇x = 2π/T and
∂xφy = 2π/l with T (l) the period (length scale) of the
modulation. The proper static deformation of the internal pa-
rameters is a crucial ingredient in 2D topological pumps as
without it the second spinor-Chern number becomes trivial
(see, for example, Ref. [49]). By defining Ŝ = 1 ⊗ 1 ⊗ 1 (or
τz ⊗ 1 ⊗ 1) as the charge (spin) operator, we calculate the
first sub-spinor-Chern numbers and find that they identically
vanish for both the charge and spin degree of freedom, i.e.,
ci

1 = 0 for all i. Additionally, the second Chern number asso-
ciated to the charge degree of freedom is zero because of the
anticommuting and traceless properties of the γ matrices. On
the other hand, the second spin-Chern number associated with
physical spin Ŝ = τz ⊗ 1 ⊗ 1 becomes nontrivial and equal to

ci
2 = 3

8π2

∫
T4

d2kd2φ δiy

×d̂ · (
∂kx d̂ ∧ ∂ky d̂ ∧ ∂φx d̂ ∧ ∂φy d̂

)
, (50)

where d̂ = d/|d|, and δi j is the Dirac delta function. The
latter is a consequence of the chosen driving scheme and
stems from the Jacobian transformation φ̇i∂rx φ j = (2π )2δixδ jy

between phase-space coordinates ξ and the parameter space
(k,φ). Since a nonzero spin-orbit interaction has vanishing
first-order contributions to Eq. (50) (see Appendix D), the spin
transport along the y direction is an integer determined by the
winding number of the map d̂ from T4 to the 4-sphere. Hence,
spin transport can be readily understood in the framework
of a 4D Z2 insulator where the top topological invariant is
given by the difference of the “mirror” second Chern numbers
characterizing the eigenstates from the two spin sectors.

The relation between spin transport, the second spin-Chern
number, and the spin-quadrupole moment is illustrated in
Fig. 6(a). First, we note that the calculated electric and spin-
dipole moments vanish in the entire phase space, reflecting
the trivial values of the first spinor-Chern numbers. Simi-
larly, the electric quadrupole moment is decomposed into two
equivalent contributions that originate from the two occupied
(doubly degenerate) spin sectors. As these contributions come
with opposite signs, the net electric quadrupole moment is
zero in the entire parameter space; correspondingly, the sec-
ond Chern number associated to the charge degree of freedom
is zero. On the contrary, the spin-quadrupole moment of the
model becomes nonzero and, in fact, “winds” twice as a func-
tion of the external parameters φ. This higher-dimensional
winding manifests as a nontrivial second spin-Chern number,
given by Eq. (50), and to a quantized spin transport, equal
to 2.

2. Accumulation

In a two-dimensional system there are two kinds of bound-
ary states that can appear: with codimensions 1 or 2. The
former corresponds to states localized in one direction but
extended in the other, found, for example, on the edges of Hall
systems or in insulators with nonzero intrinsic polarization.
On the other hand, the interesting properties of codimension-
2 states have only recently been rigorously explored. This

FIG. 6. Spin observables in the chiral limit. (a) The spin
quadrupole moment (cf. Appendix B) “winds” twice in the two-
dimensional parameter space φ. This is in correspondence with the
four singular contributions to the second spin-Chern number where
each integrates to 1/2 [cf. Eq. (55)]. (b) The spin density of the
electronic ground state at half filling. The ± sign shown in the four
quadrants indicates the values of φ (zero or π , respectively) and
creates a domain wall that supports a nonzero spin density. The total
amount of spin in region C is quantized and equal to 1/2. For the
simulations we used Ji/10 = Ji − �J0

i = 0.1, |λi| = λi
1 = 0.1 (for

both i = x and y), and h0 = 0.001. The remaining parameters are set
to zero.

led to the prediction and observation of states which are
localized in both dimensions and, under certain symmetry
constraints, carry a quantized charge ±1/2 [15,32,33,43,51–
58,60–62,67]. From these studies, a new class of TIs emerged,
dubbed “higher-order TIs,” where a d-dimensional insulator
has nontrivial boundary phenomena manifesting at its d-h
boundary, where h � 1. The associated electric multipole mo-
ments of higher-order TIs can be readily calculated using the
modern theory of Wilson, and nested Wilson loops [55]. For
codimension-2 states, the key observable is the quadrupole
moment which is constrained to obtain only certain values
and, as a result, quantize the accumulation of electronic charge
at the corner.

As we will see in this section, an alternative defini-
tion of second-order TIs and its extension to what we dub
“spinor-second-order TIs” is naturally obtained within the
semiclassical theory. Specifically, we show that geometrical
properties of phase space—the spinor-Chern fluxes—appear
as corrections to the spinor density, directly leading to
a fractional accumulation at the zero-dimensional (0D) or
1D boundaries when symmetry constraints are imposed.
Finally, we show how these quantities are related to the
spinor-multipole moments, namely, the spinor-dipole and
spinor-quadrupole moment.

In general, a weakly inhomogeneous insulator under
electromagnetic fields in two spatial dimensions is well char-
acterized by the spinor density up to second-order corrections
[cf. Eq. (8)]:

ρŜ =
∫
T2

d2k

(2π )2
Tr S

(
−

∑
i

�riki

+ 1

2
εi jεlm�kirl �k j rm + �kxky Bxy

)
, (51)
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where the position curvature is replaced by the magnetic field
�rir j ≡ Bji. When considering the charge degree of freedom,
the last term corresponds to the Streda formula [6] that relates
the change of the density of states induced by an applied
magnetic field to the first Chern number in momentum space,
i.e., ∂Bxyρcharge = c1. Since such corrections uniformly shift
the spinor density by a constant, hereafter these are omitted for
simplicity. The remaining terms in Eq. (51) are proportional
to the momentum-position curvatures and become nontrivial
when deformation fields are applied.

Calculating the total spinor charge in an arbitrary region C
in position space we find

qŜ =
∫
C

d2rρŜ = −
∑

i

�i
1 + �2. (52)

The first term corresponds to geometrical contributions from a
set of first spinor-Chern fluxes �i

1, defined over the respective
(ri, ki ) submanifold [cf. Eq. (13)],

�i
1 = 1

(2π )2

∫
C,T2

d2rd2k Tr S�riki . (53)

In similitude to the one-dimensional case [cf. Eq. (34)],
these terms give rise to spinor accumulation with codimen-
sions 1 and can be generally quantized by global symmetry
constraints. An interesting manifestation of the above first
spinor-Chern number in two dimensions are the helical edge
states that appear at the boundaries of the insulator [133,134].

In addition to the first spinor-Chern fluxes, at second order
in the inhomogeneities we find a new geometrical contribution
proportional to the second spinor-Chern flux �2 defined in the
entire position-momentum space (r, k) [cf. Eq. (14)],

�2 = 1

(2π )2

∫
C,T2

d2rd2k
1

2
εi jεlm Tr S�kirl �k j rm . (54)

Importantly, this quantity is intrinsically four dimensional and
vanishes for manifolds with dimensions 3 or less. Since the
integration region C is an open domain in position space, �2 is
generally not expected to be quantized. However, as we show
below, under symmetry constraints it can become quantized
and fractional.

The nontrivial effects of the spinor-Chern fluxes manifest
in the 2D model Hamiltonian of Eq. (42) when the external pa-
rameters φ depend on space. Specifically, we assume φx (φy) is
only a function of rx (ry) and takes continuous values between
zero and π . The integration domain C is assumed to cover the
intersection of the two domain walls [see Fig 6(b)]. In this
case, the induced spinor density has vanishing contributions
from the first spinor-Chern flux (both for charge and physical
spin), as well as from the second Chern flux associated to the
charge degree.

In contrast, the second spin-Chern flux associated to
Ŝ = τz ⊗ 1 ⊗ 1 is nonzero and has a closed analytic form:

3

8π2

∫
T2×[0,π]2

d2kd2φd̂ · (
∂kx d̂ ∧ ∂ky d̂ ∧ ∂φx d̂ ∧ ∂φy d̂

)
,

where T2 × [0, π ]2 is the integration domain in the four-
dimensional parameter space (k,φ), and we have used the
Jacobian transformation ∂rx φi∂ryφ j = (2π )2δixδ jy between po-
sition coordinates r and the external parameters φ. The above

integral is determined by the covering of the map d̂ from
the parameter space (k,φ) to the 4-sphere. Similar to its
lower-dimensional cousin of Eq. (37), it can be analytically
calculated in the linearized regime around the isolated points
(k0,φ0) = (π, π,±π/2,±π/2) as

6

π2

∫ �

0
d2δkd2δφ

h0(|δk|2 + |δφ|2 + h2
0

)5/2

h0
�

→0+
= 1

2
, (55)

where δk = (vxkx, vyky) and δφ = (ux φx, uyφy) are the lin-
earized vectors with vi = Ji (ui = −2�J0

i ) the Fermi velocity
along the ki (φi) coordinate, and � is the cutoff energy. When
chiral symmetry is restored, i.e., when h0/� → 0, the sec-
ond spin-Chern flux and, hence, the accumulated spin [cf.
Eq. (52)] become fractional and equal to

|qspin| = 1
2 .

The above equation is the extension of the fractional Berry
flux attached to a 2D Dirac cone [cf. Eq. (37)], to the second
spin-Chern flux of the 4D Dirac-like cone supported in the
(k,φ) parameter space [cf. Fig. 5(c)]. We note that first-order
corrections to the second spin-Chern flux due to a nonzero
spin-orbit interaction will vanish (see Appendix D).

Comparing with the classical expectation of the multi-
pole description of materials, the calculated spinor density
of Eq. (51) must be created by the spatial gradients of the
spinor-multipole moments:

ρŜ = −∂riP Ŝ
i + 1

2∂ri∂r jQŜ
i j, (56)

where repeating indices are summed. The multipole expan-
sion of spinor density allows for a geometrical interpretation
in terms of the first and second spinor-Chern fluxes, namely,

−
∑

i

�i
1 + �2

!=
∫
C

d2r

(
−∂riP Ŝ

i + 1

2
∂i∂ jQŜ

i j

)
. (57)

The connection between spinor-Chern fluxes defined over the
phase space of the system and the accumulation of spinor
charges is one of the main results of this paper: it connects
an abstract geometrical property of phase space—the spinor-
Chern fluxes—to physical observables—the modulations of
spinor-multipole moments. Even though in general the latter
lack a geometrical definition, the semiclassical formalism pro-
vides a well-defined way to connect integrated differences of
the multipole moments to the geometrical properties of the
system’s phase space.

For the Hamiltonian model of Eq. (42), the spin-
quadrupole moment takes nontrivial values in the parameter
space φ [see Fig. 6(a)]. When the spectral gap is minimum,
the second gradient of the spin quadrupole with respect to
φ becomes nonzero, leading to a finite spin accumulation on
the 2D domain wall shown in Fig. 6(b). In the limit where
chiral symmetry χ is restored, the contributions from the
spin-quadrupole moment become quantized and equal to 1/2,
as given by the second spin-Chern flux of Eq. (55). We note
that the contributions from the spin-dipole moments evalu-
ate to zero since these are related to trivial first spin-Chern
fluxes. Similarly, the electric dipole and quadrupole moments
vanish, as these are related to trivial first and second Chern
fluxes, respectively. Even though for our particular model the
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correspondence between spinor-Chern fluxes and changes of
spinor-multipoles can be made one to one, we remark that, in
general, Eq. (57) should be taken as a whole since a second
spinor-Chern flux can additionally contribute to the change of
the spinor-dipole moment [77].

C. In three dimensions

In this section, we generalize the concepts developed thus
far to three-dimensional crystalline insulators. Specifically,
we calculate the response of a 3D material under spatiotem-
poral modulations and general external electromagnetic fields
using a semiclassical approach valid up to third order in per-
turbation theory. First, we derive the spinor analogs of the
Hall effect and Streda formula in three dimensions, along-
side nontrivial spinor-axion field responses in transport and
accumulation. Next, we find that the spinor current has a
unique third spinor-Chern number response associated to a
topological index defined in the entire phase space, in addition
to the first and second sub-spinor-Chern number responses
encountered in Secs. III A and III B. Similarly, the spinor
accumulation is shown to have contributions from the first,
second, and third spinor-Chern fluxes that are associated to
codimension-1, -2, and -3 states, respectively. Under sym-
metry constraints, we show that the spinor-Chern fluxes can
become quantized, leading to a fractional spinor accumulation
localized at the boundaries of the three-dimensional material.
The spinor-Chern numbers and fluxes are ultimately related to
the spatiotemporal modulations of the spinor-multipole mo-
ments.

These concepts are illustrated in the spin responses of a
concrete tight-binding model of spinful electrons on a cubic
lattice. Similar to the lower-dimensional analogs discussed
in Secs. III A and III B, the key ingredients in the Hamilto-
nian are the nearest-neighbor interaction, the dimerization of
the hopping amplitudes in the three directions, the staggered
on-site potential, and the spin-orbit coupling. To keep the
description less cumbersome, we directly use the momentum-
space Hamiltonian [for an illustration of the real-space crystal,
see Fig. 7(a)]

H (k,φ) = d · γ + D · �. (58)

Here, d and D represent a 7- and an 18-component vector,
respectively, with components

d = {h, J+
x + J−

x cos(kx ), J−
x sin(kx ), . . .},

where J±
i = Ji ± �Ji, and

D = {
λx

1 sin(kx ),−λx
1 + λx

1 cos(kx ), λx
2 sin(kx ),

− λx
2 + λx

2 cos(kx ), λx
3 sin(kx ),−λx

3 + λx
3 cos(kx ), . . .

}
,

where “. . .” denotes the remaining components in the y and z
directions. The corresponding matrices are given by

γ = {τz ⊗ σz ⊗ 1 ⊗ 1,1 ⊗ σx ⊗ 1 ⊗ σx,

1 ⊗ σx ⊗ 1 ⊗ σy,1 ⊗ σx ⊗ 1 ⊗ σz,

1 ⊗ σy ⊗ σz ⊗ 1,1 ⊗ σy ⊗ σy ⊗ 1,

1 ⊗ σy ⊗ σx ⊗ 1}, (59)

FIG. 7. The model Hamiltonian in three dimensions. (a) The 3D
tight-binding lattice described by the Hamiltonian of Eq. (58). For
simplicity, we only show hopping between equivalent spins. Light
(dark) green sites denote an on-site potential with positive (negative)
sign. Black (gray) lines denote hopping with amplitude J+

i (J−
i ). Each

face of the cubic lattice is threaded by a strong magnetic field of
π -flux quanta per plaquette. (b) The eigenstates of the open boundary
spectrum are generally split into bulk (gray), surface (blue), hinge
(orange), and corner (purple) states. (c) The open boundary spec-
trum of the Hamiltonian showing bulk (gray), surface (blue), edge
(orange), and corner (purple) states. For the simulations we used
Ji/10 = �J0

i = 0.1, h0 = 0.25, and
∑

i |λi| = 0.

that define the kinetic and potential energy, as well as by the
18 matrices representing the spin-orbit interaction,

� = {τx ⊗ σx ⊗ 1 ⊗ σx, τx ⊗ σx ⊗ 1 ⊗ σy,

τy ⊗ σx ⊗ 1 ⊗ σx, τy ⊗ σx ⊗ 1 ⊗ σy,

τz ⊗ σx ⊗ 1 ⊗ σx, τz ⊗ σx ⊗ 1 ⊗ σy,

τx ⊗ σx ⊗ 1 ⊗ σz, τx ⊗ σy ⊗ σz ⊗ 1,

τy ⊗ σx ⊗ 1 ⊗ σz, τy ⊗ σy ⊗ σz ⊗ 1,

τz ⊗ σx ⊗ 1 ⊗ σz, τz ⊗ σy ⊗ σz ⊗ 1,

τx ⊗ σy ⊗ σy ⊗ 1, τx ⊗ σy ⊗ σx ⊗ 1,

τy ⊗ σy ⊗ σy ⊗ 1, τy ⊗ σy ⊗ σx ⊗ 1,

τz ⊗ σy ⊗ σy ⊗ 1, τz ⊗ σy ⊗ σx ⊗ 1}. (60)

We further assume that H (k,φ) describes a material where
the dimerization parameters and on-site potential can depend
on both space and time. Formally, this is implemented by a set
of external parameters φ = (φx, φy, φz ), where

�Ji = �J0
i cos(φi ) and h = h0

∏
i

sin(φi), (61)

with �J0
i and h0 constants. The spatiotemporal modulations

of φ are assumed to be weak enough such that the wave
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packet’s equations of motion are well captured by third-order
corrections (cf. Sec. II).

The bulk spectrum of the Hamiltonian is composed by 16
bands which are split into two sets of positive and negative
energies. Each set can be further split into two quadruplets
which are mixed depending on the spin-orbit interaction.
When

∑
i |λi| = 0, all positive (similarly, negative) energy

states become degenerate, while this is lifted to isolated re-
gions in the Brillouin zone when

∑
i |λi| > 0. The material at

half filling is conducting only when
∑

i |�Ji| = h = 0.
The open boundary spectrum of the Hamiltonian has four

distinct sets of states classified depending on their codimen-
sionality [see Figs. 7(b) and 7(c)]. First are the dimension-0
states, i.e., bulk modes, which correspond to fully delocal-
ized wavefunctions that have nonzero probability on lattice
points deep within the bulk of the material; these correspond
to the solutions of the Bloch Hamiltonian of Eq. (58). Next
are the codimension-1 states that are localized in one of the
coordinates but extended in the remaining two; these states
are found on the surfaces of the 3D material. Then are the
codimension-2 states, which are localized in two dimensions
but extended in the third, e.g., spin-helix hinge states. Finally
are codimension-3 states associated to fully localized states;
such states appear on the corners of the material. As a function
of the external parameters φ, the boundary states disperse,
merge into other bands, and reemerge according to the lattice
parameters; however, only the codimension-3 states cross the
gap.

To conclude the description of the model, we note that the
Hamiltonian has chiral symmetry χ = 1 ⊗ σz ⊗ 1 ⊗ 1 and
TR symmetry � = iKτy ⊗ 1 ⊗ 1 ⊗ 1 only when h = 0. On
the other hand, the parameter space has a global TR symmetry
T for any value of �Ji, λi, and h.

1. Transport

Having seen the relation between spinor transport in
weakly perturbed materials and spinor-Chern numbers in di-
mensions 1 and 2 (cf. Secs. III A 1 and III B 1), we now
discuss topological transport in three dimensions and how
it relates to the spinor-Chern numbers. Extending previous
results for the charge degree [50], we show how the adiabatic
evolution of the Hamiltonian induces a third-order correction
proportional to the third spinor-Chern number. Alongside this
unique response, we find a set of lower-dimensional indices,
the first and second sub-spinor-Chern numbers, that appear
as first- and second-order corrections to the spinor current.
Additionally, by including nonzero external electromagnetic
fields we derive the 3D spinor-Hall effect, as well as axion
field responses in the spinor degrees of freedom. Finally,
we show how our results manifest in the modulations of the
spinor-multipole moments.

Using the semiclassical theory developed in Sec. II, a
three-dimensional insulator in the absence of external elec-
tromagnetic fields is characterized by the spinor current

ji
Ŝ =

∫
T3

d3k

(2π )3
TrS

(
�tki−εi jkεklm�tkl �r j km

+ 1

2
εi jkεlmn�tkl �r j km�rkkn

)
, (62)

where the integration domain is over a T3-torus represent-
ing the 3D Brillouin zone, εxyz = 1 is the three-dimensional
Levi-Cività tensor, and Latin indices run over three directions
i ∈ {x, y, z}. Depending on the particular Hamiltonian, the
derived spinor current of Eq. (62) includes a variety of phe-
nomena. The first term is equivalent to Eq. (28) and results in
spinor transport proportional to a first sub-spinor-Chern num-
ber defined in the (t, ki ) manifold. The next term is a double
product of curvatures and gives rise to 2D topological spinor
pumps with a second sub-spinor-Chern number response [cf.
Eq. (44)]. Finally, the last term is a unique three-dimensional
response given by a triple product of curvatures in the entire
(r, k, t ) phase space.

Next, when nonzero external electromagnetic fields are
applied, we derive two additional corrections to Eq. (62). At
first order we obtain∫

T3

d3k

(2π )3

1

2
εi jlεlmn TrS�kmkn E j, (63)

corresponding to the previously encountered spinor-Hall (or
spin-Hall, depending on the chosen degree of freedom) re-
sponse [cf. Eq. (44)], that relates the application of an electric
field to a perpendicular spinor current with proportionality
constant the first spinor-Chern number in momentum space.
At second order, the corrections are given by

1
2εilm(Em∂rl θ + Blmθ̇ ), (64)

where

θ =
∫
T3

d3k

(2π )3

1

2
εlmn TrS�kl km Akn (65)

is dubbed the “spinor-axion index.” Similar to the usual charge
responses due to a nontrivial axion field [14], the simultaneous
application of an external electric (magnetic) field and the
spatial (temporal) modulations of the Hamiltonian induce a
nontrivial spinor current that depends on the gradient (rate
of change) of the spinor-axion field—a topological property
of the combined momentum-position-time coordinates. Here-
after, we omit corrections induced by electromagnetic fields
as their contribution to the spinor transport is simply given by
Eqs. (63) and (64), averaged over the corresponding volume
of phase space.

Integrating the spinor current in the ith direction over a full
pump cycle we obtain the spinor transport

�qi
Ŝ =

∫
T,V

dtd3r ji
Ŝ = ci

1−ci
2 + ci

3, (66)

where the integral runs over a period T and the volume of
the unit cell V (both set to unity for simplicity). The first two
contributions are already derived in the context of one- and
two-dimensional systems [cf. Eqs. (29) and (45)] and in three
dimensions are proportional to the first and second sub-spinor-
Chern numbers, namely,

ci
1 =

∫
T,V,T3

dtd3rd3k

(2π )3
TrS�tki (67)

and

ci
2 =

∫
T,V,T3

dtd3rd3k

(2π )3
εi jkεklm TrS�tkl �r j km . (68)
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In addition to these responses, at third order in perturbation
theory we obtain a third spinor-Chern number response, de-
fined as

ci
3 =

∫
T,V,T3

dtd3rd3k

(2π )3

1

2
εi jkεlmn TrS�tkl �r j km�rkkn . (69)

The above expression is indeed the third spinor-Chern number
characterizing the (r, k, t ) phase space since contributions
from electromagnetic fields are assumed to be vanishing.

Before specifying the Hamiltonian, the derived expression
of spinor transport, Eq. (66), can be decomposed as the tempo-
ral gradient of the spinor-dipole moment density, the second
derivative of the spinor-quadrupole moment, and the third
derivative of the spinor-octupole moment:

ji
Ŝ = ∂tP Ŝ

i −∂t∂r jQŜ
i j (r) + 1

2∂t∂r j ∂rlOŜ
i jl (r), (70)

where P Ŝ , QŜ
i j , and OŜ

i jl are the spinor analogs of the electric
dipole, quadrupole, and octupole moment densities (cf. Ap-
pendix B). This decomposition can be used as an alternative
definition of the spinor-multipole moments,

ci
1−ci

2 + ci
3

!=
∫

T,V
dtd3r

(
∂tP Ŝ

i −∂t∂r jQŜ
i j + 1

2
∂t∂r j ∂rlOŜ

i jl

)
,

(71)

i.e., integrated differences of spinor-multipole moments are
determined by the spinor topological properties of phase
space.

Focusing on the particular three-dimensional model of
Eq. (58), the topological aspects of phase space become
nonvanishing when φ is a function of both space and time.
Specifically, we assume φx(t ) is a function of only time and
takes values in the interval [0, 2π ], while φy (φz) is a function
of only x (y) and is smoothly varied between zero and 2π .
In this case, the first and second sub-spinor-Chern numbers
of the system vanish for both the charge and physical spin
degree, i.e., for Ŝ = 1 ⊗ 1 ⊗ 1 ⊗ 1 or Ŝ = τz ⊗ 1 ⊗ 1 ⊗ 1,
respectively, due to the anticommuting and traceless proper-
ties of the γ matrices. Equivalently, the third Chern number
associated to the charge degree is also zero. The only nonva-
nishing contribution comes from the third spin-Chern number
and is given by

�qi
Ŝ = 15

16π3

∫
T6

d3kd3φ δiz

×d̂ · (∂kx d̂ ∧ ∂ky d̂ ∧ ∂kz d̂ ∧ ∂φx d̂ ∧ ∂φy d̂ ∧ ∂φz d̂),

(72)

where d̂ = d/|d|, the integration domain in the six-
dimensional parameter space (k,φ) is given by the 6-torus
T6, and δi j is the Dirac delta function; the last stems from
the Jacobian φ̇i∂rx φ j∂ryφk = (2π )3δixδ jyδkz of the transforma-
tion between the position-time manifold and the φ parameter
space. Note that the first nonzero contributions due to a
spin-orbit interaction appear as second-order corrections (see
Appendix D); hence, these are omitted from the calculation of
the third spin-Chern flux. Equation (72) is an integer number
determined by the winding of the mapping d̂ between the
parameter space T6 and the 6-sphere. For our tight-binding

FIG. 8. Spin-octupole moment. (a) The spin-octupole moment
(cf. Appendix B), as a function of the external parameters φ, takes
values between zero (transparent) and 1/2 (green). The transition
between the two values (gray region) is controlled by the chiral
breaking mass h0; i.e., the smaller it is, the sharper the transition.
(b) The electronic ground state of the open boundary crystal at
φ = (0, 0, 0) exhibits spin localization at the corners, as expected
from a nonvanishing spin-octupole moment. We note that the
analogous expressions for the charge degree of freedom vanish in-
dependently of φ. For the simulations we have used �J0

i /Ji = 0.1,
h0/Ji = 0.01, and

∑
i |λi| = 0.

model (58) and driving scheme considered in this section, the
third spin-Chern number induces a quantized spin transport
along the z direction that is equal to 4.

The transport of physical spin due to the nontrivial winding
number is reflected in the modulations of the spin-multipole
moments, shown in Fig. 8(a). As a function of the external
parameters, the spin-octupole moment takes continuous val-
ues and “winds” around singular points in the φ parameter
space. This leads to a nonzero third gradient and to a nontrivial
contribution to spin current, as described by Eq. (70). We
note that all other contributions from both electric and spin-
multipole moments vanish, as expected from the trivial first
and second spin-Chern numbers, as well as from the trivial
Chern numbers [cf. Eq. (71)].

2. Accumulation

Here, we derive the spinor density using a semiclassi-
cal approach valid up to third order in perturbation theory.
At first order, we find a set of first spinor-Chern fluxes in
mixed momentum-position coordinates that are related to
codimension-1 states, as already discussed in Sec. III A 2. In
addition, we obtain the generalization of the Streda formula
to three dimensions and the relation of spinor density to
the first spinor-Chern number in momentum space. Second-
order corrections are given by a set of second spinor-Chern
fluxes in mixed momentum-position coordinates and give
rise to codimension-2 states (cf. Sec. III B 2). Next are the
spinor-axion field responses that depend on the applied elec-
tromagnetic fields, as well as on the deformation fields. Such
corrections generalize the magnetoelectric effect [14] and
relate spinor localization to the application of a parallel mag-
netic field. Finally, the third spinor-Chern flux appears as
a unique third-order correction and is related to states with
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codimensions 3. By extending the electric multipole descrip-
tion to spinor degrees of freedom and including effects up
to the spinor-octupole moment, we establish a fundamental
relation between boundary states, spinor-multipole moments,
and the geometrical properties of phase space.

The spinor density of a generic 3D insulator under arbitrary
perturbing fields is calculated using Eq. (5). As this expression
contains numerous terms we first show the corrections that
depend on the electromagnetic fields and then focus on pure
deformation fields. Starting at first order, we obtain the 3D
analog of the Streda formula, namely,∫

T3

d3k

(2π )3

1

2
TrS�kik j Bi j, (73)

that relates the spinor density to the applied magnetic field and
to the first sub-spinor-Chern number in momentum space (cf.
Sec. III B 2). Next, we derive the spinor-axion response

− 1
2εi jk∂riθBjk, (74)

that gives rise to a nonzero spinor density depending on the
gradient of the spinor-axion field θ , defined in Eq. (65).

The remaining corrections due to deformation fields are
given by

ρŜ =
∫
T3

d3k

(2π )3
TrS

(
−

∑
i

�riki +
∑

i

1

6
εiklεimn

×�rkkm�rl kn − 1

6
εi jkεlmn�rikl �r j km�rkkn

)
. (75)

The first two terms have already been encountered in
Secs. III A 2 and III B 2, albeit from a lower-dimensional
perspective; in three dimensions, these terms can lead to he-
lical surface and hinge states, respectively [57,63]. On the
other hand, the last term in Eq. (75) is an intrinsically three-
dimensional response as it depends on the full six-dimensional
position-momentum manifold.

In the absence of electromagnetic fields, the accumulation
of spinor charge in an arbitrary region C in position space is,
hence, given by

qŜ =
∫
C

d3rρŜ = −
∑

i

�i
1 +

∑
i

�i
2−�3. (76)

The first term defines a set of first spinor-Chern fluxes �i
1 in

the (ri, ki ) submanifold [cf. Eq. (13)],

�i
1 =

∫
C,T3

d3rd3k

(2π )3
Tr S�riki , (77)

and induces a spinor accumulation with codimensions 1.
Next is the second spinor-Chern flux �i

2 defined in a four-
dimensional submanifold of phase space [cf. Eq. (14)],

�i
2 =

∫
C,T3

d3rd3k

(2π )3

1

6
εiklεimn TrS�rkkm�rl kn . (78)

Similar to the two-dimensional case [cf. Eq. (52)], the second
spinor-Chern flux appears as a second-order correction and
is related to states localized in two coordinates but extended
in the remaining. Finally, at third order we obtain a unique
three-dimensional response related to the third spinor-Chern

flux,

�3 =
∫
C,T3

d3rd3k

(2π )3

1

6
εi jkεlmn TrS�rikl �r j km�rkkn . (79)

As the integration region C does not necessarily cover the
entire parameter space, the corrections �1, �2, and �3 are
quantized only when additional symmetry constraints are im-
posed.

Focusing on our tight-binding model (58), the nontrivial
geometrical properties of phase space manifest in the physical
spin accumulation when the parameters φ are properly modu-
lated in space. Here, we assume that each φi is a function only
of the associated position coordinate, i.e., ∂riφ j = 2πδi j , and
takes values between zero and π within a finite region. Fur-
thermore, we take C to be the support of the three-dimensional
domain wall defined by the gradients of the external param-
eters φ. Calculating the corrections associated to the charge
degree of freedom, i.e., taking Ŝ = 1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1, we
find that all Chern fluxes vanish due to the anticommuting
and traceless properties of γ matrices. Similarly, the first and
second spin-Chern fluxes associated to physical spin, i.e.,
when Ŝ = τz ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1, evaluate to zero.

The only surviving term is the third spin-Chern flux, given
by

�3 = 15

16π3

∫
T3×[0,π]3

d3kd3φ

×d̂ · (
∂kx d̂ ∧ ∂ky d̂ ∧ ∂kz d̂ ∧ ∂φx d̂ ∧ ∂φy d̂ ∧ ∂φz d̂

)
,

(80)

where T3 × [0, π ]3 is the integration domain in the six-
dimensional parameter space (k,φ), and we have used the
Jacobian transformation ∂rx φi∂ryφ j∂rzφk = (2π )3δixδ jyδkz be-
tween position coordinates and the parameters φ. In our
derivation, we have neglected the effects of a weak spin-orbit
interaction λi since first-order corrections will vanish (see
Appendix D). Equation (80) is determined by the covering of
the map d̂ from the parameter space (k,φ) to the 6-sphere and
can be analytically calculated in the linearized regime around
the points (k0,φ0) = (π, π, π,±π/2,±π/2,±π/2) as

60

π3

∫ �

0
d3δkd3δφ

h0(|δk|2 + |δφ|2 + h2
0

)7/2

h0
�

→0+
= 1

2
, (81)

where � is the cutoff energy and

δk = (vxkx, vyky, vzkz ) and δφ = (ux φx, uyφy, uzφz )

are the linearized vectors with vi = Ji (ui = −2�J0
i ) the

Fermi velocity along the ki (φi) coordinate. When chi-
ral symmetry is imposed to the tight-binding model, i.e.,
when h0/� → 0, the expression of the third spin-Chern flux
becomes quantized and equal to 1/2. As a result, the accumu-
lation of spin at the 0D boundary defined by the domain wall
becomes

|qspin| = 1
2 . (82)

Similar to Eq. (57) encountered in the 2D case, an alter-
native interpretation of the accumulated spin (and in general
spinor degrees of freedom) is obtained by the classical theory
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of multipole moments. Within this description, the spinor-
Chern fluxes are related to the modulations of what we dub
spinor-multipole moments:

−
∑

i

�i
1 +

∑
i

�i
2−�3

!=
∫

V
d3r

(
−∂riP Ŝ

i + 1

2
∂ri∂r jQŜ

i j −1

6
∂ri∂r j ∂rlOŜ

i jl

)
. (83)

Indeed, the bulk spin-octupole moment of the tight-binding
model acquires nonzero values depending on the external
parameters φ (cf. Fig. 8). Around the high-symmetry points
φ0 = (±π/2,±π/2,±π/2), the third gradient of the spin-
octupole moment diverges depending on the value of the
chiral breaking mass h0; in the limit where h0/� → 0, its
contribution to the spin density becomes quantized and equal
to 1/2, as predicted by Eq. (76) and the third spin-Chern
flux given in Eq. (81). The remaining contributions from the
spin-dipole and spin-quadrupole moments vanish, reflecting
the trivial value of the first and second spin-Chern fluxes,
respectively. Finally, we note that all contributions from the
electric multipole moments are zero, as these are related to a
trivial first, second, and third Chern flux.

IV. CONCLUSIONS

Designing realistic materials that can be easily controlled is
of paramount importance when proposing experiments. Multi-
ferroic materials provide a promising platform for controlling
electronic properties with external electromagnetic and defor-
mation fields [135]. In particular, ferromagnetic compounds
with alternating crystal axes, such as Cu benzoate [117] and
Yb4As3 [119], develop a staggered on-site potential when a
perpendicular uniform magnetic field is applied and, as a con-
sequence, the material becomes insulating. This is due to the
competition between Dzyaloshinskii-Moriya interaction and
a nonzero gyromagnetic tensor. The former can also give rise
to an exchange interaction that depends on the applied electric
field, as demonstrated in MnI2 and oxides ABO2 with A = Cu,
Ag, Li, or Na and B = Cr or Fe [120–123]. More related to
this paper, a highly efficient control of the antiferromagnetic
order using a uniform magnetic field was demonstrated in
two-dimensional latices of SrIrO3 and SrTiO3 [128].

Coupling electronic properties to strain offers an alterna-
tive route towards inducing controlled dynamics. Specifically,
materials with piezoelectric, piezomagnetic, or flexoelectric
properties develop nonzero electric and magnetic moments,
such as polarization and magnetization, in response to strain
[128,136–140]. Furthermore, symmetry analysis revealed an
interesting class that combines electric and magnetic proper-
ties to give the “piezomagnetoelectric effect” [141,142]; i.e.,
the material develops a nonzero polarization due to a paral-
lel magnetic field and strain. Enhanced piezomagnetoelectric
properties were also observed in ceramics, rare-earth iron
alloys, polymer composites [143,144], laminates [145–147],
and epitaxial multilayers [148]. These materials have seen
an enormous use in applications, both for their fundamental
interest as well as their practicality.

Our semiclassical treatment of electrons in insulating crys-
tals establishes a natural description of topological aspects,

as it mostly arises from wave interference. As we have al-
ready shown, the nontrivial geometrical structure of phase
space is fundamentally connected to macroscopic responses,
namely, transport and accumulation. Such connection ul-
timately provides an alternative definition of the electric
multipole moments in the form of integrated differences,
thus eliminating any gauge ambiguity that can arise from the
boundary conditions.

Introducing new internal quantum degrees of freedom
augments the semiclassical description and leads to new
topological constructs. This work provides an exhaustive de-
lineation of such a generalized semiclassical theory, while
deriving a set of multipoles with internal structure—the
spinor-multipole moments. We believe that our work will in-
spire and guide novel solid-state studies both in real materials
and quantum engineered systems. Of particular interest are
the large-scale applications in quantum information technolo-
gies using qudits—a multilevel alternative to the conventional
two-level qubit—that are expected to provide unprecedented
storage capacity, processing power, and secure encryption, as
well as reducing circuit complexity and increasing algorithm
efficiency [149,150].

In this paper, we present a complete description of non-
interacting electrons in weakly inhomogeneous, adiabatically
driven insulators under external electromagnetic fields. We
calculate the transport and accumulation of general spinor
degrees of freedom using a semiclassical approach where we
include corrections up to third order in perturbation theory.
As such, we illustrate fundamental connections among geom-
etry and physical observables that enable us to predict exotic
states of matter. The derived effects are studied in concrete
tight-binding models where the aforementioned relations are
calculated both analytically and numerically. Remarkably, our
approach puts topological spinor pumps, the spinor-Hall ef-
fect, spinor-higher-order TIs, spinor-multipole moments, and
spinor-axion responses under the unifying umbrella of phase-
space topology.
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APPENDIX A: WAVE-PACKET CONSTRUCTION

We start by formally expanding the Hamiltonian in dis-
tances δr̂ = r̂ − r around the center-of-mass position r as

Ĥ = Ĥ0 + Ĥ ′, (A1)

where Ĥ0 = Ĥ (r, k, t ) is the local Hamiltonian evaluated at
the center-of-mass coordinates, and Ĥ ′ are higher-order cor-
rections. For example, at third order this is given by (hereafter,
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we take h̄=e=1)

Ĥ ′ = ∂Ĥ0

∂ri
δr̂i + 1

2

∂Ĥ0

∂ri

∂Ĥ0

∂r j
{δr̂i, δr̂ j}

+ 1

4

∂Ĥ0

∂ri

∂Ĥ0

∂r j

∂Ĥ0

∂rk
{{δr̂i, δr̂ j}, δr̂k}. (A2)

Regardless of their physical origins, the strength of these
corrections eventually determines the choice of basis for the
construction of the wave packet. Specifically, the size of the
wave packet must be much smaller than the characteristic
length scale defined by the Ĥ ′, both in position and momen-
tum space (see Fig. 1). Constructing a wave packet that is
several orders of magnitude larger than the lattice constant en-
sures a local basis of states with well-defined center-of-mass
phase-space coordinates (r, k), and where intermediate length
scales are encoded perturbatively up to a sufficiently large
order. Any other strong corrections are included intrinsically
in the local Hamiltonian Ĥ0 [70,74].

Concretely, the wave packet is built directly from the N
eigenstates {|n(k, r)〉} of a set of isolated energy bands of Ĥ
up to a particular order [50,68,73,91,92]; e.g., at second order
in perturbation theory, the eigenstates are expanded as

|n〉 ≈ |n0〉 + |n′〉 + |n′′〉 + · · · , (A3)

where |n0〉 are the eigenstates of Ĥc and |n′〉 (|n′′〉) are the
first-order (second-order) corrections. Such terms modify sig-
nificantly the structure of the wave packet and are, therefore,
included in the derivation of the equations of motion. The
wave packet is, thus, constructed as

|W0〉 :=
∫
T d

dd kw(k, t )
∑

n

ηneiθnm (k,t )|m(k, r)〉, (A4)

where w(k, t ) is now the distribution function, |ηn|2 = 1
is the probability of a particle being in the nth energy
band, θ (k, t ) = ∫ t

0 Enm(k)dt ′ + γ nm(t ) is the sum of the
dynamical phase given by the temporal integral over the
perturbed energy dispersion Enm = 〈n(k, r)|Ĥ0 + Ĥ ′|m(k, r)〉,
and the geometrical phase is γ nm = −i

∫ t
0 Anm

t dt ′ with
Anm

t := i〈n(k)| d
dt |n(k)〉. The center-of-mass position r and

momentum k of this wave packet are defined as [69]

r := 〈W0|r̂|W0〉 ≡ Tr r and k := 〈W0|k̂|W0〉 ≡ Tr k, (A5)

where r and k are the matrix representations of the position
and momentum operator. In the case of a single occupied
band, r and k become real numbers and the trace is omitted.

APPENDIX B: SPINOR-MULTIPOLE MOMENTS

In this section we review the definition of Wilson loops
and nested Wilson loops, as well as defining their spinor
analogs. These are ultimately related to the spinor-multipole
moments, e.g., the spinor-dipole, spinor-quadrupole, and
spinor-octupole moments. The notation used hereafter should
be taken only with respect to this Appendix.

The Wilson loop, defined as

Wμ = ei
∫

dk
2π

Aμ, (B1)

is constructed by integrating the connection
Anm

μ = 〈ψn(k)|i∂kμ
|ψm(k)〉 over the entire Brillouin zone. Its

eigenvalues are related to the electronic positions relative to
the positively charged atomic centers, also known as Wannier
centers,

Wμ

∣∣wn
μ(k)

〉 = ei2πwn
μ

∣∣wn
μ(k)

〉
, (B2)

where {wn
μ} is a set of Wannier centers in the μ direction with

associated eigenvectors |wn
μ(k)〉. The electric dipole moment

density is determined by the displacement of electrons from
their atomic centers, i.e.,

Pμ = − i

2π
log det Wμ. (B3)

The nested Wilson loop is defined as

W±
μν = ei

∫
dk
2π

A±
μν . (B4)

The connection [A±
μν]nm = 〈un

ν (k)|∂kμ
|um

ν (k)〉 is defined over
the so-called Wilson bands |un

μ(k)〉 = ∑
i |wn

μ(k)〉i|ψ i(k)〉,
where |wn

μ(k)〉i is the ith component of the Wμ Wilson loop
eigenvector |wn

μ(k)〉. Here, the ± superscript denotes the Wan-
nier sector that is comprised by either positive or negative
eigenvalues. The electric quadrupole moment density is mea-
sured by the product of the averaged eigenvalues of nested
Wilson loops, summed over the Wannier sectors:

Qμν = 1

(2π )2

∑
σ

log det Wσ
μν log det Wσ

νμ. (B5)

The nested-nested Wilson loop is defined as

W±
μνρ = ei

∫
dk
2π

A±
μνρ . (B6)

The connection [A±
μνρ]nm = 〈un

νρ (k)|∂kμ
|um

νρ (k)〉 is defined
over the nested Wilson bands |un

νρ (k)〉 = ∑
i |wn

νρ (k)〉i|ui
ρ (k)〉,

where |wn
νρ (k)〉i is the ith component of the Wνρ nested-

Wilson-loop eigenvector |wn
νρ (k)〉. The ± superscript denotes

the nested Wannier sector that is comprised by either positive
or negative eigenvalues of both Wilson and nested Wilson
loops. The octupole moment is calculated by

Oμνρ = −i

(2π )3

∑
σ

log det Wσ
μνρ log det Wσ

ρμν log det Wσ
νρμ.

(B7)

We construct the spinor analog of the Wilson loop as

W Ŝ
μ = ei

∫
dk
2π

SμAμ, (B8)

where Snm
μ = 〈un

μ(k)|Ŝ|um
μ (k)〉 are the components of the

spinor operator Ŝ in the basis of Wilson bands. The spinor-
dipole moment is given by

P Ŝ
μ = − i

2π
log det W Ŝ

μ . (B9)

The spinor nested Wilson loop is defined as

W±,Ŝ
μν = ei

∫
dk
2π

SμνA±
μν , (B10)

where Snm
μν = 〈un

μν (k)|Ŝ|um
μν (k)〉 are the components of the

spinor operator Ŝ in the basis of nested Wilson bands
|un

μν (k)〉 = ∑
i |wn

μν (k)〉i|ui
ν (k)〉, where |wn

μν (k)〉i is the ith
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component of the Wμν nested-Wilson-loop eigenvector
|wn

μν (k)〉. The spinor-quadrupole moment is then given by

QŜ
μν = 1

(2π )2

∑
σ

log det Wσ,Ŝ
μν log det Wσ,Ŝ

νμ . (B11)

Finally, the spinor nested-nested Wilson loop is defined as

W±,Ŝ
μνρ = ei

∫
dk
2π

SμνρA±
μνρ , (B12)

where Snm
μνρ = 〈un

μνρ (k)|Ŝ|um
μνρ (k)〉 are the components of the

spinor operator Ŝ in the basis of nested-nested Wilson bands
|un

μνρ (k)〉 = ∑
i |wn

μνρ (k)〉i|ui
νρ (k)〉, where |wn

μνρ (k)〉i is the
ith component of the Wμνρ nested-nested Wilson loop eigen-
vector |wn

μνρ (k)〉. The spinor-octupole moment is calculated
by

OŜ
μνρ = −i

(2π )3

∑
σ

log det Wσ,Ŝ
μνρ log det Wσ,Ŝ

ρμν log det Wσ,Ŝ
νρμ.

(B13)

APPENDIX C: GENERALIZED EIGENVECTORS

Here, we derive the eigenvectors of general Hamiltonians
that are given by the sum over anticommuting matrices. These
are Hamiltonians of the form d · γ = �d · �γ + m0γ0, where
{γμ, γν} = δμν and γ0 is the chiral matrix. Since the matrices
can be brought into a block-diagonal form

H =
(

H+ 0
0 H−

)
, (C1)

where the spin operator is diagonal, we can analyze each
subblock individually. Each subblock Hσ of spin σ = ± can
be written as

Hσ =
(

σm01 q
q† −σm01

)
, (C2)

where q is a hypercomplex number

q = �d · �̂f , (C3)

with �̂f its basis. In the 1D Hamiltonian of Eq. (22), this

is simply the basis of complex numbers, i.e., �̂f = {1, i}.
In the 2D Hamiltonian of Eq. (42), it is given by quater-

nions, i.e., �̂f = {1, i�σ }, where �σ = {σx, σy, σz} are the Pauli
matrices. In the 3D Hamiltonian (58), the correct basis is
�̂f = {�σ ⊗ 1, i1 ⊗ �σ }.

The eigenvalues of Hσ can be found by taking the square
root of the eigenvalues of its square

H2
σ =

(
m2

01 + qq† 0
0 m2

01 + q†q

)
, (C4)

where qq† = q†q = | �d|2 is given by the properties of the hy-

percomplex basis �̂f . The eigenvalues are, hence,

E± = ±
√

m2
0 + | �d|2, (C5)

where each eigenvalue is N
2 -fold-degenerate, with N the di-

mensions of the matrix Hσ . The corresponding eigenvectors

are given by

ψ±
σ = N

( q
E±−σm0

v

v

)
, (C6)

where N =
√

E±−σm0
2E± is a normalization factor, and v are the

N
2 eigenvectors of q†q.

APPENDIX D: CORRECTIONS DUE TO SPIN-ORBIT
INTERACTION

Here, we derive the first-order corrections due to a nonzero
spin-orbit interaction and show that these vanish when the
spinor operator Ŝ commutes with the unperturbed Hamilto-
nian. The notation used hereafter should be taken only with
respect to this Appendix. We use standard degenerate per-
turbation theory and assume that the general Hamiltonian is
given up to first order,

H ≈ H0 + H ′, (D1)

where H ′ = D · � is the Hamiltonian representing the spin-
orbit interaction in arbitrary dimensions. We seek solutions of
the form

|ñ(α)〉 ≈ |n(α)〉 + |n′(α)〉, (D2)

where |n(α)〉 is the nth set of g-fold-degenerate eigenstates of
the unperturbed Hamiltonian, i.e., H0|n(α)〉 = En|n(α)〉, with
α ∈ {1, 2, . . . , g}.

We rewrite the first-order corrections to the eigenstates as
a sum of all unperturbed states,

|n′(α)〉 =
∑

m

cαβ
mn|m(β )〉, (D3)

with weights cαβ
mn. Substituting this in the eigenvalue equation,

we obtain

H ′|n(α)〉 + ∑
m H0cαβ

mn|m(β )〉
= ∑

m cαβ
mnEn|m(β )〉 + E ′

n|n(α)〉. (D4)

We multiply from the left with an arbitrary state 〈m(α)| (which
is not from the degenerate subspace 〈n(α)|) and solve for cαβ

nm:

cβα
mn = 〈m(β )|H ′|n(α)〉

En − Em
≡ H ′βα

mn

En − Em
for m �= n. (D5)

The remaining coefficients can be readily derived from
the normalization condition using the appropriate basis as
cαβ

nn = 0.
We now calculate the first-order corrections to the first

spinor-Chern curvature (other geometrical quantities follow a
similar procedure),

S̃�̃μν = S�μν + δS�μν + Sδ�μν + · · · , (D6)

where Sαβ
nm = 〈n(α)|Ŝ|m(β )〉, and �μν are the spinor charge

and curvature evaluated using the unperturbed states. The
first-order corrections δSαβ

nm = 〈n(α)|Ŝ|m′(β )〉 + 〈n′(α)|Ŝ|m(β )〉
and δ�μν are evaluated using the perturbed eigenstates. The

165130-19



IOANNIS PETRIDES AND ODED ZILBERBERG PHYSICAL REVIEW B 106, 165130 (2022)

former can be generally written as

δSβα
nm =

∑
l

cβγ

lm Sαγ

nl + (
cαγ

ln

)∗Sγ β

lm . (D7)

Assuming that Ŝ is a good quantum number, i.e., it commutes
with the unperturbed Hamiltonian H0, then Sαβ

nm = sα
n δαβ

nm is a
diagonal matrix with eigenvalues sα

n . As a consequence, the
first-order corrections to the spinor charge of the occupied

subspace vanish,
δSαβ

nn = (
sα

n − sβ
n

)
cβα

nn = 0, (D8)

due to cαβ
nn = 0. Similar arguments hold for δ�μν , where first-

order corrections to the connection Aξμ
defined by the ground

state vanish. Going to higher orders in the perturbation series,
the first nonzero contributions appear at order ∼( λ

�E )2, where
λ is the strength of the spin-orbit interaction and �E is the
band gap.
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