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In this paper, we introduce the simplest, lowest-order Landau-like potential for BiFeO3 and La-doped BiFeO3

as an expansion around the paraelectric cubic phase in powers of polarization, FeO6 octahedral rotations, and
strains. We present an analytical approach for computing the model parameters from density-functional theory.
We illustrate our approach by computing the potentials for BiFeO3 and La0.25Bi0.75FeO3 and show that, overall,
we are able to capture the first-principles results accurately, including properties that were not considered for the
calculation of the model parameters. The computed models allow us to identify and explain the main interactions
controlling the relative stability of the competing low-energy phases of these compounds.
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I. INTRODUCTION

Magnetoelectric multiferroics, materials that simultane-
ously show magnetic and electric orders, are of significant
interest, since the coexistence and coupling of these or-
ders hold great potential for development of multifunctional
devices [1,2]. BiFeO3 is among the most exciting and exten-
sively studied representatives of this family because it displays
both orders at room temperature [3].

Ferroelectricity appears in BiFeO3 at TC ∼ 1100 K [4,5].
Below TC , it has a rhombohedrally distorted perovskite struc-
ture (space group R3c, No. 161) [6,7], which differs from
the perfect cubic phase by the presence of two distortions:
(i) polar displacements of Bi3+ and Fe3+ cations with respect
to O2− anions (Bi3+ dominates due to its stereochemically
active 6s lone pairs [8]), giving rise to a spontaneous polar-
ization P of up to 100 μC/cm2 along a pseudocubic 〈111〉
direction [9,10] and (ii) antiphase rotations R of the FeO6

octahedra about the same pseudocubic 〈111〉 direction as the
polarization (a−a−a− in Glazer’s notation [11]) [12,13]. (In
the following, all directions are in the pseudocubic setting.)

Below TN ∼ 640 K, BiFeO3 also shows G-type antifer-
romagnetic (G-AFM) order with the nearest-neighboring Fe
spins antialigned [4,14]. The canting of the Fe spins driven by
Dzyaloshinskii-Moriya (DM) interaction [15,16] can give rise
to a weak magnetization in this material. The DM interaction
relies on the symmetry breaking caused by the FeO6 octahe-
dral tilts of BiFeO3 [12]; indeed, the phase of the octahedral
rotations defines the sign of the DM vector and, in turn, that
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of the weak magnetization. In bulk BiFeO3, an incommen-
surate cycloidal spiral is superimposed on the G-AFM order,
yielding a zero net magnetization [17]. This cycloid, however,
can be suppressed by doping in bulk systems [18] and by
epitaxial constraints in BiFeO3 films [19–22]. Therefore, fer-
roelectricity can coexist with weak ferromagnetism in BiFeO3

at ambient conditions.
Additionally, a 180◦ deterministic switching of the DM

vector and weak magnetization by an electric field has been
reported from a combined experimental and theoretical study
of BiFeO3 films grown on DyScO3 substrates [22]. It is pro-
posed that the magnetoelectric switching is the result of a
peculiar polarization reversal that is found to occur in two
steps, a 109◦ rotation followed by a 71◦ rotation (or vice
versa); further, the FeO6 octahedral tilts are believed to re-
verse together with the polarization, resulting in the observed
reversal of the weak magnetic moment. Note that octahedral
tilts will typically not follow polarization in a single-step 180◦
reversal and, therefore, a two-step switching path is crucial for
controlling the weak magnetization in BiFeO3 by an electric
field. These observations make BiFeO3 a promising candidate
for applications in magnetoelectric memory elements. How-
ever, to be technologically relevant, switching characteristics
have to be optimized such that coercive voltages are below
100 mV and switching times fall in the range of 10–1000 ps
[23,24]. Hence, the current challenge is to optimize the ferro-
electric switching in BiFeO3 while retaining the two-step path
and magnetoelectric control.

One of the efficient strategies for optimizing polarization
switching in BiFeO3 is doping by La. Indeed, since po-
larization in this compound largely originates from the 6s
lone pairs of the Bi3+ cations, their substitution by isova-
lent, lone-pair-free cations leads to a reduction of the polar
distortion [3,25,26]. For example, it has been experimentally
demonstrated that 15–20% La-doped BiFeO3 films show a po-
larization which is up to 60% smaller than that of pure BiFeO3

films [24,27]. Further, first-principles calculations have
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predicted that subsitution of Bi by La cations reduces the
energy barrier between polar states by up to 50% for 25%
doping. This, in turn, leads to a reduction of coercive volt-
ages (down to 0.8 V for a 100 nm film), enabling low-power
switching [24]. Additionally, a significant reduction of switch-
ing times has been demonstrated for La0.15Bi0.75FeO3 films
compared to pure BiFeO3 in a wide range of applied elec-
tric fields [28]. Nevertheless, further improvement requires
understanding the origin of the two-step polarization switch-
ing in BiFeO3 and related materials, as well as search for
other strategies for manipulating the switching energy land-
scape. For that purpose, dynamical simulations of polarization
switching based on phenomenological models of the free en-
ergy can be very helpful.

Landau free-energy potentials [29–32], together with the
Landau-Khalatnikov time-evolution equation [33], offer a
practical scheme to investigate switching in ferroelectrics.
In this approach, one expands the energy of the compound
around the reference paraelectric phase in powers of the rel-
evant order parameters, keeping only terms compatible with
the crystal symmetry [34]. It is important to note that the
reliability of such simulations depends on the choice of the
free energy expansion’s coefficients, which can be obtained
either by fitting to experimental data or from first-principles
calculations [34]. In compounds as complex as BiFeO3, which
feature multiple primary order parameters, deriving a suitable
Landau potential from experimental information is all but
impossible; hence, there is a clear need for the development
of first-principles approaches.

In this paper, we introduce the simplest, lowest-order
Landau-like potential able to reproduce the energies and struc-
tures of the low-energy polymorphs of BiFeO3 and related
materials. We present an analytical approach to compute the
model parameters from density functional theory (DFT) and
apply it to BiFeO3 and La0.25Bi0.75FeO3. We demonstrate
the overall accuracy of the obtained potentials and discuss
an effective way to treat intermediate compositions. Finally,
we discuss the physics captured by the model, namely, the
interaction between polarization and FeO6 octahedral tilts,
how it affects the energetics of different BiFeO3 polymorphs,
as well as the effects of La doping.

II. COMPUTATIONAL DETAILS

All calculations are performed using the DFT [35,36] im-
plementation in the VIENNA AB INITIO SIMULATION PACKAGE

(VASP) [37]. For the exchange-correlation potential, we use
the generalized gradient approximation optimized for solids
[38], with a Hubbard U correction (within Dudarev’s scheme
[39] and U = 4 eV) for a better treatment of iron’s 3d elec-
trons. We treat the interaction between core and valence
electrons by the projector-augmented plane wave method
[37,40], solving explicitly for 15 electrons of Bi (5d106s26p3),
9 of La (5p66s25d1), 14 of Fe (3p63d74s1), and 6 of O
(2s22p4). We use a plane-wave basis set with a cutoff energy
of 500 eV. We use a 3 × 3 × 3 �-centered Monkhorst-Pack
k-point grid for reciprocal space integrals in the Brillouin zone
corresponding to a 40-atom cell that is a 2 × 2 × 2 multiple
of the five-atom perovskite unit [see Fig. 1(a)]. We ensure
that these choices provide a good level of convergence for

FIG. 1. Sketch of the 40-atom supercell used in our simulations
of (a) BiFeO3 and (b) La0.25Bi0.75FeO3.

the quantities of interest. All simulations are performed with
the G-type antiferromagnetic order of Fe magnetic moments
imposed. This order has the lowest energy for all consid-
ered BiFeO3 polymorphs except the tetragonal P[001] and
P[001]+R[001] (the notations for the polymorphs are intro-
duced in Sec. III B 1), for which the C-type antiferromagnetic
order (nearest-neighboring Fe spins coupled antiferromag-
netically within ab planes, and ferromagnetically between
adjacent ab planes) is more favorable. Since magnetism is
not explicitly treated in our effective potential, and since the
tetragonal polymorphs are the least relevant for our purposes
of studying polarization switching in BiFeO3 and related ma-
terials, we impose the G-AFM order in all our calculations.

In the lattice optimizations, the structures are considered
to be relaxed when the forces acting on the atoms are below
0.01 eV/Å. We calculate elastic constants by finite differences
using the strain-stress relationship [41].

III. FORMALISM

A. Landau-like potential

In this section, we introduce the potential for BiFeO3

and La-doped BiFeO3 as an expansion around the refer-
ence paraelectric cubic phase in powers of the following
order parameters: (i) the three-dimensional electric po-
larization P = (Px, Py, Pz ), (ii) the antiphase rotations of
FeO6 octahedra R = (Rx, Ry, Rz ), and (iii) the strain η =
(ηxx, ηyy, ηzz, ηyz, ηxz, ηxy), where ηxx = εxx, ηyy = εyy, ηzz =
εzz, ηyz = 2εyz, ηxz = 2εxz, and ηxy = 2εxy, and εi j are the
components of the symmetric part of the homogeneous strain
tensor. The resulting expression for the potential (per per-
ovskite unit cell) is written as follows:

F (P, R, η) = F0 + F (P) + F (R) + F (η)

+ F (P, R) + F (P, η) + F (R, η). (1)

Here, F0 is the energy of the reference cubic phase. F (P),
F (R), and F (η) are the energy contributions solely due to po-
larization, FeO6 octahedral rotations and strain, respectively,
which we write as follows:

F (P) = AP
(
P2

x + P2
y + P2

z

) + BP
(
P2
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z

)2

+ CP
(
P2
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)
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z R2
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)
, (3)
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F (η) = 1
2C11

(
η2

xx + η2
yy + η2

zz

) + C12(ηxxηyy

+ ηyyηzz + ηzzηxx ) + 1
2C44

(
η2

yz + η2
xz + η2

xy

)
. (4)

We truncate the expansion in P and R at the fourth order,
which is the minimum required to model structural instabil-
ities. In turn, we only consider harmonic terms for the strains.

Then, F (P, R), F (P, η), and F (R, η) are the coupling
terms, which we write as

F (P, R) = BPR
(
P2

x + P2
y + P2

z

)(
R2

x + R2
y + R2

z

)
+ CPR

(
P2

x R2
x + P2

y R2
y + P2

z R2
z

)
+ C′

PR(PxPyRxRy + PyPzRyRz + PzPxRzRx ), (5)

F (P, η) = γP111
(
ηxxP2

x + ηyyP2
y + ηzzP

2
z

)
+ γP122

(
ηxx

(
P2

y + P2
z

)
+ ηyy

(
P2

z + P2
x

) + ηzz
(
P2
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y

))
+ γP423(ηyzPyPz + ηxzPzPx + ηxyPxPy), (6)

F (R, η) = γR111
(
ηxxR2

x + ηyyR2
y + ηzzR

2
z

)
+ γR122

(
ηxx

(
R2

y + R2
z

) + ηyy
(
R2

z + R2
x

)
+ ηzz

(
R2

x + R2
y

))
+ γR423(ηyzRyRz + ηxzRzRx + ηxyRxRy). (7)

Here we restrict ourselves to the lowest-order symmetry-
allowed couplings between the considered order parameters.
Note that, in these equations, A, B, C, C′, and γ are the
material-dependent expansion coefficients that we compute
using DFT as detailed in Sec. III B. The coefficients C11, C12,
and C44 in Eq. (4), as well as γ parameters in Eqs. (5)–(7), are
given in Voigt notation for compactness.

B. Computing the potential parameters

We now describe the approach to compute the expan-
sion coefficients of the Landau-like potential introduced in
Sec. III A. We mainly focus on an analytical approach, but
also discuss briefly a numerical scheme for comparison.

1. Data set

We first identify the states or polymorphs that we want
our models to describe. We consider the ground state as well
as the low-energy polymorphs of the material, including the
states that might be relevant for polarization switching. We
thus define a data set of first-principles results corresponding
to the energies and structures of such polymorphs.

Before we continue, let us introduce a convenient nota-
tion for the polymorphs we consider: We write P(R)[...]c or
P[...]+R[...]c, where the first letter, P or R, indicates whether
the structure presents a polar distortion or FeO6 octahedral
tilts, respectively (if both distortions appear, we indicate it by
P + R); then [001] or [111] shows the axis along/about which
the corresponding distortion is oriented; finally, c indicates
that the cubic cell is kept fixed. Thus, for example, the poly-
morph P[001]c is characterized by a polar distortion along the
[001] direction and its cell is fixed to that of cubic reference

FIG. 2. Ionic displacement patterns corresponding to (a) a polar
distortion mode along the [001] pseudocubic direction and (b) FeO6

octahedral rotations about the same axis. Arrows indicate the di-
rections of the ionic displacements and do not reflect their relative
amplitudes. Blue, green, and red circles indicate Bi, Fe, and O ions,
respectively.

structure. For simplicity, we also introduce short notations for
all the polymorphs of interest, such as 1c for the state P[001]c.
We summarize all the notations for the polymorphs and the
corresponding order parameters in Table I.

BiFeO3. The starting point for constructing the data set
is the already-mentioned 40-atom supercell compatible with
the G-type antiferromagnetic order and the antiphase rotations
of the FeO6 octahedra. First, we run a DFT simulation to
optimize the volume of the cubic phase of BiFeO3 using this
supercell. Next, we use the optimized structure to construct
six polymorphs (1c to 6c in Table I) by imposing the polar
distortion and/or antiphase octahedral rotation along/about
either the [001] or [111] directions while keeping the volume
and shape of the supercell fixed (the corresponding ionic dis-
placement patterns are illustrated in Fig. 2). We use DFT to
optimize the ionic positions in these polymorphs and calculate
the energies Es of the resulting structures, where the index s
labels polymorphs in the data set. Additionally, we also con-
sider the state we call P[111̄]+R[111]c (7c); here, we impose
a polar distortion and octahedral tilts with amplitudes typical
of BiFeO3, but oblique to each other. This structure does not
correspond to a special point of the energy landscape; there-
fore, we do not perform a structural optimization and only
compute its energy, which is needed to obtain the coefficient
C′

PR, as we will show in Sec. III B 2.
Next, we consider the first six polymorphs mentioned

above, but now allowing for changes in the shape and volume
of the supercell (structures 1–6 in Table I; note we omit c in
the notation).

In all cases, we extract the displacements uBi,s (uBi,s are in
angstrom) of the Bi cations with respect to the corresponding
O anion cages. We average the values of these displacements
over all Bi ions to obtain ūBi,s. Since the Bi off-centering
largely determines the electric polarization in BiFeO3, we
estimate Ps for the considered polymorphs as Ps = K0ūBi,s,
where K0 = P0/ūBi,6, P0=0.58 C/m2, and ūBi,6 is the average
Bi off-centering in the ground state P[111]+R[111]. This
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TABLE I. Polymorphs (labeled by s) included in the data set for computing the potential’s coefficients and the notations for their
polarizations Ps, FeO6 octahedral rotations Rs, and components of the strain tensor ηs.

Polymorph P R η

1c P[001]c (0,0,P1c) (0,0,0) (0,0,0,0,0,0)
2c P[111]c (P2c, P2c, P2c) (0,0,0) (0,0,0,0,0,0)
3c R[001]c (0,0,0) (0,0,R3c) (0,0,0,0,0,0)
4c R[111]c (0,0,0) (R4c, R4c, R4c) (0,0,0,0,0,0)
5c P[001]+R[001]c (0,0,P5c) (0,0,R5c) (0,0,0,0,0,0)
6c P[111]+R[111]c (P6c, P6c, P6c) (R6c, R6c, R6c) (0,0,0,0,0,0)
7c P[111̄]+R[111]c (P7c,⊥, P7c,⊥, P7c,‖) (R7c,⊥, R7c,⊥, R7c,‖) (0,0,0,0,0,0)
1 P[001] (0,0,P1) (0,0,0) (η1,⊥, η1,⊥, η1,‖,0,0,0)
2 P[111] (P2, P2, P2) (0,0,0) (η2, η2, η2, s2, s2, s2)
3 R[001] (0,0,0) (R3,0,0) (η3,‖, η3,⊥, η3,⊥,0,0,0)
4 R[111] (0,0,0) (R4, R4, R4) (η4, η4, η4, s4, s4, s4)
5 P[001]+R[001] (0,0,P5) (0,0,R5) (η5,⊥, η5,⊥, η5,‖,0,0,0)
6 P[111]+R[111] (P6, P6, P6) (R6, R6, R6) (η6, η6, η6, s6, s6, s6)

choice of P0 ensures that the spontaneous polarization of the
P[111]+R[111] polymorph is P6 = P0(1, 1, 1) which gives
the magnitude of P6 around its experimentally determined
value of 1 C/m2.

Similarly, we compute the rotation angles of the FeO6 oc-
tahedra Rs about the pseudocubic axes, from which we obtain
the amplitude of the antiphase tilt pattern, R̄s. Finally, in the
cases where the shape and volume of the cell are allowed to
relax, we also extract the components of the strain tensor ηs.
The obtained results constitute our data set, which is presented
in Table S1 of the Supplemental Material [42].

La-doped BiFeO3. Experimentally, La dopants distribute
quasirandomly in the BiFeO3 lattice, so the macroscopic sym-
metry (cubic for the paraelectric phase, rhombohedral for the
ground state) is only recovered when a sufficiently large sam-
ple volume is considered. Unfortunately, reproducing such
a situation in a DFT calculation has a prohibitive compu-
tational cost; thus, here we assume that a particular highly
ordered La arrangement, where the dopants are as separated
as possible from one another and which respects the cubic
symmetry of the reference lattice, is a good approximation to
the average experimental configuration. This approach allows
us to derive Landau potentials for doped materials, with the
experimentally relevant symmetry properties, from relatively
inexpensive DFT calculations. Admittedly, a careful (compu-
tationally costly) validation of its accuracy remains for future
work.

For a 25% La doping, the symmetric arrangement we use is
shown in Fig. 1(b). In this arrangement, the dopants are placed
at third-nearest-neighboring (3NN) A sites. In principle, for
this concentration of La, there are two other possibilities
to place La dopants within the 40-atom supercell: (i) at
first-nearest-neighboring A sites and (ii) at second-nearest-
neighboring (2NN) A sites. In fact, our calculations show that
the 2NN arrangement is more favorable than the 3NN by
about 1 meV per five-atom cell in cubic and P[111]+R[111]
polymorphs with fully relaxed cells. These small energy dif-
ferences between the considered La orderings are consistent
with the experimental observation of randomly distributed La
dopants. Note, however, that 2NN arrangement leads to a
symmetry reduction of both cubic and P[111]+R[111] phases

that is not observed experimentally (for example, it would
yield a monoclinic ground state instead of rhombohedral).
Hence, since the tendency of the La atoms to order is very
weak, and since experimental evidence suggests that our Lan-
dau potential should describe reference cubic and ferroelectric
rhombohedral phases, working with the 3NN arrangement
shown in Fig. 1(b) seems the best practical approximation to
treat LaxBi1−xFeO3 with x = 0.25.

Additionally, it is worth noting that, instead of considering
the dopants explicitly, methods like the virtual crystal approxi-
mation (VCA) [43] can be an alternative in some cases. Within
the VCA, doping is taken into account by considering virtual
atoms that are described by a pseudopotential constructed as
a weighted average of the pseudopotentials of the correspond-
ing real atoms [44] (La and Bi in our case). The advantage of
the VCA is that it allows to study any doping concentration
with no need to construct large supercells and preserving the
high symmetry of the reference lattice. However, the VCA
is not general, and should be avoided in the cases when
the real atoms have significantly different valence electronic
structures. For example, a mixture of Fe3+ (with a 3d5 valence
configuration) and Ti4+ (with a 3d0 valence configuration) is
not treatable within the VCA.

Having chosen a suitable, symmetric dopant arrangement,
we optimize the cubic cell of the reference paraelectric struc-
ture using DFT. Next, we use this structure to construct the
sets of polymorphs 1c to 7c and 1 to 6, in analogy to the case
of pure BiFeO3. For the case of a 25% La composition, the
obtained Ps, Rs, ηs, and Es of their optimized structures are
summarized in Table S2 of the Supplemental Material [42].

Note that we encountered difficulties in constructing
the data set for La1−xBixFeO3 compositions with an in-
termediate content of La (0 < x < 0.25). For example, for
La0.125Bi0.875FeO3, one can easily construct a paraelectric
reference by subsituting a single Bi atom in the supercell of
Fig. 1(a). However, we observed that the P[001]+R[001]c
and P[001]+R[001] polymorphs relax to the lower symmetry
phases displaying additional (and large) in-phase rotations of
the FeO6 octahedra. These extra distortions are secondary
modes activated by the symmetry breaking associated to the
combination of polar and antiphase orders together with the
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considered arrangement of La dopants. These distortions are
not expected to occur experimentally, as the La dopants are
largely disordered in real samples, and such in-phase tilts may
occur locally at most. Moreover, they cannot be treated within
our simple potentials (an explicit consideration of in-phase
tilts would be required) and complicate the definition of the
data set. Hence, here we do not compute models for such inter-
mediate compositions. Nevertheless, as we show in Sec. IV C,
suitable potentials can be obtained by interpolation between
those obtained for neighboring (well-behaved) compositions.

2. Analytical approach

The approach introduced in this section allows full control
of the information used to compute the parameters of the
potential. To achieve that, we derive an analytical expression
for each of the potential coefficients, in terms of Es, Ps, Rs,
and ηs of the polymorphs in the data set (see Sec. III B 1).
To obtain such formulas, we write the expressions for the
energies of the polymorphs using Eqs. (1)–(7) and impose
the zero-derivative condition ∂F/∂φi,s = 0, where φi,s is the
ith component of order parameter φ evaluated for polymorph
s. These zero-derivative conditions are crucial to ensure that
the computed model will faithfully describe the physics of
BiFeO3, namely, we find that, if they are excluded from the fit,
one typically obtains models that are unbounded from below.

Let us illustrate our procedure by presenting in detail the
case of the parameters AP, BP, and CP of Eq. (2). We consider
two polar-only polymorphs with fixed cubic cell, P[001]c (1c)
and P[111]c (2c), and use the notation for their polarization
components introduced in Table I, P1c = (0, 0, P1c) and P2c =
(P2c, P2c, P2c). Then, from Eq. (2) we can write the polymorph
energies

E1c = APP2
1c + BPP4

1c (8)

and

E2c = 3APP2
2c + 3(3BP + CP )P4

2c. (9)

By taking the derivatives of these energies with respect to
P1c and P2c, and setting them equal to zero, we obtain the
following equations for the equilibrium values of P1c and P2c:

P2
1c = − AP

2BP
(10)

and

P2
2c = − AP

2(3BP + CP )
. (11)

Then, by using these expressions in Eqs. (8) and (9), we
obtain, respectively, E1c and E2c as functions of the parameters
of the potential, such as

E1c = − A2
P

4BP
(12)

and

E2c = − 3A2
P

4(3BP + CP )
. (13)

From Eq. (11), one can see that 3BP + CP = −AP/2P2
2c. By

using this in Eq. (13), one can straightforwardly obtain the

TABLE II. Conditions used to derive the analytical expressions
for the potential’s coefficients. Es|φs,eq denotes the energy of the
polymorph s corresponding to the equilibrium value of order param-
eter φs. λ = 1 m4deg2/C2 is an ad hoc coefficient used to balance the
units for the terms in f5c and f6c (see text).

Conditions

AP

BP
∂E1c
∂P1c

= 0; ∂E2c
∂P2c

= 0; E1c|P1c,eq ; E2c|P2c,eq

CP

AR

BR
∂E3c
∂R3c

= 0; ∂E4c
∂R4c

= 0; E3c|R3c,eq ; E4c|R4c,eq

CR

BPR

CPR
∂E5c
∂P5c

+ λ
∂E5c
∂R5c

= 0; ∂E6c
∂P6c

+ λ
∂E6c
∂R6c

= 0; E7c

C′
PR

γP111
∂E6
∂η6

= 0

γP122
∂E1

∂η1,⊥
= 0; ∂E2

∂η2
= 0

γP423
∂E6
∂s6

= 0

γR111
∂E3

∂η3,⊥
= 0

γR122
∂E3

∂η3,⊥
= 0; ∂E4

∂η4
= 0

γR423
∂E4
∂s4

= 0

analytical expression for AP:

AP = 2E2c

3P2
2c

. (14)

From Eq. (12), in turn, one can obtain

BP = − A2
P

4E1c
. (15)

Finally, by combining Eqs. (13)–(15), we get:

CP = 3A2
P

4

(
1

E1c
− 1

E2c

)
. (16)

Since E1c, E2c, and P2c are known from our first-principles
calculations described above, the coefficients AP, BP, and CP

can be directly computed using Eqs. (14)–(16), respectively.
Similarly, we can derive the analytical expressions for the

remaining coefficients of our potential. The specific condi-
tions and properties used in the derivation are summarized in
Table II, and the resulting expressions are

AR = 2E4c

3R2
4c

, (17)

BR = −A2
R

4E3c
, (18)

CR = 3A2
R

4

(
1

E3c
− 1

E4c

)
, (19)

BPR = f7c − f5c(C7c − C′
7c) − 1

3C′
7c f6c

B7c − C7c − 2C′
7c

, (20)

where

B7c = (
2P2

7c,⊥ + P2
7c,‖

)(
2R2

7c,⊥ + R2
7c,‖

)
, (21)
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C7c = 2P2
7c,⊥R2

7c,⊥ + P2
7c,‖R2

7c,‖, (22)

C′
7c = P2

7c,⊥R2
7c,⊥ + 2P7c,⊥P7c,‖R7c,⊥R7c,‖, (23)

f5c = −AP + λAR + 2BPP2
5c + 2λBRR2

5c

λP2
5c + R2

5c

(24)

and

f6c = − 1

λP2
6c + R2

6c

(
3AP + 3λAR

+ 6(3BP + CP )P2
6c + 6λ(3BR + CR)R2

6c

)
, (25)

where λ = 1 m4deg2/C2 is an ad hoc coefficient that allows
us to combine two zero-derivative conditions (for polarization
and tilts, respectively) into only one. Further, we have

f7c = E7c − (
AP

(
2P2

7c,⊥ + P2
7c,‖

) + BP
(
2P2

7c,⊥ + P2
7c,‖

)2

+ CP
(
P4

7c,⊥ + 2P2
7c,⊥P2

7c,‖
) + AR

(
2R2

7c,⊥ + R2
7c,‖

)
+ BR

(
2R2

7c,⊥ + R2
7c,‖

)2 + CR
(
R4

7c,⊥ + 2R2
7c,⊥R2

7c,‖
))

,

(26)

CPR = f5c − BPR, (27)

C′
PR = 1

C′
7c

( f7c − B7cBPR − C7cCPR), (28)

γP122 = (C12 − C11)η1,⊥
P2

1

− C12η2

P2
2

, (29)

γP111 = − 2γP122 −
(

η6 + (γR111 + 2γR122)R2
6

C11 + 2C12

)
C11 + 2C12

P2
6

,

(30)

γP423 = −
(

s6 + γR423R2
6

C44

)
C44

P2
6

, (31)

γR111 = 2(C11 − C12)η3,⊥
R2

3

− C11η4

R2
4

, (32)

γR122 = (C12 − C11)η3,⊥
R2

3

− C12η4

R2
4

, (33)

and

γR423 = −C44s4

R2
4

. (34)

Note that it is possible to choose other conditions, different
from those described above and presented in Table II, to derive
the expressions for the model parameters. For example, the
coefficients AP, BP, and CP can be obtained as functions of P1c,
P2c, and E2c instead of P2c, E1c, and E2c [as represented above
by Eqs. (14)–(16), respectively]. Moreover, one can even con-
sider other polymorphs, not included in the data set introduced
in Sec. III B 1. For instance, the polarization and energy of the
P[011]c polymorph can be used instead of P[001]c or P[111]c
in the derivation of AP, BP, and CP coefficients. The potentials
derived using these new expressions provide a description
nearly as accurate as the initial parameter set; more details
can be found in Sec. SII of the Supplemental Material [42].
Similarly, a parameter like γP111 might be obtained from the

energies and structures of polar-only polyrmorphs, in analogy
to what we do for γR111 usign tilt-only polymorphs. However,
we find that this choice yields shear strains with incorrect sign
for the P[111]+R[111] ground state of BiFeO3. By contrast,
the condition we use to compute γP111 (i.e., ∂E6/∂η6 = 0)
includes the information about the ground state and corrects
this problem. These difficulties reflect the simplicity of our
low-order polynomial model, which can account (exactly) for
only a small number of properties.

Finally, the elastic constants C11, C12, and C44 are calcu-
lated directly from DFT.

3. Numerical approach

The numerical approach that we introduce in this sec-
tion allows us to compute the potential coefficients using the
information from all considered structural polymorphs. We
focus here on the case of pure BiFeO3, noting that exactly
the same procedure can be applied to La0.25Bi0.75FeO3.

We work with the BiFeO3 polymorphs from the data set
introduced in Sec. III B 1, namely, 1c to 7c and 1 to 6 of
Table I. Based on the energies (Es) and structural parame-
ters (Ps, Rs, and ηs) obtained from DFT, we construct an
overdetermined system of linear equations, with the potential
parameters as unknowns, using the expressions for the energy
and zero derivatives corresponding to all polymorphs. (For the
7c state, the zero-derivative condition does not apply. Also, we
use the elastic constants C11, C12, and C44 directly obtained
from DFT.) We solve this system of equations using the least
squares method.

We find that the potential obtained using this approach
provides less accurate predictions for the properties of the
low-energy polymorphs of BiFeO3 as compared to the an-
alytical approach introduced in Sec. III B 2 (see details in
Sec. SIII of the Supplemental material [42]). This is a di-
rect consequence of including more DFT information in
the fit, while keeping our model very simple. For example,
our numerical fit includes all the information about the su-
pertetragonal state P[001], which features significantly larger
polarization and strains compared to other polymorphs. This
allows us to predict more accurately the polarization of this
polymorph; however, it leads to worse predictions for some
critical properties (e.g., the ground-state energy) compared to
the analytically derived model in which information on the
P[001] state was barely used. We thus conclude that, while
the numerical approach might work well for more complete,
higher-order potentials (for example, such as the one intro-
duced in Ref. [45]), it seems less suitable for computing the
parameters of our low-order model. Therefore, in the follow-
ing, we are going to discuss only the results obtained using
the analytical approach.

IV. RESULTS

A. BiFeO3

In this section, we analyze how accurately the potential
introduced in Sec. III A predicts the properties of BiFeO3

polymorphs. We begin by computing the coefficients of
the potential following the analytical approach described
in Sec. III B 2. The resulting values are presented in Ta-
ble III. Next, we use the computed potential to calculate the
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TABLE III. Coefficients of our Landau-like potentials calculated
for BiFeO3 (BFO) and La0.25Fe0.75FeO3 (LBFO) using the analytical
approach introduced in Sec. III B 2. We give energies per five-atom
perovskite unit cell.

BFO LBFO Units

AP –1.747 –1.674 ×10−19, J m4 C−2

BP 1.070 1.286 ×10−19, J m8 C−4

CP −7.486 −6.212 ×10−20, J m8 C−4

AR −8.555 −7.560 ×10−22, J deg−2

BR 2.169 1.962 ×10−24, J deg−4

CR −1.240 −0.848 ×10−24, J deg−4

C11 1.833 1.754 ×10−17, J
C12 7.301 11.280 ×10−18, J
C44 4.600 4.262 ×10−18, J
BPR 1.121 1.183 ×10−21, J m4 C−2 deg−2

CPR −3.437 −3.319 ×10−22, J m4 C−2 deg−2

C′
PR −2.245 −2.219 ×10−21, J m4 C−2 deg−2

γP111 −9.444 −7.866 ×10−19, J m4 C−2

γP122 −1.557 −4.898 ×10−19, J m4 C−2

γP423 −3.232 −3.359 ×10−19, J m4 C−2

γR111 −1.178 0.482 ×10−21, J deg−2

γR122 1.158 −10.026 ×10−22, J deg−2

γR423 1.155 1.022 ×10−21, J deg−2

equilibrium properties (Ps, Rs, ηs, and Es) of the polymorphs
1c to 6c and 1 to 6. Since in these polymorphs the form of
Ps is either (0, 0, Ps) or (Ps, Ps, Ps) (the same holds for Rs), in
the following we will discuss single components of Ps and Rs

(Ps and Rs, respectively). We plot the values of Ps, Rs, and Es

predicted using our potential versus their DFT counterparts as
shown in Fig. 3 (all these values, as well as the components
of ηs are also presented in Table S1 of the Supplemental
Material [42]). We note that, if the model prediction and DFT
value match exactly, the corresponding point lays on the black
dashed line.

First, we discuss the BiFeO3 polymorphs with the fixed cu-
bic cell (no strain relaxation). From Figs. 3(a) and 3(b) one can
see that, for these polymorphs, our model predicts Ps and Rs in
nearly perfect agreement with DFT. As shown in Fig. 3(c), it
also accurately reproduces their energies and, therefore, their
relative stability. Indeed, among the structures having only
polar distortion (P[001]c and P[111]c), the one with P ‖ [111]
is lower in energy according to both model and DFT. The
same holds for the structures having only FeO6 octahedral
rotations (R[111]c is lower in energy than R[001]c). Over-
all, the lowest energy structure is P[111]+R[111]c, in which
both distortions coexist and oriented along/about [111]. Here,
one should keep in mind that DFT information about these
polymorphs is explicitly used to compute the model param-
eters (see Table II), hence the agreement is not surprising.
Nevertheless, the potential does provide accurate predictions
for quantities that are not considered in its derivation (e.g.,
P of P[001]c, R of R[001]c, and Es of P[001]+R[001]c and
P[111]+R[111]c).

Next, we consider the BiFeO3 polymorphs with allowed
strain relaxation [Figs. 3(d)–3(f)]. In this case, our potential
also provides accurate predictions for all considered quantities
for the most of the considered polymorphs; in particular, it
yields the correct ground state of BiFeO3 (P[111]+R[111]).
There is only one polyrmorph for which the model is less
accurate, namely, P[001]. In this case, the DFT optimized
structure has a large distortion along the z axis (the c/a ratio
is approximately 1.27), accompanied by a large Pz; this is
usually called a supertetragonal phase [46,47]. This behavior
is not well captured by our potential, as it underestimates the
polarization and strains components compared to the DFT
values (Pz = 1.039 versus 1.624 C/m2; ηxx = −0.012 versus
−0.044; ηzz = 0.065 versus 0.216). This issue is also reflected
in the energy predicted for this phase. From the DFT results,
one can see that, among the polymorphs with only polar
distortion, the strain relaxation stabilizes the supertetragonal
phase over the rhombohedral one (P[001] is lower than P[111]

FIG. 3. Structural properties and energies of BiFeO3 polymorphs predicted using the Landau-like potential and plotted versus their
corresponding DFT values. The top row shows the results obtained for the polymorphs with fixed cubic supercell (no strain), while the
bottom row shows the properties of the polymorphs with fully relaxed cells. Panels (a) and (d) show the electric polarization P, (b) and (e) the
FeO6 octahedral rotations R, (c) and (f) the energies E . The polymorph P[001]+R[001] is not shown in panels (d)–(f), since its fully relaxed
structure has very small FeO6 octahedral rotations (R = 0.066◦) and our model predicts it to be zero, therefore reducing to the state P[001].
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FIG. 4. Structural properties and energies of La0.25Bi0.75FeO3 polymorphs predicted using the Landau-like potential and plotted versus
their corresponding DFT values. The top row shows the results obtained for the polymorphs with fixed cubic supercell (no strain), while the
bottom row shows the properties of the polymorphs with fully relaxed cells. Panels (a) and (d) show the electric polarization P, (b) and (e) the
FeO6 octahedral rotations R, (c) and (f) the energies E . The polymorph P[001]+R[001] is not shown in panels (d)–(f), since its fully relaxed
structure has very small FeO6 octahedral rotations (R = 0.006◦) and our model predicts it to be zero, therefore reducing to the state P[001].
The vertical dashed lines in panels (a), (b), (d), and (e) indicate the corresponding quantities for pure BiFeO3.

by 0.023 eV/f.u). Our model does predict the energy lowering
of the P[001] state due to the strain relaxation (the negative
γP111 coupling results in large Pz and ηzz). However, since it
underestimates Pz and ηzz, this energy reduction is not enough
to stabilize P[001] over P[111]. Note that these deficiencies
were to be expected, as we decided to use a minimal amount of
DFT information on the supertetragonal phase when deriving
the parameters of our model (see Table II) because this state is
not relevant for our ultimate purpose of studying polarization
switching in the rhombohedral phase of BiFeO3. Moreover,
we checked that, if we try to capture the supertetragonal c/a,
this makes it difficult to obtain a correct prediction for the
ground state, as the P[001] state tends to become dominant.

B. La0.25Bi0.75FeO3

Now we discuss the case of La0.25Bi0.75FeO3. We first
compute the parameters of the potential using the analytical
expressions in Sec. III B 2. The resulting values are presented
in Table III. Next, we compare the model predictions and DFT
values for our considered polymorphs in Fig. 4 (these results
are also summarized in Table S2 of the Supplemental Material
[42], together with the corresponding strains).

Let us first consider the polymorphs with fixed cubic cell
[Figs. 4(a)–4(c)]. Our potential provides very accurate predic-
tions for polarizations and tilts, similarly to the case of pure
BiFeO3. The energy and relative stability of these polymorphs
is also well captured by the model. Indeed, for polar-only
structures, both the model and DFT predict the rhombohedral
P[111]c state to be lower in energy than the tetragonal P[001]c
phase. The same holds for the polymorphs having only FeO6

rotations: R[111]c is lower in energy than R[001]c. Note that
the energy difference between the structures with tetragonal
and rhombohedral phases are reduced compared to the case of
pure BiFeO3. The lowest-energy phase is P[111]+R[111]c,
where polarization and tilts coexist.

For the polymorphs in which shape and volume of the
cell are allowed to relax, we observe the following. First, the
model predicts accurate values of the polarization in all cases
except for P[001]. Indeed, for the supertetragonal state, the
predicted Ps and ηzz are underestimated relative to the DFT
values. This issue is also reflected in the energy of the poly-
morph: our potential predicts P[001] to be the highest-energy
state, while DFT shows that this phase is the second-lowest
in energy, right above the P[111]+R[111] ground state. Ad-
ditionally, we find that the tilts are accurately predicted by
our model for all polymorphs except R[001]; in that case,
the tilt amplitude and the strains are exaggerated compared
to the DFT values. Note that, as in the case for pure BiFeO3,
these deficiencies are the result of the limited amount of DFT
information on states P[001] and R[001] used to derive the
parameters of our model.

C. Intermediate compositions

In this section, we demonstrate how our potentials can be
used to study La1−xBixFeO3 with intermediate La content,
0 < x < 0.25.

Let us assume that the La doping acts on the properties of
BiFeO3 as a perturbation. We can write a general expression
for any quantity of interest (which we denote as f ) in the
following form:

f = f0 + x f1 + x2 f2 + · · · , (35)

where f0 is the unperturbed value, x is the La concentration,
and f1, f2,... are corrections of increasing order. Let us imag-
ine we can truncate the perturbation series and keep only the
first two terms such that

f ≈ f0 + x f1. (36)

This approximation complies with the empirically determined
Vegard’s law, according to which an approximately linear
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FIG. 5. Structural properties and energies of La0.125Bi0.875FeO3 polymorphs. Squares show the model predictions for P, R, and E obtained
using the interpolated potential’s coefficients; circles: the values obtained by direct interpolation of the corresponding results between pure
BiFeO3 and La0.25Bi0.75FeO3; triangles: DFT values. The top row shows the results for fixed cubic cell (no strain); bottom row: results after a
full strain relaxation. Panels (a) and (d) show the electric polarization P, (b) and (e) the FeO6 octahedral rotations R, (c) and (f) the energies E .
A missing DFT data point in the plot means that the structure of the corresponding polymorph developed non-negligible additional distortions
during the DFT optimization, as described in Sec. III B 1.

relation exists between properties of an alloy and the concen-
trations of the constituent elements at a constant temperature
[48].

Here we focus on the case of La0.125Bi0.875FeO3 and check
whether the properties of the polymorphs from the data set can
indeed be predicted by linear interpolation between BiFeO3

and La0.25Bi0.75FeO3.
We consider two types of interpolation. First, we con-

struct a model for x = 0.125 with coefficients obtained from
interpolation of the corresponding values for the x = 0 and
x = 0.25 cases. Using this model, we can easily predict the
properties (Ps, Rs, and Es) of all the polymorhps in the data set.
Second, we derive the very same properties by direct interpo-
lation of the values obtained at x = 0 and x = 0.25. In Fig. 5,
we compare the quantities thus obtained, and also include the
corresponding DFT values for the polymorphs for which the
information is available (see figure caption and Table S4 of the
Supplemental Material [42]). We find that both interpolation
approaches yield very similar predictions. Further, the agree-
ment with DFT is good except for the supertetragonal P[001]
phase, where our predictions suffer from the issues discussed
above. Hence, we conclude that our models give us a way to
treat compounds with intermediate compositions.

V. DISCUSSION

Let us now discuss the physical insights that our models
provide.

A. P-R coupling

As is well-known from both experiments and computa-
tions, and correctly captured by our models, the ground state

of BiFeO3 has rhombohedral symmetry with P ‖ [111] and
R ‖ [111]. It is interesting to note, though, that the DFT
energy of the polar-only BiFeO3 polymorph P[001] is lower
than that of P[111]. By contrast, among the polymorphs hav-
ing only FeO6 octahedral tilts, R[111] is the lowest-energy
structure. These observations yield one important conclusion:
that the rhombohedral symmetry of the BiFeO3’s ground state
critically depends on the presence of the octahedral tilts, as in
their absence the material would be tetragonal.

To understand how the rhombohedral ground state of
BiFeO3 comes about, we consider the F (P, R) part of our
potential [Eq. (5)] describing the coupling between polariza-
tion and octahedral rotations. The second term in Eq. (5),
with CPR < 0 (see Table III), favors states where P and R are
along/about any 〈111〉 direction, as, for example, P ‖ [111]
and R ‖ [1̄11̄]. In turn, the third term, with C′

PR < 0, favors
phases where the FeO6 tilts are about the axis defined by the
polarization. Overall, these couplings lead P and R to appear
together and aligned along/about the same 〈111〉 direction.
Thus, these are the interactions driving the stabilization of
the ground-state phase of BiFeO3, rhombohedral, and with
coexisting polarization and tilts.

Does this mean, however, that P and R cooperate in
BiFeO3? We address this question by considering the energy
diagram presented in Fig. 6. Here we show the energies
of the P[111]c, R[111]c, and P[111]+R[111]c polymorphs
as given by our model (E2c, E4c, and E6c, respectively, see
Table IV). We also show the energy of a nonexistent, virtual
state in which P ‖ [111] coexists with R ‖ [111] but where
these order parameters are not coupled. The energy of this
virtual state corresponds to the most stable rhombohedral
polymorph predicted by our model when all the P-R
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FIG. 6. Illustration of the effect of the coupling between polar-
ization P and FeO6 octahedral tilts R on the energetics of BiFeO3

polymorphs. Model energies of BiFeO3 polymorphs P[111]c,
R[111]c, and P[111]+R[111]c with fixed cubic supercell are shown,
together with the energy of the nonexistent, virtual state in which
P ‖ [111] and R ‖ [111] coexist but are not coupled (indicated as
square+circle in the figure, see more details in the text). Since the
energy of this virtual noninteracting state is lower than that of the
actual state P[111]+R[111]c, one can conclude that P and R compete
in BiFeO3.

couplings are artificially set to zero. Clearly, the
P[111]+R[111]c polymorph is higher in energy than
the noninteracting virtual state and their energy dif-
ference arises from the coupling between P and R in
P[111]+R[111]c structure. To understand this, we again
consider the term F (P, R) [Eq. (5)] with the corresponding
coefficients BPR, CPR, and C′

PR presented in Table III for
BiFeO3. For the polymorph P[111]+R[111]c, we have
Px = Py = Pz = P6c and Rx = Ry = Rz = R6c; therefore,
F6c(P, R) = 3(3BPR + CPR + C′

PR)P2
6cR2

6c for this state. In this
expression, 3BPR > 0 dominates over CPR + C′

PR < 0 and

TABLE IV. Energies Es of BiFeO3 polymorphs calculated using
DFT and predicted by the Landau-like potential introduced in this
paper (the coefficents of the potential are obtained using the analyti-
cal approach described in Sec. III B 2). Energy values are relative to
the energy of the reference cubic phase and given in eV per five-atom
unit cell.

Polymorph Es (DFT) Es (Model)

1c P[001]c –0.445 –0.445
2c P[111]c –0.580 –0.580
3c R[001]c –0.527 –0.527
4c R[111]c –0.651 –0.650
5c P[001]+R[001]c –0.556 –0.546
6c P[111]+R[111]c –0.853 –0.919
1 P[001] –0.764 –0.589
2 P[111] –0.741 –0.677
3 R[001] –0.536 –0.540
4 R[111] –0.679 –0.671
5 P[001]+R[001] –0.764 –0.593
6 P[111]+R[111] –0.909 –0.967

leads to a ground-state energy that is higher than that of the
virtual noninteracting state.

Thus, we find that, overall, the P and R order parameters
compete in BiFeO3 (BPR > 0 dominates). Nevertheless, the
polar and tilt instabilities are so strong that this repulsive
interaction is not enough to prevent them from occurring
simultaneously. Further, the P-R competition is minimized
when the order parameters are oriented along/about the same
〈111〉 axis (CPR,C′

PR < 0), which yields the rhombohedral
ground state phase of BiFeO3.

B. Effects of La doping

Let us first consider how La doping affects the electric
polarization. From Figs. 4(a) and 4(d), one can see that, for
all considered polar polymorphs in the data set, a 25% La
doping leads to reduction of P. Indeed, for the polymorphs
with fixed cubic cell [Fig. 4(a)], we obtain a reduction of P by
11 − 19% for P[001]c, P[111]c, and P[111]+R[111]c, and an
even larger reduction for P[001]+R[001]c (≈59%). When we
allow the cell to relax [Fig. 4(d)], the obtained P reduction is
in the range of 5 − 20%.

Next, let us turn to the effect of La doping on the FeO6

octahedral tilts. As one can see from Figs. 4(b) and 4(e),
the presence of 25% La has a relatively small effect (reduc-
tion) in the amplitude of tilts. More precisely, we find that
the R[001]c, R[111]c, and P[111]+R[111]c polymorphs with
fixed cubic cell present 1 − 4% smaller R compared to pure
BiFeO3. The exception is the P[001]+R[001]c state, where
La doping leads to an increase in R by 12%. Finally, when we
allow the cell to relax, we find a 0.06 − 4% reduction of R in
all considered polymorphs.

Our models allow us to rationalize the most important
results described above. Let us start by noting that the P-R
couplings [BPR, CPR, and C′

PR in F (P, R)] are not significantly
affected by the doping. Hence, they do not play a significant
role to explain the La-induced effects.

Indeed, the effects of La doping on the polarization are
essentially captured by the changes in the F (P) term of the
potential [Eq. (2)]. As shown in Table III, we find that AP

(quadratic coupling) is reduced in magnitude upon doping,
indicating a weaker ferroelectric instability of the cubic phase.
Additionally, both BP and CP increase and the relevant com-
bination, 3BP + CP > 0, becomes larger; hence, the quartic
couplings have a stronger effect on the energy landscape com-
pared to pure BiFeO3. All these changes cooperate to yield
shallower ferroelectric energy wells associated to F (P) for
La-doped BiFeO3, with smaller equlibrium polarization and
lower energy barrier between states of opposite P. Note that
this is consistent with previous studies on the effect of La
doping on the switching characteristics of BiFeO3 [24,28].

With regard to the tilt energy given by F (R), Table III
shows that the presence of La weakens the cubic-phase in-
stability (AR becomes less negative); by contrast, the quartic
term (3BR + CR > 0) gets reduced upon doping, thus favoring
larger tilts. These changes oppose each other, and result in the
generally observed moderate reduction in the amplitude of the
FeO6 rotations.

Finally, as shown in Fig. 4, the P[001]+R[001]c case
is peculiar, as it presents the largest reduction in P (about
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59%) and is the only one displaying an increase of R (about
12%). We can rationalize this result by noting that, for this
state, the quartic part of the energy in F (P) [respectively,
F (R)] is controlled by the BP (respectively, BR) coupling
alone. Upon doping, BP grows (BR decreases), which favors
smaller polarizations (larger tilts). Further, because of the
strong competition between polarization and tilts in tetrag-
onal states (BPR > 0; CPR and C′

PR do not contribute), the
changes get particularly large in the case of P[001]+R[001]c.
Note also a subtle difference between P[001]+R[001]c and
P[111]+R[111]c. In the latter case, the relevant quartic pa-
rameter for the tilts is 3BR + CR, and the La-induced decrease
in BR is partly compensated by the increase in CR; as a result,
the tilts do not grow at all (recall AR < 0 grows upon doping)
and the decrease of the polarization is relatively small.

Note that all these observations are consistent with what
we know about the atomistic origin of the polar and tilt
instabilities in BiFeO3. The former rely on the presence of
stereochemically active 6s lone pairs in the Bi3+ cations;
hence, their partial substitution by lone-pair-free La cations
naturally leads to smaller polarizations. The latter are mainly
controlled by the ionic radius of the Bi3+ cation; since La3+

is similar in size, the doping leaves R largely unaffected.

VI. CONCLUSIONS

In summary, we have introduced the simplest, lowest-order
Landau-like potential for BiFeO3 and related compounds,
as well as methods that allow us to compute the poten-
tial parameters from DFT. More precisely, we have derived
analytical expressions for all the model coefficients as func-

tions of the energies and structural features (polarization,
FeO6 octahedral tilts, and strains) of a small set of rele-
vant polymorphs. We have applied the proposed approach to
BiFeO3 and La0.25Bi0.75FeO3, showing its overall accuracy
in reproducing the DFT data. We have also showed that our
models can be used—by interpolation—to predict the proper-
ties of compounds with intermediate dopant concentrations.
We note that the introduced potential, as well as the ana-
lytical scheme to obtain its coefficients from DFT, can be
readily applied to study the properties of other perovskite
oxides characterized by the same order parameters (polar-
ization, antiphase oxygen-octahedral tilts, and strains). This
includes ferroelectrics where the tilts are not important (e.g.,
BaTiO3 or PbTiO3), antiferrodistortive nonpolar perovskites
(e.g., LaAlO3), or compounds where both distortions play a
relevant role (e.g., SrTiO3; potentially, 5d perovskites like
LiOsO3 and NaOsO3 [49,50]), as well as their corresponding
solid solutions. In principle, an extension of our scheme to
compounds where other order parameters are relevant (e.g.,
in-phase tilts in orthorhombic perovskites like CaTiO3 [51])
should be straightforward.
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