
PHYSICAL REVIEW B 106, 165119 (2022)

Collective excitations of fractional quantum Hall states in monolayer graphene
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We study the collective excitations of fractional quantum Hall states in graphene. We focus on states which
allow for chiral symmetry breaking orders, specifically antiferromagnetism and charge density wave order. We
investigate numerically how the collective excitation spectra depend on filling and the flux attachment scheme
for two classes of variational states, the Töke-Jain sequence and the Modak-Mandal-Sengupta sequence.
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I. INTRODUCTION

Low-energy electrons in graphene display a linear disper-
sion and can be described by a Dirac Hamiltonian [1,2]. As
a two-dimensional electron gas, when graphene is placed in
strong perpendicular magnetic field, it can exhibit the integer
quantum Hall effect (IQHE). The pseudorelativistic nature of
electrons in graphene leads to an IQHE which differs from
nonrelativistic systems. Specifically the energies of Landau
levels in a nonrelativistic system scale with the Landau level
index n, while in the relativistic case the energies scale as

√
n.

Additionally, the fourfold degeneracy of the zeroth Landau
level in graphene implies a multicomponent IQHE.

The Hall plateaux for noninteracting electrons in graphene
are at fillings ν = ±2(2n + 1) for integer n [1–4] as op-
posed to ν = 2n for spin-degenerate nonrelativistic systems.
Electron-electron interactions in graphene can lead to IQH
states at additional filling fractions including ν = 0,±1
[5–27]. The states at ν = 0,±1 cannot be accounted for in
a picture of noninteracting electrons [13] and various pro-
posals have been put forward to explain their origin either
in terms of chiral symmetry breaking (CSB) orders [28]
such as charge density wave (C) and antiferromagnetism (N)
[5,14,15,21,23,24] or in terms of valley-odd quantum Hall
ferromagnetism (QHFM) [17,19,25]. In the CSB scenario in-
teractions lead to CSB orders that break sublattice symmetry
and this has also been demonstrated to give good agreement
with experimental results [13,29].

The fractional quantum Hall effect (FQHE) has also been
observed in graphene [6,10–12,30–32] and some experiments
have revealed an unusual pattern of fractions that follows
the standard composite fermion sequence between filling
factors ν = 0 and ν = 1 but involves only even-numerator
fractions between ν = 1 and ν = 2 [12]. Theoretically, the
FQHE in graphene has attracted considerable interest [33–50].
In particular, Refs. [36,45,51,52] used the framework of
the Chern-Simons theory of multicomponent FQH states
in graphene in the presence of symmetry breaking orders
to investigate possible composite fermion wave functions.
Using this framework and allowing for CSB orders, we pro-
posed variational wavefunctions [51] to explain the recent

observation of even denominator fractional quantum Hall
(EDFQH) states for filling fractions ν = 1

2 and 1
4 [53,54]. It

has not yet been determined whether these CSB orders are
present in experiments. The collective excitations of FQHE
states in graphene may help to distinguish between different
possible symmetry breaking orders.

Lopez and Fradkin showed how a system of electrons
coupled to a Chern-Simons gauge field is equivalent to a sys-
tem of composite fermions [55]. Employing a random phase
approximation method they were able to arrive at expressions
for the electromagnetic response of these states for finite wave
vector, �q, and frequency, ω, [56]. Halperin, Lee, and Read [57]
extended their methods to study the FQH state at ν = 1

2 and
Simon and Halperin [58] further developed this approach by
taking into account the corrections due to mass renormaliza-
tion that the Chern-Simons term induces. They also studied
the collective excitations of the FQH liquid and found a gap
at zero wave vector and a number of magnetoroton minima
at finite wave vectors, consistent with earlier predictions us-
ing the single mode approximation [59,60]. These results are
consistent with experiments involving using inelastic light
scattering [61] and observation of geometric resonances in the
cyclotron orbits of composite fermions (CFs) using surface
acoustic waves [62].

Recently the methods developed by Fradkin and Lopez
[63] have been applied to the case of graphene and expressions
for the components of the electromagnetic response tensor
were obtained [37]. However these calculations did not take
into account any form of symmetry breaking orders, originally
emphasized in Ref. [45].

In this work we are primarily interested in studying the
collective excitations of FQH states for which the filling frac-
tion lies between 0 < ν < 1. For calculational convenience
we focus on the following symmetry breaking orders: out
of plane antiferromagnetism, charge density wave and fer-
romagnetism, since these are easily accommodated in the
Chern-Simons theory we employ [36,51]. We work in the
zeroth Landau level (ZLL) where the sublattice and valley
degrees of freedom coincide. The flux attachment scheme,
described in Sec. II, determines the order parameters. Our aim
is to understand how the collective excitations change in the
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presence of the order parameters. This is potentially a path to
gain insight into the nature of symmetry breaking present in
the ZLL in graphene.

Our main results are: (i) We find expressions allowing
calculation of the collective excitation spectra for FQH states
in graphene in the presence of symmetry breaking orders;
(ii) we find that states with the simplest flux attachments
are generally the most stable in that (a) they have larger
gaps as momentum q → 0 and (b) the magnetoroton min-
ima at finite q have larger energies; (iii) We investigated the
excitation spectra for ν = 1/3, ν = 1/2, and ν = 2/5 states
while varying order parameters and flux attachments. We find
that there is a complex interplay of these two factors that
may have implications for recent experimental measurements
[53].

This paper is structured as follows. In Sec. II we intro-
duce the model. In Sec. III we derive the effective action
and look for the saddle point configuration then expand the
mean field action around the saddle point in terms of Gaussian
fluctuations. In Sec. IV we derive an expression for the elec-
tromagnetic response tensor. In Sec. V we present numerical
results for the collective excitation spectra, and in Sec. VI we
discuss our results and conclude.

II. MODEL

Starting from the extended Hubbard model on the honey-
comb lattice and applying the Hartree-Fock approximation
[15] gives rise to a low-energy Hamiltonian, in sublattice
space, including CSB orders mα and ferromagnetic order
fα of

H ξ
α = ξα h̄vF (�1σ1 + �2σ2) + mασ3 + fασ0, (1)

where �i = pi + eAi; i = 1, 2, with pi the momentum opera-
tor and Ai the vector potential. The index α = 1, 2, 3, 4 labels
components of the spin and valley degrees of freedom (also
called flavors or species) as 1 ≡ K ↑, 2 ≡ K ↓, 3 ≡ K ′ ↑, and
4 ≡ K ′ ↓. K and K ′ are the two inequivalent Brillouin-zone
(BZ) points where the valence band touches the conduction
band in reciprocal lattice space. The sigma matrices act in the
2 × 2 sublattice space and ξα = ± correspond to the +(K )
and −(K ′) valleys respectively. The Hamiltonian [Eq. (1)] acts
on the spinor �α = (uα, vα )T where uα (vα ) is the amplitude
on the A(B) sublattice of graphene’s honeycomb lattice.

In Eq. (1) the mα are a combination of chiral symmetry
breaking orders defined as: m1 = C + N ; m2 = C − N ; m3 =
−(C + N ); m4 = −(C − N ) where C is the charge density
wave order and N is easy-axis Neel anti-ferromagnetic order.
The ferromagnetic order (F) enters Eq. (1) through fα , defined
as: f1 = F ; f2 = −F ; f3 = F ; f4 = −F .

Equation (1) describes interacting electrons in graphene in
the presence of a magnetic field at the mean field level. A
system of electrons in a magnetic field can be equivalently
described by a system of composite fermions (CFs) in an ef-
fective magnetic field [64]. We consider four different species
or flavors of composite fermions, corresponding to the differ-
ent values of α as defined above. We begin by introducing
the transformation �α = ei	αψα , where ψα is the composite

fermion field [51], and

	α = Kαβ

∫
d �r′arg(r̃ − r̃′)ρβ (r̃′), (2)

where the matrix K describes the flux attachment scheme. An
element Kαβ is the flux attached to CF of species α as seen
by the species β. We parametrize K using the following form
[36]:

K =

⎛
⎜⎝

2k1 m1 n1 n2

m1 2k2 n3 n4

n1 n3 2k3 m2

n2 n4 m2 2k4

⎞
⎟⎠. (3)

With the definition of the matrix element Kαβ as the flux at-
tached to species α as seen by species β the physical meaning
of the elements k, m and n emerges: 2k is the flux attached
to the each species as seen by itself, mi is the flux attached to
a species as seen by another species that belongs to the same
valley K/K ′ but opposite spin and ni is the flux attached to a
species, belonging to a valley K/K ′ as seen by another species
belonging to the other valley K ′/K . For our calculations we
consider the elements of K under the simplification ki = k,
mi = m and ni = n which are labeled by the triplet (k, m, n).

The derivative terms in the Hamiltonian transform as

�†
α (±σ1�1 − σ2�2)�α → ψ†

α (±σ1�̃1 − σ2�̃2)ψα,

where �̃i = �i − aα
i , with the Chern-Simons field aα

i defined
as

aα = Kαβ

∫
d �r′g(�r − �r′)ρβ (�r′); g(�r) = ẑ × �r

r2
.

Here ρα corresponds to the density of composite fermion
species of type α. In terms of these densities we can define
our order parameters as follows [37,51]:

1 = ρ1 + ρ2 + ρ3 + ρ4

ρ
, C = ρ1 + ρ2 − ρ3 − ρ4

ρ
,

F = ρ1 − ρ2 + ρ3 − ρ4

ρ
, N = ρ1 − ρ2 − ρ3 + ρ4

ρ
. (4)

The composite fermion Hamiltonian is thus

H ξ
α = ξαvF

(
�̃α

1 σ1 + �̃α
2 σ2

) + mασ3 + fασ0, (5)

where �α
i = pi + eAi + aα

i , with α again labeling the species.
Following Fräßdorf [37], we now employ the Schwinger-

Keldysh technique [65–68] to develop a field theoretic
description of the multispecies composite fermions coupled
to four statistical U (1) gauge fields, aα . In the Schwinger-
Keldysh technique the time argument is promoted from a real
variable to a complex variable corresponding to a contour-
time and the correlation functions are defined as path-ordered
products of the fields on the Schwinger-Keldysh contour.
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Since we work with an equilibrium system we take the refer-
ence time, t0 on the contour to be in the infinite past, thereby
reducing the kinetic equation solutions to well known equilib-
rium distributions. The Schwinger-Keldysh technique leaves
open the option to extend our theory to a finite temperature
and nonequilibrium scenarios.

III. EFFECTIVE ACTION

The generating functional for the Hamiltonian defined in
Eq. (1) is given by

Z
[
ψα, Aμ,Aα

μ, aα
μ

] =
∫

Dψ†DψeiS[ψ,e(Aμ+Aα
μ )+aα

μ], (6)

where the external vector potential, Aμ + Aα
μ, is composed

of two terms: a piece Aμ corresponding to the perpendicular
magnetic field and a small fluctuating term with vanishing
average, Aα

μ, which is used to probe the electromagnetic re-
sponse of the system.

The action S can be written as

S = SD + SCS, (7)

where SD is the composite fermion action corresponding to
the Hamiltonian in Eq. (4):

SD
[
ψ, Aμ + Aα

μ + aα
μ

] =
∫

C,�r
ψ†,αĜ−1

0,αβψβ, (8)

with ∫
C,�r

≡
∫

C
dt

∫
d2r, (9)

and C is the Schwinger-Keldysh contour along which the
integration is performed. The matrix Ĝ−1

0 is the inverse
contour-time propagator which is diagonal in the species in-
dex:

Ĝ−1
0 = diag

(
G−1

0,K↑, G−1
0,K↓, G−1

0,K ′↑, G−1
0,K ′↓

)
, (10)

with

G−1
0,α (x, y) = δC (x − y)

(
iσμ

α Dα
μ − μα + mασ3 + fασ0

)
. (11)

We note that we have already included interaction terms
at the mean field level, which leads to order parameters C
and N (that combine to form mα) and F. Here δC (x − y) =
δC (x0 − y0)δ(�x − �y) is the contour-time δ function and σμ

α =
(σ0, καvF σ1, καvF σ2) and mα, fα have been defined above.
The gauge covariant derivative

Dα
μ = ∂μ + ieAμ + ieAα

μ + iaα
μ,

contains the fields Aμ + Aα
μ and the statistical gauge field aα

μ.
SCS is the Chern-Simons action which describes the dy-

namics of the statistical gauge field aα
μ and has the form

SCS = 1

2
(K)−1

αβ

∫
C,�r

εμνλaα
μ∂νaβ

λ . (12)

We integrate out the fermionic fields ψ from the action S
in Eq. (7) to obtain an effective action in terms of the gauge

FIG. 1. Schwinger-Keldysh closed contour with forward time
branch (C+) and backward time branch (C−). We set the reference
time t0 = −∞.

fields only,

Seff
[
e
(
Aμ + Aα

μ

)
, aα

μ

]
= −iTr lnG−1

0

[
e
(
Aμ + Aα

μ

)
, aα

μ

] + SCS
[
aα

μ

]
. (13)

We find the saddle point configuration of the path integral for
the statistical gauge fields aα

μ and then perform an expansion
of the effective action in terms of fluctuations around this
mean field solution. Following Fradkin and Lopez [55] we
search for a solution that leads to a vanishing charge carrier
current and a nonzero, time-independent charge carrier den-
sity, ρα , which is given by

ρα = −(K)−1
αβBβ, (14)

where Bβ is a uniform field due to the statistical gauge field
experienced by a CF of species β. Inverting this relation gives
us

Bβ = −ρα (K)αβ. (15)

The effect of this field is to reduce or enhance (depending
on the sign of charge carriers present in the sample) the orig-
inal magnetic field so that a CF of species α experiences an
effective magnetic field given by

Bα
eff = B + Bα = B − ρβ (K)αβ. (16)

Here ρ is the total electron density and ν is the filling fraction
for the electrons. From Eq. (16) we get a relationship [36]
between the composite fermion filling fraction να for species
α, the density ρα and the flux attachment matrix of

ρα

να

= ρ

ν
− Kαβρβ. (17)

We now represent the effective action [Eq. (13) in a more
convenient form by performing a Keldysh rotation. The con-
tour illustrated in Fig. 1 consists of a forward (C+) and a
backward (C−) piece, and the fields on the respective pieces
of the contour maybe be written as ψ±, a±. We transform to
a new set of double fields ψc,q and ac,q which are symmetric
and antisymmetric linear combinations of the ± double fields
with, e.g., for ψ :

ψc = 1√
2

(ψ+ + ψ−), ψq = 1√
2

(ψ+ + ψ−). (18)

The labels c, q correspond to classical and quantum compo-
nents respectively [69]. The net result is that the derivatives of
the action with respect to the gauge fields are now performed
with respect to the quantum components [67].
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The gauge fields, aα , can be viewed as being comprised of a mean field part (āα) and a fluctuation part (�aα), aα = āα + �aα ,
and we expand the effective action in terms of the fluctuations up to the second order in �a. Terms linear in fluctuations vanish
and we get

Seff
[
Aα

μ, aα
μ

] =
∫

xy

[
(�ac)αμ + (Ac)αμ (�aq)αμ + (Aq)αμ

]
(x)

[
0 (�A)μν

αβ

(�R)μν

αβ (�K )μν

αβ

]
(x, y)

[
(�ac)βν + (Ac)βν
(�aq)βν + (Aq)βν

]
(y)

+ [
(�ac)αμ (�aq)αμ

]
(x)

[
0 (CA)μν

αβ

(CR)μν
αβ (CK )μν

αβ

]
(x, y)

[
(�ac)βν
(�aq)βν

]
(y), (19)

which can be written in a more compact form as

Seff
[
Aα

μ, aα
μ

] =
∫

xy

{[
(�a)αμ + (A)αμ

]T
(x)�μν

αβ (x, y)
[
(�a)βν + (A)βν

]
(y) + (�a)αμ(x)Cμν

αβ (x, y)(�a)βν (y)
}
. (20)

Here the fields Aα
μ and aα

μ are two component fields in
Keldysh space

A =
(
Ac

Aq

)
,

and similarly for the fields aμ
α . The polarization tensor � and

the Chern-Simons tensor C are 2 × 2 matrices with advanced
(A), retarded (R), and Keldysh (K) components:

Cμν

αβ =
(

0 (CA)μν
αβ

(CR)μν
αβ (CK )μν

αβ

)
. (21)

We use bold font to indicate that a quantity has classical
(c) and quantum (q) components if a vector, or Advanced (A),
Retarded (R), and Keldysh (K) components if a 2 × 2 matrix.

As the system is in equilibrium, in the linear re-
sponse regime, the different components satisfy the bosonic
fluctuation-dissipation theorem. The polarization tensor � is
given by

�
μν

αβ = − i

2

δ2

δaβ
ν δaα

μ

Tr ln Ĝ−1
0

[
eAμ + aα

μ

]∣∣
a=ā, (22)

where Aμ is the electromagnetic field and Ĝ−1
0 is the inverse

time propagator mapped onto the Keldysh basis. Since the
propagators are diagonal in the species index α, the polar-
ization tensor is also diagonal, �

μν
αβ = �

μν
αβδαβ . To determine

the collective excitation spectra we only need consider the
retarded (R) components of the polarization tensor given in
Appendix A.

The Chern-Simons tensor has the following form:

Cμν

αβ = (K)−1
αβεμνλ∂λ. (23)

The polarization tensor and the Chern-Simons tensor are
transverse. As a consequence of this the polarization tensor
can be decomposed into scalars �0, �1, and �2 [55,63] as
follows:

�00
αβ (ω, q) = −q2�0

αβ, (24)

�0i
αβ (ω, q) = −ωqi�0

αβ (ω, q) + iε0i jq j�
1
αβ (ω, q), (25)

�i0
αβ (ω, q) = −ωqi�0

αβ (ω, q) − iε0i jq j�
1
αβ (ω, q), (26)

�
i j
αβ (ω, q) = −ω2δi j�0

αβ (ω, q) + iε0i jω�1
αβ (ω, q)

+ (δi jq2 − qiq j )�2
αβ (ω, q). (27)

IV. ELECTROMAGNETIC RESPONSE TENSOR

To obtain the electromagnetic response tensor we integrate
over the statistical gauge fields. Due to the transverse nature
of the polarization and Chern-Simons tensor the inverse of
both is ill defined and so is the inverse of the sum of these
two tensors, (� + C)−1, which appears when we perform the
integration over the statistical gauge fields.

To overcome this problem one can employ the Fadeev-
Poppov method [70]. The result of this is a gauge fixed
generating functional of the form

ZGF
[
Aα

μ

] =
∫

(D�a) ei(Seff [A,�a]+SGF[�a]), (28)

where the gauge fixing action has the form

SGF =
(

1

2η

) ∫
C,x

(∂μ�aμ)2 = 1

2

∫
C,x

�aμGμν�aν, (29)

where η is a real-valued parameter which we can set to be
η = 1. Since the electromagnetic tensor is a physical quantity
the choice of gauge should not matter and hence all references
to the parameter η drop out in the end. Now we can perform
the integral over the gauge fields since the addition of G makes
the sum � + G + C invertible. The object that we obtain as a
consequence of performing the integral is the electromagnetic
response tensor which has the form

K = � − �(� + G + C)−1�. (30)

The electromagnetic tensor can be expressed, similar to the
polarization and Chern-Simons tensors, in Keldysh space as
a 2 × 2 matrix with advanced (A), retarded (R), and Keldysh
(K) components:

K =
[

0 (KA)μν
αβ

(KR)μν
αβ (KK )μν

αβ

]
. (31)

The Keldysh component is related to the advanced
and retarded components through the bosonic fluctuation-
dissipation theorem:

KK
ω,q = coth

(
ω

2T

)(
KR

ω,q − KA
ω,q

)
. (32)

The electromagnetic response tensor is also transverse and
hence admits a decomposition, similar to the polarization

165119-4



COLLECTIVE EXCITATIONS OF FRACTIONAL QUANTUM … PHYSICAL REVIEW B 106, 165119 (2022)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0  0.5  1  1.5  2  2.5

ω
/ω

c

qlB

ν=1/3 for MMS-(1,1,3,1,1,1)
ν=1/3 for Toke-Jain sequence

FIG. 2. Location of poles as a function of ω

ωc
and qlB for ν = 1/3 for the Toke-Jain sequence (black) and the MMS state for (k, m, n) =

(1, 1, 3) (red). Here ωc = √
2 vF

lB
.

tensor, in terms of scalar kernels, K0, K1, and K2 which can
be written as

KR
0 (ω, q) = −(K−1)2 �R

0 (ω, q)

DR(ω, q)
, (33)

KR
1 (ω, q) = K−1 + (K−1)2

[
K−1 + �R

1 (ω, q)
]

DR(ω, q)
, (34)

KR
2 (ω, q) = (K−1)2 �R

2 (ω, q)

DR(ω, q)
. (35)

Since the polarization tensor is diagonal in the species index
α, it commutes with K−1. Here DR/A is the denominator ma-
trix which has the form

DR/A = ω2(�R/A
0

)2 − (
K−1 + �

R/A
1

)2 + q2(�R/A
0 �

R/A
2

)
.

(36)
The retarded and advanced kernels are Hermitian conjugates
of each other. Full expressions for �0, �1, �2 are given in
Appendix A.

The denominator matrix D is of central importance to our
work. The zeros of the determinant of the denominator matrix
gives us the location of poles for the electromagnetic response
tensor.

V. NUMERICAL RESULTS

In this section we find the poles of the electromagnetic
response tensor numerically to determine the collective exci-
tation spectra of various FQH states in graphene. Specifically,
we calculate the zeros of the determinant of the denominator
matrix DR/A given in Eq. (36). We calculate the excitation
spectra for flux attachment schemes at several different filling
fractions ν.

Different flux attachment schemes are encoded in the ma-
trix elements Kαβ . Using the parametrization presented in
Eq. (5), the simplest case is when the same number of flux
quanta, 2k, is attached to all the species [34,36]. This is the
same as considering a single species with 2k flux quanta

 1
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 1.7
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ω
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FIG. 3. Location of poles as a function of ω

ωc
and qlB for ν = 1/3 for the parameter set defined in the text (k, m, n,C, N, F ).

(1, 1, 1, 1, −1, −1) (red), (1,3,2,1,1,1) (blue), (1, 3, 3, 1, −1, −1) (black), and (2, 1, 3,−1, 0, 0) (orange).
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TABLE I. Dispersion parameters for selected ν = 1/3 states. ωg is the gap at q → 0, the qi
rmlB are the positions of magnetoroton minima,

and �i/ωc are the energies of the corresponding rotons.

k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB �1

r /ωc �2
r /ωc �3

r /ωc

1 1 1 1 −1 −1 1.67 0.99 – – 1.58 – –
1 3 2 1 1 1 1.57 0.91 1.65 2.09 1.39 1.42 1.42
1 3 3 1 −1 −1 1.51 0.90 1.73 2.10 1.29 1.32 1.29
2 1 3 −1 0 0 1.46 0.89 1.74 2.11 1.24 1.26 1.22

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

 0  0.5  1  1.5  2

ω
/ω

c

qlB

(1,0,2,1,1,1)
(1,1,2,1,1,1)
(1,3,2,1,1,1,)
(1,4,2,1,1,1)

FIG. 4. Dispersion curves for ν = 1/3 varying the parameter m. The parameter set defined in the text (k, m, n,C, N, F ). (1,0,2,1,1,1) (red),
(1,1,2,1,1,1) (blue), (1,3,2,1,1,1) (black), and (1,4,2,1,1,1) (orange).

TABLE II. Parameters for ν = 1/3 states varying m. All parameters have the same meaning as in Table I.

k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB �1

r /ωc �2
r /ωc �3

r /ωc

1 0 2 1 1 1 1.65 0.98 1.66 2.08 1.53 1.56 1.58
1 1 2 1 1 1 1.62 0.97 1.60 2.09 1.49 1.52 1.53
1 3 2 1 1 1 1.57 0.91 1.65 2.09 1.39 1.42 1.42
1 4 2 1 1 1 1.54 0.89 1.69 2.10 1.34 1.37 1.35
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FIG. 5. Dispersion curves for ν = 1/3 varying the parameter n. The parameter set defined in the text is (k, m, n,C, N, F ). (1,1,1,1,1,1)
(black), (1,1,2,1,1,1) (red), (1,1,3,1,1,1) (blue), and (1,1,4,1,1,1) (orange).
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TABLE III. Parameters for ν = 1/3 states varying n. All parameters have the same meaning as in Table I.

k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB �1

r /ωc �2
r /ωc �3

r /ωc

1 1 1 1 1 1 1.67 0.99 – – 1.58 – –
1 1 2 1 1 1 1.62 0.97 1.60 2.09 1.49 1.52 1.53
1 1 3 1 1 1 1.57 0.93 1.69 2.10 1.38 1.42 1.40
1 1 4 1 1 1 1.50 0.90 1.68 2.13 1.29 1.31 1.25
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FIG. 6. Dispersion curves for ν = 1/3 (1,1,2,1,1,1), ν = 2/5 (1,1,2,1,−1, −1), and ν = 1/2 (1,1,2,1,0,0). For this plot (k, m, n) is the
same for all three fractions while (C, F, N ) varies.
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FIG. 7. Dispersion curves for ν = 1/2 (1,1,2,1,0,0), ν = 1/3 (2,1,2,1,0,0), and ν = 2/5 (2,0,3,1,0,0). For this plot (C, F, N ) is the same
for all three fractions while (k, m, n) varies.
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TABLE IV. ν = 1/3, ν = 1/2, and ν = 2/5 for fixed (k, m, n). All parameters have the same meaning as in Table I.

ν k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB �1

r /ωc �2
r /ωc �3

r /ωc

1/3 1 1 2 1 1 1 1.62 0.97 1.60 2.06 1.49 1.52 1.53
2/5 1 1 2 1 −1 −1 1.62 0.97 1.60 2.06 1.49 1.52 1.53
1/2 1 1 2 1 0 0 1.59 0.92 1.63 2.07 1.45 1.48 1.49

attached to it. For this case the filling fractions of FQH
states are given by ν = ν∗

2kν∗+1 with ν∗ = ν1 + ν2 + ν3 + ν4,
which is known as the Töke-Jain sequence [34]. Here να , α =
1, 2, 3, 4, are the filling fractions of the individual species.
Hence the Töke-Jain sequence can be characterized by the
set of parameters (ν∗, k). Following Refs. [36,51], we also
consider the following simplification of K: ki = k, mi = m,
and ni = n for all i, which we refer to as the Modak-Mandal-
Sengupta (MMS) states. This allows us to label MMS flux
attachment schemes by the triplet (k, m, n). To specify a FQH
state with a given filling ν, we also need to specify fillings
να for the composite fermion Landau levels. Once να , ν and
(k, m, n) are specified this determines the values of the order
parameters C, N and F [36,51]. We characterize the states
we consider by the flux attachment parameters (k, m, n) de-
termined from the K matrix. In our numerical calculations we
truncated the number of Landau levels (labeled by n and n′)
included in the calculation of D to Nc = 10 in Eq. (A2) to cut
computational time. We confirmed that our results were not
sensitive to this choice of cut-off.

For each parameter set we calculate the collective modes
and plot their angular frequency ω

ωc
against qlB where ωc =√

2vF /lB is the cyclotron frequency with vF being the Fermi
velocity and lB being the magnetic length. We characterize
each dispersion curve by the following parameters, ωg: the
energy gap as q → 0; qi

rm: the position of the ith magne-
toroton minimum; and �i

r : the energy at the position of
the ith magnetoroton minimum. We observe the following
generic features in the dispersion curves for the lowest en-
ergy collective mode: (i) a gap as q → 0 and (ii) minima
for qlB ∼ 1, and qlB ∼ 2.1, which we attribute as a magneto-
roton minima, similar to those seen for nonrelativistic FQH
states. Numerous states also have an additional minimum
or shoulder for qlB ∼ 1.7. The sharp rise in the dispersion
seen near qlB ∼ 2.5 marks the right edge of the sequence of
magnetoroton minima and the dispersion flattens for larger
values of qlB. For higher energy collective modes, the dis-
persion is relatively flat in comparison to the lowest energy
mode.

The general structure of the collective mode spectrum has
qualitative similarities to the collective modes observed in
nonrelativistic FQH systems. A gap at zero wave vector and
a minimum at finite wave vector in the dispersion curve of

Laughlin FQH states were identified by Girvin, MacDonald,
and Platzmann [59,60] using a single mode approximation
in analogy with Feynman’s theory of superfluid helium, with
the minimum named the magnetoroton, also in analogy with
superfuid helium. Later work by Simon and Halperin [58]
using a Chern-Simons approach found multiple magnetoro-
ton minima in the collective excitation spectra in the FQH.
Using the properties of Bessel functions that arose in their
semi-classical approximation, they were able to estimate the
positions of these minima. More recently Golkar et al. [71]
made estimates based on quantized shape deformations of
the composite fermion Fermi surface at ν = 1/2. We are not
aware of similar arguments for the FQH states in graphene,
but this would appear to be an interesting direction for future
study.

In Fig. 2 we compare the dispersion curves for two dif-
ferent ν = 1/3 states, the Töke-Jain state for the parameter
set (ν∗ = 1, k = 1) and the MMS state for the parameter set
(k = 1, m = 1, n = 3). We notice that the MMS state has a
higher gap as q → 0 and has a higher magnetoroton energy as
compared to the Töke-Jain state. In the rest of the results we
focus on MMS states motivated by their relevance for EDFQH
states [51].

We consider several different MMS ν = 1/3 states and
in Fig. 3 observe that: (i) the roton energy is lowest for
the state with order parameters (C, F, N ) = (1,−1,−1) and
(k, m, n) = (1, 1, 1); and (ii) as we increase k, m or n the
energy of the roton, �r , decreases. In addition, we also ob-
serve the appearance of a second minimum around qlB ∼ 2.1
and what is sometimes a shoulder and sometimes a local
minimum at around qlB ∼ 1.7. Numerical values are tabulated
in Table I. The minima deepen with increasing values of k, m,

and n.
In Fig. 4 we show the variation of the position of the poles

and the roton energy as we change m in the triplet (k, m, n).
As before, the states we studied are parameterized by the set
of parameters (k, m, n,C, F, N ). We fixed all the parameters
except m. The results are summarized in Table II.

In Fig. 5. we show the dispersions for several different ν =
1/3 MMS states with k and m fixed, but varying n. The results
are summarized in Table III.

Figures 4 and 5 lead to the following observations: (i) the
gap at q → 0 decreases as we go from a low m(n) value to a

TABLE V. ν = 1/3, ν = 1/2, and ν = 2/5 for fixed (C, F, N ). All parameters have the same meaning as in Table I.

ν k m n C N F ωg/ωc q1
rmlB q2

rmlB q3
rmlB �1

r /ωc �2
r /ωc �3

r /ωc

1/2 1 1 2 1 0 0 1.59 0.92 1.63 2.07 1.45 1.48 1.49
2/5 2 0 3 1 0 0 1.49 0.91 1.71 2.11 1.29 1.32 1.29
1/3 2 1 3 1 0 0 1.46 0.89 1.70 2.10 1.24 1.26 1.22
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higher m(n) value; (ii) the position of the first roton minimum
shifts towards slightly lower q as we go from lower m(n) to
higher values of m(n); (iii) the position of the second and
third roton minima shifts to slightly higher q as we go from
lower m(n) to higher values; (iv) the energies of the rotons
�i

r decreases as we go from lower m(n) to higher values for
i = 1, 2, 3. In Tables II and III we confirm that the observa-
tions (i)–(iv) hold as we go from lower m(n) values to higher
m(n) values.

In addition to comparing the effect of different values of m
and n on the collective mode spectrum for a given fraction,
we also make a comparison of the collective mode spectra
for several different incompressible fractions: ν = 1/3, ν =
2/5, and ν = 1/2. Unlike the single component case it is
possible to have an incompressible FQH state for ν = 1/2
in a multicomponent quantum Hall system such as graphene
[36,51,53]. The relevant dispersion curves are plotted in
Figs. 6 and 7.

For the spectra in Fig. 6 we consider the simplest flux
attachment, (k, m, n), that is consistent with all three of these
states. We found that for this case different CF-LLs are oc-
cupied, translating to different order parameter combinations,
(C, F, N ). The ν = 1/3 and the ν = 2/5 state have the same
spectra and a higher gap, ωg than the ν = 1/2 states. For
the spectra in Fig. 7 we consider CF-LL fillings (equiva-
lently combinations of CSB orders) that are the same for all
three FQH states. In this case the flux attachment parameters
(k, m, n) differ in each case. We observe that in this case
the ν = 1/2 state is the most stable followed by the ν = 2/5
and then the ν = 1/3 state. The results are summarized in
Tables IV and V.

VI. DISCUSSION AND CONCLUSIONS

In this paper we considered the collective excitations for
various fractional quantum Hall states in graphene. In doing
so we allowed for CSB orders which arise naturally in some
variational wave functions for the FQH states in the zeroth LL,
for a variety of flux attachment schemes [36,51].

The interaction induced IQH states at ν = 0, 1 have both
been suggested as being connected to CSB orders [5,13–
15,21,23,24] with good agreement between experimentally
measured gaps and theoretical predictions based on a CSB
scenario [13]. The observation of even denominator FQH
(EDFQH) states at ν = 1/2 and ν = 1/4 [53] has also been
suggested as a consequence of CSB orders [51].

We primarily studied the ν = 1/3 FQH state, considering
various flux attachment schemes parameterized by K. We
considered the collective excitations for two classes of vari-
ational states—the Töke-Jain sequence [34], parameterized
by (ν∗, k) and the MMS sequence [36,51], parameterized by
(k, m, n). We found that the MMS states displayed a larger
q → 0 gap, ωg, and a larger magnetoroton gap than the Töke-
Jain states for the variational states we considered. For the
MMS states we considered, we found that increasing k, m, or
n generally reduced ωg and the magnetoroton gap.

Within the framework of the Chern-Simons theory that we
use to obtain the collective excitation spectrum, the larger
gaps we find for MMS states with low values of (k, m, n)
suggest that these are likely to be the most stable FQH

states. However, there is the caveat that as a mean-field like
theory, the Chern-Simons approach will almost certainly over-
estimate energy gaps and it is unknown whether fluctuations
beyond mean field theory will differ between Töke-Jain and
MMS states, although we see no a priori reason why they
should be significantly different in the two cases.

We compared the excitation spectra for MMS states for
several different fractions, ν = 1/3, 2/5, and 1/2. The true
nature of the ground states for these fractions are not cur-
rently known [51,53]. Hence we considered a variety of
variational ground states of the MMS type that give rise to
incompressible states at these fractions. We compared ex-
citations for states with the same flux attachment scheme
[fixed (k, m, n)], but different composite fermion LL fillings
[corresponding to differing order parameters (C, F, N )]. We
also compared excitations for states with the same order pa-
rameters (C, F, N ) but different flux attachment schemes. The
ordering of the states in terms of which had the largest gap
ωg is different in the two cases. Experimental observations
(Fig. S14(a) in Ref. [53]) show the ν = 1/3 and ν = 1/2
states persisting to a temperature of T = 2.0 K, while the
ν = 2/5 state is no longer present at that temperature. Our
calculation of the collective mode spectra do not take into
account temperature dependence of the order parameters C,
F , and N and so it is not possible to make a direct com-
parison between our results and experiment. However, we
do give an example of states which lead to the same or-
dering in ωg as the stability of the experimental states in
Fig. 8.

In addition to the energy scales associated with the collec-
tive excitations, the position of the magnetoroton minimum
is also a quantity of interest. Previous work [58,71–73]
has elaborated on the position of the magnetoroton mini-
mum for fractions in the Jain sequence, ν = s/(2s + 1), and
it was found that for low values of s the minimum was
located around qlB ∼ 1. Reference [72] calculated the posi-
tons of minima for n = 0, 1 LLs in graphene. This is in
agreement with our observations in Sec. V, although we
find that for both Töke-Jain and MMS states, there may be
secondary and tertiary minima for qlB ∼ 1.7 and qlB ∼ 2,
respectively.

In our calculations here we have shed some light on
collective excitations for certain classes of FQH states in
graphene. The approach we have taken is restricted to or-
der parameters that can be written in terms of just spin and
valley degrees of freedom, such as CDW, Néel AFM, and
ferromagnetic order. For more general orders that may re-
quire an eight-component Dirac fermion description, such as
in-plane antiferromagnetism [13] or partially sublattice polar-
ized (PSP) order [53], we are unable to calculate the collective
excitation spectra. This is because for those more general
orders, the order parameter leads to a problem which is math-
ematically equivalent to one in which one is trying to calculate
the collective excitations in a system where there is tunneling
between two separate FQH systems. We are not aware of
any succesful attempts to use Chern-Simons approaches to
calculate collective excitation spectra in FQH systems with
tunneling between layers. Whilst there is a hope that collec-
tive excitations might allow different patterns of symmetry
breaking to be distinguished, our results show that at least for
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FIG. 8. Dispersion curves for ν = 1/3 (1,1,2,1,1,1), ν = 2/5 (1,1,2,1,0,0), and ν = 2/5 (1,4,2,1,1,1).

the types of symmetry breaking we considered, there are not
strong qualitative differences in the dispersions that depend
on the symmetry breaking order. Figures 6 and 7 demonstrate
that the flux attachment scheme has more impact on the dis-
persion than the order parameters we considered. It would be
interesting to see if other patterns of symmetry breaking also
lead to similar collective excitations.

In conclusion, we eagerly look forward to experimental
measurements of collective excitation spectra of FQH states
in graphene as these will place additional constraints on
theoretical approaches and refine our knowledge of the bro-
ken symmetries in the zeroth LL in graphene. Additionally,
including the effects of quantum fluctuations beyond mean
field theory would be an interesting avenue to explore in
future work.
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APPENDIX A: CALCULATION OF POLARIZATION
TENSOR AND DENOMINATOR MATRIX

In this Appendix we give more details on the calculation
of the polarization tensor that we use to find collective modes.
We begin with Eq. (30) for the electromagnetic response ten-
sor

K = � − �(� + C + G)−1�, (A1)

where � is the polarization tensor, C is the Chern-Simons tensor, and G is a gauge fixing term added to the Lagrangian to make
the inverse term finite. As mentioned in Sec. IV, due to the transverse nature of the polarization tensor it can be decomposed in
terms of scalars, �0, �1, and �2, as shown in Eq. (24). Here we are interested in the retarded component of the polarization
tensor (�i )R and for simplicity we have dropped the R.

The polarization tensor in the absence of order parameters (we discuss the expression in the presence of symmetry breaking
mass terms in Appendix C) can be expressed as [37]

�μν
α (ω, q) = 1

32π2l4
α

∞∑
n,n′=0

∑
λ,λ′=±1

Fλλ′
n,n′ (T, μα )

ω − λ
√

nωα
c + λ′√n′ωα

c

∫
�r

e−iq·�re−�r2/l2
α Tr

[
σμ

α Mα
n (λ�r)σ ν

α Mα
n′ (−λ′�r′)

]
, (A2)

with

Fλλ′
n,n′ (T, μα ) = tanh

(
λ′√n′ωα

c − μα

2T

)
− tanh

(
λ
√

nωα
c − μα

2T

)
. (A3)

Here, T is the temperature, μα is the chemical potential of species α, λ(λ′) = ±1 refers to the conduction (+1) band or valence
(−1) band, σμ

α = (σ0, κ
αvF σ1, κ

αvF σ2), ωc = √
2 vF

lα
and

Mα
n (λ�r) = P+L0

n

(
�r2

2lα

)
+ P−L0

n−1

(
�r2

2lα

)
+ i

λκ√
2lα

σ · �r√
n

L1
n−1

(
�r2

2lα

)
, (A4)

where Lk
n is a generalized Laguerre polynomial and P± are projection operators on the sublattice space defined as

P± = 1
2

[
σ0 ± sgn

(
eBeff

α

)
σ3

]
. (A5)
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The scalars �0, �1 and �2 are given by

�0
α (ω, �q) = −1

32π2l4
α �q2

∞∑
n,n′=0

∑
λ,λ′=±1

Fλλ′
n,n′ (T, μα )

ω − λ
√

nωα
c + λ′√n′ωα

c

[
I0
n−1,n′ (Qα ) + I0

n,n′−1(Qα ) + 2λλ′
√

nn′ I
1
n−1,n′−1(Qα )

]
, (A6)

�1
α (ω, �q) = − v2

F

32π2l4
αω

∞∑
n,n′

∑
λ,λ‘=±1

Fλλ′
n,n′ (T, μα )

ω − λ
√

nωα
c + λ′√n′ωα

c

[
I0
n−1,n′ (Qα ) − I0

n,n′−1(Qα )
]
, (A7)

�2
α (ω, �q) = v2

F

32π2l2
α

∞∑
n,n′=0

∑
λ,λ′=±1

Fλλ′
n,n′ (T, μα )

ω − λ
√

nωα
c + λ′√n′ωα

c

[
2λλ′
√

nn′ ∂
2
Qα

Ĩ1
n−1,n′−1(Qα )

]
. (A8)

The terms Ik
n,n′ and Ĩ k

n,n′ are given by [37]

Ik
n,n′ (Qα ) = 2π�2

αQ(n>−n< )
α e−Qα

(n< + k)!

n>!
L(n>−n< )

n<
(Qα )L(n>−n< )

(n<+k) (Qα ),

Ĩ1
n−1,n′−1(Qα ) =

n−1∑
m=0

n′−1∑
m′=0

I0
m,m′ (Qα ), (A9)

where Qα = q2l2
B/2, n< = min{n, n′} and n> = max{n, n′}. Clearly both Ĩ k

n−1,n′−1(Qα ) and Ik
n,n′ (Qα ) are symmetric in the indices

n and n′.

APPENDIX B: SUMS OF LAGUERRE POLYNOMIALS

To evaluate the scalars, �0, �1, and �2 we have to evaluate sums of the form

Sb =
∞∑

n,n′=0

∑
λ,λ′=±1

tanh
( λ′√n′ωα

c −μα

2T

) − tanh
( λ

√
nωα

c −μα

2T

)
(ω ± i0) − λ

√
nωα

c + λ′√n′ωα
c

T k,b
n,n′ , (B1)

and of the form

Sb
1 =

∞∑
n,n′=0

∑
λ,λ′=±1

2λλ′
√

nn′
tanh

( λ′√n′ωα
c −μα

2T

) − tanh
( λ

√
nωα

c −μα

2T

)
(ω ± i0) − λ

√
nωα

c + λ′√n′ωα
c

T k,b
n,n′ , (B2)

where b = 0, 1, 2. The T k,b
n,n′ are terms involving Ik

n,n′ , Ĩ k
n,n′ present in �b. We have

nF (ξ ) = 1/2

[
1 − tanh

(
β

2
ξ

)]
⇒ tanh

(
β

2
ξ

)
= 1 − 2nF (ξ ),

where nF (ξ ) is the Fermi-Dirac distribution and in the limit T → 0, nF becomes a step function and we can write the sum as

Sb = 2
∞∑

n,n′=0

∑
λ,λ‘=±1

�
(
λ
√

nωα
c − μα

) − �
(
λ‘

√
n′ωα

c − μα

)
(ω ± i0) − λ

√
nωα

c + λ′√n′ωα
c

T k,b
n,n′ . (B3)

Now, depending on whether λ, λ′ is ± we have four different possible terms. The chemical potential can be either positive or
negative. We begin with the case for positive chemical potential.

1. Positive chemical potential

Evaluating Sb for μα > 0 gives

Sb = 2
β∑

n′=0

∞∑
n=β+1

1

(ω ± i0) − √
nωα

c + √
n′ωα

c

T k,b
n,n′ − 2

β∑
n=0

∞∑
n′=β+1

1

(ω ± i0) − √
nωα

c + √
n′ωα

c

T k,b
n,n′

− 2
∞∑

n=0

∞∑
n′=β+1

1

(ω ± i0) + √
nωα

c + √
n′ωα

c

T k,b
n,n′ + 2

β∑
n′=0

∞∑
n=β+1

1

(ω ± i0) − √
nωα

c − √
n′ωα

c

T k,b
n,n′ , (B4)

with β =  μ2
α

(ωα
c )2 �.
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2. Negative chemical potential

Evaluating for Sb for μα < 0 gives

Sb = 2
∞∑

n=0

∞∑
n′=β+1

1

(ω ± i0) − √
nωα

c − √
n′ωα

c

T k,b
n,n′ − 2

β∑
n=0

∞∑
n′=0

1

(ω ± i0) + √
nωα

c + √
n′ωα

c

T k,b
n,n′

+ 2
β∑

n=0

∞∑
n′=β+1

1

(ω ± i0) + √
nωα

c − √
n′ωα

c

T k,b
n,n′ − 2

β∑
n′=0

∞∑
n=β+1

1

(ω ± i0) + √
nωα

c − √
n′ωα

c

T k,b
n,n′ . (B5)

Since the terms Ik
n,n′ and Ĩ k

n,n′ are symmetric in n and n′, the expressions for the sums are exactly the same for μα > 0 and
μα < 0 if we exchange n and n′ which are just dummy variables. We can hence simplify Sb further by combining the terms
carefully to get the final expressions as

Sb =
[

2
β∑

n′=0

∞∑
n=β+1

2
√

nωα
c

[
(ω)2 − (n − n′)

(
ωα

c

)2]
ω4 − ω2

(
ωα

c

)2
(n + n′) + (n − n′)2

(
ωα

c

)4 + 2
∞∑

n′=β+1

∞∑
n=β+1

2ωα
c (

√
n + √

n′)

ω2 − (
ωα

c

)2
(
√

n + √
n′)2

]
T k,b

n,n′ . (B6)

Our expression for �1 [Eq. (A6)] then becomes

�1
α = − v2

F

32π2l4
αω

S1. (B7)

In �0 and �2 [Eq. (A6)] and [Eq. (A8)], respectively, we have a multiplicative factor of 2λλ′√
nn′ . Taking into account the

multiplicative factor we get the sum, Sb
1, over λ, λ′ and n, n′ to be

Sb
1 =

[
−4

∞∑
n=0

∞∑
n′=β+1

1√
nn′

ωα
c (

√
n + √

n′)

ω2 − (
√

n + √
n′)2

(
ωα

c

)2 + 4
β∑

n′=0

∞∑
n=β+1

1√
nn′

ωα
c (

√
n − √

n′)

ω2 − (
√

n − √
n′)2

(
ωα

c

)2

]
T k,b

n,n′ . (B8)

With this we can write down the expression for �0 as

�0
α = − 1

32π2l4
αq2

[
S0 + S0

1

]
. (B9)

Similarly, �2 is given by

�2
α = v2

F

32π2l2
α

(
S2

1

)
. (B10)

APPENDIX C: EFFECT OF ORDER PARAMETERS

In the presence of order parameters the energy eigenvalues change, ε ∼ √
n → ε ∼ √

n + �2 where � is the gap arising
from linear combinations of mα and fα . The arguments from Appendix B, i.e., without the order parameters, still hold, and hence
the expressions for the sums over λ, λ′ and n, n′′s for S, as defined in the previous section, becomes

Sb = 2
β∑

n′=0

∞∑
n=β+1

2
√

n + m2
αωα

c

[
(ω)2 − (n − n′)

(
ωα

c

)2]
ω4 − ω2

(
ωα

c

)2(
n + n′ + 2m2

α

) + (n − n′)2
(
ωα

c

)4 T k,b
n,n′

+ 2
∞∑

n′=β+1

∞∑
n=β+1

2ωα
c

(√
n + m2

α + √
n′ + m2

α

)
ω2 − (

ωα
c

)2(√
n + m2

α + √
n′ + m2

α

)2 T k,b
n,n′ , (C1)

and

Sb
1 = −4

∞∑
n=0

∞∑
n′=β+1

ωα
c

(√
n + m2

α + √
n′ + m2

α

)
ω2 − (√

n + m2
α + √

n′ + m2
α

)2(
ωα

c

)2

1√
nn′ T

k,b
n,n′

+ 4
β∑

n′=0

∞∑
n=β+1

ωα
c

(√
n + m2

α − √
n′ + m2

α

)
ω2 − (√

n + m2
α − √

n′ + m2
α

)2(
ωα

c

)2

1√
nn′ T

k,b
n,n′ . (C2)
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