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Self-consistency in GW� formalism leading to quasiparticle-quasiparticle couplings
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Within many-body perturbation theory, Hedin’s formalism offers a systematic way to iteratively compute the
self-energy � of any dynamically correlated interacting system, provided one can evaluate the interaction vertex
� exactly. This is, however, impossible, in general, for it involves the functional derivative of � with respect
to the Green’s function. Here, we analyze the structure of this derivative, splitting it into four contributions
and outlining the type of quasiparticle interactions that each of them generate. Moreover, we show how, in the
implementation of self-consistency, the action of these contributions can be classified into two: A quantitative
renormalization of previously included interaction terms and the inclusion of qualitatively distinct interaction
terms through successive functional derivatives of � itself. Implementing this latter type of self-consistency can
extend the validity of perturbative approximations based on Hedin’s equations toward the high interaction limit,
as we show in the example of the Hubbard dimer. Our analysis also provides a unifying perspective on the per-
turbation theory landscape, showing how the T-matrix approach is completely contained in Hedin’s formalism.
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Many-body perturbation theory (MBPT) has become
widely applied to obtain the description of quasiparticle (QP)
energies, in particular, the electron and hole states, and their
couplings with fields [1], with a promising perspective for
nonequilibrium phenomena [2]. Fundamentally, the perturba-
tion theory framework relates the fully interacting many-body
system to a suitably chosen auxiliary (often fictitious) refer-
ence one. The latter is selected so the property of interest
(e.g., the spectral function A(ω) representing the QP energies
and satellite features) is easy to evaluate and close to that
of the physical interacting system. The closeness is typically
defined as a perturbation series in terms of a parameter which
is small enough to guarantee the convergence and physical
accuracy. A successful treatment hinges on the ability to gen-
erate the complete perturbative series and practically evaluate
it [3,4].

The MBPT framework is formulated around the one-body
Green’s function G, which is directly related to physical
observables, e.g., A(ω) ∝ ImG(ω) [5–12]. The reference G0

is usually computed from a system subject to mean-field
interactions. The correction to G0, which within MBPT is
accessed perturbatively, is then defined via the Dyson equa-
tion � = G−1

0 − G−1, with the self-energy (SE), �, being the
central quantity leading to dynamical renormalization. Con-
ceptually, � corresponds to an effective scattering potential
for the reference QPs, which itself functionally depends on
G [1,4]. Further, it recovers the full many-body G in the in-
finite resummation limit of the Dyson expansion. In practice,
multiple approximations to the form of � have been explored
and applied in various contexts within the MBPT framework
[13–24]. Typically, these complementary Ansätze are based
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on a choice of the leading scattering mechanism combined
with a particular closure of the perturbative expansion. These
various methods are often considered to originate from dis-
tinct philosophies for generating � from the two-particle
interactions, how the expansion closure is implemented, and
whether self-consistency is necessary.

Among these methods, we revisit here approximations
based on Hedin’s formalism [25,26], which have been tra-
ditionally tied to the context of weak interactions dominated
by classical electrodynamic screening and cases when explicit
two-particle interactions are merely second (and higher) order
effects. We challenge this notion and show how to formulate
Hedin’s based perturbative approximations applicable toward
the high-interaction regime by leveraging a functional self-
consistency. This has been recognized but explored in only a
very limited way so far [27–31], and here we show exactly
how it stands apart from the numerical self-consistent solu-
tions for a fixed form of �.

Hedin’s equations provide a systematic approach to build-
ing � for a chosen G0 [4,25,26], relating G to G0 and the
bare Coulomb potential v through the self-energy (SE) � and
the so-called interaction vertex �. The latter term dresses the
screened Coulomb potential W with the necessary many-body
interactions to form � following

�(1, 2) = iG(1, 3̄)W (1, 4̄)�(4̄, 3̄, 2). (1)

We adopt a short-hand notation where space-time coordi-
nate 1 ≡ (r1, t1); all coordinates integrated over are indicated
by bar. Hedin’s equations are closed by interrelating all quan-
tities, and this set of coupled equations should be solved
self-consistently. In this paper, we focus on the role of vertex
function in this self-consistency. It is directly given in terms
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FIG. 1. Components of the interaction kernel K in the interaction
vertex � (red box), with diagrams representing the leading order
contributions to the self-energy (blue boxes).

of � as a resummation:

�(1, 2, 3) = δ(1, 2)δ(1, 3)

+ δ�(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄)�(6̄, 7̄, 3). (2)

We denote the functional derivative on the RHS as the inter-
action kernel K(1, 2, 3, 4) = δ�(1, 2)/δG(3, 4).

The full self-consistent solution requires that the SE in the
nth iteration �(n) enters Eq. (2) and generates a new form of
the vertex �(n+1) via K(n)[�(n)]. At each additional step, this
produces a SE containing new diagrams, making any exact
evaluation difficult. We emphasize that this is distinct from a
typical self-consistent treatment, in which the functional form
of K is not updated and only numerical convergence is sought.
The functional self-consistency between K and � accounts for
a resummation in types of many-body interactions.

Practical implementations resort to imposing closure to
Hedin’s formalism. We identify two typical approaches,
which we will explore here: (i) Truncation of the � expansion
at finite order in interactions or (ii) restricting the appearing
diagram topologies that are summed over to all orders. Fur-
ther, the numerical self-consistency is also typically avoided
to lower the computational cost.

First, we illustrate contributions of the kernel K =
δ(GW �)/δG to both � and � and impose the truncation: We
select the lowest order terms in bare and screened Coulomb
interactions (v and W ) and take only the first nontrivial step
in the resummation of Eq. (2). The corresponding Feynman
diagrams for the SE are in Fig. 1, in which the corresponding
K parts are indicated by green rectangles. We distinguish four
types of kernels based on how they are generated and interpret
them in terms of scattering processes.

(1) K0 = 0: This is the trivial term in Eq. (2) correspond-
ing to �(1, 2, 3) = δ(1, 2)δ(1, 3) and leading to the zeroth
order approximation for the SE:

�(0)(1, 2) = iG(1, 2)W (1, 2). (3)

It accounts exclusively for a classical, one-body screened
Coulomb interaction [32] containing a resummation over po-
larization diagrams, i.e., the screened exchange diagram in
Fig. 1. While greatly improving main QP mean-field features
over mean-field (e.g., DFT) results [33–35], it suffers form
self-polarization error in W [36–38].

(2) KG = i( δG
δG )W �, arising from the variation of G. To

generate a nontrivial vertex, it is sufficient to use the zeroth
order approximation to �. Hence

K(0)
G (1, 2, 3, 4) = iW (1, 2)δ(1, 3)δ(2, 4). (4)

This introduces ladder interactions in �(1) which enter the
recurrence in Eq. (2),

�
(1)
G (1, 2, 3) = iG(1, 3)W (1, 2)G(2, 3), (5)

where we induce a subscript to indicate from which kernel the
vertex is derived. To the lowest order in interaction lines (W ),
the vertex-corrected SE becomes

�(1)(1, 2) = iG(1, 3̄)W (1, 4̄)[δ(3̄, 2)δ(4̄, 2)

+ iG(3̄, 4̄)W (3̄, 2)G(4̄, 2)]. (6)

The higher order expansions are illustrated in the Supple-
mental Material (SM) [39] . Equation (6) corresponds to
the two leftmost SE diagrams in Fig. 2 based on K0 and
KG with screened Coulomb interactions. In practice, KG in-
troduces additional exchange coupling between the virtual
particle-hole (ph) pairs and accounts for excitonic effects, and
hence introduces the first nontrivial QP-QP coupling into the
approximation. This can be also understood in terms of the
charge-charge susceptibility. Within the GW approximation,
this contains only local density-density fluctuations, i.e., di-
agonal terms in the density matrix. These are complemented
within the second contribution in Eq. (6) with off-diagonal
density matrix contributions to the susceptibility, which are
typically referred to as density-matrix fluctuations [30]. Fur-
ther, it partly corrects the self-polarization error [28,30,40,41].

(3) KW = iG( δW
δG )�, arising from the variation of the

screened Coulomb potential. Here again, we generate the low-
est nontrivial vertex already from �(0). To the lowest order,
W is given by the random phase approximation: W (1, 2) =
v(1, 2) − iv(1, 3̄)G(3̄, 4̄)G(4̄, 3̄)W (4̄, 2) and in the first step
of Eq. (2) resummation, it yields

�
(1)
W (1, 2, 3) = v(1, 4̄)G(1, 2)W (2, 5̄)

× [G(4̄, 5̄)G(3, 4̄)G(5̄, 3)

+ G(5̄, 4̄)G(3, 5̄)G(4̄, 3)]. (7)

The vertex represents the second-order correction in terms of
interactions (v and W ). Note that �

(1)
W (1, 2, 3) contains ex-

plicit particle-particle (pp) and particle-hole (ph) interactions
at equal footing [27].

As a result, the lowest order SE in Fig. 1 contains two-
body terms, which cannot be reduced to a single propagator
interacting with itself through a screened potential W . The
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leading order terms in � from �W are identical to the direct
terms found in the screened T-matrix expansion [16,42,43].
The higher order screened T matrix is outside of the imposed
truncation and results from the second type of closure (resum-
mation restricted to a selected type of diagrams) discussed
below. Further, note that it is common to take δW/δG → 0
as the change of screening is expected to be small, typically
in large-scale systems or systems with low screening where
W ∼ v. One is thus tempted to take the limit of W → v

prior to evaluating the vertex. However, to keep the explicit
two-body couplings in the SE expression, such a limit has to
be taken only after � has been derived in each step.

(4) K� = iGW ( δ�
δG ) comes from the variation of the vertex

in the kernel, which has been, to the best of our knowledge,
neglected so far. A nonvanishing K� requires a nontrivial
vertex as an input. Clearly, this step can generate an infinite
number of diagrams given that � is subject to the resummation
in Eq. (2). By including only the leading term, we get

δ

δG(4, 5)
�(1, 2, 3) = δ

δG(4, 5)
[K(1, 2, 6̄, 7̄)G(6̄, 3)G(3, 7̄)]

= δK(1, 2, 6̄, 7̄)

δG(4, 5)
G(6̄, 3)G(3, 7̄)

+ K(1, 2, 4, 7̄)G(3, 7̄)δ(3, 5)

+ K(1, 2, 6̄, 5)G(6̄, 3)δ(3, 4). (8)

Since we are interested only in the lowest order expression in
interactions (i.e., with the lowest number of v or W terms), we
take K ≈ K(0)

G = iW and further δK(0)
G /δG ≈ 0. As a result,

�
(2)
� (1, 2, 3) = −W (1, 4̄)G(1, 5̄)W (2, 5̄)

× [G(5̄, 3)G(3, 4̄)G(4̄, 2)

+ G(5̄, 4̄)G(4̄, 3)G(3, 2)]. (9)

In practice, this expression is analogous to Eq. (7) upon ex-
change of space-time coordinates. A significant difference is
the absence of v terms, i.e., the vertex contains only screened
interactions. In the SM, we show how this difference is re-
solved if one resums the formal Dyson-like equation that
defines δW

δG . Note that �
(2)
� represents the same order of pertur-

bation expansion, as �
(1)
W ; it is important that the superscript

does not denote the order of the expansion, but enumerates
the iteration in the self-consistent cycle. Clearly, the number
iterative steps taken in Eq. (2) is not equivalent to the order of
the perturbation expansion.

Finally, the resulting SE is in Fig. 1 and corresponds to
the exchange form of the T matrix [44]. Here, �

(2)
� corrects

the two-body pp and ph interactions in �W by accounting
for the Fermionic nature of the QPs.

In the above steps, we derived the leading order terms
where we selectively limited the expansion of � up to the
second order in v and W . This constitutes a particular form
of a closure, i.e., finite order truncation. Using this closure,
we generated a SE expression containing (lowest order) direct
and exchange T-matrix terms for both pp and ph channels. In
contrast, such diagrams were previously generated by impos-
ing an Ansatz for the two-body interactions and typically only
one of the channels, pp or ph, was applied [16,42,43]. Our

FIG. 2. Graphical sketch for the generation of topologically new
diagrams through the functional self-consistency involving the �

component of the interaction kernel K. On the first line, � portion of
the lowest order pp T-matrix-equivalent SE is in black, while the GW
component is shown in red. In particular, generation of the second
order direct pp T-matrix diagram from the first-order term. The red
box encloses the interaction vertex �, the blue box the resulting
self-energy � representing the next lowest order T-matrix SE.

derivation shows that both need to be added simultaneously
and at equal footing. All these diagrams are shown in Fig. 1.

Continuing the derivation toward full self-consistency (up-
dating the kernel), K in Eq. (2) will generate a large number
of additional diagrams. There is a marked difference in how
each nontrivial vertex does this, hinging on whether and how
the functional derivative of � (the defining component of K�)
enters their expression. Indeed, KG = W � at each iteration.
In turn, KW is composed of three terms, two of which do not
contain δ�/δG. Hence, KG and two out of the three terms
in KW contribute with diagrams of a particularly restricted
structure, essentially further renormalizing the same interac-
tion channels in each iteration (cf. with the starfish algorithm
in Ref. [45]). In strong contrast, the terms involving δ�/δG,
i.e., one of the terms in KW as well as the entire K� , can
introduce more complex diagram topologies in each iteration.
As we illustrate below, these functional derivatives are critical
for expanding the series of explicit QP-QP interactions.

For instance, evaluating the K� kernel as GW (δ�(1)
W /δG)

leads to the next order T-matrix, shown in Fig. 2, along with
three additional diagrams that are not shown. Clearly, if the
full (functional) self-consistency is sought, the vertex acts as a
generator of new diagram topologies and δ�/δG is constantly
expanding with each additional step in the series. Conceptu-
ally, this self-consistency potentially extends the convergence
radius of the PT expansion, by introducing additional types
of diagrams with each iteration. The way the new diagrams
arise through KW and K� is subtly different, however, KW

essentially modifying the effective potential through which a
given QP interacts with the background particles and holes,
while K� can also affect the propagation itself of said QP.
This is likely the reason behind previous numerical obser-
vations regarding the absence of improvement over GW in
approximations including vertex corrections exclusively in the
polarization function [46].

It is at this point that the second type of closure becomes
apparent: the expansion is formally continued ad infinitum but
restricted to a subset of diagrams at each iteration. For exam-
ple, if we restrict the SE entering K to contain only �W -type
vertex terms, it consistently generates a series of diagrams
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MEJUTO-ZAERA AND VLČEK PHYSICAL REVIEW B 106, 165129 (2022)

among which we can always identify one that produces the
next leading order pp and ph T matrix, as illustrated in Fig. 2
for the case of the pp T-matrix. This analysis demonstrates the
critical role of δ�

δG terms, particularly within K� , as one cannot
generate such a series if they are neglected.

Note that this repeated update of the functional form of
� is distinct from the resummation of Eq. (2) which does
not generate the T-matrix type of SE. For instance, in the
context of the lowest order T-matrix ladder diagram (upper
right corner in Fig. 1), Eq. (2) yields a cascade of single pp
or ph scatterings. In contrast, the above-described functional
self-consistency generates, order by order, a series of repeated
pp and ph scattering events that represent the (screened) T-
matrix (cf. Fig. 2).

The previous derivation reaches two goals. First, we have
shown what types of interactions the leading order terms of
K introduce in Hedin’s construction of the SE. Moreover,
we show that this formalism naturally generates SE contain-
ing T-matrix types of diagrams, without needing to invoke
the Bethe-Salpeter equation, albeit not within a Dyson-type
resummation. This exemplifies the role of the recurrence in
Eq. (2) and hence provides a unified framework from which to
systematically derive and analyze previously developed vertex
corrected MBPT approximations [42,43], which have targeted
particular phenomenologies. For instance, our derivation indi-
cates that both pp and ph T-matrix terms have to be added
together into a comprehensive � when attempting to apply
MBPT systematically. As shown above, practical implemen-
tation relies on an appropriate closure.

Naturally, a question arises about what approach is bet-
ter in practice and how individual vertex terms change the
prediction of QP energies. Further, the fact that vertex terms
introduce QP-QP interactions suggests that the perturbative
treatment may better capture systems with stronger interac-
tions, but the practical limit of the perturbation expansion is
unclear. Finally, regardless of the selected closure, one should
perform a fully self-consistent calculation which should, in
principle, become independent of the starting point.

In the following, we address these questions with self-
consistent calculations of a minimal model, the Hubbard
dimer at half filling, which became de facto standard test case
for MBPT [37,42,47]. While this numerical test is far from
exhaustive, it already shows the main qualitative features and
demonstrates the role of various vertex terms and types of clo-
sures. Details on the simulation parameters and convergence
behavior can be found in the Supplemental Material [39] (see
also Refs. [48,49] therein).

We perform MBPT calculations on the Hubbard dimer
at half filling for different U/t ratios in the span between
1 and 10, starting from symmetric Hartree-Fock mean-field
reference (SMF), as well as allowing for symmetry breaking
(SBMF). As discussed in the SM, the changing point between
the delocalized and atomic behaviours in the dimer occurs
at U/t = 2, hence the U/t ∈ [1, 10] are sufficiently large
to study both the weakly and strongly interacting regimes.
We present the main results in Fig. 3, which shows the QP
energies rescaled by U as a function of U/t for different per-
turbative methods and mean-field references [50]. For clarity,
main QP energies are shown in the lower panels, satellites in
the upper panels. We compare to exact diagonalization (ED)

FIG. 3. Quasiparticle energies (QPEs) from the spectral function
A(ω) for the Hubbard dimer at half filling for different U/t values,
with main QPEs in the lower panels, satellites in the upper panels.
The QPEs are rescaled by U . Shown are ED results as solid lines
(main QPE in black, satellite in grey), as well as mean-field and
several MBPT approximations as solid markers. Transparent mark-
ers in the right panels correspond to calculations where a stable
convergence was not possible. Results for a symmetric mean-field
(SMF) are shown on the left panels and a symmetry broken mean-
field (SBMF) on the right panels. Arrows indicate the effect of the
different vertex corrections, and the functional self-consistency (sc),
see text for details.

results shown as solid lines (black for the main QP, grey for
the satellite), which for the main QP energy show a linear
increase as a function of U . The details of the mean-fields
and perturbative calculations can be found in the SM.

We employ two reference MF states: SMF and SBMF.
Ideally, in a fully self-consistent and resummed MBPT im-
plementation, there should be no dependence on the starting
point. However, since we introduce limited types of diagrams
and partial self-consistency (see below), this factor cannot be
neglected. As we show in detail in the SM, the MF solution
for the Hubbard dimer at half filling is unstable to symme-
try breaking for U/t > 2, corresponding to the atomic limit.
The symmetry broken solution greatly improves the MF total
energy, following almost the exact asymptotic behavior for
U/t → ∞ and reasonably reproducing the main QP A(ω)
(grey stars in Fig. 3), which in the symmetric MF is indepen-
dent of U , instead of linear with U . Since the atomic limit is
perturbative around t2/U , the question arises whether SBMF
or SMF would be a better reference state for MBPT in the
high U/t limit. On the one hand, the energetic closeness of
the SBMF to ED is encouraging, but it displays spurious anti-
ferromagnetic order. The exact SE would eliminate it, yet only
by including diagrams with spin-flip processes. This limits the
usefulness of the SBMF starting point with our current MBPT
implementations.

Indeed, as can bee seen comparing both panels in Fig. 3,
the main QPE (shown as solid black line for ED) is much
more faithfully reproduced in the high U limit by any MBPT
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approximation starting from SBMF instead of SMF, while in
the intermediate U regime we found trouble converging the
different approximations, which we indicate with semitrans-
parent markers in the figure. However, upon closer inspection
(see inset in lower right panel), one notices that essentially
none of these methods are significantly improving upon the
mean-field reference. Satellite features do appear, but their
energy is gravely overestimated and their asymptotic distance
to the main peak is qualitatively wrong (∼U instead of con-
stant). The reason behind the lack of improvement is likely
the broken symmetry. All the interaction terms and diagrams
we include conserve local spin, and thus none of our methods
can recover the broken symmetry. This could be potentially
remedied within a relativistic framework, in which the total
spin projection along z is not a conserved quantity. Our re-
sults suggest that the SBMF solution is the optimal symmetry
broken description of the model at the high U limit, and we
expect a perturbative improvement within the same magnetic
phase to be unlikely [51]. Further, we interpret the absence of
multiple satellites for the symmetry-broken case (Fig. 3, right
upper panel) in our MBPT implementations as another sign
that the MF solution is the optimal representation in the SB
space. Essentially, none of the perturbative approximations
are moving significantly far from the original mean-field solu-
tion in the symmetry broken case, resulting in a much simpler,
albeit incorrect, satellite structure. Given this limitation, for
the rest of the paper we will concentrate exclusively on the
results starting from the SMF solution, which as noted above
gives the wrong asymptotic behavior of the main QP energy
as a function of U .

We first consider the lowest order approximations, per-
formed to self-consistency (sc): scGW (red circles) and
scGW �G (cyan diamonds). scGW opens the main QP gap
from the SMF solution, which is fixed at 2t independently
of U . This is the opposite tendency as observed in most
ab inito materials [1,26,52] and is a consequence of the
Hartree and Fock interactions canceling exactly in the Hub-
bard model. Furthermore, scGW introduces satellites that
systematically overestimate the ED ones (grey solid line)
but generally follow a similar behavior with U/t . Upon the
introduction of induced density matrix fluctuations and par-
tial removal of the self-polarization error with the scGW �G

approximation, we see these satellite features significantly
reduce their energy, coming much closer to the ED result.
Meanwhile, the main QP energies are barely affected by the
introduction of the KG kernel. As we will show next, this trend
is repeated at all levels of perturbation theory: the KG kernel,
and only this kernel, affects the satellites, leaving the main
QP features intact. While for systems with more general inter-
action terms one would expect some effect on the main QP
energies, these findings explain the numerical observations
made previously [28,30,40,41].

Next, we include the KW kernel to leading order [cf.
Eq. (7)], which we apply in the W → v limit as a one-shot
correction to the scGW �G SE, shown as magenta triangles
in Fig. 3. We observe that the satellites remain mostly un-
changed from scGW �G, up to the appearance of additional
spurious satellites at high energy. In strong contrast, the main
QP energies experience a huge shift to higher energies, par-
ticularly in the large U/t limit. This is not surprising, since

it is in this regime where the pp and ph interaction diagrams
from KW become dominant. While the main QP energies are
clearly overestimated, there is an encouraging change in the
asymptotic behavior with U/t , resembling much stronger the
correct flat (∼U ) one.

The systematic overestimation of the QP energies gets
significantly corrected by recovering the exchange diagrams
in K� . We evaluate these also to leading order [cf. Eq. (9)]
in the W → v limit and add them as one-shot correction
to the SE (yellow crosses in Fig. 3). This implementation
keeps the promising asymptotic behavior (and satellite peaks),
while pushing the main QP energies much closer to the
ED results. It is in this sense that we extend the qualitative
validity of MBPT approximations toward the high interac-
tion limit by including diagrams through K� . Further, this
indicates that we are adding the most important missing
interactions in the SMF model, namely, the explicit two-
body (exchange corrected) Coulomb interactions, in both
pp and ph channels. This compares favorably with previ-
ous studies within the T-matrix approach, which could not
observe this improvement in the large U/t limit since they
added either the pp or the ph channel, but not both together
[42].

Finally, we want to illustrate the effect of the self-
consistency in K� , namely, the introduction of a full
resummation of a subset of diagrams which arise naturally
through δ�

δG in successive iterations of Hedin’s equations.
Here, we resum all T-matrix type diagrams, which we add as
one-shot correction to the scGW �G SE (green pentagons in
Fig. 3), accounting thus for the leading order terms in all ker-
nels K, as well as both types of self-consistencies (numerical
and functional). The satellite features improve slightly toward
the ED limit, but the most important change is undoubtedly
the effect on the main QP energies. These become essentially
exact up to U/t = 4, showing an extension of the qualitative
and quantitative validity of MBPT approximations toward the
high interaction limit, going through the formally strongly
correlated point at U/t = 2.

Still, the persistent satellite overestimation and appearance
of spurious satellites suggest that renormalization of the new
scattering channels to the correct quantitative energy scale is
still missing. Moreover, as can be seen at the main QP energies
for U/t > 5, further diagrams are likely needed to recover
the exact results. This may require resummation within the
diagram classes already introduced, such as by including the
T-matrix-like � into the self-consistency procedure, including
the KW and K� contributions to W , or introducing higher or-
der functional derivative terms in K. We attempted including
both the leading order and resummed versions of �[�W , ��]
into the self-consistency procedure (see SM), but the resulting
MBPT method does not converge to a stable Green’s function
for U/t > 5, in contrast to the U/t < 5 regime.

Nonetheless, the numerical results support our theoreti-
cal conclusions: The higher order functional derivative terms
in K� introduce additional classes of diagrams which are
necessary to extend the qualitative applicability of MBPT
toward the high interaction limit. In other words, K� affects
the convergence radius of the perturbative expansion. Mean-
while, resummations within a diagram class, be it within the
solution of a Dyson-like equation or in the self-consistency

165129-5
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of K0, KG, and KW , fixes the quantitative agreement and
hence is important for the reliability of the converged
solution.

For completeness, we conclude with a note of caution:
As as our results above convincingly suggest, adding the
KW,� terms can extend the validity of Hedin-based MBPT ap-
proximations from the weakly to the highly interacting limit.
Still, if the system studied presents strong electronic corre-
lation between these two limits, e.g., at a phase transition,
then a perturbative implementation of Hedin’s expansion is
not justified. Higher order perturbative corrections can only
constrain the phase space region around strongly correlated
points where MBPT is unreliable. Nevertheless, as we have
shown in the Hubbard dimer, this can account for a signifi-
cant portion of dynamical correlation in a numerically stable
fashion.

It is worth noting that Hedin’s equations per se are not
perturbative, and indeed the exact SE of any system sat-
isfies them. Hence, one can capture QP couplings within
the interaction vertex also in strongly correlated systems,
provided a nonperturbative SE approximation is employed.
This can be done, for instance, within the parquet formalism,
whose explicit equivalence with Hedin’s equations has been
recently shown in Ref. [53]. Practical implementations of this
framework involve approximations of the fully irreducible
four-point vertex �, instead of approximating the functional
derivative δ�

δG . Choosing a nonperturbative approximation for
�, e.g., leveraging the infinite dimensional limit as in the
dynamical vertex approximation [54], thus allows accessing
strong correlation. These approximations to � have typically
steep computational scalings, and hence methods based on
approximating δ�

δG , such as the perturbative expansions in this
paper, are an attractive alternative to study materials ab initio.
Some of the perturbative expansions previously considered
in the literature have been formulated in terms of physically
motivated heuristics, such as interpolating between high and
low density limits [42]. Our paper instead suggests using the
functional self-consistency provided by the functional deriva-
tives of the interaction vertex itself as a guiding principle to
choose diagrammatic closures that can result in systematically
improvable approximations, as shown here for the Hubbard
dimer.

In this paper, we analyzed the structure of the interaction
vertex � in regard to its role as generator of QP inter-
actions, and thus bridge between the mean-field and fully
interacting Green’s functions in Hedin’s formalism for many-
body perturbation theory. We identified the diagram types
generated by each component of the interaction kernel K =
δ�
δG , highlighting the effect of each one on the different features
the experimentally accessible spectral function. Further, we
outlined the two distinct types of self-consistency encountered
in the formalism: That carried by the first elements of the
kernel K0,G,W , which accounts for interaction renormalization
and quantitative improvement of the description, and that gov-
erned by K� ∝ δ�

δG , which is responsible for generating new
diagrams in each iteration, thus potentially extending the va-
lidity of the perturbative approach through the phase diagram.
Finally, this analysis allowed us to present a unified perspec-
tive on perturbative Ansätze, in particular, showing how the
T-matrix approach is generated within Hedin’s formalism, and
realizing the importance of including both particle-particle
and particle-hole channels in the calculation. We hope this
view on MBPT will help the development of scalable im-
plementations toward the highly interacting limit, and look
forward to the promising stochastic implementation of the
KW,� terms to large realistic systems [30] in which to test the
transferability of our findings for the Hubbard dimer.
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