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Magnetism and metal-insulator transitions in the Rashba-Hubbard model
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The nature of a metal-insulator and magnetic transitions is still a subject under intense debate in condensed-
matter physics. Among the many possible mechanisms, the interplay between electronic correlations and
spin-orbit couplings is an issue of a great deal of interest, in particular, when dealing with quasi-two-dimensional
compounds. In view of this, here we use a Hartree-Fock approach to investigate how the Rashba spin-orbit cou-
pling VSO affects the magnetic ordering provided by a Hubbard interaction U on a square lattice. At half-filling,
we have found a sequence of transitions for increasing VSO: from a Mott insulator to a metallic antiferromagnet
and then to a paramagnetic Rashba metal. Also, our results indicate that the Rashba coupling favors magnetic
striped phases in the doped regime. By analyzing spectral properties, we associate the rearrangement of the
magnetic ordering with the emerging chirality created by the spin-orbit coupling. Our findings provide insights
towards clarifying the competition between these tendencies.
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I. INTRODUCTION

The interplay between strong electron correlations and
spin-orbit coupling (SOC) has attracted a great deal of atten-
tion over recent years [1–4]. Theoretical interest has found
echo in experimental studies both in materials, such as
semiconductor heterostructures [5], carbon-based materials,
pyrochlore iridates [4], and superconducting cuprates [6] as
well as in ultracold fermionic atoms in optical lattices [7,8].
One of the reasons for such activity stems from the fact that
the paradigmatic Mott insulating phase is affected by the
presence of a SOC in a variety of ways, giving rise to many
exotic quantum states of matter, such as topological insulators,
Weyl semimetals, Kitaev spin liquids, and so forth [1–4].
SOC has also been predicted to modify more conventional
ordered phases, such as magnetism and superconductivity as
well as enhancing the possibility of superconducting triplet
pairing [9].

Despite the intense activity, there is still no consensus on
the mechanisms through which increasing SOC suppresses
antiferromagnetic (AFM) order (or any spiral ordering) on the
way to the above-mentioned more exotic phases. Indeed, even
in the simplest case, namely, that of the single-band Hubbard
model, the effects of Rashba SOC [10] on the ground-state
phase diagram Un (where U is the on-site repulsion, and n
is the band filling) are crucially dependent on the theoretical
approach. At half-filling, a cluster dynamical mean-field the-
ory predicts the existence of a metallic phase which eventually
becomes an insulating phase as U increases with magnetic ar-
rangements changing with the strength of the SOC [11]. Also
at half-filling, a cluster perturbation theory recently found that
the SOC favors the formation of a metallic state [12].

In view of this, we feel that a thorough examination of
the ground-state phase diagram of the Hubbard model with
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Rashba SOC is still lacking especially in the doped case. With
this in mind, here we use a Hartree-Fock (HF) approach capa-
ble of detecting a diversity of spiral magnetic structures, while
also shedding light on the metallic or insulating character of
the phases involved. The layout of the paper is as follows. In
Sec. II we present both the model and the highlights of the
HF approach, whose results are presented and discussed in
Sec. III. Conclusions are presented in Sec. IV.

II. MODEL AND METHODS

The system is described by the Hamiltonian,

H = HH + HSO, (1)

where

HH = −t
∑
〈i,j〉,σ

(c†
i,σ cj,σ + H.c.) + U

∑
i

ni↑ni↓ (2)

is the usual Hubbard Hamiltonian describing fermions hop-
ping (t is the hopping integral) between nearest-neighbor
sites 〈i, j〉, of a square lattice c†

iσ (cjσ ) creates (annihilates) a
fermion with spin σ at site i (j), U is the strength of the on-site
Coulomb repulsion, and niσ ≡ c†

iσ ciσ ,

HSO = VSO

∑
i,σ,σ ′

[
i
(
c†

i,σ σ x
σσ ′ci+ŷ,σ ′ − c†

i,σ σ
y
σσ ′ci+x̂,σ ′

) + H.c.
]

(3)

describes the Rashba-type spin-orbit coupling, where VSO is
the strength of the Rashba SOC, and σ τ

σσ ′ is the σ, σ ′(=↑,↓)
element of the Pauli matrices σ̂ τ , τ = x, y; H.c. stands for
“Hermitian conjugate of the previous expression.” We note
that HSO is written in the form of a kinetic term, which means
that the local Rashba contribution is neglected. The reason for
this lies in the fact that here we are primarily concerned in
highlighting the effects arising from the breakdown of spatial
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inversion symmetry, which is preserved by the local Rashba
SOC [13].

We probe the magnetic properties of the model within a
Hartree-Fock approximation [14], which allows us to decou-
ple the quartic terms of the Hamiltonian, leading to a quadratic
form with the cost of adding effective Weiss fields with respect
to which minimization will be sought; see below. In order
to investigate the possibility of stabilizing spiral magnetic
phases, we let the magnetization vector be defined as [14–17]

mi = 〈Si〉 = m[cos(Q · i), sin(Q · i), 0], (4)

with

Si = 1

2

∑
σ,σ ′=±

c†
i,σ σσσ ′ci,σ ′ , (5)

where σ is the vector operator whose components are the
Pauli matrices and the magnetic wave-vector Q ≡ (qx, qy)
characterizes the spiral phases. Within our scheme, both wave
vector and magnetization amplitude m are determined self-
consistently.

The Hartree-Fock Hamiltonian then becomes

HHF = −t
∑
〈i,j〉,σ

(c†
i,σ cj,σ + c†

j,σ ci,σ )

+VSO

∑
i,σ,σ ′

[
i
(
c†

i,σ σ x
σσ ′ci+ŷ,σ ′ − c†

i,σ σ
y
σσ ′ci+x̂,σ ′

) + H.c.
]

+U
∑

i

[
n

2
ni − 2mi · Si − n2

4
+ m2

]
, (6)

where n is the the average electronic density. The diagonal-
ization of HHF is more readily worked out in reciprocal space.
Upon Fourier transforming Eq. (6), we obtain

HHF =
∑

k

(
εkc†

k↑ck↑ + εk+qc†
k+q↑ck+q↑ + 1

2
nUnk

)

−Um
∑

k

(c†
k↑ck+q↓ + c†

k+q↓ck↑)

+
∑

k,σ,σ ′
(V̂k )σσ ′c

†
kσ ckσ ′ , (7)

where

V̂k ≡ 2VSO(σ x sin ky − σ y sin kx ), (8)

and the dispersion relation is εk = −2t (cos kx + cos ky). In
what follows, we perform our analyses on lattices of 200 ×
200 sites, which are large enough to disregard finite-size
effects.

A. The noninteracting limit

If we set U = 0, the original Hamiltonian can be diago-
nalized by Fourier transforming into k space, leading to the
bands,

E±
k = εk ± 2VSO

√
sin2 kx + sin2 ky, (9)

and its correspondents eigenvectors,

|±, k〉 = 1√
2

(
1

±e−iφ

)
, (10)

FIG. 1. Band structure along a path in k space across the high-
symmetry points of the square lattice (see the inset). The black
dashed curve is εk, the tight-binding band in the absence of the
Rashba SOC, whereas the upper (red) and lower (blue) solid lines
are the Rashba bands for VSO/t = 1, and are labeled by α = ±,
respectively.

in the spinor basis �k = (c†
k↑, c†

k↓) with tan φ =
sin ky/ sin kx. Figure 1 shows the splitting of the
tight-binding band εk, caused by the Rashba SOC: the
lack of spatial inversion symmetry breaks the spin degeneracy
in the conventional dispersion relation, thus, giving rise to
two bands. Accordingly, these single-particle bands, each of
which is labeled by a “chirality,” α = ±, describe a “Rashba
metal” (RM); that is, the spin texture acquires a momentum
dependence.

Examples of the noninteracting density of states (DOS)
with Rashba SOC may be found in Refs. [18–20] from which
we see that the van Hove singularity (vHS) present at the
Fermi energy, εF at half-filling is split in two, symmetrically
distributed around εF; also, the nesting of the Fermi surface at
half-filling is suppressed.

B. The interacting case

Introducing Nambu spinors,

�k = (c†
k↑, c†

k↓, c†
k+q↑, c†

k+q↓), (11)

the Hartree-Fock Hamiltonian Eq. (7) becomes

HHF = 1

2

∑
k

�kĤk�
†
k +

∑
k

(
μn + Um2 − 1

4
Un2

)
, (12)

where

Ĥk =

⎛
⎜⎜⎜⎝

Ek (V̂k )↑↓ 0 −Um

(V̂k )↓↑ Ek −Um 0

0 −Um Ek+q (V̂k+q)↑↓
−Um 0 (V̂k+q)↓↑ Ek+q,

⎞
⎟⎟⎟⎠, (13)

with

Ek = εk − μ + 1
2Un, (14)

and (V̂k )σσ ′ are the spin-orbit matrix elements [see Eq. (8)].
With the HF Hamiltonian, Eq. (12), one solves a Schrödinger
equation for a given k, namely,

Ĥk
∣∣ψν

k

〉 = λ
(ν)
k

∣∣ψν
k

〉
, (15)
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from which we extract the eigenstates |ψν
k 〉 and their corre-

sponding eigenvalues λ
(ν)
k with ν being an integer labeling

the quasiparticle bands. Therefore, the Helmholtz free energy
may, therefore, be written as

F = − 1

β

∑
k,ν

ln
[
1 + e−βλ

(ν)
k

] + μn − U

(
n2

4
− m2

)
, (16)

where β = 1/kBT .
The fields m, Q = (qx, qy), and μ are determined self-

consistently through the minimization of the Helmholtz free
energy, 〈

∂F

∂μ

〉
=

〈
∂F

∂m

〉
=

〈
∂F

∂qx

〉
=

〈
∂F

∂qy

〉
= 0, (17)

where one should not discard the possibility of having qx 	=
qy. At this point, it is worth making a technical remark. Even
though we are ultimately interested in the ground-state prop-
erties of the model, it turned out that the gain in convergence
steps to find the minima is significant if we perform the mini-
mization process at very low temperatures (hence, through the
free energy) instead of the total (internal) energy. The errors
involved by working at very low, but finite temperatures are
indeed small; for instance, at a temperature T ∼ 1 × 10−4 (in
units of t/kB), the difference between the free energy and the
ground-state energy is smaller than 10−6 (in units of t).

Having in mind that several magnetic arrangements may
occur, here we adopt the following strategy to determine
the ground state. For fixed values of U/t , VSO, and band
filling n, we calculate the free energy assuming different
magnetic wave vectors, Q = (qx, qy). For instance, the antifer-
romagnetic state corresponds to m 	= 0 and qx = qy = π , the
ferromagnetic (FM) state to m 	= 0 and qx = qy = 0, and the
paramagnetic state to m = 0. We also allow for other phases
with m 	= 0, such as striped phases with Q = (q, 0) [and its
symmetric Q = (0, q)], or Q = (q, π ) [Q = (π, q)], as well
as general spiral phases, Q = (q, q). With all the possible
lowest free energies at hand, the ground state for the chosen
values of U , VSO, and n corresponds to the minimum free
energy; the values of q are also varied, and checked whether
changes increase or decrease the free energy. We then repeat
for several other values of the control variables to set up the
phase diagrams. In the next section, we present and discuss
the results of this minimization for different values of the
electronic density and interaction strengths; we have found
it instructive to separate the discussion into undoped and
doped cases.

III. RESULTS AND DISCUSSIONS

A. Half-filling

In the absence of the Rashba SOC, the ground state of
the Hubbard model at half-filling is antiferromagnetic for
any U > 0, as predicted both by the present HF approxi-
mation [14,21] and by determinant quantum Monte Carlo
(DQMC) simulations [22]. Furthermore, the magnetization
amplitude m increases with U as a result of the higher de-
gree of fermion localization; this behavior is indeed verified
within our approach when we follow the values of m with
U for VSO = 0 in Fig. 2. Actually, as a combined result of

FIG. 2. Magnetization amplitude as a function of the spin-orbit
coupling strength VSO, at half-filling, and for different values of U/t ,
which decrease from the top curve to the bottom one.

the van Hove singularity and nesting at half-filling, m ∼
(t/U ) exp[−2π

√
t/U ] within a HF approximation [22] in the

weak-coupling regime.
When VSO 	= 0, spin-flip processes come into play, which

tend to disrupt the antiferromagnetically ordered state; this
effect should be more effective at smaller on-site couplings.
Indeed, Fig. 2 shows that the magnetization amplitude m
decreases faster with VSO for the smaller strengths of the
Coulomb repulsion, and that for U/t � 8 the SOC hardly
affects the antiferromagnetic ordering within the physically
appealing range of values VSO/t � 1.

Figure 2 also shows that the magnetization amplitude m
approaches zero very slowly with VSO. Let us then take a
closer look at the results for U/t = 2 for which the behavior
of m with VSO/t is shown again in Fig. 3, but now as a
logarithmic-linear plot. As mentioned before (in the context of
U = 0), the presence of a Rashba SOC splits the vHS into two
peaks; Fig. 4 shows that this feature still occurs when U/t = 2
if VSO � 0.5 and that it is located very close to the Fermi
energy. We may, therefore, attribute this exponential decay
of m to the influence of the nearby vHS-like peak. As seen
for the periodic Anderson model [23], one expects that the
mVSO curves actually sharpen and acquire the usual order pa-
rameter behavior as the lattice size increases, or, equivalently,
if the grid used in k space gets denser. Instead of pursuing
an investigation along these lines, for our purposes here it
suffices to accept as the critical value VSO,c the value which
renders m/m0 � ε, where m0 = 1/2 (h̄ ≡ 1) is the saturation
value for spin 1/2, and ε is a tolerance. This, in turn, must be
balanced with the fact that we are minimizing the free energy
at low but finite temperatures. Indeed, the inset of Fig. 3
shows the estimates of VSO,c/t as a function of temperature for
both ε = 10−3 and ε = 10−4: we see that the choice ε = 10−3

leads to a stable value of VSO,c/t ≈ 0.9 as the temperature is
lowered, so we take this as our working tolerance.

A question which immediately arises is whether the sup-
pression of the antiferromagnetic phase is accompanied by a
transition to a metallic state. In order to investigate this issue,
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FIG. 3. Logerithm-linear plots for the magnetization amplitude,
m (red squares), and the energy gap between antiferromagnetic
and paramagnetic states, �E (blue circles) as functions of VSO for
U/t = 2.0 and n = 1.0. The inset shows the critical values of the
Rashba SOC VSO,c for two fixed values of the “tolerance as zero”
ε as functions of the temperature used in the minimization process
[see Eq. (17)].

we examine the spectral properties. On one hand, we calculate
the total (ground-state) energy assuming an AFM state as
well as a RM state, and observe the gap �E between these
energies as a function of VSO/t for fixed U/t ; the outcome
for U/t = 2 is shown in Fig. 3. One finds a decay towards
zero faster than the one for m: more specifically, �E reaches
a tolerance of ε̃/t ∼ 10−3 at VSO,M/t ≈ 0.5, which is almost
half of VSO,c/t as determined from the behavior of m. We have
also calculated the DOS on both sides of the transition; data
for U/t = 2 are shown in Fig. 4. For small values of VSO

the behavior is reminiscent of what one would expect for a
Mott insulator, namely, the van Hove singularity is split into
two peaks separated by a gap around the Fermi energy. As
VSO increases, the gap narrows, forming a pseudogap near

FIG. 4. Density of states at half-filling with U/t = 2, and differ-
ent values of VSO/t .

FIG. 5. Hartree-Fock phase diagram at half-filling. VSO,c denotes
the critical curve for the transition between Rashba and antiferro-
magnetic metals, whereas VSO,M denotes the critical curve for the
metal-insulator transition between antiferromagnetic states.

VSO,M/t ≈ 0.5; upon further increase in VSO the gap closes
leading to full metallic behavior. As a final test of our findings,
we examined the possibility of the difference between the two
critical points being caused by very shallow minima of the
free energy but found that the minima are safely separated
in VSO. We, therefore, conclude that within our approach we
have found a sequence of two transitions as VSO increases,
namely, first a Mott-AFM to an AFM metal, and then to a
Rashba metal.

By employing the same procedure for different values of
VSO, we obtain the phase diagram shown in Fig. 5. We see that
increasing VSO at fixed U first drives the system from a Mott
AFM phase to a metallic AFM phase; then, as U is further
increased, the AFM gives way to a Rashba metallic phase. The
fact that a Rashba SOC favors the appearance of a metallic
phase is in line with the findings of Refs. [12,24] in which the
strong VSO regime was considered.

B. Doped regime

An early ground-state HF phase diagram, U vs doping
δ ≡ 1 − n for the square lattice Hubbard model only in-
volved the possibility of FM, AFM (Néel), and paramagnetic
phases [22]; as generally expected for mean-field-like ap-
proaches, the outcome was qualitatively similar to the phase
diagram obtained for the cubic lattice [25]. Later on, a HF
approach allowing for spiral phases revealed that the Néel
phase is indeed unstable against finite doping, giving way to
incommensurate magnetic arrangements as well as to striped
phases [14,21].

The suppression of antiferromagnetism for any doping is
in agreement with predictions from DQMC simulations [22],
thus, adding extra reliability to this approach. Indeed, this
approach has revealed myriads of magnetic phases both in the
Kondo-lattice model [15], and in a model [26] for coexistence
of magnetism and superconductivity [16]; the latter work de-
scribes some features of the magnetic arrangements tuned by
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FIG. 6. Energy for different phases as a function of doping δ for
fixed VSO = 0.5 and U/t = 9.0. The inset shows the value of q/π as
a function of doping for the striped phase (q, π ).

doping as experimentally observed in the borocarbide family
of materials [27–29].

Away from half-filling, it is illustrative to compare the
lowest energies, assuming different magnetic states, as func-
tions of doping as shown in Fig. 6 for VSO/t = 0.5 and
U/t = 9. At very low doping, δ � 0.05, the lowest-energy
state corresponds to Q = (q, q), with q decreasing from π

roughly linearly with δ (red squares in the inset of Fig. 6).
In the interval δ ∈ [0.05, 0.3], the ground state corresponds to
Q = (q, π ) with q decreasing from 0.84 to 0 as shown in the
inset of Fig. 6. At this doping the energy for Q = (q, π ) (blue
circles) joins smoothly with the one corresponding to (0, π )
(black diamonds). By repeating this procedure for other values
of U and VSO, we generate the phase diagrams displayed
in Fig. 7.

Several features stand out when Fig. 7 is compared with the
case VSO = 0 [14,21,30]. First, for small doping the region of
stability for the symmetric arrangement Q = (q, q) shrinks as
VSO increases, in favor of the striped phase Q = (q, π ) [31].
Another noteworthy change is the fact that the phase Q =
(0, q), located near δ = 0.7, disappears with increasing VSO

so that one has a direct transition between a RM and a fer-
romagnet at large doping. By contrast, the size of the striped
region Q = (0, π ), centered around quarter-filling and with
U/t around 9, is quite insensitive to the magnitude of the SOC.

From the above findings, we may conclude that, at least,
for dopings up to quarter-filling, SOC tends to favor striped
magnetic arrangements. Indeed, within a semiclassical picture
the Rashba SOC favors the spins to point along directions per-
pendicular to the hopping direction, thus, a delicate balance
with the Pauli principle is achieved by fermions flowing along
the the x and y lattice directions.

In order to understand the evolution of the magnetic wave
vector with VSO, we first define a spin chirality as [32]

α(k, ν) = 〈
ψν

k

∣∣2S · (k̂ × ẑ)
∣∣ψν

k

〉
, (18)

where the |ψν
k 〉 are the HF ground states for U 	= 0; see

Eq. (15). When U → 0, |ψν
k 〉 → |±, k〉 as given by Eq. (10)

so that α(k, ν) → ±1; note, however, that for U 	= 0, α(k, ν)

FIG. 7. Hartree-Fock phase diagrams U vs doping δ for
(a) VSO/t = 0.2, and (b) VSO/t = 0.5. AFM stands for antiferromag-
netic, FM stands for ferromagnetic, and RM stands for Rashba metal,
whereas the spiral phases are labeled by Q ≡ (qx, qy ); see the text.
The black dashed lines separate the insulating phase, predominantly
in the low-doping regime from the metallic phase in the high-doping
regime.

may also vary continuously between ±1 as we will see below.
We now define projected spectral functions as follows:

A±(k, ω) =
∑

ν

α(k, ν)δ
(
ω − λ

(ν)
k

)
, (19)

so that the δ functions are weighted by the spin chirality,
whose sign, in turn, labels the superscripts ± in A±(k, ω).
With A±(k, ω) at hand, we obtain the projected density of
states as D±(ω) = ∑

k A±(k, ω).
The top (bottom) row of Fig. 8 shows the DOS, D± (spec-

tral function A±) for increasing intensities of the SOC. Note
that for all values of VSO, the DOS at the Fermi energy is fi-
nite, indicating metallic behavior as expected. For VSO/t = 0,
the bands are unsplit as they should, but nonzero values of
VSO cause a chirality splitting of the bands with dspersion-
less features around some points (notably around X ) in the
Brillouin zone being preserved. With increasing VSO, the sys-
tem becomes helically polarized, i.e., states below the Fermi
level acquire a dominant α < 0 character.

We are now in a position to examine the evolution of q [in
Q = (q, π )] with the SOC intensity. Figure 9 shows that for
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FIG. 8. Upper panel: Density of states for n = 0.85, U/t = 5,
and (a) VSO = 0.0, (b) 0.2, (c) 0.5), and (d) 0.7. Lower panel: Pro-
jected spectral function for (e) n = 0.85, U/t = 5, and VSO = 0.0,
(f) 0.2, (g) 0.5, and (h) 0.7; the chirality α is indicated by the color
map. In each case, the Fermi level is indicated by the dashed lines.

U/t = 5 and for both n = 0.8 and n = 0.85, q slowly changes
with VSO, until it reaches a peak and then steadily declines.
Let us focus on Fig. 8, corresponding to filling n = 0.85. For
VSO/t = 0.2 the Fermi level lies at the vH singularity for D−
so that many states contribute to the averages; by contrast,
beyond VSO/t = 0.5, the contribution from the vH singular-
ity is strongly suppressed, and q decreases. The inescapable
conclusion is that the SOC strongly influences the magnetic
ordering through changes in the the spectral weight especially
near the Fermi level. Alternatively, this may be viewed as a
manifestation of the Rashba coupling renormalization by the
electron-electron interaction [5,33], in particular, it has been
recently established that the electron-electron interaction can
also lead to nonlinearities in the Rashba coupling [34].

Finally, it is worth remarking that some aspects of the com-
petition between Rashba and electron-electron interactions
have been addressed in a continuum version [35], and their
findings qualitatively agree with ours. Indeed, a comparison
between our Figs. 5 and 7 with Fig. 1 of Ref. [35], shows that
for small electron-electron interactions, nonmagnetic metallic
phases are favored with the bands displaying a net chirality;
we expect that our RM phase shares most of its properties with
the chiral Fermi liquid phases of Ref. [35]. As the electron-
electron interaction is increased, magnetically ordered phases
dominate; while the ansatz we use here allows us to provide
a detailed evolution of the wave-vector dependence of the
magnetization (see below), we cannot distinguish between
in-plane and out-of-plane polarizations as in Ref. [35].

FIG. 9. The dependence of the wave vector with VSO for
U/t = 5.0.

IV. CONCLUSIONS

We have considered the Hubbard model in the presence
of a Rashba SOC. Through a HF approach which allows for
the presence of spiral magnetic arrangements, we have de-
termined ground-state phase diagrams in the parameter space
of on-site repulsion, U , SOC strength VSO, and doping δ. At
half-filling, we have established that for fixed U an increas-
ing Rashba SOC drives a sequence of two transitions: from
a Mott insulator to a metallic antiferromagnet and then to
a paramagnetic Rashba metal. In the doped regime, several
magnetic phases appear, including ferromagnetic and striped
phases. Given that one has a very fine control of the repulsive
interaction in ultracold atoms, we may envisage the possibility
of generating a wide variety of magnetic arrangements simply
by varying U and the doping level, say for fixed SOC; in
the ultracold atoms scale, VSO ∼ 0.5t corresponds to 30 nK,
which is within reach of the lowest temperatures currently
achieved [36–38]. One may also expect that the HF phase
diagrams we have obtained here for a square lattice can serve
as a guide to three-dimensional systems.
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