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In this article, we propose a simple but general scaling relation between interactions in a gapped bulk
topological matter and gapless interacting surface states. We explicitly illustrate such a generic bulk-boundary
relation (BBR) for a few specific interactions in a topological quantum matter, where we can perform dimensional
reduction of a microscopic bulk theory to project out interacting surfaces. We have examined renormalization
effects of the gapped bulk fermions on the interacting topological surface fermions. As simple applications, we
utilize effective interacting quantum fields implied by BBR to explore feasibility of routes to various fascinating
emergent phenomena on surfaces including emergent Majorana fermions induced by spontaneous symmetry
breaking. We obtain sufficient conditions for these interacting surface phenomena to take place. We have also
found that for given bulk electron-phonon interactions and when �D � m, the phonon-mediated interactions on
the surface are strongest if the bulk Debye frequency �D matches m, the mass gap of the topological matter.
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I. INTRODUCTION

A hallmark manifestation of topology in quantum matter
is the existence of robust or protected boundary states in
many topological quantum matter. One very well known one
is conformal chiral Luttinger liquids along edges of incom-
pressible fractional quantum Hall states (FQHs) [1–3]. It is
generally believed that in topologically ordered states such
as FQHs, there is a general bulk-boundary correspondence
between bulk states and conformal field theory boundaries,
and a boundary offers a unique holographic representation of
complicated interacting bulks.

In relatively more recent studies of topological states
[4–12] that are usually defined in a noninteracting limit, re-
lations between gapped bulks and boundaries become trickier
because of additional axes in the parameter space that can be
further assigned to interactions. A gapped bulk with gapless
surfaces implies that although interactions can be weak from
a bulk perspective and do not deform the bulk matter in topo-
logically nontrivial ways, it is possible that they substantially
reshape noninteracting surfaces. So gapless surfaces that usu-
ally require various symmetry protections are in general much
less robust to interactions because of symmetry-breaking
phenomena.

For topological insulators that have been quite extensively
studied over the last decade or so, if the symmetry breaking
is explicit, say either due to magnetic coating or coating of a
superconducting film that breaks the U(1) symmetry, surfaces
can be gapped and belong to a different class of boundary
states [13–15]. In fact, gapless surfaces can be thought to
be quantum critical near zero magnetic or zero tunneling of
U(1) symmetry breaking fields, and there is a surface quantum
criticality that one can associate with tuning parameters that
break various protecting symmetries.

If all protecting symmetries are fully respected by external
fields, interactions can in principle still lead to spontaneous

symmetry breaking on surfaces without deforming the gapped
bulk in a nontrivial way. The one-to-one bulk-boundary cor-
respondence, i.e., the holographic principle suggested in
topologically ordered FQHs, therefore does not directly apply
here. For instance, at the simplest level, one can imagine that
a weakly interacting bulk can have either a standard weakly
interacting gapless surface respecting all protecting symme-
tries, or have a strongly interacting surface that spontaneously
breaks one of the protecting symmetries without coated ex-
ternal substrates. In the latter case, topological surfaces are
in a completely different phase so the same bulk can have
at least two very different boundaries further depending on
interactions, especially surface interactions.

It is fascinating that in theory, surfaces can be even topo-
logically ordered and further support fractionalized emergent
new particles if all the protecting symmetries are respected
and if there is no spontaneous symmetry breaking [16–20].
The microscopic origin of such exotic states has not been
fully understood. Numerical simulations of the surface model
suggest that it is unlikely to realize those states with simple
local interactions [21]. Nevertheless, if they occur in topo-
logical surfaces, they must be driven by interactions, possibly
long-range ones.

One very attractive feature of weakly or noninteracting
gapless boundaries, either 1D edges or 2D surfaces, is that
it does not have the standard fermion doubling as in a corre-
sponding bulk 1D or 2D, respectively [22]. If one’s goal is to
utilize very unique boundaries of this type as building blocks
toward the more fascinating and exotic quantum matter with
variable holographic features, then perhaps one key practical
step to take is to further understand how topological surfaces
are interacting. Specifically, as all surfaces are boundaries of
a bulk, one shall anticipate there is a general principle that
connects boundary interactions and bulk ones, hence a bulk-
boundary relation (BBR) of interactions. In this article from
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now on, we will reserve the notion of BBR for this purpose
only and focuses exclusively on the relations between bulk
and surface interactions.

The main object here is to illustrate a simple and practically
very useful BBR that one can apply to construct effective
field theories of interacting surface fermions given the in-
puts of bulk interactions. Specially, we will establish concrete
relations between interaction constants in the effective field
theories of surface fermions and the bulk interactions that are
assumed to be known.

The article is organized as follows. In Sec. II, we will
put forward a hypothesis BBR which relates surface inter-
actions to bulk ones. The hypothesis is based on a simple
phenomenology that all surface interactions shall uniquely
and explicitly depend on bulk interaction constants. When
implemented in topological states, one further notices that
an energy gap of bulk states, m, above which the bulk spec-
trum lies naturally defines an infrared scale (IR) of bulk
dynamics. Therefore at scale m, bulk interactions that are usu-
ally introduced at a much higher ultraviolet scale associated
with the bulk bandwidth W (� m) follow an infrared renor-
malization flow induced by a set of renormalization group
equations (RGEs).

On the other hand, the mass scale m also defines the spatial
extent of surface states into the bulk interior and can be treated
as a characteristic scale of the momenta perpendicular to the
surface. Therefore, m appears as a natural intermediate energy
scale of gapless surface states around which surface particles
appear and interact. Interacting surface fermions at this scale
m can differ very little from bulk fermions interacting at the
same scale.

We anticipate that the IR flow of RGEs defined in the
bulk can thus be matched with surface interactions defined
at scale �s = m for low-energy gapless surfaces (see Fig. 1).
This general matching condition can be employed to quantify
the principle of BBR and construct interaction constants in
the effective field theories of gapless surface fermions. For a
few concrete interactions, we derive specific relations between
bulk and boundaries. In Sec. III, we further apply a micro-
scopic dimension reduction technique in a few limiting cases
to illustrate the general principle and offer more quantitative
features of the concrete relations. In Sec. IV, we discuss a
specific application of our results to surface spontaneous sym-
metry breaking phenomena that lead to surface topological
superconductivity and emergent Majorana fermions. We fur-
ther apply the same idea to investigate a possibility of making
supersymmetry holographic matter using interacting surfaces.

II. GENERAL PHENOMENOLOGY AND MATCHING
CONDITIONS

As surface states form boundaries of a bulk, it is tempting
and possible to relate effective surface fields to the micro-
scopic bulk interactions in a generic way. Let us consider a
general Hamiltonian

H = Hbulk + Hsurf ,

Hbulk = Hbulk ({Gi}, i = 1, . . . , N ;W ),

Hsurf = Hsurf ({g j}, j = 1, . . . , M;Ws), (1)

FIG. 1. Schematic of a portion of the energy spectrum of elec-
trons in the bulk (brown lines) and the boundary (green lines) in a
gapped topological insulator. The mass parameter m defines an en-
ergy gap of bulk states. Bulk electrons lie in the range �b ∈ [m,W ],
where W is the bulk UV cutoff scale. The boundary states are
gapless and low-energy boundary electrons of our special interests
are approximately within the range of �s ∈ [0, m]. The velocity of
fermions has been set to be unity.

where Hbulk(surf) are the Hamiltonians acting on bulk
(surface) states. {Gi}, i = 1, . . . , N , and {g j}, j = 1, . . . , M,
are two sets of interaction constants specifying bulk and sur-
face interactions, respectively.

As stated before, W is an UV scale for bulk physics which
can be naturally associated with the bandwidth. Ws is an UV
scale of surface states which further depend on surface band
microscopic structures as well as types of interactions of in-
terests. And typically, both W and Ws are much bigger than
the mass gap m.

The mass gap plays a paramount role in our discussions
of BBR. For the topological states we will focus on, m can
be thought as an IR scale of bulk physics above which all
bulk states lie. On the other hand, the mass gap m ∈ [0,Ws]
simultaneously is also a characteristic intermediate energy
scale of gapless surface dynamics because 1

m is set by the
spatial spread of surface states into the bulk interior. So indeed
at this particular scale of m, two-dimensional surface states
appear to be no different from three-dimensional bulk ones
at the same scale. The matching between the IR physics of
the interacting bulk and the physics of interacting gapless
surface states at this special intermediate scale of m is a key
observation that leads to the principle of interaction BBR.

There is an alternative and perhaps simpler view of BBR.
For certain discussions, it is even possible to treat m simply as
an effective UV scale of interacting gapless surface fermions
or Ws ∼ m. And we can let the scale transformation generated
by RGEs of surface fermions run from a surface IR scale
of nearly zero energy, with some preassumed interactions,
toward some ultraviolet energies rather than the other way
around. In that case, we can conveniently match the IR ori-
ented flow of the bulk interactions with the UV-oriented flow
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FIG. 2. A cartoon of (a) bulk scale transformation from an UV
scale �b = W to the bulk infrared scale �b = m (red) and (b) surface
scale transformation from an UV scale �s = Ws to �s = m (red)
to an infrared scale �s � m (blue) of surface fermions in a 3D
momentum space. In (b), the scale transformation is performed only
in the two-dimensional horizontal plane while the vertical momen-
tum remains fixed at a scale similar to m. (a) and (b) suggest a
bulk-boundary matching condition. The effective theories obtained
in (a) and (b) at scale of m (red) appear to be equivalent and so
can be matched to obtain a BBR relation between bulk and surface
interactions. (See the main text for details of BBR.)

of the surface interactions at scale m. The match leads to a
surface theory formulated at the scale m with bare interaction
constants determined by the matching conditions in BBR (see
Figs. 1 and 2).

In more generic situations where Ws � m, one can still
apply BBR to construct an effective field theory at an in-
termediate scale m. Once the matching condition has been
employed at scale m, following the UV flow generated by
RGEs (see further discussion in Sec. IV), one can also easily
further extend the theory to the scale Ws, which is usually
higher than m, to construct the full surface field theory up to
the UV scale Ws. Of course if one wishes, one can also reverse
the flow to scales smaller than m back to infrared when needed
and suitable. In this case, with the effective surface field theory
already fixed at the effective UV scale Ws or an intermediate
scale m, one can find out the preassumed near zero energy
theories.

Formally speaking, following the general scheme of renor-
malization and scaling, both bulk and surface fields can be
equivalently redefined at an arbitrary running UV energy scale
�. In the rest of the discussion, for convenience and sim-
plicity, for bulk interactions, � is chosen to be larger than
m, while for surfaces, we restrict our discussion to energy
scales lower than m (although all these conditions can be re-
laxed in general). The effective theories defined at �b,s, where
subscripts b, s are for bulk and surface, respectively, can be

expressed as

Hbulk = �z
bFbulk

(
{G̃i(�b), i = 1, . . . , N}, Z f (�b);

m

�b
< 1
)
,

Hsurf = �z
sFsurf

(
{g̃ j (�s), j = 1, . . . , M}, Z f (�s);

m

�s
> 1
)
.

(2)

Here we have defined z as the dynamical critical exponent of
our system which will be set to be z = 1. Fbulk,surf are dimen-
sionless and dimensionless coupling constants G̃i(�b), i =
1, . . . , N , and g̃ j (�s), j = 1, . . . , M, are further introduced
to facilitate discussions below. Their scale dependence on
�b,s can be obtained via the standard renormalization group
analysis and details will be presented later. Z f stands for the
fermion field renormalization which does not play significant
role in our phenomenological discussions and we will mute
from now on.

An important phenomenology here is that bulk interactions
defined at �b = m in Hbulk shall describe, effectively and
precisely, interacting boundary dynamics of Hsurf defined at
�s = m. One clear piece of evidence for this is that surface
states can merge into bulk spectrum at scale m and there is
no longer a clear separation between bulk and surface states
at that energy scale. Therefore, at least in the case when
N = M and if all bulk interactions adiabatically evolve into
surface counterparts as �b is lowered toward m, one can
anticipate that surface interactions at that UV scale of λs = m
shall be equivalent to bulk interactions. In this particular case,
we have a rather simple relation at the IR scale �b = m,

g̃i(�s = m) = G̃i(�b = m), i, j = 1, . . . , N = M. (3)

In more general cases, Eq. (3) shall be replaced by a more
general relation,

g̃i(m) = �i({G̃ j (m)}, j = 1, . . . , N ), i = 1, . . . , M, (4)

where �i, i = 1, . . . , N , are dimensionless functions that can
be generated by general matching conditions. A schematic
diagram describing this phenomenology is shown in Fig. 3.
Below, we will further illustrate explicitly these functions in a
few cases.

A. Surface Coulomb interactions

Now let us take 3D massive Dirac fermions with Coulomb
interactions as an effective theory for 3D bulk topological
states as the simplest example. Surfaces are then naturally
described by interacting two-component helical fermions,

Hbulk =
∫

d3rψ†
b [vF σz ⊗ s · p − mσx]ψb

+ e2
b

∫
d3rd3r′ψ†

b (r)ψb(r)
1

|r − r′|ψ
†
b (r′)ψb(r′),

Hsurf = vF

∫
d2rψ†

s s · pψs

+ e2
s

∫
d2rd2r′ψ†

s (r)ψs(r)
1

|r − r′|ψ
†
s (r′)ψs(r′), (5)

where p is a momentum gradient operator defined either in
a bulk or on the top surface (and we only show one surface
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FIG. 3. The schematic of bulk-boundary relation of interactions.
(a) and (b) illustrate surface fermions interacting with higher-energy
bulk phonons or photons without or with fermion polarization ef-
fects, respectively. A fermion loop in (b) indicates general bulk
renormalization effects that lead to suppression of Coulomb in-
teractions at lower energy scales. (c) illustrates effective surface
interactions in the infrared limit. The bulk-boundary relation prin-
ciple matches (a), (b), and (c) at a mass gap m that effectively defines
a surface bandwidth.

here). ψ†
s is a creation operator of two-component helical

surface fermions that can be projected out of four component
bulk operators, i.e., ψ†

s = P+ψ
†
b , where P+ is a projection

operator. Finally, es,b are surface and bulk charges, respec-
tively; they are identical only at a classical level and can be
drastically different once quantum renormalization effects due
to polarizations are properly taken into account.

Dirac fermions with long-range Coulomb interactions had
been well understood in previous studies of graphene [24–27].
Very similar calculations lead to simple renormalization group
equations for Hb,s that we list below. We express them in
terms of dimensionless coupling constants for the bulk (b) and
surface (s),

αη = e2
η

h̄vFη

, η = b, s. (6)

In terms of these dimensionless constants, we have

∂αη

∂tη
= cηα

2
η, η = b, s,

αb(tb = 0) = αb0, αs(ts = 0) = αs0, (7)

where tη = ln �η/�η0 is a standard dimensionless running
scale defined in terms of �η, η = b, s. Here cη, η = b, s, are
constants that do not carry much significance (using Wilson-
Fisher RG analysis [23], we get cs = 1

4π2 and cb = 5
12π2 ).

Note that for αb, �b runs from m up to the ultraviolet scale
�b0 = W while for αs, �s runs below �s0 = m because sur-
face states are present below mass gaps. The second line in
Eq. (7) defines the flow initial condition for bulk and sur-
face interactions at their corresponding ultraviolet scales of
�b0 = W , �s0 = m.

In this case, there is single interaction constant. We expect
that bulk Coulomb interactions adiabatically evolve into sur-
face ones at matching scale � = m. Therefore,

αs(�s = m) = αb(�b = m) or

αs0

(
αb0,

m

W

)
= αb0

1 + cbαb0 ln W
m

, (8)

where we have solved Eq. (7) for bulk interactions to derive
the second line.

The results in Eq. (8) appear to be quite intuitive. It states
that interacting surfaces shall be naturally characterized by the
low-energy effective theory of bulk interactions. In this par-
ticular case, the surface interaction constant is simply equal to
the running coupling constant of the bulk αb(�b) at matching
scale m. As a consequence, surface interactions (dimension-
less ones) have to be a simple function of two dimensionless
parameters: (1) the bulk interaction constant αb0 and (2) the
surface “bandwidth” or band gap, m, measured in terms of
bulk bandwidth W . As we will see later, this feature is a
robust one and appears in all the cases we are examining. It
is a simple but remarkable manifestation of the principle of
interaction BBR.

B. Charge and velocity renormalization in bulk and on surface

Although the renormalization equations for bulk and
surface coupling constants αb,s are qualitatively similar, mech-
anisms leading to them are very different. Namely, in the bulk,
both charge and velocity renormalization contribute to the
renormalization of coupling constant αb while on the surface,
charge renormalization is absent and the renormalization of
the coupling constant αs is solely due to the velocity renormal-
ization. The absence of surface charge renormalization effects
is generic of 2D Dirac fermions with Coulomb interactions
and they were studied and pointed out in previous studies of
graphene physics [24–27].

In the bulk, we find the velocity and charge renormaliza-
tions to the one-loop approximation are given by

∂ ẽ2
b

∂t
= cbeαbẽ2

b,
∂ ṽF

∂t
= −cbvαbṽF ; cbe, cbv > 0. (9)

Equation (9) leads to Eq. (7) for αb with cb = cbe + cbv . Here
cbe = 1

6π2 and cbv = 1
4π2 .

One can verify the following solution for the charge and
velocity,

ẽ2
b

ẽ2
b0

=
(

αb(�)

αb0

)A

,
ṽF

ṽF0
=
(

αb(�)

αb0

)−B

,

where A = cbe

cbe + cbv
, B = cbv

cbe + cbv
; A, B > 0;

and αb(�b) = αb0

1 + cbαb0 ln W
�b

. (10)
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Note that A + B = 1. Taking into account the values of cbe and
cbv , we find that A = 2

5 and B = 3
5 .

On surfaces, cse = A = 0; hence there is no charge renor-
malization. On the other hand, csv = cs and B = 1. The
velocity increases logarithmically as low energies are ap-
proached. Similar aspects were discussed in two-dimensional
graphene.

C. Phonon-mediated attractive surface interactions

The next example we will focus on is possible phonon-
mediated attractive surface interactions. For the sake of
simplicity, in this part of discussion, we are going to assume
this is the only way fermions interact and neglect other in-
teractions such as Coulomb ones. In the next subsection, we
will restore other interactions. We will show that again surface
interactions can be simply related to two important aspects of
topological matter (and these are the only two factors relevant
to surface interactions): (1) bulk phonon-interaction constants
G̃ f p0 (dimensionless) defined at a scale of phonon bandwidth
or Debye frequency �D; (2) surface state bandwidth m mea-
sured in terms of phonon bandwidth, m

�D
, which we assume,

without losing generality, to be less than 1:

Hbulk = H f + Hph + HI ,

H f =
∫

d3rψ†
b (vF σz ⊗ s · p − mσx )ψb,

Hph =
∫

d3r{π(r)2 + [∇φ(r)]2},

HI = G f p

∫
d3r 	∇ · 	φ(r)ψ†

b (r)ψb(r), (11)

Hsurf = vF

∫
d2rψ†

s s · pψs

+ g1

∫
d2rψ†

s (r)ψs(r)ψ†
s (r)ψs(r). (12)

ψb and ψs are the bulk and the surface Dirac fields, respec-
tively. Here phonon fields are expressed in terms of φ and π

which form a pair of canonical dynamical fields, i.e.,

[φp(r),πq(r′)] = ih̄δp,qδ(r − r′). (13)

The bulk theory when cast at a running UV scale �b can
be characterized by a dimensionless renormalization charge
G̃ f p(�b) = G f p�

(Db−1)/2
b with Db = 3 for bulk; surface inter-

actions on the other hand can be characterized by g̃1(�s) =
g1�

ds−1
s with ds = 2 for surfaces. Under scale transformation,

they transform according to the following equations;

∂G̃ f p

∂tb
= Db − 1

2
G̃ f p,

∂ g̃1

∂ts
= (ds − 1)g̃1 + g̃2

1,

G̃ f p(tb = 0) = G̃ f p0, g̃1(ts = 0) = g̃10, (14)

where again tb = ln(�b/�D) and ts = ln(�s/m); �b ∈
[m,�D] and �s ∈ [0, m]. It is worth remarking that in this
limit, the one-loop contribution to the RGE of G̃ f p in Eq. (14),
which is of order of G̃3

f p, vanishes identically because the

electron-phonon interaction vertex is further proportional to
the momentum transfer. Here and in all other discussions
about the RGE of g1, we always focus on the pairing inter-
action in the particle-particle channel.

As in conventional metals, electron-phonon interactions
mediate an attractive interaction between bulk Dirac fermions.
We can characterize such interactions by a conventional four-
fermion operator in the bulk,

Heff
I = gb

∫
d3rψ†

b (r)ψb(r)ψ†
b (r)ψb(r),

g̃b(�b) = −G̃2
f p(�b), (15)

where g̃b(�b) = gb�
Db−1
b .

At �b = �s = m, we then apply the following matching
condition for g̃1(�s = m), the phonon-mediated interaction
on the surface:

g̃1(�s = m) = g̃b(�b = m) = −G̃2
f p(�b = m). (16)

This matching condition leads to the following relation be-
tween the surface interactions and the bulk ones,

g̃10

(
G̃ f p0,

m

�D

)
= −G̃2

f p0

( m

�D

)Db−1
. (17)

One can obtain Eq. (17) by solving Eq. (14) with its ul-
traviolet boundary condition defined at tb = 0 or �b = �D.
The structure is anticipated as surface attractive interactions
are mediated by electron-phonon interactions and so g̃10 is
uniquely set by bulk characterization of phonon fields, G̃ f p0,
and relative surface bandwidth, m/�D.

D. A more general case

Now we turn to a semirealistic situation where both
long-range Coulomb interactions and phonon interactions are
present:

Hbulk = H f + Hph + HI ,

H f =
∫

d3rψ†
b (vF σz ⊗ s · p − mσx )ψb,

Hph =
∫

d3r{π(r)2 + [∇φ(r)]2},

HI = G f p

∫
d3r 	∇ · 	φ(r)ψ†

b (r)ψb(r)

+ e2
b

∫
d3rd3r′ψ†

b (r)ψb(r)
1

|r − r′|ψ
†
b (r′)ψb(r′),

Hsurf = vF

∫
d2rψ†

s s · pψs

+ g1

∫
d2rψ†

s (r)ψs(r)ψ†
s (r)ψs(r)

+ e2
s

∫
d2rd2r′ψ†

s (r)ψs(r)
1

|r − r′|ψ
†
s (r′)ψs(r′).

(18)

To determine the effective surface field theories in this
case, we again match the renormalization flow of bulk inter-
actions in the IR region near �b = m with the renormalization
flow of surface fermions in its UV region �s = m. As
discussed before, the phonon-mediated interactions can be
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FIG. 4. Diagrams that contribute to the renormalization group
equations in Eq. (20). Solid lines are for fermions, wave lines are for
phonons, and dashed ones for Coulomb interactions. (a) and (b) are
for phonon-electron interactions and (c) and (d) are for Coulomb
interactions; (e) only contributes to the momentum dependence of
fermion-phonon interactions Gf p, and does not directly contribute to
Eq. (20). (The vertex correction and fermion self-energy contribu-
tions are not shown here as they lead to less relevant terms in the
infrared limit and also do not contribute to our analyses.)

conveniently represented by an effective attractive interaction,
g̃b, defined in Eq. (15). Therefore, BBR suggests a matching
between surface pairing interactions and bulk ones at m, i.e.,
g̃1(�s = m) = g̃b(�b = m).

More specifically,

αs0 = αs(�s = m) = αb(�b = m),

g̃10 = g̃1(�s = m) = −G̃2
f p(�b = m). (19)

This can be easily implemented by working out similar
renormalization group equations for bulk interactions G̃ f p and
ẽ2

b in this case for Db = 3 or a 3D bulk:

∂G̃ f p

∂tb
= Db − 1

2
G̃ f p + cbαbG̃ f p,

∂αb

∂tb
= cbα

2
b,

G̃ f p

(
tb = ln

�D

W

)
= G̃ f p0, αb(tb = 0) = αb0. (20)

The corresponding Feynman diagrams that result in the above
RGE are shown in Fig. 4. Note that tb is defined as tb =
ln �b/W and so the boundary conditions for G f p is set at
tb = ln �D/W 
= 0. And we have focused on the limit where
�D � W although one shall find it straightforward to gener-
alize to other limits.

The solutions to Eq. (20) can be obtained and matching
conditions in Eq. (19) lead to

αs0

(
αb0,

m

W

)
= αb0

1 + cbαb0 ln W
m

,

g̃10

(
G̃ f p0,

m

�D

)
= −G̃2

f p0[
1 + cbαb(�D) ln �D

m

]2 ( m

�D

)Db−1
. (21)

When presenting g̃10 in Eq. (21), we have only kept the
lowest-order contributions in terns of G̃ f p0.

It is worth emphasizing that two different coupling con-
stants enter Eq. (21): (1) αb0, the bare coupling constant
defined at �b = W , the bulk UV scale, which results in
the effective surface charges αs0, and (2) αb(�D) that is
defined as

αb(�D) = αb0

1 + cbαb0 ln W
�D

, (22)

the renormalized coupling defined at Debye frequency �D.
And αb(�D) is much less than its bare value αb0 if
ln(W/�D) � 1 and αb0 is of order unity as in solid states. The
latter coupling contributes to attractive interaction strength
g̃10 that is further renormalized by Coulomb interactions. But
its contributions can be strongly suppressed when ln(W/�D)
is much larger than unity, a limit we will focus on in later
discussions of applications. In this special limit, g̃10 can be
thought to be entirely determined by phonon interactions and
Coulomb interactions play little role.

At last, surface interactions with ds = 2 follow the simple
equations of

∂ g̃1

∂ts
= (ds − 1)g̃1 + cs f p

ṽF
g̃2

1 + csgαsg̃1,

∂αs

∂ts
= csα

2
s ,

∂ ṽF

∂t
= −csαṽF ,

g̃1(ts = 0) = g̃10, αs(ts = 0) = αs0, ṽF (ts = 0) = ṽF0,

(23)

where surface interactions at a UV scale �s = m, ˜g10, αs0 have
already been specified in Eq. (21). We find that csg = 0 as a
consequence of absence of charge renormalization. Because
ṽF increases logarithmically in the IR limit, the quadratic term
for the β function of g̃1 is less relevant in the infrared limit.
However, in the later discussions in Sec. IV, when Coulomb
interactions are screened by an external metal, we can set
cs f p/ṽF to be 1 because in that case, there is no logarithmic
growth in velocity vF and renormalization effects in ṽF can
be neglected.

Solutions to Eq. (23) can be adopted as a guiding prin-
ciple for discussions on possibilities of emergent surface
topological superconductivity and surface Majorana particles
induced by attractive interactions or spontaneous symmetry
U(1) breaking. They further provide valuable insight into the
feasibility of making supersymmetric holographic matter via
surface fermions.

But before we apply the principle of BBR to understand
these issues, we will further present a more quantitative im-
plementation of BBR via a method of dimension reduction.
The principle naturally emerges as results integration over the
degree of freedoms perpendicular to surfaces. Readers who
are not interested in this special technology and a microscopic
verification of BBR can skip the next section and go straight
to Sec. IV for the main predictions of BBR.

III. DIMENSIONAL REDUCTION

So far, we have introduced the general pedagogy of the
interaction bulk-boundary relation based on the renormaliza-
tion group methodology. In this section, we further establish
the BBR using the technique of dimensional reduction (DR).
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Using this technique, one can also explicitly take into account
the renormalization effect of bulk electrons on the surface field
theory. In other words, the dimensional reduction technique
will provide microscopic details of the bulk-boundary match-
ing conditions stated at the beginning of the previous section.

In this technique, we let bosonic fields (photons or
phonons) that mediate interactions between bulk or surface
electrons be in the 3-dimensional bulk. Surface fermions have
finite spatial extension along the z axis, which is perpendicular
to the topological insulator (TI) surface. Because the surface
fermions have finite spreads into the interior of the bulk, the
bulk bosons can mediate the interactions in the surface. This
setup captures the essential features of interactions between
boundary fermions and bulk bosonic fields. Later on, we inte-
grate out the degrees of freedom perpendicular to the surface,
thus replacing the 3-dimensional bulk theory with an effective
2-dimensional surface field theory.

In the first part, we discuss the dimensional reduction of the
domain wall fermions mediated by the bulk boson fields at the
tree level. Then, we take into account the polarization effect
of bulk electrons on the respective bulk phonon and Coulomb
fields. Thereafter, the dimensional reduction is then again
performed on the renormalized action of the domain wall
fermions to the lowest order in the bulk interaction strengths.
Finally, we compare the result from dimensional reduction
with that from the RGEs, derived in the previous section using
matching conditions at the bulk-boundary matching scale m.
We find that the results obtained in two different approaches
match, proving that BBR implemented through matching con-
ditions at the mass scale provides an efficient way to take into
account the effect of bulk polarization on surface interactions.

A. Domain wall model

The domain wall model for surface fermions is defined as
follows: consider that the TI surface is at the z = 0 plane. The
spatial profile of bulk mass is then

m(z) =
{+m, 0 < z < +∞,

−m, −∞ < z < 0.
(24)

Throughout our calculations, we ignore the edge effects on
the surface physics, which means that the periodic boundary
conditions are applied on the 2D surface. By plugging this
mass function to the massive Dirac equation and solving it,
we obtain the wave function corresponding to domain wall
fermions given by

�dw(r)k,± = eik⊥.r

√
2

⎡
⎢⎢⎣

1
0
0

±eiφk⊥

⎤
⎥⎥⎦
√

m

vF
e− m

vF
|z|

= �s(r⊥)k,±

√
m

vF
e− m

vF
|z|

. (25)

Here k⊥ = (kx, ky), r⊥ = (x, y), and the angle φk⊥ = tan−1 ky

kx
.

�s(r⊥) is the 4-component spinor wave function confined to
the 2D surface. Also, vF is the bare value of Fermi velocity.
The dispersion relation for the states is given by E±(k) =
±vF |k⊥|. It is evident that the domain wall fermions are local-
ized near the surface at z = 0, with the bulk mass term m being

the localization parameter. In the limit of m → ∞, the domain
wall state evolves itself into an ideal surface state with no tail
end in the bulk. In the opposite limit where m → 0, the bulk
gap closes, and the surface states get hybridized with the bulk.
In other words, there is no more bulk-boundary distinction.
Thus the domain wall model for boundary electrons has the
advantage that one could tune the localization of surface states
as a function of the bulk mass term. Closing the bulk gap
automatically merges the bulk and surface states.

Let us now write down the free field theory of domain wall
fermions and 2D surface fermions. For this purpose, we shall
define a pseudospin space with the 4 × 4 matrices �x, �y, and
�z as the generators. These matrices have the definitions

�x = 1

2
(σxsx − σysy), �y = 1

2
(σxsy + σysx ),

�z = 1

2
(σzs0 + σ0sz ), (26)

where σα (α = x, y, z) and sα (α = x, y, z) are Pauli matrices
defined in the particle-hole and the spin-1/2 spaces, respec-
tively. It can be shown that the matrices �x, �y, and �z

satisfy the SU(2) algebra given by [�i, � j] = 2iεi jk�k . In this
Hilbert space, the respective actions have the form

Sdw f =
∫

d3rdt ψ
†
dw

(r, t )
[
i∂t + ivF �x∂x

+ ivF �y∂y + ivF ∂z + m(z)
]
ψdw(r, t ),

S2D
surf =

∫
d2rdt ψ†

s (r, t )
[
i∂t + ivF �x∂x + ivF �y∂y

]
ψs(r, t ),

(27)

where m(z) has the form given in Eq. (24). Hence ψ
†
dw

de-
scribe 4-component gapless domain wall fermions defined in
the 3D bulk while ψ†

s describes 4-component gapless surface
fermions defined in the 2D surface. Thus the only difference
between them is that the domain wall fermions have a finite
spatial extension to the bulk which allows them to interact
with the bulk Coulomb and the phonon field.

B. Dimensional reduction I

In this subsection, we write down the bare action that
defines the interaction between the domain wall fermions. The
repulsive interaction between domain wall fermions is medi-
ated by the Coulomb potential and the attractive interaction by
phonons, the quanta of lattice vibrations. This 3-dimensional
theory is then mapped into an effective 2D surface theory
by integrating out the degrees of freedom perpendicular to
the surface. Thereafter, we look at the limit of the resulting
surface theory which can lead to superconducting pairing and
study the behavior of the two interactions at the tree level.
Following this, we find out a relation between the dimension-
less bulk and the surface coupling constants, thus verifying
the bulk-boundary matching conditions stated in Eq. (21) at
the tree-level limit.

The dynamics of domain wall fermions subject to the
phonon-mediated interaction and Coulomb repulsion are
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governed by the field theory:

S = Sdw f + Se−ph,int + Scou,int,

Se−ph,int = −G2
f p

∫
d3r d3r′ dt dt ′ ψ†

dw
(r, t )ψdw(r, t )

Ke−ph(r′ − r, t ′ − t )ψ†
dw

(r′, t ′)ψdw(r′, t ′), (28)

Scou,int = −
∫

d3r d3r′ dt ψ
†
dw

(r, t )ψdw(r, t )

e2
b

|r − r′|ψ
†
dw

(r′, t )ψdw(r′, t ), (29)

where Ke−ph(r, t ) is the phonon propagator in the bulk of
the topological insulator. In momentum space, it has the
expression

Ke−ph(q, ω) = v2
pq2

ω2 − v2
pq2

. (30)

Here vp is the phonon velocity. As discussed in the start of
the section, the effective surface action is derived by integrat-
ing out the degrees of freedom perpendicular to the surface.
That is,

S2D =
∫ ∞

−∞
dz [Sdw f + Se−ph,int + Scou,int]

= S2D
surf + S2D

e−ph,int + S2D
cou,int. (31)

The interaction term is now

S2D
e−ph,int = −

∫
d2r d2r′ dt dt ′ ψ†

s (r, t )ψs(r, t )

K2D
e−ph(r′ − r, t ′ − t )ψ†

s (r′, t ′)ψs(r′, t ′), (32)

S2D
cou,int = −

∫
d2r d2r′ dt ψ†

s (r, t )ψs(r, t )

K2D
cou(r′ − r)ψ†

s (r′, t )ψs(r′, t ), (33)

where K2D
e−ph(r, t ) is now the effective phonon propagator

on the 2D surface. Similarly, K2D
cou(r) is the effective surface

Coulomb propagator. In the momentum space, they have the
form given by

K2D
e−ph(vpq⊥, ω) =

G2
f p

∫ ∞

−∞

dqz

2π

(
M2

q2
z + M2

)2 q2
⊥ + q2

z
ω2

v2
p

− q2
⊥ − q2

z

, (34)

K2D
cou(q⊥) = e2

b

∫ ∞

−∞

dqz

2π

(
M2

q2
z + M2

)2 1

q2
⊥ + q2

z

, (35)

where M = 2m
vF

.
In the integral expression, the contribution from the domain

wall model ( M2

q2
z +M2 )2 is in fact a regularization term that helps

us get rid of ultraviolet divergences if any. If we take the limit
of M → ∞, the domain wall wave function converges into a
strictly surface term. In the case of the Coulomb propagator, it
is evident from Eq. (35) that this integral is not UV divergent
and hence is independent of m. Therefore, we could safely
take the large-M limit and ignore the regularization term.

But the integral involving the bulk phonon propagator
is UV divergent. Hence, we must use the regularization
term to integrate out the qz momentum resulting in a linear
dependence of m. After taking all these into account, the
effective surface propagator for phonon-mediated interaction
and Coulomb interaction at the tree level turns out to be

K2D
e−ph(vpq⊥, ω) =

G2
f pM

4
(
ω2 − v2

pq2
⊥
)
⎡
⎢⎣v2

pq2
⊥ − v2

pM2ω2(
Mvp +

√
v2

pq2
⊥ − ω2

)2

⎤
⎥⎦,

(36)

K2D
cou(q⊥) = e2

b

2q⊥
. (37)

K2D
cou, the 2D surface Coulomb propagator, turns out to be

proportional to 1
q⊥

as expected, where q⊥ is the in-plane
momentum.

As the main application of phonon-mediated interaction
of K2D

e−ph is superconductivity, we restrict ourselves to the
limit where the energy exchanged between the electrons in
the scattering process is less than energies of the most dom-
inating phonons. These exchange processes of phonons also
lead to pairing near a Fermi surface [28]. On taking the limit
ω � vpq⊥, m, the second term in the brackets in Eq. (36) can
be ignored in comparison to the first term, resulting in a rather
simple form,

K2D
e−ph(vpq⊥, ω) ≈ G2

f pm

2vF

v2
pq2

⊥
ω2 − v2

pq2
⊥

. (38)

Thus the momentum and frequency dependence of the 2D
surface propagator are the same as its 3D bulk counterpart.
It is well known that the phonon-mediated interactions are
mostly dominated by phonons near vpq⊥ ∼ �D, In the low-
energy window where ω < m � �D, we thus arrive at

K2D
e−ph(ω, vpq⊥) ∼ −G2

f pm

2vF
, (39)

K2D
cou(q⊥) = e2

b

2q⊥
. (40)

We find that, in this limit, the effective surface phonon
propagator is short-ranged in space. Upon comparing the sur-
face action in Eqs. (32) and (33) with the interaction terms
of the surface Hamiltonian Hsurf written down in Eq. (18), one
finds that the surface coupling constants can be related to their
respective surface propagators as

K2D
e−ph(ω, vpq⊥) = g1, q⊥K2D

cou(q⊥) = e2
s . (41)

Using this relation, one can connect the bulk and the sur-
face coupling constants of the respective interactions. When
represented in a dimensionless form using the scaling anal-
ysis, the bare values of the surface and the bulk coupling
constants are found to be related in the following way at the
tree-level limit,

g̃10 = − G̃2
f p0

2

( m

�D

)2
, ẽ2

s0 = ẽ2
b0

2
, (42)
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where g̃10 = g̃(λs = m), G̃2
f p0 = G̃2

f p(�b = �D), ẽ2
s0 =

ẽ2
s (�s = m), and ẽ2

b0 = ẽ2
b(�b = W ) are defined as the bare

values of the dimensionless surface and the bulk coupling
constants. Thus, apart from a trivial factor of 1/2, we are
able to verify the matching conditions between the respective
surface and bulk interaction strengths stated in the previous
section [Eq. (21)] up to the tree-level limit.

Upon dimensional reduction, one also finds that the
low-frequency limit of the phonon-mediated interaction po-
tential between surface fermions is attractive and short-ranged
in space. Thus, if the Coulomb interaction is sufficiently
suppressed in the long-wavelength scale, one can have a
superconducting ground state on the topological insulator sur-
face. In the subsequent subsections, we study the effect of bulk
charge polarization on surface interactions using the diagram-
matic method followed by dimensional reduction (DR).

C. Bulk renormalization effect

The Coulomb and phonon fields could further interact
with massive Dirac fermions in the bulk, resulting in a series
of electron-hole excitations and quantum renormalization ef-
fects. Here we study the one-loop renormalization effect due
to bulk electrons on the boson fields. Later, we will perform
dimensional reduction of the domain wall fermions mediated
by these dressed boson fields. The theory after dimensional
reduction turns out to be an UV theory of the surface, which
includes the quantum corrections to the bulk-boundary match-
ing conditions written in the previous section at the tree-level
limit [Eq. (42)].

The field theory of bulk electrons of the topological state is
governed by the action

Sb
Dirac =

∫
d3r dt ψ

†
b (r, t )

(
i∂t + ivF 	ρ · 	∇ − ηm

)
ψb(r, t ),

(43)

where 	ρ and η are 4 × 4 matrices and are defined in terms of
the Dirac gamma matrices as 	ρ = γ 0 	γ and η = γ 0. Here m is
the mass gap of the bulk spectrum and vF is the Fermi velocity
of the electrons. Note that the Dirac field ψb(r, t ) defined here
is a 4-component spinor and satisfies the anticommutation
relations.

The interaction between the bulk electrons is governed by
the action

Sb
int = Sb

cou,int + Sb
e−ph,int,

where

Sb
cou,int = −

∫
d3r d3r′ dt ψ

†
b (r, t )ψb(r, t )

e2
b

|r − r′|ψ
†
b (r′, t )ψb(r′, t ), (44)

Sb
e−ph,int = −G2

f p

∫
d3r d3r′ dt dt ′ ψ†

b (r, t )ψb(r, t )

Ke−ph(r′ − r, t ′ − t )ψ†
b (r′, t ′)ψb(r′, t ′). (45)

Both the electric charge and the Fermi velocity can get
renormalized in a 3-dimensional bulk state. As said before,
in this section, we will present the standard one-loop renor-

FIG. 5. Feynman diagrams for (a) bulk charge polarization ef-
fects due to Coulomb interactions and (b) contributions of Coulomb
interactions to renormalization of electron-phonon coupling con-
stant. Dotted and wiggly lines denote respectively Coulomb and
phonon fields. Solid lines stand for bulk electron propagators.

malization. In this approximation, it is sufficient to use just
the bare value of Fermi velocity. This is because the effects
of Fermi self-energy renormalization will show up only in the
higher-order contributions to the bulk charge renormalization.

The charge polarization (see Fig. 5) term to the one-loop
order in the electron bubble has the form [23]

�(q) = e2
b0

2π2vF

∫ 1

0
dββ(1−β ) ln

[
m2+β(1−β )v2

F q2

m2+β(1−β )W 2

]
.

(46)

Note that vF here is the bare value of the Fermi velocity. The
renormalization condition imposed is that the bulk renormal-
ized charge must equal its bare counterpart at the bulk cutoff
scale W , i.e., �(v2

F q2 = W 2) = 0. Since we are more inter-
ested in the case where the energy scale W is much greater in
magnitude than the bulk mass m, the bulk polarization term
takes the simple form

�(q) ≈ e2
b0

2π2vF

∫ 1

0
dβ β(1−β ) ln

[
m2 + β(1 − β )v2

F q2

β(1 − β )W 2

]
.

(47)

As a result of the polarization, the bulk electric charge gets
renormalized and hence becomes a function of spatial mo-
mentum [see Fig. 5(a)], given by

e2
b(q) = e2

b0

1 − �(q)
, (48)

where e2
b0 is the bare charge of the bulk electrons at cutoff

scale W .
We have seen in the previous section that the Coulomb

field can renormalize the electron-phonon interaction vertex.
The corresponding one-loop Feynman diagram is shown in
Fig. 5(b). The renormalized bulk electron-phonon coupling
constant has the form

G f p(q) = G f p0

1 − �eph(q)
. (49)

�eph(q) has the same loop structure as the charge polarization
but with the UV cutoff set at Debye frequency, �D, and G f p0

is the bare value of the coupling constant at the cutoff scale.
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That is,

�eph(q) = e2
b(�D)

2π2vF

∫ 1

0
dβ β(1 − β )

ln

[
m2 + β(1 − β )v2

F q2

β(1 − β )�2
D

]
. (50)

In both �(q) and �eph(q), there is a standard logarithmic
dependence on m in the limit of zero momentum q = 0.

D. Dimensional reduction II

Now we shall come back to talk about the domain wall
fermions of the surface. We have learned that the polarization
effect of bulk fermions renormalizes the respective inter-
action strengths. These dressed boson fields could mediate
interactions between domain wall fermions, as shown in the
schematic diagram in Fig. 3. Following the same procedure as
was done in the previous subsection, we perform dimensional
reduction of the renormalized theory, to arrive at the effective
surface theory. The resulting surface field theory has the form

S2D
e−ph,int = −

∫
d2r d2r′ dt dt ′ ψ†

s (r⊥, t )ψs(r, t )

K2D
e−ph(r′ − r, t ′ − t )ψ†

s (r′, t ′)ψs(r′, t ′),

S2D
cou,int = −

∫
d2r d2r′ dt ψ†

s (r, t )ψs(r, t )

K2D
cou(r′ − r)ψ†

s (r′, t )ψs(r′, t ), (51)

where K2D
e−ph(r⊥, t ) and K2D

cou(r⊥) differ from the bare surface
propagators defined in Sec. III B in such a way that these are
obtained by performing dimensional reduction on the dressed
bulk propagators, that take into account the bulk renormaliza-
tion effect [defined in Eqs. (47) and (50)]:

K2D
cou(q⊥) =

∫ ∞

−∞

dqz

2π

e2
b0

1 − �(q)

1

q2
⊥ + q2

z

, (52)

K2D
e−ph(q⊥, ω) =

∫ ∞

−∞

dqz

2π

(
M2

q2
z + M2

)2

G2
f p0

[1 − �eph(q)]2

v2
p

(
q2

⊥ + q2
z

)
ω2 − v2

p

(
q2

⊥ + q2
z

) . (53)

Computing this integral is quite tricky. So, let us look for
expansions that help us get the lowest-order corrections to the
bare result. In this case, we perform a perturbative expansion
of the denominator in powers of the bare bulk coupling con-

stant e2
b0

vF
. This results in

K2D
cou(q⊥) = e2

b0

∫ ∞

−∞

dqz

2π

(
M2

q2
z + M2

)2 1

q2
⊥ + q2

z

[1 + �(q) + . . .] = K2D(0)
cou (q⊥) + K2D(1)

cou (q⊥) + . . . , (54)

K2D
e−ph(q⊥, ω) = G2

f p0

∫ ∞

−∞

dqz

2π

(
M2

q2
z +M2

)2 v2
p

(
q2

⊥+q2
z

)
ω2 − v2

p

(
q2

⊥+q2
z

) [1+2�eph(q) + . . .
]=K2D(0)

e−ph (q⊥) + K2D(1)
e−ph (q⊥) + . . . , (55)

where the zeroth-order terms K2D(0)
e−ph (q⊥), K2D(0)

cou (q⊥) are the
same as K2D

e−ph(q⊥) and K2D(0)
cou (q⊥) derived in the previous

subsection and their exact expressions were given in Eqs. (36)
and (37), respectively.

First-order correction. Here we shall solve for K2D(1)
cou (q⊥)

and K2D(1)
e−ph (q⊥, ω), the lowest-order quantum corrections to

the bare propagators corresponding to the Coulomb and
phonon-mediated interaction, respectively. Even though the
complete solution of the momentum integral is cumbersome,
we limit ourselves to the case where the magnitude of the
in-plane momentum is close to the bulk mass gap and the
phonon frequency set to small, i.e., the static limit. The theory
after performing dimensional reduction will manifest itself as
the UV theory of the surface. Since the mass gap m is the UV
cutoff of the surface theory, it is justified to take the in-plane
momentum to be of the order of bulk mass. The static limit
suggests pairing interactions that we will be interested in. In
other words, the first-order quantum correction to the surface
propagators at the mass scale and the static limit manifest as
the first-order correction to the bare values of their respective
surface coupling constants,

q⊥K2D(1)
cou (q⊥)|vF q⊥≈m = e2(1)

s0 ,

K2D(1)
e−ph (q⊥, ω)|vF q⊥≈m,ω≈0 = g(1)

10 . (56)

After integrating out qz, one finds the exact analytical form
of e2(1)

s0 and g(1)
10 as

e2(1)
s0 = e2

b0

2

e2
b0

6π2vF

[
ln

m

W
+ 1.2611

]
, (57)

g(1)
10 = −G2

f p0m

2vF

e2
b(�D)

3π2vF

[
ln

m

�D
+ 1.06874

]
. (58)

Details of the calculation is shown in the Appendix.

E. Comparison with RG results

In this section so far, we have used the technique of di-
mensional reduction to project the renormalized bulk theory
onto the surface. Thereafter, we have derived the lowest-
order quantum correction due to the bulk electron polarization
to the surface field theory. In this subsection, we will look
at the surface coupling constants derived in the previous
section using RG techniques and compare them with the re-
sults from dimensional reduction. At the beginning of Sec. II,
we have stated that the effect of bulk interaction can be taken
into account for the surface theory by demanding that the
bulk and the boundary coupling constants must satisfy the
matching condition at the energy scale at which the bound-
ary connects with the bulk, which in this case is the bulk
mass m. Our objective of introducing the technique of di-
mensional reduction was to provide microscopic details of
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these bulk-boundary matching conditions in the case of a 3D
topological state.

The bulk-boundary matching condition is written down in
Eq. (21). Expanding the relation to the first order in the bulk

Coulomb interaction strength e2
b0

vF
, we arrive at

ẽ2
s0

(
eb0,

m

W

)
= ẽ2

b0

[
1 + ẽ2

b0

6π2vF
ln

m

W
+ . . .

]
,

g̃10

(
G̃ f p0,

m

�D

)
= −G̃2

f p0

( m

�D

)2
[

1 + ẽ2
b(�D)

3π2vF
ln

m

�D
+ . . .

]
.

(59)

On the other hand, from Eqs. (42), (57), and (58), the
dimensionless surface coupling constants derived via the di-
mensional reduction technique to the lowest order in quantum
corrections are

ẽ2
s0 = ẽ2(0)

s0 + ẽ2(1)
s0 + . . .

= ẽ2
b0

2

[
1 + ẽ2

b0

6π2vF

(
ln

m

W
+ 1.2611

)
+ . . .

]
,

g̃10 = g̃(0)
10 + g̃(1)

10 + . . .

= − G̃2
f p0

2

( m

�D

)2
[

1 + ẽ2
b(�D)

3π2vF

(
ln

m

�D

+ 1.06874

)
+ . . .

]
, (60)

where the dimensionless form of the bulk coupling constants
at their respective UV cutoff scales has the definitions ẽb0 =
eb0 and G̃ f p0 = G f p0( �D

vF
)(Db−1)/2, respectively, with Db = 3

for bulk. Similarly, for the bare surface coupling constants,
ẽs0 = es0 and g̃10 = g10( m

vF
)ds−1 with ds = 2 for the surfaces.

Thus we find that, except for a numerical factor, the
dimensional reduction technique nicely recreates the RG re-
sults obtained by imposing the matching conditions at the
bulk-boundary matching scale m. Thus, we show that the
bulk-boundary correspondence indeed naturally emerges as a
result of integrating over the degrees of freedom perpendicular
to the surfaces.

To conclude, in this section we utilized the technology of
dimensional reduction to show that the bulk-boundary match-
ing conditions at the matching scale are an efficient way to
take into account the bulk renormalization effect on the sur-
face field theory. It should be noted that since the bulk mass m
is the UV cutoff scale for surface fermions, renormalization
effects due to surface fermions come into the picture once
the energy scale is further brought down towards an infrared
regime of the surface theory. The RG flow of the surface cou-
pling constants as a result of surface fermion renormalization
has been written down in Eq. (23) in the previous section.

IV. APPLICATIONS

For a three-dimensional topological bulk, a natural limit
for us to focus on is when W , the bulk bandwidth
that can be associated with the UV scale of Coulomb
interaction, is much higher than either the surface “band-
width” or band gap m or �D, the Debye frequency

FIG. 6. Schematic of renormalized Coulomb interactions (green
curve) and phonon-mediated interactions (blue one) vs the running
scale � in the renormalization equations. In (a)–(c), we characterize
the surface bandwidth with a mass gap m, bulk phonon bandwidth
�D, and bulk fermion bandwidth W . (a) The limit of W ∼ �D �
m; (b) the limit of W � �D, m; (c) the limit of W � �D ∼ m. In
(c), Coulomb interactions further turn into dipole interactions when
� � m because of a screening metal. Here αb0 is the bare Coulomb
coupling constant [see Eq. (7)] and G̃ f p0 the dimensionless electron-
phonon one [see Eq. (14)].

that sets the bandwidth of phonons. As seen in previ-
ous sections, this can result in substantial suppression of
long-range Coulomb interactions at lower energy windows of
m or �D due to strong renormalization effects.

However, even if phonon-mediated interactions dominate
at the scale of �D due to strong suppression of long-range
Coulomb interactions, long-range Coulomb interactions are
represented by marginal surface operators and can still be-
come dominating again at asymptotic regimes where �s �
m,�D, as evident from the schematic plot of the RG flow
shown in Fig. 6(a). This hinders the emergence of surface
topological superconductivity and other related interaction
phenomena. The path suggested below involves two key in-
gredients.

(i) A route to avoid this issue of long-range Coulomb
interaction is to further add a metal on top of surfaces to
effectively reduce long-range Coulomb interactions into a
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FIG. 7. An illustrative picture representing the effect of a metal
substrate on top of a topological insulator (TI) surface.

dipole-dipole one (see Fig. 7). A Similar idea was proposed
in a previous study [34]. Surface dipole-dipole interactions
are represented by an irrelevant operator that scales down
much faster than phonon-mediated interactions. So at least
asymptotically, surfaces can then interact mainly via phonon-
mediated interactions. One shall anticipate that there shall
be spontaneous U(1) symmetry breaking leading to surface
topological superconductivity that supports emergent quan-
tum Majorana particles [30,31].

(ii) In the limit we are interested in, the Debye frequency
�D is larger or much larger than the mass gap m, i.e.,
�D � m. Once identifying surface interactions at the scale
m via matching conditions in BBR, one can extract the bare
interaction constant g1(�s = �D) (dimensionful) or g̃1(�D)
(dimensionless one) via tracking the UV flow of RGEs from
the intermediate scale m to �D.

If we focus on the weakly interacting limit, the proce-
dure mentioned above is particularly straightforward. The
bare interaction constant is simply related to g̃1(m) via
g1(�D) = g̃1(m)/mds−1. Then g̃1(�D), the dimensionless
phonon-mediated interactions at �s = �D, are linearly pro-
portional to the interactions defined at matching scale �s = m
that had been obtained via the BBR. This relation also follows
the RGEs in Eq. (65) obtained for surface fermions but in
the limit when g̃2

1 term is muted to neglect weak surface
renormalization effects, i.e., following a tree-level scaling.

Therefore, one finds that

g̃1(�s = �D) = g̃1(�s = m)

(
�D

m

)ds−1

= −G̃2
f p0

( m

�D

)Db−ds

, (61)

where ds = 2 is the dimension of surfaces and Db = 3 is the
bulk dimension.

For the purpose of realizing surface topological super-
conductivity and possible supersymmetry surface holographic
matter, one can further optimize phonon-mediated surface
interactions by choosing a topological bulk so that

m ≈ �D � W. (62)

By doing so, one can achieve an optimal phonon-mediated
interaction for given bulk fermion-phonon interactions, i.e.,

g̃1(�s = �D) = g̃10

(
G̃ f p0,

m

�D
= 1
)

= −G̃2
f p0. (63)

Compared with the general result in Eq. (21), g̃10 is equal
to G̃2

f p0 in this limit, where all other suppression factors
due to m

�D
� 1 are simply reduced to unity, a maximum

value. So in the limit �D � m and for a given dimension-
less electron-phonon interaction constant G̃2

f p0, the surface
attractive interaction reaches a maximum when m ∼ �D. In-
tuitively, one can relate the matching of surface bandwidth
m with Debye frequency �D to one kind of dynamic reso-
nance. All the three cases mentioned above have been plotted
schematically in Fig. 6. Figure 6(c) shows explicitly how
dynamic resonance and metal screening result in the enhance-
ment of phonon-mediated surface interaction and suppression
of surface Coulomb repulsion, respectively. Below we will
focus on this limit only.

Construction based on points (i) and (ii) leads to the fol-
lowing effective field theories for interacting surfaces:

Hsurf = vF

∫
d2rψ†

s s · pψs

+ g1

∫
d2rψ†

s (r)ψs(r)ψ†
s (r)ψs(r)

+ p2
s

∫
d2rd2r′ψ†

s (r)ψs(r)
1

|r − r′|3 ψ†
s (r′)ψs(r′).

(64)

Under scale transformation, the dimensionless coupling
constants, g̃1 = g1�

ds−1 and p̃2
s = e2

s (�s/m)2, transform ac-
cording to the following one-loop renormalization group
equations (ts = ln �s/m),

∂ g̃1

∂ts
= (ds − 1)g̃1 + g̃2

1,

∂ p̃2
s

∂ts
= 2 p̃2

s ,

g̃1(ts = 0) = g̃10, p̃2
s (ts = 0) = ẽ2

s0. (65)

Below we are going to discuss implications of the principle of
BBR by utilizing solutions to Eq. (65).

A. Surface topological superconductivity and Majorana
fermions

If surfaces are dominated by phonon-mediated interac-
tions, topological superconductivity can naturally emerge
in the presence of finite chemical potential μ via conven-
tional spontaneous U(1) symmetry breaking. This can happen
even in weakly interacting limits (although practically finite
temperature measurements can put certain low bounds on
interactions). If surfaces are weakly interacting, then Eq. (23)
leads to the following simple solution for �s � m,

g̃1(�s) = g̃10

(
�s

m

)
, or p̃s(�s) = ẽ2

s0

(
�s

m

)2

. (66)

It is evident that if we choose to work with crystals with m ∼
�D � W , a sufficient condition to realize surface topological
superconductivity via interactions is

g̃10 > αs0, or G̃2
f p0 >

αb0

1 + cbαb0 ln W
m

, (67)
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where the second inequality in terms of bulk interaction pa-
rameters is obtained by applying Eq. (21).

The effective field theory that describe emergent topolog-
ical superconductivity phenomena and Majorana field hosted
in surfaces can be

Hsurf − μN =∫
d2rχT

s

(
− iI ⊗ ey × s · ∇ − τz ⊗ sy� − μτy ⊗ I

)
χs

+gM

∫
d2rχT

s (r)τy ⊗ Iχs(r)χT
s (r)τy ⊗ Iχs(r).

(68)

Here χT
s = (χ1↑, χ1↓, χ2↑, χ2↓) are four-component spinful

Majorana fermion fields that form a natural representation
of two-component surface fermions. In Eq. (68), we assume
that the surface is oriented normal to the y direction. τα ,
α = x, y, z, act on a subspace spanned by subscript indices
1,2 and sα , α = x, y, z, act on spin indices ↑,↓. And χs fields
satisfy the standard algebra of real fermions,

χ†
s (r) = χT

s (r), {χs(r), χs(r′)} = I ⊗ Iδ(r − r′), (69)

where two unity matrices are defined for two subspaces in-
troduced above, respectively. In presenting Eq. (68), we have
restricted ourselves to density-density interactions although it
is possible to include other interactions such as spin-density
interactions. Detailed dynamics induced by other interactions
are not quite relevant to our current discussions of surface
topological superconductivity and will be presented in a sep-
arate article in preparation.

Topological surface superconductivity belongs to a class
of symmetry-protected states [29–31] and it is stable with
respect to weak interactions represented by gM . Finite pairing
amplitude � in Eq. (68) induced by any weak interactions at a
finite chemical potential, μ, is driven by the standard Cooper
instability as in metals. On topological surfaces, this not only
breaks U(1) symmetry spontaneously but further results in
emergent relativistic Majorana fields. On the other hand, if �

is taken to be zero, Eq. (68) has an additional U(1) invariance
under a rotation around τy axis. We identify it as a global U(1)
symmetry of surface complex fermions and the theory restores
U(1) symmetry as anticipated.

B. Supersymmetry surface holographic matter

It is perhaps more interesting to consider the limit of
strongly interacting surfaces. This limit is associated with
a phenomenon of emergent supersymmetry suggested and
studied before in a few different condensed matter systems
including topological surfaces [32–38]. Supersymmetry states
are conformally invariant and can be easily identified with
scale-invariant solutions of effective surface field theories we
are examining. Indeed, Eq. (65) has a strong-coupling fixed
point at [39]

g̃∗
1 = −(ds − 1). (70)

We identify it as a quantum critical point (QCP) for
transitions from a weakly interacting gapless topological sur-
face to a gapped topological surface superconductor due
to spontaneously U(1) symmetry breaking at zero chemi-
cal potential or μ = 0. The effective surface theories for
such a QCP can be obtained from Eq. (68) by setting
� = μ = 0, i.e.,

Hsurf =
∫

d2rχT
s I ⊗ ey × s · ∇

i
χs

+ gM

∫
d2r[χT

s (r)τx ⊗ syχs(r)χT
s (r)τx ⊗ syχs(r)

+ χT
s (r)τz ⊗ syχs(r)χT

s (r)τz ⊗ syχs(r)]. (71)

Here we have used a representation for 4-fermion
operators that is most convenient for discussions
on symmetries. In this representation, surfaces are
invariant under a U(1) rotation generated around τy, i.e.,
U (θ ) = eiθτy/2.

As stated in the previous subsection, this is an emergent
U(1) symmetry that can be identified with charge conserva-
tion. One can show explicitly this describes surface complex
fermions near a supersymmetry QCP. Equation (70) implies
that in the vicinity of strong coupling,

G̃2
f p0 = (ds − 1), (72)

one can anticipate surfaces become a conformal field theory
state with supersymmetry.

V. CONCLUSIONS

In conclusion, we have put forward in this article a general
bulk-boundary relation of interactions and have illustrated its
application in a few concrete limits. We have also investigated
this principle in a diagrammatic-based dimensional reduction
approach. This general principle has been employed to under-
stand the conditions for spontaneous symmetry breaking to
occur on topological surfaces. We further discuss a potential
route to supersymmetric matter via strong electron-phonon
interactions and additional metallic screening of long-range
Coulomb interactions. It is possible to apply the principle to
other approaches to topological surface symmetry breaking
phenomena. We plan to explore this direction in the near
future.
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APPENDIX

Here we describe the step-by-step solution to the qz

momentum integral in Eqs. (54) and (55) which con-
tributes to the quantum correction to the effective surface
Coulomb and phonon propagators, respectively. Let us
solve for the correction term to the Coulomb propagator
first.
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FIG. 8. Keyhole contour, with branch cut at iδ.

1. Evaluation of K2D(1)
cou (q⊥)

It was already mentioned in the main text that, in the case of the Coulomb propagator, the momentum integral is UV
convergent. Therefore the regularization term ( M2

q2
z +M2 )2 can be safely ignored by taking the limit of M → ∞ (where M = 2m

vF
).

This results, in the first-order correction term, to have the form given by

K̃2D(1)
cou (q⊥) = e4

b0

2π2vF

∫
dqz

2π

1

q2
⊥ + q2

z

�(q⊥, qz ) (A1)

= e4
b0

2π2vF

∫
dqz

2π

1

q2
⊥ + q2

z

∫ 1

0
dβ β(1 − β ) ln

[
m2

β(1 − β )W 2
+ v2

F

(
q2

⊥ + q2
z

)
W 2

]
. (A2)

The integral has a branch cut at qz = ±i
√

m2

vF β(1−β ) + q2
⊥. Likewise, it has poles at qz = ±iq⊥.Therefore, the contour is chosen

in such a way that the integral runs from −∞ to ∞ through a real line and the branch cut is from i
√

m2

v2
F β(1−β )

+ q2
⊥ to i∞. This

type of contour is called the keyhole contour, shown in Fig. 8. The integral can be split into∮
=
∫ +∞

−∞
+
∫

R
+Ileft + Iright. (A3)

Here Iright is the integral through the imaginary axis just along the right side of it, while Ileft is the integral just along the left
side. The integral over the curve R and ε will vanish in the limit R → ∞. Therefore, we are left with Ileft + Iright and the contour
integral on the left-hand side, where we could use a residue theorem easily to solve them. The left-hand side is given by∮

dqz

2π

1

q2
⊥ + q2

z

ln

[
m2

β(1 − β )W 2
+ v2

F

(
q2

⊥ + q2
z

)
W 2

]
= 1

2q⊥
ln

m2

β(1 − β )W 2
. (A4)

Now, we focus on the integrals along the branch cut. First, let us call the branch cut point as δ =
√

m2

v2
F β(1−β )

+ q2
⊥. Then Ileft and

Iright are given by

Iright =
∫ iδ

i∞

dqz

2π

1

q2
⊥ + q2

z

[ln (qz − iδ) + 2π i], (A5)

Ileft =
∫ i∞

iδ

dqz

2π

1

q2
⊥ + q2

z

ln (qz − iδ). (A6)

Adding these two, we get

Iright + Ileft = −2π i
∫ i∞

iδ

dqz

2π

1

q2
⊥ + q2

z

= − 1

2q⊥
ln

δ
q⊥

+ 1
δ

q⊥
− 1

, (A7)

where δ
q⊥

=
√

( m
vF q⊥

)2 1
β(1−β ) + 1.

This result defines the bare theory of the surface fermions interacting via Coulomb field. Since the UV cutoff of surface theory

is the bulk mass m, we can set the in-plane momentum vF q⊥ ≈ m. In this limit, the constant δ
q⊥

≈
√

1
β(1−β ) + 1. Thus the branch
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cut integral becomes

Iright + Ileft ≈ − 1

2q⊥
ln

√
1

β(1−β ) + 1 + 1√
1

β(1−β ) + 1 − 1
. (A8)

The first-order correction to the surface Coulomb propagator as a result of the bulk electron renormalization attains the
asymptotic form

q⊥K2D(1)
cou (vF q⊥)|vF q⊥≈m ≈ e2

b0

2

e2
b0

6π2vF

[
ln

m

W
+ 1.2611

]
, (A9)

where the number 1.2611 is a result of the following integration,

1.2611 = 3
∫ 1

0
dββ(1 − β )

⎡
⎣ln

√
1

β(1−β ) + 1 + 1√
1

β(1−β ) + 1 − 1
− ln β(1 − β )

⎤
⎦. (A10)

2. Evaluation of K2D(1)
e−ph (q⊥)

It is to be noted that unlike the Coulomb integral, we must include the regularization term since the integral is UV divergent.
This is evident from the expression for the effective phonon propagator in the 3D bulk given in Eq. (30), whose dimension is
zero. Therefore, the first-order quantum correction to the surface phonon propagator has the form

K2D(1)
e−ph (q⊥) = e2

b(�D)

π2vF

∫
dqz

2π

(
M2

q2
z + M2

)2 v2
p

(
q2

⊥ + q2
z

)
ω2 − v2

p

(
q2

⊥ + q2
z

)�(vF q⊥, vF qz ) (A11)

= e2
b0(�D)

π2vF

∫
dqz

2π

(
M2

q2
z + M2

)2 v2
p

(
q2

⊥ + q2
z

)
ω2 − v2

p

(
q2

⊥ + q2
z

) ∫ 1

0
dβ β(1 − β ) ln

[
m2

β(1 − β )�2
D

+ v2
F

(
q2

⊥ + q2
z

)
�2

D

]

= e2
b0(�D)

π2vF

∫
dqz

2π

(
M2

q2
z + M2

)2 v2
p

(
q2

⊥ + q2
z

)
ω2 − v2

p

(
q2

⊥ + q2
z

) ∫ 1

0
dβ β(1 − β ) ln

m2

β(1 − β )�2
D

+ e2
b0(�D)

π2vF

∫
dqz

2π

(
M2

q2
z + M2

)2 v2
p

(
q2

⊥ + q2
z

)
ω2 − v2

p

(
q2

⊥ + q2
z

) ∫ 1

0
dβ β(1 − β ) ln

[
1 + v2

F β(1 − β )
(
q2

⊥ + q2
z

)
m2

]
. (A12)

In the last step, we have written the log expression as a sum of two terms for reasons that will be clear soon. Both the terms

have poles in the upper half plane at qz = i
√

v2
pq2

⊥ − ω2,±iM. While the first term is smooth except for the poles in the complex

plane, the second term has a branch cut at qz = i
√

m2

v2
F β(1−β )

+ q2
⊥. Solving the first term will give a logarithmic correction to the

bare propagator, with the log term being a ratio of the UV cutoff scales for the surface and the bulk, given by m/�D. The second
term could be solved only by using a branch cut integral just as in the previous case. Let us call the integral expression to be I ,

I =
∫

dqz

2π

(
M2

q2
z + M2

)2 v2
p

(
q2

⊥ + q2
z

)
ω2 − v2

p

(
q2

⊥ + q2
z

) ln

[
1 + v2

F β(1 − β )
(
q2

⊥ + q2
z

)
m2

]
. (A13)

Consider the same keyhole contour given in Fig. 8. The integral over the curve R will vanish in the limit R → ∞. The

left-hand side is just the sum of the residues of the integrand at qz = i
√

q2
⊥ − ω2

v2
p

and qz = iM
√

1 − ε which is given by

C =
∮

dqz

2π

(
M2(1 − ε)

q2
z + M2(1 − ε)

)2 v2
p

(
q2

⊥ + q2
z

)
ω2 − v2

p

(
q2

⊥ + q2
z

) ln

[
1 + v2

F β(1 − β )
(
q2

⊥ + q2
z

)
m2

]
(A14)

= M

8

⎡
⎢⎣ 2q2

⊥
ω2

v2
p

− q2
⊥

−
ω2

v2
p

ω2

v2
p

− q2
⊥

⎛
⎜⎝ M2(

M −
√

q2
⊥ − ω2

v2
p

)2 + M2(
M +

√
q2

⊥ − ω2

v2
p

)2

⎞
⎟⎠
⎤
⎥⎦ ln

[
1 + v2

F β(1 − β )

m2

(
q2

⊥ − M2
)]

+ M3

8

ω2

v2
p

ω2

v2
p

− q2
⊥

⎛
⎜⎝ 1(

M −
√

q2
⊥ − ω2

v2
p

)2 − 1(
M +

√
q2

⊥ − ω2

v2
p

)2

⎞
⎟⎠ ln

[
1 + v2

F β(1 − β )

m2

ω2

v2
p

]
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+ M

4

⎡
⎣ 2q2

⊥
ω2

v2
p

− q2
⊥

−
ω2

v2
p

ω2

v2
p

− q2
⊥

⎛
⎝ M

M +
√

q2
⊥ − ω2

v2
p

+ M

M −
√

q2
⊥ − ω2

v2
p

⎞
⎠
⎤
⎦ 4β(1 − β )

1 + v2
F β(1−β )

m2 (q2
⊥ − M2)

. (A15)

And the sum of the integrals along the branch cut, Ileft + Iright, is given by

Ileft + Iright = −2π i
∫ i∞

iδ

dqz

2π

(
M2

q2
z + M2

)2 q2
⊥ + q2

z
ω2

v2
p

− (q2
⊥ + q2

z )
(A16)

= M4

ω2

v2
p

− q2
⊥ + M2

[
− ω2

ω2

v2
p

− q2
⊥ + M2

⎛
⎝ 1

2M
ln

δ − M

δ + M
+ 1

2
√

q2
⊥ − ω2

v2
p

ln
δ −

√
q2

⊥ − ω2

v2
p

δ +
√

q2
⊥ − ω2

v2
p

⎞
⎠

+ M2 − q2
⊥

2M

(
1

2M2
ln

δ + M

δ − M
− δ

M

1

δ2 − M2

)]
. (A17)

The resulting solution will define the first-order quantum correction to the bare theory of the surface fermions interacting via
lattice phonon field. Since the UV cutoff of surface theory is the bulk mass m, we can set the in-plane momentum vF q⊥ ≈ m.
Also the phonon frequency is set to ω ≈ 0, the limit which supports superconducting pairing. In this limit, the sum of the residues
of the keyhole contour, whose full expression is given in Eq. (A15), attains the limiting value

C ≈ −M

4
ln [1 − 3β(1 − β )] − M

4

8β(1 − β )

1 − 3β(1 − β )
. (A18)

Similarly, the sum of the integrals along the two sides of the branch cut become

Iright + Ileft =

M

4

⎡
⎣ln

1
2

√
1

β(1−β ) + 1 + 1

1
2

√
1

β(1−β ) + 1 − 1
−

√
1

β(1−β ) + 1

1
4β(1−β ) + 1

4 − 1

⎤
⎦.

(A19)

The solution of the integral denoted by I given in Eq. (A13) is obtained by subtracting the integral along the branch cuts from
the sum of the residues. Thus, we have

I = C − Ileft − Iright

= −M

4

[
2 ln

(
2 +

√
1 + 1

β(1 − β )

)
+ ln β(1 − β ) − 2

1 + 1
2

√
1

β(1−β ) + 1

]
. (A20)

Finally, let us write down the first-order correction to the surface phonon propagator as a result of the bulk electron renormaliza-
tion,

K2D(1)
e−ph (ω, vF q⊥)|ω≈0,vF q⊥=m ≈ −G2

f p0m

2vF

e2
b(�D)

3π2vF

[
ln

m

�D
+ 1.06874 . . .

]
, (A21)

where the numerical constant 1.06874 is the result of the following integration,

1.06874 = 6
∫ 1

0
dββ(1 − β )

[
ln

(
2 +

√
1 + 1

β(1 − β )

)
− ln

√
β(1 − β ) − 2

1 + 1
2

√
1

β(1−β ) + 1

]
.
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