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In recent years, programmable Rydberg-atom arrays have been widely used to simulate new quantum phases
and phase transitions, generating great interest among theorists and experimentalists. Based on the large-scale
density matrix renormalization group method, the ground-state phase diagram of one-dimensional Rydberg
chains is investigated with fidelity susceptibility as an efficient diagnostic method. We find that the competition
between Rydberg blockade and external detuning produces unconventional phases and phase transitions. As the
Rydberg blockade radius increases, the phase transition between disordered and density-wave ordered phases
changes from the standard Potts universality class to an unconventional chiral one. As the radius increases
further (above Potts point but still close to the tip of the lobe), a very narrow intermediate floating-phase region
begins to appear. A concise physical picture is also provided to illustrate the numerical results. Compared
with previous studies, this work brings more evidence for commensurate-incommensurate quantum phase
transitions in programmable quantum simulators from the perspective of quantum information, showing that
fidelity susceptibility can be used to study such phase transitions.
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I. INTRODUCTION

Mastering exotic phases and correlated phase transitions in
quantum many-body systems is one of the core issues in con-
densed matter physics [1,2]. Unlike phase transitions driven
by thermal fluctuations, quantum systems driven only by
quantum fluctuations can undergo quantum phase transitions
(QPTs) at the absolute zero temperature. By tuning nonther-
mal parameters such as doping in the parent compound of
high-T7; superconductors [3], magnetic field in quantum Hall
samples [4], pressure in quantum magnetic systems [5,6], and
disorder in a conductor near its metal-insulator transition [7],
the ground state of a quantum system can change fundamen-
tally. Unconventional QPTs have attracted great interest in
the past few decades [8—11] and have raised new questions
both theoretically and experimentally, especially the absolute
necessity to consider quantum effects [1].

The concept of universality classes plays a crucial role
in the study of continuous phase transitions [12]. Quan-
tum many-body systems with nearest-neighbor interactions,
such as transverse-field Ising model, Heisenberg model, and
Hubbard model, are crucial for understanding QPTs [1]. By
constructing simplified lattice models, the same low-energy
physics can be studied in terms of the concept of universality,
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even if we use different microscopic lattice Hamiltonians.
Furthermore, many quantum critical points are marked by
the emergence of scale invariance or conformal symmetry,
and the corresponding universality class can be described by
conformal field theories with a dynamical critical exponent
z=1[12-14].

Recently, neutral Rydberg atoms trapped in optical
tweezers with programmable van der Waals type interac-
tions [15-18] provide a promising tunable platform for
observing various quantum phenomena, such as gapped
Z, quantum spin liquid [19-27], QPTs between differ-
ent density-wave-ordered and disordered phases [28-35],
quantum Kibble-Zurek (KZ) mechanism [15,36,37], and un-
expected quantum many-body scars [38,39]. However, for
long-range quantum many-body systems, it remains challeng-
ing to fully understand their critical behaviors, either through
theoretical analyses or numerical simulations. As a proto-
type example, QPTs in Rydberg chains are even more subtle.
The quantum KZ experiments [15,36,37] dynamically probed
QPTs between an incommensurate (IC) disordered phase and
a commensurate (C) ordered phase with period p = 3.4, ...,
sparking interest in the C-IC transition first proposed in the
context of adsorbed monolayers in 1980s and 1990s [40-43].
The C-IC transition with p > 5 emerges through an intermedi-
ate gapless floating phase (the Luttinger liquid) with a central
charge ¢ = 1, characterized by incommensurate correlations
and wave vector g [44-48]. On the one hand, the disordered-
to-floating transition belongs to the Kosterlitz-Thouless (KT)
universality class with an exponentially diverged correlation

©2022 American Physical Society


https://orcid.org/0000-0002-8900-1100
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.165124&domain=pdf&date_stamp=2022-10-24
https://doi.org/10.1103/PhysRevB.106.165124

YU, YANG, XU, AND XU

PHYSICAL REVIEW B 106, 165124 (2022)

length. On the other hand, the transition from the floating
phase to the commensurate ordered one is a Pokrovsky-
Talapov (PT) transition.

In this work, we use the concept of fidelity susceptibil-
ity borrowed from quantum information theory [49,50] to
provide a different perspective on the C-IC transition. As a
purely geometric measure of quantum states, fidelity suscep-
tibility is believed to be effective in characterizing sudden
changes in the ground-state structure associated with QPTs,
and over the past few years, this concept has been estab-
lished as one of the powerful diagnostic methods for QPTs
without prior knowledge of order parameters or associated
symmetry-breaking patterns. To date, fidelity susceptibility
has been applied to detect various quantum critical points,
such as conventional symmetry-breaking quantum critical
points [51,52], topological phase transitions [53], Anderson
transitions [54,55], deconfined quantum criticality [56], and
even non-Hermitian critical points [57-59]. In this work, we
will show that this concept could also be an attractive tool
for studying challenging C-IC problems. Specifically, the fi-
delity susceptibility of QPTs can be experimentally detected
by neutron scattering or the angle-resolved photoemission
spectroscopy techniques [49,60].

The rest of this paper is organized as follows: Sec. II
contains a brief introduction to the lattice model of the
Rydberg-atom chain and the numerical method adopted. A
concise review of previous results about the C-IC transition,
the concept of fidelity susceptibility, and relevant finite-size
scaling behaviors are also given therein. Then a standard
finite-size scaling analysis is applied to study the transition
from the period-2 ordered phase to the disordered phase which
belongs to the Ising universality in Sec. III. The intermediate
floating phase or exotic chiral transition between the disor-
dered phase and the period-3 ordered phase is then explored
with the same approach, and a brief explanation of the numeri-
cal results is provided in Sec. IV. Finally, we give a conclusion
in Sec. V. Additional data of our numerical calculations are
provided in the Appendices.

II. MODEL AND METHOD

A. Rydberg Hamiltonian

In this work, we study the Hamiltonian of interacting Ry-
dberg atoms arranged in a one-dimensional chain of length L
with open boundary conditions [32],
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Here, i represents the discrete sites of the Rydberg lattice (with
lattice constant a). |g); and |r); denote the internal atomic
ground state and an excited Rydberg state of the ith atom, re-
spectively. The Rabi frequency 2 and detuning § characterize
a coherent laser driving field. V(]i — j|) = Cs/|i — j|° is the
strength of the van der Waals interaction of atoms excited to
the Rydberg state |r). The long-range interactions here can
also be equivalently parametrized by the Rydberg blockade

FIG. 1. The ground-state phase diagram of Rydberg chains is
mapped out with respect to the Rydberg blockade radius Ry,/a
and detuning §/2 by exploiting the half-chain entanglement en-
tropy [32,63,64], Sux = —Tr [ i) In py(], with an open-chain length
L = 121; py is the reduced density matrix of the left 60 (right 61)
sites of the chain. Z,, (n = 2, 3) represents the Z, symmetry-breaking
ordered phase and green (white) circles are atoms in the Rydberg
state |r) (the electronic ground state |g)). The phase boundaries are
roughly estimated by the local maximums of S,y [64]. The purple
point refers to the phase transition belonging to the three-state Potts
universality class. The blue points represent the nonconformal chiral
phase transition. The red parameter region schematically indicates
the potential intermediate floating phase according to recent related
works [44,47,48] (also see the discussion in Sec. IV). It is noted
that there is also a floating region below the Z; lobe which is
beyond the parameter range shown here (far away from the lobe
tip) [48]. Simulation parameters: MPS bond dimension is 500, the
relative energy error is smaller than 1070, the parameter resolution
is d(Ry/a) = d(6/2) = 0.05.

radius Ry, defined by V (R, /a) = 2 [32]. This is where inter-
actions are so strong that the Rydberg excitation of one atom
suppresses the excitation of other nearby atoms. This effect is
called the Rydberg blockade mechanism. Notably, the model
Hamiltonian Hgyq can be mapped to a hard-core boson model
by identifying |g) and |r) as the empty state and occupied
state, respectively [61,62]. For simplicity, €2 and a are set to
energy and length units in our actual numerical simulations.

The ground state of the Rydberg Hamiltonian, |¢), de-
pends sensitively on the detuning §/€2 and the blockade radius
Ry, which govern the density of Rydberg excitation n =
(@10 Irdrl/L)|¢). At large negative §/2, it is favorable for
most atoms to be in the electronic ground state |g), which cor-
responds to the disordered phase. Whereas for large positive
values of §/€2, the Rydberg excitation density n increases, and
due to the Rydberg blockade mechanism, complex density-
wave ordered phases with different spatial symmetries will
be established depending on Ry /a, called “Rydberg crystal”
phases (see Fig. 1).

B. Numerical method

Since there is no exact analytical solution for the gen-
eral Rydberg Hamiltonian Hgryq, we employ a large-scale
finite-size density matrix renormalization group (DMRG)
method [65,66] in the representation of matrix product
states (MPS) [67], which is one of the most powerful
numerical methods today for solving the ground states of one-
dimensional (1D) strongly correlated many-body systems.
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More specifically, to reduce the computational requirement
due to the long-range interaction term V (), we employ a trun-
cation strategy similar to that used in Ref. [68] (see the U-V
model [61] therein). In real numerical simulations, we pre-
serve interactions at most fourth-nearest neighbors by forcing
V(r > 4) = 0. Compared to the U-V model, the Hamiltonian
with the interaction truncation adopted here is more relevant
to actual experiments and can more faithfully simulate the
effective physics of the ordered-to-disordered phase transition
in the Rydberg chain.

We note that the period-p ordered-to-disordered phase
transitions of the model will be studied together with fixed
Ry/a lines, so the Hamiltonian therefore can be viewed as
a function of detuning. Fidelity susceptibility can then be
calculated by [69,70]

21— ()¢5 4 dd))]

xr(8) = lim, (ds)? ’ @
where |¢(8)) is the ground state of Hgyq(8). The quan-
tum fidelity [63], F (8, dd) = [(¢(6)|¢ (8 + dé))|, is defined
as the overlap amplitude of two nearby quantum states in
the parameter space. In general, the fidelity is expected to
drop sharply at quantum critical points, reflecting a sudden
change in the ground-state structure. Therefore, the suscep-
tibility xr(8), which is the dominant quadratic term in the
series expansion with respect to dd, can faithfully diagnose
general QPTs. Specifically, fidelity susceptibility has been
successfully used to study various types of QPTs, including
conventional [51,52] and unconventional ones [53,56]. We
emphasize that the application of this method does not rely
on any prior knowledge of the underlying order parameters.

For continuous QPTs, it has been established in the liter-
ature that the fidelity susceptibility obeys certain finite-size
scaling laws near quantum critical points. This paves the way
for extracting relevant key indices about critical exponents.
In particular, the fidelity susceptibility exhibits a universal de-
pendence on the control parameter described by the functional
form [49,50,71]

xr (8, L) = L¥" Fe[L'" (8 — 8.)], A3)

where v is the correlation length exponent and Fp is an
unknown scaling function. Furthermore, for finite chains, the
fidelity susceptibility at the pseudocritical point &, also shows
a power-law behavior with respect to the chain length L,

XF(8m, L) oc L. )

We note that some subleading terms usually on the right-hand
side of this relation could be ignored if the system size is large
enough. Based on the above two scaling forms, it is easy to
obtain the value of v for the QPT we are interested in here and
to determine whether it is continuous or not.

To further reveal the nature of the conformal or non-
conformal phase transitions, we also calculate the energy gap
A, which is defined as the energy difference between the first
excited state and the ground state of Hgyq, to obtain the dy-
namical critical exponent z. For continuous phase transitions,
the energy gap is expected to disappear with A ~ |§ — §|*" as
6 approaches §. [1]. Combined with the divergence of the cor-
relation length following the form, & ~ |§ — §.|~", we obtain
the scaling relation, A ~ £7%. Since the correlation length at

the critical point of a finite system can be characterized by the
lattice length L, the finite-size scaling form, A (S, L) o< L7%,
can be finally derived. In addition, the energy gap also exhibits
a similar functional form to the fidelity susceptibility [68]

A8, L) = L*FAILYY (8 — 801, ®)

where F, is another scaling function associated with A. We
note that the dynamical critical exponent z equals to 1 for
conformal universality classes. To unveil the chiral nature of
the QPTs, however, we still have to resort to the diagnosis pro-
posed originally by Huse and Fisher [42], which is described
and discussed in Appendix C.

C. Brief review of previous results

The transition out of a period-p phase is an example of
the C-IC transition, a problem with a long history that dates
back to the investigation of adsorbed monolayers on sur-
faces [72,73]. Naively, it is expected that such C-IC transitions
should belong to the standard Potts universality class. How-
ever, as first suggested by Huse and Fisher [41], the system
will introduce a chiral perturbation if different phases have
inequivalent domain walls. If this perturbation is relevant, the
standard Potts universality class can only exist at an isolated
point where the perturbation vanishes. Away from the Potts
point, there is a question under debate during the past decades:
what is the nature of the C-IC transition? There are three pos-
sibilities: (i) there is still a unique transition, but it belongs to
a nonconformal chiral universality class [42,43]; (ii) there is a
critical Luttinger-liquid intermediate phase called the floating
phase [74,75]; (iii) the transition is first order.

These issues were raised again by Fendley ez al. [61,62].
It is also related to recent Rydberg-atom experiments in the
context of 1D quantum models of constraint bosons. More
recently, some groups [68,76] used numerical and field-theory
methods to show that there is a direct continuous chiral
phase transition between the disordered phase and the period-
3 ordered phase, without the intermediate floating phase.
However, some other groups [47,48] performed large-scale
state-of-art numerical calculations to provide strong evidence
that the intermediate floating phase can occur sufficiently
far from the Potts point, confirmed by the extrapolation
of correlation lengths and incommensurate wave vectors.
Furthermore, a theoretical argument was also presented in
Ref. [77] for the existence of a Lifshitz point, which draws a
clear line between the chiral transition and the floating phase
for p = 3, 4 C-IC transitions.

Notably, equipped with a newly developed tensor network
method [47], the system size considered in previous calcula-
tions reaches up to 9000 sites, and the scaling properties of
the wave vector and the correlation length around the critical
points can be precisely obtained. It will be interesting to see if
there is any other physical quantity that can efficiently identify
the possible unconventional phases or phase transitions with
relatively smaller system sizes. Therefore, it is worth revisit-
ing this period-3 ordered-to-disordered phase transition from
a different perspective, which will address these issues in the
next few sections.
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FIG. 2. The finite-size scaling analysis of the fidelity suscepti-
bility for the period-2 ordered-to-disordered transition with a fixed
blockade radius R,/a = 1.6. (a) The fidelity susceptibility per site
shows a sharp peak near the transition point. (b) Data collapse of
the rescaled fidelity susceptibility and detuning with v = 1.019 and
8. = 1.210 for various system sizes. The inset shows the log-log plot
of the fidelity susceptibility against the system size at the pseudocrit-
ical point, and the correlation length critical exponent v = 1.019 can
be inferred from the slope of the fitted straight line.

III. WARM-UP: ISING UNIVERSALITY CLASS

In the following, based on the scaling laws listed above, we
first consider the period-2 ordered-to-disordered transition,
which belongs to the (1 + 1)D Ising universality class [1] and
has been well studied. This allows us to test the feasibility of
the fidelity susceptibility and energy gap approach to deter-
mine the critical exponents v and z.

To avoid defects induced by edge excitation and thus sta-
bilize the ordered phase in the bulk, we consider system sizes
L =2n + 1, ranging from L = 49 to 129 sites for the period-2
ordered-to-disordered transition in our DMRG simulations
with open boundary conditions. The MPS bond dimension is
set to 300; when calculating the ground and the first excited
states, a good convergence to the true energy eigenstates is
guaranteed by requiring the relative energy error to be smaller
than 107'° and 1073, respectively. For the fidelity suscepti-
bility, we set a stricter convergence criterion with a relative
energy error lower than 107'2, and the detuning step is chosen
as d8 = 1073 [see Eq. (2)].

Figure 2(a) shows the fidelity susceptibility per site xr/L
as a function of detuning &, with a fixed blockade radius
Ry/a = 1.6. Itis clear that x /L exhibits a sharp peak near the
critical point and the divergence behavior can be described by
conventional scaling laws, as expected from Eqgs. (3) and (4).
To extract the value of v, we calculate more data points around
the peak for each system size to obtain fidelity susceptibility
xp at the finite-size pseudocritical point §,,. The inset of
Fig. 2(b) exhibits a linear fit to the DMRG data of the largest
four system sizes using the least square method, consistent
with a linear correlation of the logarithm of ;' to In L based
on Eq. (4). An accurate estimation of the critical exponent
v = 1.019 can then be easily acquired from the slope of the
fitted straight line. On the other hand, the presence of the scal-
ing function Fr [see Eq. (3)] usually provides independent
verification of the correctness of the critical exponents. Using
the value of v obtained from the log-log plot and fine tuning
of the critical point §. (considered here as a tunable variable),
we use the rescaled variables xzL~2" and (8§ — 8.)L'/" for
various system sizes L. By implementing a good data collapse,
as shown in Fig. 2(b), the critical point can eventually be
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FIG. 3. The finite-size scaling analysis of the energy gap A for
the period-2 ordered-to-disordered transition with a fixed Rydberg
blockade radius R, /a = 1.6. (a) The energy gap develops a deep val-
ley near the transition point. (b) Data collapse of the rescaled energy
gap and detuning with z = 0.9847, v = 1.019, and 6. = 1.210 for
the largest four system sizes. The inset displays the log-log plot of
the energy gap A™ versus the system size L at the pseudocritical
point §,,, and the fitted straight line has a slope whose absolute value
equals to the dynamical critical exponent z.

located at 6. = 1.210(2); the associated uncertainty is deter-
mined from the visible imperfection observed in the process.
We now obtain §. and v via a standard finite-size scaling
analysis of fidelity susceptibility. However, a single critical
exponent, such as v, is not sufficient to determine the uni-
versality class to which a QPT belongs. Therefore, we also
acquire the dynamical critical exponent z from a similar scal-
ing analysis of the energy gap A. The twofold degeneracy of
the ground state in the period-2 ordered phase is split here due
to the addition of an extra site on the right edge, and the energy
gap should show a deep valley near the transition point [see
Fig. 3(a)] rather than vanishing to zero by entering into the or-
dered phase. Following a similar logic followed in the fidelity
susceptibility analysis, we first estimate the critical exponent z
from the log-log plot of the gap A™ at the pseudocritical point
dm versus system size L. It is evident from the inset of Fig. 3(b)
that the logarithm of A™ shows a perfect linear dependence
on In L, the absolute value of whose slope should equal to
z. By exploiting the least-squares method, we end up with an
estimation of z = 0.9847, which is very close to 1. Finally, we
also use the scaling function Fx to confirm the accuracy of the
z estimation. By directly inserting z = 0.9847 obtained from
the log-log plot as well as v = 1.019 and §, = 1.210 inferred
from the fidelity susceptibility into Eq. (5), a good collapse
of curves [Fig. 3(a)] can be established [Fig. 3(b)] without
any free parameters. Note that the values of v and §. used
in this collapse are obtained independently from the fidelity
method, so such a full collapse also shows that the fidelity
susceptibility and energy gap methods agree with each other.
Together with the value obtained so far for the critical
exponents v = 1.019 and z = 0.9847, we can now see within
reasonable numerical precision that this result agrees with
the well-known results in (1 + 1)D Ising universality class
for v=1 and z = 1. We attribute the small difference to
a potential finite-size effect; considering larger system sizes
can reduce this bias in a controllable manner. Thus, our
results strongly demonstrate that the transition between the
disordered phase and the period-2 ordered phase realized in
Rydberg chains belongs to the (1 4 1)D Ising universality
class. In Appendix A, we also provide a finite-size scal-
ing analysis of the same phase transition but with another
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Rydberg blockade radius Ry, /a = 1.4, which leads to the same
conclusion.

IV. NONCONFORMAL CRITICAL POINT: CHIRAL
UNIVERSALITY CLASS

As can be seen from Sec. III, the combination of fidelity
susceptibility and energy gap methods provides a very pow-
erful and self-consistent way to determine critical exponents
and the universality class of QPTs. We, therefore, use this
approach and follow the same logic used above in analyzing
the period-2 ordered-to-disordered transition, to investigate
the more complicated period-3 ordered-to-disordered transi-
tion hosted by the programmable Rydberg chain.

As a manifestation of the C-IC problem in 1D quantum
systems, the period-3 ordered-to-disordered transition real-
ized in the Rydberg chain is an ideal place to explore the
nature of C-IC transitions, though challenging. In recent years,
both theoretical and experimental works focusing on inter-
acting Rydberg chains have made some exciting progress in
this direction [44,47,68,76,77]. On the one hand, by adiabat-
ically driving a Rydberg chain consisting of 51 neutral atoms
through a possible period-3 ordered-to-disordered transition,
researchers experimentally measured the corresponding KZ
exponent p in relation to other critical exponents via the
formula w = v/(1 4+ zv) [15]. On the other hand, numeri-
cal studies [68] utilizing exact diagonalization and finite-size
scaling methods have also extracted the dynamical critical
exponent z in some parameter regimes. It can be observed that
the critical exponent z varies continuously with the coupling
strength (or equivalently, the blockade radius), recovering an
exponent value similar to that of the Zj3 chiral clock model.
This behavior suggests that in addition to the three-state Potts
criticality with z = 1, a direct continuous chiral phase transi-
tion of z # 1 also occurs. Notably, independent evidence of
nonconformal chiral transitions was later provided for longer
Rydberg chains [44] and infinite chains [48], as well as a
potential intermediate floating phase, which is only theoret-
ically predicted between the incommensurate disordered and
commensurate ordered phases. All these studies expand our
understanding of the C-IC transition and motivate us to further
work in this research direction.

This prompts us to revisit the period-3 ordered-to-
disordered transition in the Rydberg chain from a different
perspective, namely, the fidelity susceptibility, as an inde-
pendent exploration of this exotic transition. For the same
reasons explained in the previous section, we consider system
size L = 3n+ 1, ranging from L =49 to 127, to stabilize
the period-3 ordering in the system bulk. We also note the
truncation strategy adopted in our simulations concerning the
long-range interaction (see Sec. II). The DMRG-related pa-
rameters set here are the same as in the previous section.

We first investigate the case of R,/a = 2.3 near the three-
state Potts universality class by possessing critical exponents
that is very close to the theoretical result for the universality
class. Similar to the performance observed in the period-2
ordered-to-disordered transition, it is evident from Fig. 4 that
the fidelity susceptibility per site and the energy gap exhibit
sharp peaks and deep valleys, respectively, around a certain
detuning value signaling the occurrence of possible QPTs.
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FIG. 4. The finite-size scaling analysis of the fidelity susceptibil-
ity and energy gap for the period-3 ordered-to-disordered transition
with R,/a = 2.3. The fidelity susceptibility per site (a) and energy
gap (c) develop a sharp peak and a deep valley, respectively, near
the transition point. A standard finite-size scaling method has been
used to estimate the critical point §. = 1.808, as well as the critical
exponents v = 0.838 and z = 1.044.

After a standard finite-size scaling analysis following the
same procedure described in Sec. III, the associated critical
exponents can be numerically estimated as v = 0.838 and
z = 1.044, which is consistent with the results for the three-
state Potts universality class within numerical precision. In
this sense, we can say that the case of R,/a = 2.3 is very
close to the exact three-state Potts critical point. It is worth
noting that the precise Potts point can be located numeri-
cally with high precision by following the commensurate line
q = 2m /3 in the disordered phase until the period-3 ordered
phase is reached. More details can be found in Refs. [44-47].
Furthermore, we also examined the effect of the interaction
cutoff adopted in our simulation on this R,/a = 2.3 case.
By further considering the fifth-nearest-neighbor interaction
V(r =5), we find the critical point exhibits a small shift of
order 1072 to the disordered region. This implies that the trun-
cation V(r > 4) = 0 is a good approximation for the actual
long-range coupling; the critical point estimated here should
be comparable to the one measured in real experiments.

To reveal the characteristics of direct chiral transitions,
we next consider other blockade radius within the period-3
ordered-to-disordered transition regime. As shown in Fig. 5
and Appendix B, both the fidelity susceptibility and energy
gap obey the conventional finite-size scaling law over a rel-
atively wide blockade range. In Appendix E, we have also
included two smaller system sizes L = 49 and 67 in the data-
collapse plot for the case of R,/a = 2.4 to investigate the
effect of the finite-system size on the scaling analysis. It is
observed that the system sizes L from 82 to 127 are sufficient
to acquire reliable critical-exponent estimations.

In Fig. 6 and Table I, we show the dependence of the
exponents v, z, and p as a function of the Rydberg blockade
radius Ry. The results show that these three critical exponents
vary continuously with respect to the blockade radius in a
monotonous manner, similar to the variation of the critical
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FIG. 5. Data collapses of the fidelity susceptibility and energy
gap for blockade radii R,/a = 2.20 and 2.40, within the period-3
ordered-to-disordered transition regime based on the values of v and
z summarized in Table I. Data for different system sizes are denoted
by different symbols: orange diamond for L = 82, blue pentagon for
L = 97, green star for L = 115, and red cross for L = 127, as shown
in the first plot (same for other plots). The value of the associated
critical exponents is estimated, following the same logic obeyed in
Sec. 111, by the log-log plot of xr and A versus the chain length L at
the pseudocritical point (see the insets of the plots).

exponents of the chiral clock model reported in Ref. [68].
More specifically, the correlation length exponent v decreases
with increasing blockade radius, while the dynamical critical
exponent z shows a steady increase with v < vpoqs = 5/6 and
z > 1forR,/a 2 2.3. However, for the other side R,/a < 2.3,
we find that the exponent z clearly has a value close to 1.
According to recent numerical works [44,48], there should

TABLE I. Critical exponents of the period-2 and -3 ordered-
to-disordered transitions realized by Rydberg chains for different
blockade radius R}, are summarized here for convenience. These ex-
ponents are extracted from finite-size scaling analyses of the fidelity
susceptibility and energy gap.

Ry/a S v z "
1.4 1.021(2) 1.034 0.9760 0.5146
1.6 1.210(2) 1.019 0.9847 0.5086
2.20 1.962(3) 0.893 0.980 0.4762
2.25 1.852(2) 0.869 0.991 0.4669
2.26 1.840(3) 0.863 1.000 0.4632
2.27 1.829(3) 0.857 1.009 0.4596
2.28 1.820(2) 0.851 1.019 0.4558
2.29 1.813(3) 0.845 1.031 0.4516
2.30 1.808(2) 0.838 1.044 0.4470
2.31 1.803(3) 0.831 1.056 0.4426
2.32 1.801(2) 0.825 1.071 0.4380
2.33 1.799(3) 0.817 1.085 0.4331
2.34 1.799(2) 0.810 1.102 0.4280
2.35 1.800(2) 0.803 1.119 0.4230
2.40 1.818(2) 0.758 1.217 0.394
2.45 1.856(2) 0.706 1.34 0.363
2.50 1.914(2) 0.647 1.49 0.329

0.90

(a) ol15 0.48 (b)

0.80

0.70

0.65

2.2 2.3 2.4 2.5 2.2 2.3 2.4 2.5

FIG. 6. (a) The correlation length exponent v (red circles) and
dynamical critical exponent z (blue diamonds) associated with the
period-3 ordered-to-disordered transition for various Rydberg block-
ade radius (within the chiral transition region). The values of v and z
are inferred from finite-size scaling analysis of xr and A with system
sizes L = 82 up to 127. (b) The KZ exponent p (purple triangles)
obtained from the estimated v and z via the relation u = v/(1 4 zv)
is shown as a function of the blockade radius.

be a wide region belonging to the chiral universality below
the Potts point. Therefore, we expect the critical exponent z
for R,/a < 2.3 to be actually slightly larger than 1, which is
hard to be identified in numerical calculations even when the
potential finite-size effect is very small. To provide evidence
that the transition indicated by blue diamonds in Fig. 1 (above
or below the Potts point) is specifically in the chiral univer-
sality class, in Appendix C, we investigate the power-law
behavior obeyed by the dominant wave vector approaching
the commensurate value 277 /3 as the ground state is driven
from the disordered phase into the period-3 ordered phase
for the case of Ry/a = 2.4 and 2.25. The good data collapses
displayed in Fig. 11 using the values of the critical exponents
extracted from fidelity susceptibility and energy gap methods
strongly support the existence of the chiral transition below
the three-state Potts point. Therefore, our results are consistent
with other numerical studies [44,48]. In addition, the value of
the KZ exponent u calculated here can also serve as a useful
guide for further quantum KZ experiments.

To complete the exploration of the period-3 ordered-to-
disordered transition and to examine the recently reported
floating phase, in Fig. 7, we also investigate the case of
Ry,/a = 2.6, beyond the parameter range explored in Fig. 6.
Surprisingly, the fidelity susceptibility per site now clearly
shows two nearby peaks as a function of detuning §, implying
that there may be another quantum phase different from the
disordered or period-3 ordered one. Based on recent related
works [44,47,77], we can expect this intermediate phase to be
the so-called floating phase; as the system is driven from the
disordered phase into the period-3 ordered phase, one expe-
riences consecutively Berezinskii-Kosterlitz-Thouless (BKT)
and PT transitions. It is indeed that both of these susceptibility
peaks become sharper with increasing chain length, and the
floating phase is confined to a narrow parameter range, mak-
ing its identification rather tough. In Appendix D, we have
also checked the effect of the MPS bond dimension on the
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5

FIG. 7. Fidelity susceptibility per site as a function of the detun-
ing for the case of Ry/a = 2.6. xr/L shows two nearby peaks as the
system is driven from the disordered phase into the period-3 ordered
phase indicating the possible existence of an unconventional quan-
tum phase between these two phases. The interval of these two peaks
decreases as the system size is increased, which means the extent of
the intermediate phase is very small, making its identification pretty
hard.

fidelity susceptibility in the floating region and D = 300 is
sufficient for the convergence.

To summarize, with the numerical results and discussions
shown above, we now have a clear picture of the period-3
C-IC transition consistent with the phase diagram mapped out
in recent related works [44,48]. To further outline a general
description of the physical picture, which is sketched in Fig. 8,
we use the Luttinger-liquid concept and basically follow the
argument proposed in Ref. [77]. First, we note the striking fact
that there are different types of domain walls concerning the

A
1
6] 4
N (78
Disordered phase - ‘%}
Lo
Potts universality P P %
‘%
P A
- - - ‘é
S
Chiral trzmsition kl]otﬁked s T |<\)
> Chay,
Periodic:3 ordered “ges long p, <
phase 1 frangyy;
| >
RE chiral perturbation or Ry,

FIG. 8. The sketch of the physical picture of our numerical re-
sults for the Rydberg chain based on the argument proposed in
Ref. [77]. The Luttinger-liquid parameter K changes along the PT
transition line and reaches the value K. of the KT transition at the
Lifshitz point R} (the red point). Beyond this point, the phase tran-
sition is nonconformal chiral until it reaches the standard three-state
Potts critical point (the purple point) where the chiral perturbation
vanishes.

commensurate period-3 ordering, and the generation of dif-
ferent domain-wall orderings may cost different energies [36].
This results in an asymmetry order of the domain walls, hence
introducing a chiral perturbation in the low-energy field the-
ory [76] (chiral means the asymmetry order of domain walls,
e.g., |AIB|C| # |A|C|B])

So = /dxdr {10; D> + 10, ®|? + i, D0, D

+ 50| P> + u|®|* + A[D? + (PF)P]}. (6)

Here @ is the period-p density-wave order parameter; so,
u, and A are the tuning parameter that drives the QPT, the
interaction parameter, and perturbation that breaks the U(1)
symmetry down to a Z, one, respectively. The third term is
induced by the chiral perturbation and drives the phase transi-
tion away from the standard Potts universality class to a chiral
one. On the one hand, for the exact Potts point, the chiral
perturbation happens to disappear. As the blockade radius Ry,
is increased or decreased from the Potts point, the energy-
cost difference between the domain-wall orderings begins to
appear (the chiral perturbation is induced), and the phase tran-
sition switches from the Potts universality into a chiral one.
On the other hand, there is a gapless floating phase (character-
ized by the Luttinger-liquid parameter K) effectively having
“infinite” inequivalent domain walls, located in the large Ry
region (the chiral perturbation is strong). As the blockade
radius is decreased, the domain walls will proliferate with an
increasing K; the floating phase becomes unstable when the
parameter K reaches the BKT-transition value K. [77]. Finally,
the two sides merge at the Lifshitz point, whose existence is
explained in Ref. [77], drawing a clear line between the chiral
transition and the intermediate floating phase at the period-3
C-IC transition.

V. SUMMARY

In conclusion, we perform large-scale finite-size¢ DMRG
simulations to investigate the ground-state phase diagram of
the Rydberg chain in certain parameter regions. Using the
concepts of fidelity susceptibility and energy gap as the di-
agnostic, we can efficiently locate quantum critical points
between disordered and ordered phases of different density-
wave orderings according to the blockade radius Ry,. For small
values of Ry, the phase transition between the period-2 or-
dered and disordered phases belongs to the (1 4 1)D Ising
universality class, characterized by v = 1 and z = 1, which is
consistent with previous numerical and experimental results.
For intermediate values of Ry, we found clear evidence of
the continuous chiral transition between the period-3 ordered
and disordered phases with nonconformal critical points. As
a byproduct, the double-peak structure shown in the fidelity
susceptibility also indicates the presence of an intermediate
phase different from the conventional disordered or ordered
phase, which is the gapless floating phase according to recent
relevant works, for large values of Ry,. Our work demonstrates
the potential advantage of using the fidelity susceptibility con-
cept to detect this challenging critical phase. This paper shows
that fidelity susceptibility can be used as an effective probe
to study general C-IC transitions and provides a quantum in-
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FIG. 9. The finite-size scaling analysis of the fidelity susceptibil-
ity and energy gap for the period-2 ordered-to-disordered transition
with a fixed blockade radius R,/a = 1.4. The fidelity susceptibility
per site xr/L (a) and energy gap A (c) develop a sharp peak and a
deep valley, respectively, near the quantum critical point. A standard
finite-size scaling analysis has been applied to estimate the critical
point . = 1.021(2), as well as the critical exponents v = 1.034 and
z=0.9760.

formation perspective for the understanding of nonconformal
QPTs in programmable quantum simulators.
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APPENDIX A: MORE EVIDENCE FOR THE (1 + 1)D
ISING UNIVERSALITY CLASS

In this Appendix, we perform a finite-size scaling anal-
ysis of the fidelity susceptibility and energy gap for the
case of R,/a = 1.4 to give more evidence that the period-2
ordered-to-disordered transition hosted by the Hamiltonian
Hpyq belongs to the (1 + 1)D Ising universality class.

Using the same strategy adopted in Secs. III and IV, in
Figs. 9(a) and 9(c), we can clearly observe the fidelity suscep-
tibility per site and energy gap develop, respectively, with an
explicit peak and valley near a certain detuning indicating the
transition from the disordered phase into the period-2 ordered
one. According to finite-size scaling laws, the logarithms of
xr and A are expected to exhibit linear dependence on In L;

the corresponding least-squares fittings are displayed in the
insets of Figs. 9(b) and 9(d) from which we can extract
the critical exponents v = 1.034 and z = 0.9760. With the
obtained exponents, at last, we also achieve perfect curve col-
lapses according to Eqgs. (1) and (5) with a fine-tuned critical
detuning §. = 1.021(2) as shown in Figs. 9(b) and 9(d).

Now we have investigated the phase transition at another
Rydberg blockade radius R,/a = 1.4. The estimation of the
critical exponents extracted here also confirms the conclu-
sion made in Sec. III that the period-2 ordered-to-disordered
transition in the programmable Rydberg chain belongs to the
(1 + 1)D Ising universality class.

APPENDIX B: ADDITIONAL DATA COLLAPSES WITHIN
THE PERIOD-3 ORDERED-TO-DISORDERED
TRANSITION REGIME

In this Appendix, we show additional data collapses of the
fidelity susceptibility and energy gap for the blockade radius
within the period-3 ordered-to-disordered transition regime.

Following the same procedure illustrated in the main
text, the numerical values of the critical exponents v and
z are estimated by applying the finite-size scaling analy-
sis. The fidelity susceptibility and energy gap for the case
of Ry/a =2.25,2.35,2.45,2.50 are displayed in Fig. 10,
showing that the critical exponents vary continuously with
respect to the blockade radius. It is noted that we have
also performed the same analyses for the case of R,/a =
2.26,2.27, ...,2.33,2.34; the data collapses are not shown
here, but the extracted critical exponents are summarized in
Table I.

APPENDIX C: EVIDENCE FOR THE CHIRAL
TRANSITION

To verify that the nonconformal phase transition detected
in the main text is truly the chiral phase transition and be-
longs to the Huse-Fisher chiral universality class, we still have
to resort to the diagnosis proposed originally by Huse and
Fisher [42]. Specifically, for the p = 3 chiral phase transition,
the product of the dominant wave vector |g — 27 /3| and the
correlation length & converges to a positive constant near
the critical point, or equivalently, the exponent S describing
the convergence of ¢ to 2w /3 takes the same value as the
exponent v.

As the ground state is driven into the ordered phase from
the disordered phase, the dominant wave vector g goes to
2m /3 in a power-law behavior, |¢ — 27 /3| ~ (§ — 8.)?, char-
acterized by the exponent B. According to the finite-size
scaling theory, we can then expect a universal functional form
near the critical point,

1q(8. L) — 27 /3| = LPI F,[L'V"(8 — 51, (ChH

where F, is an unknown scaling function. To obtain the value
of the dominant wave vector ¢g(§, L) for finite systems, we
calculate the density-density static structure factor S(§, L) and
q(8, L) corresponds to the position of the maximum value of
S(8, L). In Fig. 11, for the case of Ry/a = 2.4 and 2.25, we
plot |¢g — 27 /3|L as a function of (§ — 8.)L!/" for different
values of § and L. By using the values of §. and v extracted
from the fidelity susceptibility method in the plot, we can
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FIG. 10. Data collapses of the fidelity susceptibility and energy gap for other blockade radius R}, within the period-3 ordered-to-disordered
transition regime based on the values of v and z collected in Table I. Different symbols are used to represent data for different system sizes:
orange diamond for L = 82, blue pentagon for L = 97, green star for L = 115, and red cross for L = 127 (see the first plot). The critical
exponents are extracted, following the same logic obeyed in Sec. III and IV, from the log-log plots of xr and A versus the chain length L at

the pseudocritical point (see the insets of the plots).

achieve good data collapses according to Eq. (C1) without any
free parameters. It is noted that 8 = v has been assumed in
the curve collapses. The result confirms that the nonconfor-
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FIG. 11. Evidence for the chiral transition at the blockade radius
Ry/a = 2.4 and 2.25. The rescaled quantity |¢ — 27 /3|L is plotted as
a function of (§ — 8.)L'/” for different values of L with 8. and v ex-
tracted from the fidelity susceptibility approach (see Table I). B =v
has been assumed in this curve collapse [compared with Eq. (C1)].

1651

mal phase transition observed in the main text is specifically
in the Huse-Fisher universality class, and our finite-size
scaling analyses are consistent with each other. We have also
performed similar analyses for R, /a = 2.26,2.27,2.28, 2.29
(the plots are not displayed here); our results support the chiral
phase transition for these cases.

APPENDIX D: CONVERGENCE OF THE FIDELITY
SUSCEPTIBILITY IN THE FLOATING PHASE

In this Appendix, we check the convergence of the fidelity
susceptibility with respect to the MPS bond dimension in
the floating phase. For this purpose, we calculate the values
of xg/L for L = 127, 157, and 187 with several MPS bond
dimensions D = 300, 400, and 500 at the blockade radius
R, = 2.6. As shown in Fig. 12, the MPS bond dimension

O D=300 A D=400 ¢ D =500
O [ =127 A L =127 Y+ L[ =127

-o- L =157 —%-

L =157 —A-
—A— L[ =187 —#— L =187

L =157
—e— L[ =187
10!

xr/L

10°

198 2.00 204 206 208 210

FIG. 12. Convergence of the results of fidelity susceptibility in
the floating phase for Ry/a = 2.6. xr/L is calculated for L = 127
(dotted blue lines), L = 157 (dashed green lines), and L = 187 (solid
red lines) with MPS bond dimensions D = 300 (circles), D = 400
(triangles), and D = 500 (stars).
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D = 300 used in the main text has been sufficient to ensure
the convergence.

APPENDIX E: EFFECT OF THE FINITE-SYSTEM SIZE

In this Appendix, we investigate the effect of the finite sys-
tem sizes on the extraction of the critical properties, namely,
the associated exponents v and z. To this end, in Fig. 13, we
perform data collapses of rescaled xr and A for system size
L from 49 to 127 sites along the horizontal line Ry/a = 2.4
through the chiral transition.

The values of the critical exponents v = 0.758 and z =
1.217, as well as the critical point location §. = 1.818, used
in the curve collapses are the results from Fig. 5. It is clear
that, for both xr and A, the data collapse of the largest four
system sizes are quite good with only slight deviation of the
smallest two sizes. In addition, the linear log-log fitting of
the maximum (minimum) value of the fidelity susceptibility
X7 (energy gap A™) versus the system size L shown in the

L=67 % L=115
L=82 % L=127 (@)

5 =1 ) 0 =1 = 0
(57 5(.)[/]/’“ x10! (57(5(‘)[‘1/:/ x10%

L=82 8 L=127

FIG. 13. Data collapses of the rescaled xr and A for system size
L from 49 to 127 sites along the line R, = 2.4. Fitting parameters:
8. = 1.818, v = 0.758, and z = 1.217 (see Fig. 5). The insets are the
linear log-log plots of x7' and A™ with respect to L (only the data
points of largest four sizes are used in the fitting process).

insets of Fig. 13 also indicates the fact that the system sizes L
from 82 to 127 sites are sufficient to estimate accurate critical
exponents for the chiral transition. Therefore, we can expect
that the information summarized in Table I are reliable to
represent the results in the thermodynamic limit.
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