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Particle entanglement provides information on quantum correlations in systems of indistinguishable particles.
Here, we study the one-particle entanglement entropy for an integrable model of spinless, interacting fermions
both at equilibrium and after an interaction quantum quench. Using both large-scale exact diagonalization
and time-dependent density matrix renormalization group calculations, we numerically compute the one-body
reduced density matrix for the J-V model, as well as its postquench dynamics. We include an analysis of
the fermionic momentum distribution, showcasing its time evolution after a quantum quench. Our numerical
results, extrapolated to the thermodynamic limit, can be compared with field theoretic bosonization in the
Tomonaga-Luttinger liquid regime. Excellent agreement is obtained using an interaction cutoff that can be
determined uniquely in the ground state.
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I. INTRODUCTION

If a quantum system is in a pure state after a sudden
change to the system—a quantum quench [1]—the growth
of entanglement entropy under a spatial bipartition plays the
role of thermal entropy [2,3] in describing how expectation
values of local observables can be computed from a statistical
ensemble [4–7]. For systems of N indistinguishable particles,
a bipartition can also be made in terms of subgroups of n
and N − n particles [8–11]. This particle entanglement en-
tropy provides complementary information as compared to
the spatial mode entanglement and is sensitive to both inter-
actions and particle statistics at leading order [12–23], phase
transitions [24,25], and possibly to many body localization
[26,27]. Unlike mode entanglement, particle entanglement is
not sensitive to the choice of modes (e.g., spatial, momentum,
or energy), and could play a role in characterizing phases
of matter through the information content encoded in corre-
lations between particles. There are also routes to potential
experimental measurement, either through correlation func-
tion coherences [28,29] or via its transfer to accessible modes
[30]. In a dynamical setting, an equivalence was recently
demonstrated between the increase of entropy densities under
spatial and particle bipartitions in the asymptotic steady-state
regime after a quantum quench in a system of interacting
one-dimensional fermions [31] in the limit n, N → ∞; n/N ∼
const.

Numerical results also indicate that the particle entangle-
ment entropy density is a decreasing function of the order n
of the reduced density matrix, which can be understood in
terms of higher-order correlations acting as a constraint on the
available particle configurations. For an integrable model, it is
even possible to obtain the entanglement entropy density after
an interaction quench from knowledge of only the diagonal

components of the n = 2 density matrix [32]. These results
accentuate the potential of particle entanglement entropy as
an alternative to the usual spatial entanglement in under-
standing nonclassical correlations in nonequilibrium quantum
dynamics.

Thus it is natural to explore the entanglement entropy asso-
ciated with low-order density matrices. The idea of expanding
the entropy density as a series in irreducible correlations
between groups of n particles is explicit in classical nonequi-
librium mechanics [33,34]. However, in general, density
matrices are very challenging to compute, but in one dimen-
sion (1d), even after a quantum quench, bosonization gives
access to low-order reduced density matrices as correlation
functions of bosonic exponentials [35–38]. Here, we study the
properties of the n = 1 reduced density matrix (RDM), both
in equilibrium and after a quantum quench, with a focus on
the von Neumann and Rényi entropies. This represents the
first step in the systematic expansion in terms of multipar-
ticle correlations discussed above. For n = 1, the 1-RDM is
proportional to the familiar equal time Green function which
captures the momentum distribution and is experimentally
accessible in a wide variety of scenarios (e.g., via interference
[28,29] or Raman scattering [39] in trapped low-dimensional
ultracold gasses, or through the spectral function in angle re-
solved photoemission spectroscopy [40]). Bounds have been
proven on the spectrum of 1-RDMS, and there are conjectures
for the spectrum of the 2-RDM [41,42].

We perform exact computations of the 1-RDM for an in-
teracting lattice model of spinless fermions in one dimension,
the J-V model. This model, which can be exactly solved by
mapping to the XXZ spin chain [43,44] at fixed magneti-
zation, has proven to be a fruitful playground for studying
quasithermalization and the dynamics of correlation functions
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and spatial entanglement after a quantum quench [45–49].
Here, we are interested in particle entanglement entropy in
this system, and apply large-scale exact diagonalization (up
to N = 19 particles on L = 38 sites at half filling), both in
equilibrium and after an interaction quantum quench. Both
the transient dynamics and asymptotic steady state after a
quantum quench are analyzed by performing unitary time
evolution starting from an initial state of free fermions to long
times. These results are extended to even larger system sizes
while preserving periodic boundary conditions using GPU
accelerated time-dependent density matrix renormalization
group (tDMRG) calculations allowing us to study systems
up to L = 102 sites. Here, the presence of periodic bound-
ary conditions is important, allowing for the computation of
the momentum distribution directly from the eigenvalues of
the 1-RDM, maintaining translational invariance and ensuring
accuracy of measured quantities at small momenta.

We consider a wide range of attractive and repulsive in-
teractions spanning a continuous and discrete quantum phase
transition in the model. For a quantum quench to a state with
strong interactions, outside the quantum liquid regime, we
find that both the transient and long time momentum distri-
bution can develop nonmonotonic behavior as a function of
momentum q—a signature of strong spatial correlations and
particle localization in the ground state. The large system sizes
studied allow us to perform reliable finite size scaling to the
thermodynamic limit where a comparison can be made with
continuum field theory calculations.

Bosonization is routinely used to compute universal quan-
tities, and here we use it to study the 1-RDM whose
short-distance behavior reflects the dynamics of high energy
excitations. This is accomplished by the introduction of an
interaction cutoff (different from the often used UV lattice
cutoff), which is needed due to the short-range nature of
interactions in the J-V model under study. This cutoff is
unambiguously determined from our equilibrium numerics
and applied to make microscopic predictions after the quench
via bosonization. Good agreement is found across the phase
diagram for the one-particle von Neumann and Rényi entan-
glement entropies highlighting the utility of continuum field
theory to describe both short and long time dynamics.

In the following, we briefly describe the main results and
contributions of this work. We study N one-dimensional spin-
less fermions on a lattice of L sites with hopping J and
nearest neighbor interaction V [see microscopic Hamiltonian
in Eq. (2) for details]. For |V/J| < 2, the low-energy sector
is a Luttinger liquid, while the system undergoes a continu-
ous quantum phase transition to an insulating solid phase at
V/J = 2. For attractive interactions, there is a discontinuous
transition to a phase separated clustered solid at V/J = −2.
This phase diagram is reflected in Fig. 1, which shows the
von Neumann entanglement entropy S1 computed from the
spectrum of the 1-RDM, ρ1(q):

S1 = − N

2kF

∫
dq ρ1(q) ln ρ1(q), (1)

where kF is the Fermi momentum at half filling. Here we
have subtracted off the one-particle entanglement of free
fermions: Sff = ln N to highlight the role of interactions. At
V/J = 2, there is a change of slope in the entanglement as the

FIG. 1. Interaction dependence of one-particle von Neumann en-
tanglement entropy S1 obtained numerically from the J-V model and
from an effective low-energy Luttinger liquid calculation (dashed
lines) with a fixed interaction cutoff. Here, Sff is the entropy for
free fermions. The main panel depicts the equilibrium ground state
entropy with numerical data from DMRG for a system of L = 102
lattice sites at half filling (crosses). The solid line represents finite
size scaling of numerical data to the thermodynamic limit. The
excellent agreement with the finite size DMRG data shows that
the system with N = 51 fermions is large enough to describe the
thermodynamic limit accurately in the whole LL phase. The inset
depicts finite size exact diagonalization results for N = 12 fermions
on L = 24 sites after an interaction quantum quench (circles) in the
asymptotic steady state. The solid line shows the thermodynamic
limit of the numerical data obtained from finite size scaling the time
averaged one-particle entropy (circles) after the interaction quench.
The dashed line is the result of nonequilibrium bosonization using
the same value of the interaction cutoff as in the main panel.

system enters the solid phase via a second order transition,
and S1 − Sff asymptotically approaches ln 2 (dotted line) for
V/J � 2 reflecting the two-fold degeneracy of the charge
density wave ground state. Moving across V/J = −2, the
entanglement entropy echoes the first-order transition by a
sudden jump in S1 − Sff to ≈ ln 2 (dotted line). Here, the large
entanglement entropy is due to the translational symmetry of
the clustered N fermions state representing the solid phase.
In the Luttinger liquid phase, we show the bosonization result
for the entanglement as a dashed red line, for a fixed value
of the interaction cutoff. The deviation for strong negative
interactions reflects the divergence K → ∞ of the Luttinger
parameter when approaching the first order phase transition
at V/J = −2. The solid red line represents the extrapolation
to the thermodynamic limit of the numerical exact diagonal-
ization and DMRG data, highlighting the reliable nature of
our finite size scaling procedure. The inset shows the t → ∞
asymptotic limit of the one-particle entanglement entropy af-
ter the J-V model is quenched from noninteracting fermions
to a final interaction strength V at t = 0 for a finite size system
of N = 12 fermions on L = 24 sites. Here, the dashed line
is computed via nonequilibrium bosonization using the same
cutoff as in the equilibrium case. The solid purple line again
shows the extrapolation to the thermodynamic limit. A com-
parison with the main panel shows the growth of entanglement
after the quantum quench in this quantum liquid regime.
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FIG. 2. Dependence of eigenvalues of the one-body density ma-
trix ρ1 on the rescaled waiting time 2vt/L after the quantum quench
computed via exact diagonalization for a final interaction strength
V/J = −0.5. We show a quarter of the spectrum with 0 < q < kF

for a system of N = 12 fermions on L = 24 lattice sites. The largest
contributions to the one-particle entanglement entropy come from
the eigenvalues close to the Fermi levels which show the largest
oscillation amplitude and the recurrence time L/(2v) that appears
in the entropy.

In translationally invariant systems, the 1-RDM depends
only on the difference between the two spatial coordinates,
and can hence be diagonalized by a Fourier transform. The
resulting ρ(q, t ) obtained from exact diagonalization is dis-
played in Fig. 2 as a function of 2vt/L, where t is the waiting
time after the quench, v is the renormalized velocity of low-
energy excitations, and L is the system size. Quasiperiodic
oscillations, due to the presence of multiple velocity scales,
whose amplitude increases with momentum q are observed.

For a strong interaction quench from noninteracting
fermions to deep inside the phase separated cluster solid, the
q dependence of the distribution function at fixed waiting
times can develop a nonmonotonicity as seen in Fig. 3. For
times still in the transient range, this can occur near the Fermi
momentum, whereas, at long waiting times, it appears even at
small q. A detailed study of the interaction and time depen-
dence of this quantity is discussed in Sec. VI.

The main contributions of this work are (i) providing a
definitive picture of the 1-RDM and entanglement in a one-
dimensional integrable model both in equilibrium and after a
quantum quench and (ii) utilizing a self-consistent procedure
to regularize field theory computations to make predictions
about the postquench density matrix and entanglement en-
tropy.

The remainder of the manuscript is organized as follows.
In Sec. II, we introduce the microscopic lattice model un-
der study and describe its phase diagram in detail. We then
bosonize its low-energy sector in Sec. III and derive an expres-
sion for the momentum distribution in equilibrium. This field
theory calculation is then compared against exact diagonal-
ization and DMRG results in Sec. IV. Section V explores the
one-particle entanglement entropy after an interaction quan-
tum quench, again comparing field theory with numerical
results. The explicit postquench waiting time dependence of
the 1-RDM is investigated in Sec. VI before we provide some

FIG. 3. Momentum distribution function at two different times,
after a quantum quench at t = 0 to a final interaction strength
V/J = −6.5 deep in the phase separated clustered solid. The sys-
tem consists of N = 12 fermions on a ring of L = 24 sites. The
inset shows the equilibrium ground state distribution function which
demonstrates pronounced oscillations due to the existence of a short
momentum scale resulting from large clusters of N fermions. Lines
are a guide to the eye.

final concluding remarks and possible future research direc-
tions in Sec. VII.

II. MODEL AND PHASE DIAGRAM

We study a system of N spinless fermions on a one-
dimensional lattice with L sites at half filling L = 2N
described by the J-V Hamiltonian

H = −J
L∑

i=1

(c†
i+1ci + c†

i ci+1) + V
L∑

i=1

nini+1. (2)

Here J is the hopping amplitude, V is the nearest neighbor
interaction, c†

i creates a fermion at site i, and ni = c†
i ci is the

occupation number operator for site i. In the case of even num-
ber of particles N , we use antiperiodic boundary conditions
and for odd N we use periodic boundary conditions, which
ensures that the ground state is always nondegenerate.

Depending on the strength of the interaction parameter
V/J , the system is in one of three phases, where the exact
phase boundaries are known from a mapping to a spin-1/2
XXZ model [43,44].

(1) For V/J < −2, the system is a phase separated solid,
where the strong attractive interactions favor clustering of
fermions such that the ground state for V/J → −∞ becomes

|�V/J→−∞〉 = 1√
L

L∑
n=1

T n|11 · · · 1100 · · · 0〉, (3)

where |11 · · · 1100 · · · 0〉 is the state for which the first N
sites are occupied by a fermion and the remaining N sites
are empty. Here, T is the translation operator that shifts each
fermion one site to the right, e.g., T |011001〉 = |101100〉.
Due to the fixed particle number at half filling, this ground
state is not identical to the ferromagnetic ground state of
an unrestricted XXZ chain. However, the restriction to half
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filling, corresponding to fixed zero magnetization in the XXZ
model, does not alter the points of the phase transitions [50].

(2) For the other strongly interacting case V/J > 2, the
system is in the charge density wave phase where strong
repulsion results in a ground state with maximal separations
between the fermions. For a lattice at half filling, the ground
state in the limit V/J → ∞ becomes

|�V/J→+∞〉 = 1√
2

(|10101 · · ·〉 + |01010 · · ·〉). (4)

(3) In the intermediate region, −2 < V/J < 2, the system
is in the Tomonaga-Luttinger liquid (LL) phase, where the
relatively weak interactions allow the description with an ef-
fective low-energy theory.

III. ONE-PARTICLE REDUCED DENSITY MATRIX IN A
LUTTINGER LIQUID

In this paper, we study the one-particle entanglement en-
tropy from the J-V model in the LL phase. In the following,
we measure lengths in units of the lattice constant. We start
with deriving an analytical result for the one-body density
matrix ρ1(x, 0) for the corresponding LL model of length
L. From the LL 1-RDM, we compute the one-particle en-
tanglement entropy, and then compare with numerical results
obtained for the J-V model. In this phase with intermediate
interaction strength, observables are dominated by low en-
ergy excitations in the form of density fluctuations around a
static average density background. Such fluctuations of the
density are bosonic in nature, which allows us to describe
the low-energy physics with an effective Hamiltonian [37] in
bosonization notation after linearizing the dispersion around
the Fermi points

H =
∑
q 	=0

[ω0(q) + m(q)]b†
qbq+1

2

∑
q 	=0

g2(q)(bqb−q + b†
qb†

−q ),

(5)

where b†
q (bq) are bosonic creation (annihilation) operators

with [bq, b†
q′ ] = δq,q′ , ω0(q) = vF |q|, and we work in units

where h̄ = 1. The sum is taken over discrete momenta qn =
n2π/L with n ∈ Z \ {0}. The nearest neighbor coupling in
the lattice model has a finite interaction range, which we
take into account by assuming that g2(q) and m(q) vanish
for momenta qε � 1 larger than an interaction cutoff ε [51].
For small |q|, the parameters have a linear q dependence,
m(q) = g4|q|, g2(q) = g2|q|, where g2 and g4 can be related to
the parameters of the J-V model as discussed below. As ω0(q)
is the dispersion for free fermions, the terms g2 and g4 are
zero in this case. By comparing the final bosonization results
with numerical simulations of the J-V chain the interaction
cutoff can be unambiguously determined. The Hamiltonian
(5) is quadratic in the boson operators and can therefore be
solved analytically. In order to compute the one-body density
matrix, we use refermionization to express the fermionic field
operators ψα (x) in terms of bosonic fields as

ψα (x) = χα√
2πη

eı(ϕ0,α+α 2πx
L Nα )e−ıφα (x) (6)

φα (x) = −
∑
q>0

√
2π

qL
e−qη/2[eıαqxbαq + e−ıαqxb†

αq], (7)

where α = (−)1 indicates right (left) moving fermions, χα =
eαı π

2 N−α are Klein factors with χ†
αχα = 1, η is a short distance

cutoff measured in units of the lattice spacing (not to be con-
fused with the interaction cutoff ε), and φα (x) are Hermitian
operators [52,53]. Here, Nα is the particle number operator,
and ϕ0,α , Nα are zero mode operators satisfying the commuta-
tion relation [Nα, ϕ0,α] = i. The one-body density matrix can
be obtained from the one point correlation functions for left
and right movers in terms of the fermion operators Eq. (6) via

ρ1(x, 0) = 1

N
[e−ıkF xC+(x, 0) + eıkF xC−(x, 0)], (8)

Cα (x, 0) = 〈ψ†
α (x)ψα (0)〉 (9)

with Fermi momentum kF = πN/L.
To relate the results for the effective LL model to numerical

results of the J-V model at half filling, we use Bethe ansatz
results obtained via a mapping to the spin-1/2 XXZ chain [52]

K ≡
√

vF + g4 + g2

vF + g4 − g2
= π

2 cos−1
(−V

2J

) , (10)

v

J
= 1

1 − (2K )−1
sin[π (1 − (2K )−1)], (11)

where K is the LL interaction parameter, and v|q| is the
dispersion relation for low-energy excitations. We use the
above expressions for v and K in the diagonalized version
of the LL Hamiltonian Eq. (5) to parametrize the interaction
strength and velocity. We will see below that K and v are
indeed the relevant parameters for describing the 1-RDM as
K determines the exponent of the interaction contribution, and
v is the velocity with which information spreads though the
system after an interaction quantum quench.

The Hamiltonian (5) can be diagonalized using a Bogoli-
ubov transformation

aq = cosh(θq)bq + sinh(θq)b†
−q,

a†
−q = sinh(θq)bq + cosh(θq)b†

−q,
(12)

in contrast to simply diagonalizing the Hamiltonian in a basis
(b†

q, b−q ) (as one would do for a fermionic BCS Hamiltonian),
since this would not preserve the bosonic commutation rela-
tions [54,55]. The choice of coefficients in Eq. (12) guarantees
bosonic commutation relations [aq, a†

q′ ] = δq,q′ , [aq, aq′ ] = 0,

[a†
q, a†

q′ ] = 0, and one finds that

∑
q

f (|q|) a†
qaq

cosh2(θq) + sinh2(θq)

=
∑

q

f (|q|)b†
qbq + f (|q|) sinh(θq) cosh(θq)

sinh2(θq) + cosh2(θq)

× (bqb−q + b†
qb†

−q). (13)
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Choosing f (|q|) = ω0(q) + m(q) and tanh(2θq) =
g2(q)/ f (|q|), which in the limit q → 0 is given by
g2/(vF + g4), the Hamiltonian becomes diagonal

H =
∑

q

ω(q)a†
qaq, (14)

ω(q) =
√

(ω0(q) + m(q))2 − g2(q)2 ≡ v|q| . (15)

This allows us to evaluate the ground state expectation values

〈a†
qaq′ 〉 = δqq′ fb(q), (16)

〈aqaq′ 〉 = 0 = 〈a†
qa†

q′ 〉, (17)

where fb(q) is the Bose-Einstein distribution function with
energies ω(q).

Using Eq. (6) in Eq. (8) together with the Baker-Hausdorff
formula eAeB = eA+Be[A,B]/2, the one point correlation func-
tion becomes

Cα (x, 0) = 1

2πη
eα πx

L [Nα,ϕ0,α ]e
1
2 [φα (x),φα (0)]〈eı(φα (x)−φα (0))〉.

(18)

Here, we use the boson cummulant formula 〈eı(φα (x)−φα (0))〉 =
e− 1

2 〈(φα (x)−φα (0))2〉, which is valid in equilibrium for a quadratic
Hamiltonian, for any linear combination of bosons

∑
n Anbn +

Bnb†
n. In addition,

1

2
[φα (x), φα (0)] = 1

2

∑
q>0

2π

qL
[e−qı(−ıη−αx) − e−ıq(−ıη+αx)].

(19)

Due to the regularization η, we can perform the q sum, where
we use that for any complex number z with Im[z] > 0 holds
[53] ∑

q>0

2π

qL
e−ıqz = − ln

[
1 − e−ı 2π

L z
]

(20)

= − ln
[
2ıe−ı π

L z sin
(π

L
z
)]

. (21)

One needs to be careful when using logarithm laws with
complex numbers, as we need to stay on the main branch of
the logarithm: ln(z) = ln(|z|) + ı arg(z). With this in mind, we
find for Eq. (19)

1

2
[φα (x), φα (0)]

= 1

2

{
− ln

[
2ıe−ı π

L (−αx−ıη)sin
(π

L
(αx + ıη)

)]
+ ln

[
−2ıeı π

L (−αx+ıη)sin
(π

L
(αx − ıη))

)]}
(22)

= −1

2
ln

∣∣∣∣ sin
(

π
L (αx + ıη)

)
sin

(
π
L (αx − ıη)

) ∣∣∣∣
− ı arg

[
sin

(π

L
(αx + ıη)

)]
− ı

π

2
− ı

π

L
αx . (23)

In the limit η/x → 0, the arg term is 0 for αx > 0 and ±π if
αx < 0 such that

lim
η/x→0

e
1
2 [φα (x),φα (0)] = −sgn(αx)ıe−ı π

L αx. (24)

In order to evaluate the expectation value in Eq. (18) by using
the boson cummulant formula, we need the expectation values
〈φα (x)φα (x′)〉. To compute them by utilizing the expectation
values Eq. (16), we insert the inverse of the transformation
Eq. (12) into the expression for φα (x), Eq. (7), such that

φα (x) = −
∑
q>0

√
2π

qL
e−qη/2

× [eıαqx(cosh(θq)aq − sinh(θq)a†
−q)

+ e−ıαqx (cosh(θq)a†
q − sinh(θq)a−q )]. (25)

Using the expectation values of pairs for aq operators with
〈a†

qaq′ 〉 = δqq′ fb(q), we find

〈φα (x)φα (x′)〉

=
∑
q>0

2π

qL
e−qη

× {eıα(x−x′ )[(1 − fb(q)) cosh2(θq) + fb(q) sinh2(θq)]

+ e−ıα(x−x′ )[ fb(q) cosh2(θq) + (1 − fb(q)) sinh2(θq)]}.
(26)

At zero temperature, the Bose-Einstein distribution becomes
fb(q > 0) = 0, such that we find for the exponent appearing
in the correlation function

− 1

2
〈(φα (x) − φα (0))2〉

= 1

2

∑
q>0

2π

qL
e−qη(cosh2(θq) + sinh2(θq) − 1 + 1)

× [−2 + eıαqx + e−ıαqx]. (27)

Here, we added a zero (−1 + 1) to separate the free term
Eq. (21) from the interaction term of the correlation func-
tion. Including the −1 in the interaction term ensures that it
vanishes in the noninteracting case where θq → 0. We now
precisely define the interaction cutoff ε by using it to describe
the q dependence of the interaction term as [37]

cosh2(θq) + sinh2(θq) − 1 ≈ K + K−1 − 2

2
e−ε|q| (28)

≡ γ 2
eqe−ε|q|, (29)

where now K = limq→0 e2θq and γeq are independent of q.
While ε appears to be a free parameter of the model, we will
show later that for not too strong interactions, a fixed value
can be chosen such that the analytic calculation reproduces
numerical results from exact diagonalization and DMRG for
a range of interaction strengths. In addition, ε regularizes
the interaction part of the correlation function and therefore
allows us to take the limit ηq → 0 when keeping εq finite.

At zero temperature, we use Eq. (21) to perform the q sums
in Eq. (27) and find

F 0
α (x; η) ≡ −1

2
〈(φα (x) − φα (0))2〉0

= 1

2

∑
q>0

2π

qL
e−ıq(−ıη)[−2 + eıαqx + e−ıαqx] (30)
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= ln
[
−2ıe− π

L η sin
(π

L
ıη

)]

− 1

2
ln

[
2ıe−ı π

L (αx−ıη)sin
(π

L
(αx − ıη)

)]

− 1

2
ln

[
2ıe−ı π

L (αx+ıη)sin
(π

L
(αx + ıη)

)]
, (31)

such that the interaction term can be obtained from the free
one by multiplying with a factor γ 2

eq while changing the regu-
larization to include the interaction cutoff, i.e., η → η + ε,

− 1
2 [〈(φα (x) − φα (0))2〉 − 〈(φα (x) − φα (0))2〉0]

= γ 2
eqF 0

α (x; η + ε). (32)

We use this and the translational invariance of the expectation
value, i.e., 〈φα (x)φα (x′)〉 = 〈φα (x − x′)φα (0)〉, to obtain the
expectation value that appears in the one point correlation
function

e− 1
2 〈(φα (x)−φα (0))2〉

= −ı sin
(

π
L ıη

)
|sin

(
π
L (αx + ıη)

)|
[

ı sin
(

π
L ı(η + ε)

)
|sin

(
π
L (αx + ı(η + ε))

)|
]γ 2

eq

.

(33)

Using Eqs. (24) and (33) in the expression for the cor-
relation function Eq. (18), taking the limit η/x, η/L →
0, where sin(π ıη/L)/η → π ı/L, ı sin(ıb) = −| sin(ıb)|, and√

sin(b + ıc) sin(−b + ıc) = ı| sin(b + ıc)|, we find

Cα (x, 0) = ıπ

2πL

sgn(αx)

|sin
(

π
L (αx)

)|
∣∣∣∣ sin

(
π
L ıε

)
sin

(
π
L (αx + ıε)

) ∣∣∣∣
γ 2

eq

(34)

= αı

2 sin(πx/L)

∣∣∣∣ sin(π ıε/L)

sin
(

π
L (x + ıε)

) ∣∣∣∣
γ 2

eq

. (35)

Using that α = −1 for left movers and α = +1 for right
movers, we obtain the full one-body density matrix Eq. (8)

ρ1(x, 0) = ρ0
1 (x, 0)

∣∣∣∣ sin(π ıε/L)

sin
(

π
L (x + ıε)

) ∣∣∣∣
γ 2

eq

, (36)

ρ0
1 (x, 0) = 1

N

sin(kF x)

L sin(πx/L)
. (37)

We show in Appendix A that Eq. (37) is equivalent to the exact
one-body density matrix for noninteracting lattice fermions.
Because x is a relative coordinate and we are interested in the
short distance behavior that dominates the Fourier transform
and the entropy, we consider the limit of large L with x/L �
1 and neglect terms of order O(x/L). For the leading term
L sin(πx/L) → πx, we then arrive at the following expression
for the one-body density matrix:

ρ1(x, 0) = sin(kF x)

Nπx

(
ε2

x2 + ε2

)γ 2
eq/2

+ O
( x

L

)
, (38)

which is normalized such that Lρ1(0, 0) = 1, where kF =
πN/L. Because the particle number N appears explicitly in
the normalization, we cannot directly take the thermodynamic
limit. Therefore we first compute the entropy density, and only
then take the thermodynamic limit 1/N → 0. To diagonalize

FIG. 4. Distribution function Nρ1(q), Eq. (39), obtained from
the x/L � 1 limit of the one-body reduced density matrix in the
Luttinger liquid model for a fixed interaction cutoff ε = 0.84 and
various interaction strengths V/J . Without interactions, γeq = 0, the
distribution function is a step function up at the Fermi momenta
kF = ±π/2.

ρ1(x, 0), we compute the Fourier transform, which yields

ρ1(q) =
∫ ∞

−∞
dx ρ1(x, 0)e−ıqx

= �
[

1
2

( − 1 + γ 2
eq

)]√
π

2πN�(γ 2
eq/2)

[ f1(q̃) + f1(−q̃)]

− 2�
( − γ 2

eq

)
sin

(
πγ 2

eq/2
)

2πN
[ f2(q̃) + f2(−q̃)], (39)

where q̃ = εq, k̃F = εkF , L/(2π )
∫

dq ρ1(q) = 1, and

f1(q̄) = (k̃F + q̃) 1F2

[{
1

2

}
,

{
3

2
,

3 − γ 2
eq

2

}
,

1

4
(k̃F + q̃)2

]
,

f2(q̃) = (k̃F + q̃)|k̃F + q̃|γ 2
eq−1

× 1F2

[{
γ 2

eq

2

}
,

{
1 + γ 2

eq

2
,

2 + γ 2
eq

2

}
,

1

4
(k̃F + q̃)2

]
.

Here, pFq are the generalized hypergeometric functions. From
the Fourier transformed, one-body density matrix ρ1(q) we
obtain the fermionic distribution function as Nρ1(q), which in
the absence of interactions γeq = 0 reduces to a step function
θ (|q| − kF ), and in presence of interactions decays like a
power law (see Fig. 4).

Using that the 1-RDM is diagonal in Fourier space, we can
directly compute the one-particle Rényi entanglement entropy

Sα = 1

1 − α
ln

(
N

2kF

∫
dq ρ1(q)α

)
, (40)

S1 = − N

2kF

∫
dq ρ1(q) ln ρ1(q), (41)

where α = 1 is the von Neumann entropy, and the factor
N/(2kF ) = (2π/L)−1 originates from turning the sums into
integrals in the limit of large L. When comparing to numerical
results, we additionally subtract the entropy for free fermions
Sff .
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In the absence of interactions, γeq = 0, the one-body den-
sity is given by �0

1(x, 0) in Eq. (37). Performing the Fourier
transform, we recover the expected zero temperature distribu-
tion function

N�0
1 (q) = θ (|q| − kF ). (42)

Using this expression in Eq. (41), one finds the free fermion
von Neumann entropy [42,56–61]

Sff = − N

2kF

∫ kF

−kF

dq
1

N
ln

1

N
= ln(N ). (43)

The same one-particle entanglement entropy is obtained for
any other Rényi power α > 1 [60], which can be seen from
Eq. (40)

Sα,ff = 1

1 − α
ln

(
N

2kF

∫ kF

−kF

dq
1

Nα

)

= 1

1 − α
ln

1

Nα−1

= ln(N ) = Sff . (44)

IV. NUMERICAL RESULTS FOR EQUILIBRIUM
ONE-PARTICLE ENTANGLEMENT

To study how well the low-energy field theory approach
describes the J-V model in Eq. (2) in the LL phase and to
fix the interaction cutoff, we perform a series of numerical
calculations on finite sized systems. The software needed to
reproduce all results is open source and has been made avail-
able online [62].

We first utilize exact diagonalization (ED), where we con-
struct all

(2N
N

)
basis states for a lattice with L = 2N sites and

N fermions to determine the corresponding matrix elements of
Eq. (2) and construct the Hamiltonian as a sparse matrix. We
then use the Lanczos algorithm [63] to determine the ground
state |�0〉, from which the full density matrix can be deter-
mined as ρ = |�0〉〈�0|. The reduced one-body density matrix
is obtained by fixing one coordinate in the antisymmetrized
many particle wave function �0(i1, . . . , iN ) = 〈i1, . . . , iN |�0〉
and tracing out the other N − 1 particle positions [31]

ρ
i1, j1
1 =

∑
i2,...,iN
j2,..., jN

�∗
0 (i1, . . . , iN )�0( j1, . . . , jN ). (45)

As a second numerical approach, we consider approximate
methods that allow us to consider much larger systems. For
this, we obtain the ground state |�0〉 using DMRG, and the
implementation of states as matrix product states (MPS) in
ITensors.jl [64] allows to directly compute the reduced
one-body density via

ρ
i1, j2
1 = 1

N
〈�0|c†

i1
c j1 |�0〉, (46)

where c†
i is the creation operator on lattice site i.

From the reduced density matrix, we compute the one-
particle Rényi entanglement entropy for Rényi index α using

Sα = 1

1 − α
ln

(
Tr

[
ρα

1

])
, (47)

where the von Neumann entropy is obtained as the limit
α → 1:

S1 = −Tr[ρ1 ln(ρ1)]. (48)

A. Symmetry decomposition of the lattice Hamiltonian

While ED provides approximation-free access to the
ground state, scaling of the size of the Hamiltonian ∝ (2N

N

)
makes it prohibitive to consider systems with L � 40. Using
a series of optimizations, we are able to compute one-particle
entanglement entropies with ED for systems with up to N =
19 fermions with 1TB of system memory. The crucial factor
for reducing the complexity of the problem is the use the sym-
metries of the Hamiltonian Eq. (2), which we define below
by their action on the occupation numbers of the states. We
discuss the action of the symmetry operators on the fermion
operators ci , c†

i in greater detail in Appendix B.

1. Translation symmetry

Translation symmetry T which moves each fermion one
site to the right, e.g., T |011001〉 = |101100〉, commutes with
the Hamiltonian, [H, T ] = 0, due to the boundary conditions,
which allows us to group basis states in symmetry cycles such
that each state of a cycle ν is mapped onto another state in the
same cycle by T . Choosing one state |ϕν〉 from each cycle, the
so-called cycle leader, we can define new basis states as linear
combinations

|φν,q〉 = 1√
Mν

Mν∑
m=1

eı
2πq
Mν

(m−1)T m−1|ϕν〉, (49)

where Mν is the length of cycle ν with T Mν = 1 within the
cycle. Because T commutes with H , the Hamiltonian becomes
block diagonal when sorting the basis states according to the
values of q. The main advantage of using this basis is that
the ground state always lies in the q = 0 block [65], and it
is therefore sufficient to compute and store only this single
block, reducing the size of the required basis roughly by a
factor of 1/L.

2. Particle-hole symmetry

At half filling, the particle-hole operator P, which flips all
occupation numbers P|101001〉 = |010110〉 is another sym-
metry of the Hamiltonian which also commutes with the
translation operator, [T, P] = 0. Because P2 = 1, the particle-
hole operator has eigenvalues nP = ±1. If P|φν̃,q〉 lies in a
different cycle than |φν̃,q〉, we can use P to further subdivide
the q = 0 block by using the projection (1 ± P)/

√
2 onto its

eigenstates

|θν̃,q,nP=±1〉 = 1√
2

(|φν̃,q〉 ± P|φν̃,q〉). (50)

3. Reflection symmetry

The third symmetry we exploit is spatial inversion R, which
reflects the occupation numbers R|011011〉 = |110110〉 about
a site and commutes with the Hamiltonian [R, H] = 0. How-
ever, in general, R does not commute with T , but fortunately in
the q = 0 block, translation and spatial inversion do commute.

165116-7



MATTHIAS THAMM et al. PHYSICAL REVIEW B 106, 165116 (2022)

Since R2 = 1, the eigenvalues are also given by nR = ±1 and
the projection operator is (1 ± R)/

√
2. If R maps either |φν,q〉

or |θν̃,q,nP 〉 into another cycle, projecting onto eigenstates of
R further subdivides the q = 0 block of the Hamiltonian in
analogy to Eq. (50).

We therefore only need to construct the q = 0, nR = +1,
nP = +1 block of the Hamiltonian which is a major reduction
in memory and time complexity for obtaining the ground
state. We can further use translation symmetry in a similar
way to reduce the computational effort when computing the
reduced density matrix from the ground state. In addition, for
our ED implementation, we encode states using a 64bit integer
basis, where each bit of the binary representation of an integer
represents the occupation number of the site at the corre-
sponding position [66]. This has the advantage that symmetry
operation can be implemented very efficiently using low-level
bit operations and that we avoid all overhead of using vectors
containing the occupation numbers for each state.

B. Density matrix renormalization group

In order to study systems with L � 40 and thus improve
finite size scaling to the thermodynamic limit, we additionally
use the DMRG implementation of the ITensors.jl software
package [64] for the JULIA programming language. As an ap-
proximate method, DMRG does not need to explore the entire
Hilbert space and therefore requires fewer resources, but at
the price of inaccuracies with magnitudes that are difficult to
estimate a priori. We therefore also use ED as a benchmark to
estimate the reliability of DMRG results, where a direct naive
DMRG application to the J-V model with periodic boundary
conditions leads to significant errors already for systems of
size N > 17. We thus use a number of checks and detailed
knowledge of the physical system to stabilize the DMRG
calculation.

1. Initial state

It is crucial to construct very good initial states, so that
the algorithm starts as close as possible to the ground state.
For this purpose, we combine a state which is a superposi-
tion of random states of the correct particle number, with a
V/J dependent fraction of the corresponding |�V/J→±∞〉 state
[Eqs. (3) and (4)].

2. Orthogonal subspace

The most important step for stabilizing convergence of
DMRG to the ground state is to construct an orthogonal
subspace to the ground state and enforce orthogonality to a
basis in this subspace during each sweep of DMRG. This
feature has already been implemented in ITensors.jl with
the intent to obtain excited states. The consideration of sym-
metry cycles Eq. (49) already reveals good candidates for
orthogonal subspaces, because states with different q are or-
thogonal to each other. Using all states from blocks q > 0 is
overkill, slowing down the DMRG algorithm and requiring
huge amounts of memory, eliminating the advantages of the
approximation method. We therefore only consider a subspace
in which DMRG is most likely to converge if it misses the
ground state. For V/J > 0, using the two states with maximal

FIG. 5. One-particle Rényi entanglement entropy Sα for different
values of the Rényi index α as a function of the interaction strength
V/J where Sff is the one-particle entropy for free fermions. The
crosses are obtained using DMRG for N = 51 on a lattice of L = 102
sites. Solid lines depict extrapolation to the thermodynamic limit
from ED and DMRG data, and dashed horizontal lines show theory
predictions for |V/J| → ∞. Phase transitions in the J-V model are
marked with vertical lines at V/J = ±2.

particle separation |ψ>,ν〉 = T ν (
∏N

j=1 c†
2 j )|0〉, this is

|�⊥,>〉 = 1√
2

[|ψ>,0〉 − |ψ>,1〉], (51)

and for negative interactions there are L states with full clus-
tered fermions |ψ<,ν〉 = T ν (

∏N
j=1 c†

j )|0〉. Their span is given
by

|�⊥,<,q〉 = 1√
N

L−1∑
ν=0

cos

(
2πνq

L

)
|ψ<,ν〉, (52)

|�⊥,<,q+N 〉 = 1√
N

L−1∑
ν=0

sin

(
2πνq

L

)
|ψ<,ν〉. (53)

C. Ground state DMRG and ED results

By forcing the ground state to be orthogonal to these states,
we are able to consider systems with sizes N = 51 or larger
at half filling with periodic boundary conditions. Figure 5
shows the one-particle entanglement entropy (crosses) calcu-
lated with DMRG for N = 51 for a large range of interaction
strengths spanning all phases in the J-V model. For V/J =
−2, the first order phase transition is clearly visible and
Sα − Sff remains stable, reaching the theoretical value ln(2)
[11] for large negative V/J . For free fermions, where V/J = 0
in the LL phase, the one-particle entanglement entropy van-
ishes as expected [11]. Additionally, at the second-order phase
transition into the charge density wave phase near V/J = 2, a
change in the slope of the entropy is visible, which then slowly
approaches the theoretical value ln(2) [11].

For comparison with field theory, we first estimate the
thermodynamic limit N → ∞ by finite size scaling of the
numerical results for the one-particle entanglement entropy,
with a general scaling form introduced by Haque et al. [11]
and confirmed in subsequent works [18,19]:

Sα (N,V/J ) = ln(N ) + Aα (V/J ) + O(N−λ), (54)
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FIG. 6. Finite size scaling of the equilibrium one-particle von
Neumann entanglement entropy S1 for various interaction strengths
V/J where the free fermion contribution Sff has been subtracted.
Results obtained with DMRG (crosses) and ED (circles) are shown
together along with a linear extrapolation to the thermodynamic limit
1/N → 0. ED provides access to lattices at half filling with up to
N = 19 fermions and using DMRG lattices with more than N = 51
fermions can be studied.

with λ > 0. In subsequent figures, we will focus on the be-
havior of the constant correction Aα (V/J ) to the leading order
logarithmic scaling.

For reliable finite size scaling, we calculate Sα − Sff for
systems with N = 2, 3, . . . , 19 fermions using ED and
fermion numbers between N = 17 and N = 51 using DMRG
and then extrapolate linearly to 1/N → 0 (white filled circles
in Fig. 6). We find very good 1/N scaling and excellent
agreement between exact ED (colored circles in Fig. 6) and
approximate DMRG (crosses in Fig. 6) everywhere in the LL
phase.

D. Comparison with Luttinger liquid theory

We perform this finite size scaling for all calculated in-
teraction strengths V/J and plot the constant contribution
to the one-particle entanglement entropies (Aα , circles) as a
function of V/J in Fig. 7 along with the numerically inte-
grated Luttinger liquid result from Eqs. (39) and (47) (dashed
lines) for a fixed interaction cutoff ε = 0.84 determined via
fitting. We find excellent agreement between LL theory with
this fixed cutoff and numerical results for the J-V model for
small to moderate interaction strengths −0.5 < V/J < 1.5.
Close to the phase transitions and especially for large negative
interaction strengths V/J → −2, where γeq → ∞, significant
deviations from the low-energy LL theory are apparent.

To systematically study for which interactions, the J-V
model can be accurately described by the LL model, we fit the
bosonization prediction for each interaction strength individu-

FIG. 7. Interaction strength V/J dependence of the constant
contribution to the one-particle Rényi entanglement entropies extrap-
olated to the thermodynamic limit Aα for Rényi indices α = 1, 2,

and 5 together with the prediction from bosonization for a fixed
interaction cutoff ε = 0.84. We find very good agreement between
the Luttinger liquid prediction and the numerical results for the J-V
model in region V/J ∈ [−0.5, 1.5].

ally to the finite size scaled data for the von Neumann entropy
A1(V/J ) as defined in Eq. (54), to determine an effective
interaction cutoff εfit (V/J ) (red circles in the main panel of
Fig. 8). We find an extended region with ε = 0.84 (dashed,
black line) for small negative and positive interactions V/J
where the cutoff has minimal dependence on the interaction
strength. With the obtained effective cutoff, we can fit the LL
model at every point in the LL phase to the J-V model with
excellent agreement as shown in the inset of Fig. 8 where we
plot the one-particle entanglement entropies from numerics
and for the effective interaction cutoff εfit. An interaction

FIG. 8. Effective interaction cutoff εfit as a function of the in-
teraction strength V/J (red circles) obtained by fitting the Luttinger
liquid prediction for the one-particle von Neumann entanglement
entropy for each interaction strength individually to the numerical
data of the J-V model. We find an extended flat region of the effective
cutoff ε = 0.84 (dashed, black line) that is nearly independent of
interaction strength. The inset depicts numerical results for the Rényi
entropies with α = 1 (red circles), 2 (yellow circles), and 5 (blue
circles) together with the field theory prediction using the fitted
interaction dependent cutoff εfit.
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dependent cutoff for large interactions is also a consequence
of approximating the q dependence of the exponent γeq by the
cutoff e−ε|q| in field theory calculations [see Eq. (29)] in order
to make the q sums analytically tractable.

V. ONE-PARTICLE ENTANGLEMENT ENTROPY AFTER A
QUANTUM QUENCH

We next consider free fermions for t < 0 and suddenly turn
on the V/J interaction at t = 0, so that the J-V Hamiltonian
for this quench is given by

H = −J
L∑

i=1

(c†
i+1ci + c†

i ci+1) + V (t )
L∑

i=1

nini+1, (55)

with V (t ) = θ (t )V . This allows us to study the growth and
spread of entanglement entropy after the quench by consid-
ering the difference Sα − ln(N ), in which the entropy of free
fermions is subtracted. We again start by computing the one-
body density

ρ1(x, 0; t ) = 1

N
[e−ıkF xC+(x, 0; t ) + eıkF xC−(x, 0; t )] (56)

Cα (x, 0; t ) = 〈ψ†
α (x, t )ψα (0, t )〉 (57)

for the quench in the LL model

H =
∑

q

[ω0(q) + m(q, t )]b†
q(t )bq(t )

+ 1

2

∑
q

g2(q, t )(bq(t )b−q(t ) + b†
q(t )b†

−q(t )), (58)

where in this case g2(q, t ) = θ (t )g2(q) = θ (t )g2|q|, m(q, t ) =
θ (t )g4|q|, and again, ω0(q) = vF |q|. Analogous to the equi-
librium case, we can diagonalize the Hamiltonian for any
fixed time t > 0 using the same Bogoliubov transformation
Eq. (12) with tanh(2θq) = g2(q)/(ω0(q) + g4(q)), but now
the operators aq(t ) are time dependent. For t > 0 this yields
the diagonal Hamiltonian

H =
∑

q

v|q|a†
q(t ) aq(t ), (59)

v =
√

(vF + g4)2 − g2
2. (60)

Since the Hamiltonian for t > 0 is diagonal in the aq opera-
tors, we can use the trivial time evolution

aq(t ) = e−ıv|q|t aq. (61)

Substituting this time evolution into the inverse of the trans-
formation Eq. (12), we obtain the time evolution of the bq

operators as [37]

bq(t ) = wq(t ) bq + uq(t ) b†
−q, (62)

wq(t ) = cos(v|q|t ) − ı sin(v|q|t ) cosh(2θq),

uq(t ) = −ı sin(v|q|t ) sinh(2θq).
(63)

A very important conceptual difference to the equilibrium
case is that the Hamiltonian is not diagonal in the aq operators
for t → 0−, and therefore we cannot easily write down expec-
tation values of the aq operators. However, since H is diagonal

in the bq operators for t → 0−, we can use bq(t = 0) ≡ bq and

〈b†
qbq′ 〉 = fb(q)δq,q′ ,

〈bqbq′ 〉 = 0 = 〈b†
qb†

q′ 〉.
(64)

This together with the more complicated time evolution of the
bq operators Eq. (62) gives rise to a different exponent γ �
γeq as we show in the following. Up to Eq. (24), the calculation
for the correlation function is analogous to the equilibrium
case such that

Cα (x, t ) = eα ıπx
L

2πη
e

1
2 [φα (x,t ),φα (0,t )]e− 1

2 〈(φα (x,t )−φα (0,t ))2〉. (65)

The exponential e
1
2 [φα (x,t ),φα (0,t )] is unchanged by the time de-

pendence and is still given by Eq. (24). In order to evaluate
〈φα (x, t )φα (0, t )〉, we use the time evolution of the bq opera-
tors from Eq. (62) in the definition of the bosonic fields

φ(x, t ) = −
∑
q>0

√
2π

qL
e− qη

2 [eıαqx(wq(t )bα,q + uq(t )b†
α,−q )

+ e−ıαqx (w∗
q (t )b†

α,q + u∗
q(t )bα,−q )]. (66)

Analogous to the equilibrium case, we use 〈b†
qbq〉 = fb(q), to

obtain

〈φ(x, t )φ(x′, t )〉

= −
∑
q>0

2π

qL
e−qη

× {eıαq(x−x′ )[(1 − fb(q))|wq(t )|2 + fb(q)|uq(t )|2]

+ e−ıαq(x−x′ )[(1 − fb(q))|uq(t )|2 + fb(q)|wq(t )|2]}.
(67)

We again consider the zero temperature case with fb(q > 0) =
0. This allows us to rewrite the desired exponential term from
Eq. (65) as follows:

− 1

2
〈(φα (x, t ) − φα (0, t ))2〉

=
∑
q>0

2π

qL
e−qη(|wq(t )|2 + |uq(t )|2)

×
[
−1 + 1

2
eıαqx + 1

2
e−ıαqx

]
. (68)

Using |wq(t )|2 + |uq(t )|2 = cosh2 (2θq) − cos (2v|q|t )
sinh2 (2θq), the above becomes

− 1

2
〈(φα (x, t ) − φα (0, t ))2〉

=
∑
q>0

2π

qL
e−qη(2 sin2 (v|q|t ) sinh2 (2θq) + 1)

×
[
−1 + 1

2
eıαqx + 1

2
e−ıαqx

]
. (69)
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We define the momentum dependence of interaction parame-
ter in the quench case as

sinh2(2θq) ≈
(

K − K−1

2

)2

e−ε|q| ≡ γ 2 e−ε|q|. (70)

The free term 〈(φα (x, t ) − φα (0, t ))2〉0 is equivalent to that in
Eq. (31). To compute the interaction term, we need to compute
the q-sum, where we can use Eq. (21) such that

exp

[
κ

∑
q>0

2π

L
e−ıqz(x) sin2 (v|q|t )

]

= [sin
(

π
L (z(x) − 2v|q|t )

)
sin

(
π
L (z + 2v|q|t )

)
]κ/4

sin
(

π
L z(x)

)κ/2 . (71)

The interaction term is then found to be

e− 1
2 [〈(φα (x,t )−φα (0,t ))2〉−〈(φα (x,t )−φα (0,t ))2〉0] (72)

=
∣∣∣∣ sin

(
π
L (ı(η + ε))

)
sin

(
π
L (αx + ı(η + ε))

) ∣∣∣∣
γ 2

×
∣∣∣∣ sin

(
π
L (αx + 2vt + ı(η + ε))

)
sin

(
π
L (2vt + ı(η + ε))

) ∣∣∣∣
γ 2/2

×
∣∣∣∣ sin

(
π
L (αx − 2vt + ı(η + ε))

)
sin

(
π
L (−2vt + ı(η + ε))

) ∣∣∣∣
γ 2/2

. (73)

Inserting the above and Eqs. (23) into (65), and taking the
limit η/L → 0, yields the correlation function for α-movers.
Adding together the right and left movers as in Eq. (36) gives
the final expression

ρ(x, t ) = ρ0
1 (x, 0)

∣∣∣∣ sin(π ıε/L)

sin(π (x + ıε)/L)

∣∣∣∣
γ 2

(74)

×
∣∣∣∣ sin

(
π
L (x−2vt+ıε)

)
sin

(
π
L (x + 2vt + ıε)

)
sin

(
π
L (−2vt + ıε)

)
sin

(
π
L (2vt + ıε)

) ∣∣∣∣
γ 2/2

.

The 1-RDM consists of the free part ρ0
1 (x, 0) Eq. (37), the

interaction factor with exponent with γ 2 	= γ 2
eq, and a time-

dependent oscillatory term with exponent γ 2/2. To obtain
the one-particle entanglement entropy with Eq. (40), we need
to numerically compute the Fourier transform of Eq. (74).
However, we can already extract information about the time
dependence from the real space correlation function. We find
that the entropy obtained from the LL correlation function is
strictly periodic with period �t = L/(2v) and plateaus cen-
tered around tn,plateau = L/(2v)(n + 1/2), n ∈ N0 (see inset
of Fig. 9) corresponding to times where all sine functions
turn into cosine functions in Eq. (74). Because the size of
the plateaus is proportional to L and the time scale for in-
crease and decrease from the plateaus is independent of L
(inset Fig. 9), the average converges to the plateau value in
the thermodynamic limit. We compute the plateau values for
many system lengths by numerically Fourier transforming
Eq. (74), evaluating the entanglement entropy at t0,plateau, and
performing finite size scaling to show the thermodynamic
limit averaged entropies with blue circles in Fig. 9.

FIG. 9. Thermodynamic limit growth of the one-particle von
Neumann entanglement entropy as a function of the interaction
strength V/J after the quantum quench at t = 0 obtained from the
Luttinger liquid steady state limit (red, dashed line) in Eq. (76).
Blue circles show the result of finite size scaling of the plateau
values shown in the inset. The inset depicts the first plateau of the
entanglement entropy obtained by numerical integration from the
time-dependent one-body density matrix in Eq. (74) for several sys-
tem sizes L = 2N . We observe that the plateau size increases linearly
with L while the region where the entropy increases to the plateau
and the time scale where it drops from the plateau is independent
of the system length. In the thermodynamic limit, the average of the
entropy and the plateau values agree with each other. The main panel
demonstrates that the plateau value of the entropy coincides with the
entropy obtained from the steady state result for the 1-RDM in the
thermodynamic limit.

The steady state estimate of the entropy can also be ana-
lyzed by generalizing the scaling form introduced in Eq. (54)
to include the postquench waiting time:

Aα (V/J, t ) = lim
N→∞

Sα (N,V/J, t ) − ln(N ). (75)

Its steady state value can be obtained from the 1-RDM in
the x/L � 1 limit (dashed, red line in Fig. 9) obtained from
Eq. (74)

ρt→∞(x) = sin(kF x)

Nπx

(
ε2

x2 + ε2

)γ 2/2

+ O
( x

L

)
, (76)

similar to the equilibrium case Eqs. (36) and (38) with γeq

replaced by γ .

A. Postquench numerical results

1. Exact diagonalization

We again use exact diagonalization to compute the waiting
time dependence of the one-particle entanglement entropy
after the quench. For this, we first obtain the ground state at
t < 0 for free fermions |�(0)〉 and compute the time evolution
using the full set of eigenstates |�α〉 and eigenvalues Eα for
the final Hamiltonian with interaction strength V/J [31]

|�(t )〉 = e−ıtH |�(0)〉
=

∑
α

e−ıEαt 〈�α|�(0)〉|�α〉, (77)
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FIG. 10. Evolution of the one-particle entanglement entropy after the quantum quench at t = 0 for systems with L = 2N sites at an
interaction strength of V/J = −0.5. (a) Rescaled waiting time 2vt/L dependence of the von Neumann entanglement entropy. (b) Running
average of the von Neumann entanglement entropy depicting the convergence to the steady state entropy. We observe a steep increase of
the entropy on a very short time scale after the quench and then recurrences with length N where the entropies oscillate around a constant
steady state value (empty circles). The fast decrease in the distance between the steady state values with N suggests fast convergence to the
thermodynamic limit.

where we can exploit that 〈�α|�(0)〉 is only nonzero for
|�α〉 from the q = 0 translational symmetry block. This still
requires the full eigensystem of a dense block of the Hamilto-
nian whose size scales ∝ (2N

N

)
and a full diagonalization has a

time complexity cubic in the Hamiltonian size, which limits us
to a maximum of N = 13 fermions on the lattice. From |�(t )〉,
we obtain the density matrix ρ(t ) = |�(t )〉〈�(t )| and trace
out N − 1 particle positions to obtain ρ1(|i − j|, t ) enabling
computation of the one-particle entanglement entropy at each
time t . We indeed observe the recurrence time �t = L/(2v)
[Fig. 10(a)] predicted by the LL theory, which indicates that
after the quench, density waves propagate with velocity v [see
Eq. (60)] through the lattice of length L, where the maxi-
mal distance between two points is L/2 due to the periodic
boundary conditions. We show the waiting time dependence
of the von Neumann entropy for several lattice sizes (solid
lines) in Fig. 10(a) together with the steady state values
(empty circles) obtained by averaging the entropy S1 − ln(N )
for times after the initial increase. Here, the entanglement
entropy has plateaus with length proportional to L and regions,
independent of the system size, where the entropy decreases
and then increases to the next plateau. Convergence to the
steady state can thus be understood from a running aver-
age [Fig. 10(b)], and in the thermodynamic limit, where the
plateau size is infinite, the system reaches the steady state
with entanglement entropy obtained by finite size scaling the
entropy averages from the finite systems. Even for these rel-
atively small systems, the fast decrease between consecutive
steady state averages shows fast convergence to the thermody-
namic limit. Such advantageous finite size scaling properties
of the particle entanglement entropy were recently reported
[31]. To estimate errors in the steady state averages, we use a
blocking method [67] by consecutively averaging neighboring
values in the time series and computing the error of the mean
in each averaging step until it reaches a plateau. To further
include errors due to the finite time step and the endpoint of
the time series, we additionally divide the time series into the
individual Nb recurrence blocks with entropy averages Mi and
add the error of the means mean(Mi )/

√
Nb, as well as the

difference between the mean of the entropy time series and
the average of the Mi to the blocking error.

2. Time-dependent density matrix renormalization group

To further enhance our ability to extrapolate to the ther-
modynamic limit postquench, we perform time evolution
using approximate methods in ITensors.jl [64]. To effi-
ciently perform time evolution of the initial state obtained
with DMRG as in the equilibrium case, we approximate the
time evolution operator e−ıHδt for a time step δt by using a
symmetrized second order Trotter decomposition [68,69]

e−ıδt H ≈ e−ıδt h1,2/2e−ıδt h2,3/2 · · · e−ıδt hL,1/2×
× e−ıδt hL,1/2e−ıδt hL−1,L/2 · · · e−ıδt h1,2/2 + O(δt3),

(78)

where hi,i+1 = −J (c†
i+1ci + c†

i ci+1) + V nini+1. To derive
Eq. (78) the J-V Hamiltonian

H =
L∑

i=1

hi,i+1 =
∑
i even

hi,i+1 +
∑
i odd

hi,i+1 ≡ Heven + Hodd

(79)

is split into the two internally commuting parts Heven and Hodd.
The commutator [Heven, Hodd] is neglected, which introduces
an error O(δt3). To maintain accuracy, it is therefore neces-
sary to chose a small time step δt such that performing time
evolution for a finite time interval t can require a large number
t/δt of time consuming applications of the operator. Only by
using GPUs for computing the time evolution were we able to
perform the calculation for systems up to N = 15 fermions,
which would be intractable with ED.

3. Finite size scaling

We compute the one-particle entanglement entropy for dif-
ferent interaction strengths V/J to again linearly extrapolate
to the thermodynamic limit, 1/N → 0 (Fig. 11). In the case of
small interactions, we can perform the time evolution on V100
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FIG. 11. Finite size scaling of the steady state one-particle von
Neumann entanglement entropy S1(t → ∞) for various values of the
post quench interaction strength V/J obtained with ED (filled circles)
and with DMRG (filled crosses). We estimate the thermodynamic
limit values of the entropy (empty circles) using linear extrapolation
to 1/N → 0.

GPUs for systems with up to L = 30 lattice sites, however,
the ground states obtained with DMRG require more memory
for larger interactions γ 2

eq to perform calculations to the same
accuracy. While for intermediate interactions V/J � 1.3 and
−0.9 � V/J < 0 we achieve results up to L = 28 sites, the
calculation exceeds GPU memory available to us for L � 28
in the case of very strong interactions V/J � −1.3. Nonethe-
less, these additional points of the one-particle entanglement
entropy obtained with the GPU accelerated tDMRG allow for
relative improvements of the thermodynamic limit extrapola-
tion from finite size scaling by up to 1.2% compared to using
ED data alone. We find that even for these relatively small
systems, linear extrapolation accurately describes the data in
the whole Luttinger liquid phase. For all parameters where
we compute one-particle entanglement entropies for both ED
(circles) and DMRG (crosses), we find excellent agreement.

B. Comparison with Luttinger liquid theory

Performing the finite size scaling for all computed interac-
tion strengths V/J , we obtain the interaction dependence of
the steady state one-particle entanglement entropy in the ther-
modynamic limit (circles in Fig. 12) which we plot together
with the entropy obtained from numerically computing the
Fourier transform and numerically integrating the analytical
steady state result from bosonization in Eq. (76) (dashed line,
Fig. 12) for a fixed interaction cutoff ε = 0.84 determined in
the ground state. We observe very similar agreement between
results for the LL model and numerical results for the J-V
model as in the equilibrium case Fig. 7 when using the same
cutoff.

FIG. 12. One-particle entanglement entropies extrapolated from
the numerical steady state estimates to the thermodynamic limit as
a function of the post quench interaction strength V/J (circles) for
Rényi indices α = 1 (red), 2 (yellow), 3 (green), and 5 (blue). Dashed
lines depict the corresponding theory predictions from the steady
states after the quench in the Luttinger liquid model using a fixed
interaction cutoff ε = 0.84 obtained from ground state calculations.
Similar to the equilibrium case, we find good agreement between LL
prediction and numerical data for moderate interaction strengths.

We again fit an effective interaction cutoff (blue pentagons
in Fig. 13) at each interaction strength V/J separately to
match the LL solution to the von Neumann entropy from
the J-V model (red circles in the inset of Fig. 13). We find
very good agreement with the interaction cutoff determined
for the equilibrium ground state case (red circles in the main
panel of Fig. 13) which suggests that the parameter ε of the
LL calculation can be fixed by numerical analysis of the J-V

FIG. 13. Interaction dependence of the effective cutoff εfit (blue
pentagons) obtained by fitting the steady state of the Luttinger liquid
model at each interaction strength V/J individually to the numerical
data of the von Neumann entanglement entropy. For comparison, we
show again the effective cutoff obtained from the ground state case
(red circles) and find very good agreement with a quasiplateau in
the region 0 < V/J < 1. The inset depicts numerical data for Rényi
entropies with α = 1 (red circles), 2 (yellow circles), and 5 (blue
circles) together with the fitted field theory steady state predictions
for the effective cutoff εfit.
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FIG. 14. Exact diagonalization results for the time evolution of distribution function Nρ1(q, t ) after a quantum quench for different values
of the post quench interaction strength V/J . The initial state at t = 0 is the ground state of N = 12 noninteracting fermions hopping on a
ring of L = 24 sites. The dashed vertical lines mark the Fermi momenta, around which the fluctuations are more pronounced. Increasing the
interaction strength increases the amplitude of fluctuations.

model in the region −0.5 < J/V < 1.5, where the low-energy
LL approximation is most accurate resulting in ε = 0.84.

VI. TIME DEPENDENCE OF THE SPECTRUM OF THE
POSTQUENCH 1-BODY REDUCED DENSITY MATRIX

In this section, we utilize translational symmetry to moni-
tor the time evolution of each eigenvalue of the 1-RDM. The
initial state of free fermions |�(0)〉 on the lattice is an eigen-
state of the translation operator T , where T |�(0)〉 = |�(0)〉.
Also, the postquench Hamiltonian commutes with the transla-
tion operator, [H, T ] = 0, ensuring that the time evolved state
|�(t )〉 = e−ıtH |�(0)〉 is an eigenstate of T at all times, where
T |�(t )〉 = |�(t )〉.

If we now consider the elements of the two-point corre-
lation matrix 〈c†

i c j 〉t at time t and use c†
i c j = T †c†

i+1c j+1T

for i, j ∈ {1, . . . , L − 1}, we can write 〈c†
i c j 〉t = 〈c†

i+1c j+1〉t .
For elements that cross the boundary, we need to include
the phase factor (−1)N−1 due to the corresponding bound-
ary conditions, e.g., 〈c†

i cL〉t = (−1)N−1〈c†
i+1c1〉t . Therefore

the matrix is translationally invariant with a boundary phase
(−1)N−1 and can thus be diagonalized via Fourier transforma-
tion, where the diagonalized matrix represents the two-point
correlation in terms of quasimomenta modes, i.e.,

〈c̃†
qc̃q′ 〉t = δq,q′ 〈nq〉t , (80)

where c̃q = L−1/2 ∑
j e−ıq jc j and nq = c̃†

qc̃q. Here,
q ∈ {(2m − L + bN )π/L : m = 0, 1, . . . , L − 1}, with
bN = 3−(−1)N

2 . Accordingly, we obtain the momentum
distribution function for the lattice fermions as

ρ1(q, t ) = 1

N
〈nq〉t , (81)

where the canonical ensemble condition
∑

q〈nq〉t = N fixes
the normalization of ρ1(q, t ) such that

∑
q ρ1(q, t ) = 1.

Figure 14 demonstrates the time evolution of Nρ1(q, t ) for
different interaction strengths obtained from exact diagonal-
ization for a system with N = 12 fermions on L = 24 lattice
sites. At time t = 0, we have the free fermionic occupa-
tion probabilities at zero temperature, where 〈nq〉t=0 = 1 for
|q| � kF and 〈nq〉t=0 = 0 otherwise. After the quench, the
occupation probabilities start to change, and the quench in

the LL phase (−2 < V/J < 2) generates fluctuations that are
more visible near the Fermi level and increase with increas-
ing interaction strength. This is consistent with the effective
low-energy LL description. For V/J = −1.8, the effective
thermalization following the abrupt quantum quench starts to
invoke the extremes of the energy spectrum, where the linear
approximation of the spectrum no longer holds and band
curvature effects may be important. For comparison, we also
consider a quench to an interaction strength of V/J = −6.5,
which is outside of the Luttinger liquid phase. As illustrated in
Fig. 14, the occupation probabilities show a flatter distribution
and substantial fluctuations.

The time average of the distribution function Nρ1(q, t ) can
provide information on quasithermalization after the quantum
quench, as illustrated in Fig. 15.

Here, ρ1(q, t ) shows a wider distribution, i.e., larger en-
tanglement entropy, if compared with the related equilibrium
ground state distribution function ρ1(q). We can understand
this by comparing the form of the steady-state 1-RDM
ρt→∞(x) [Eq. (76)] with the equilibrium one-body density

FIG. 15. Comparison between the time average of the distribu-
tion function Nρ1(q, t ) (red diamonds) after a quench to interaction
strength of V/J = −1.8 and the distribution function Nρ1(q) (blue
circles) for the corresponding equilibrium case. The ED data are for
a system of N = 12 fermions at half filling.
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FIG. 16. Momentum distribution function at two different times,
after a quantum quench at t = 0 to a final interaction strength V/J =
20 deep in the density wave phase. The system consists of N = 12
fermions on a ring of L = 24 sites. The inset shows the equilibrium
ground state distribution function for the same interaction strength.
Lines are a guide to the eye.

function ρ1(x) [Eq. (38)]. For the same interaction strength
V/J 	= 0, we have γ > γeq, thus ρt→∞(x) decays with x faster
than ρ1(x). Consequently, their Fourier transformation should
exhibit the opposite behavior.

In Fig. 16, we show the momentum distribution for fixed
waiting times t after a strong interaction quench to V/J = 20,
across the continuous phase transition to the density wave
phase. We observe similar behavior as discussed in the in-
troduction in Fig. 3 for a quench across the discrete phase
transition, where the momentum distribution can develop non-
monotonic behavior as a function of q.

VII. CONCLUSION

In this paper, we have reported on a comprehensive study
of the one-particle reduced density matrix and its associated
von Neumann and Rényi entanglement entropies in the J-V
lattice model of spinless fermions in one spatial dimension
at half filling. We have considered entanglement both in the
ground state of the interacting model, as well as after an
interaction quantum quench starting from an initial state of
noninteracting fermions. In both setups, we demonstrate that
the one-particle entanglement entropy is sensitive to the con-
tinuous and discrete phase transitions known to exist in this
integrable model.

By carefully exploiting translation, reflection, and particle-
hole symmetries of the lattice model in the presence of
periodic boundary conditions, combined with advances in
time-dependent density matrix renormalization group on mas-
sively parallel GPUs, we have pushed the boundaries of exact
and approximate computations of the one-particle entangle-
ment entropy. Specifically, we study system sizes up to L =
102 sites in the ground state at half filling, and up to L = 30
after the quantum quench. Here, periodic boundary conditions
are essential to obtain the momentum distribution function via
a simple Fourier transform of the one-particle reduced density
matrix. Access to these large system sizes are required for a
reliable extrapolation to the thermodynamic limit.

For strong interaction quenches outside of the quantum
liquid into the clustered solid (V/J � −2) or density wave
(V/J � 2) phases, the momentum distribution function ob-
tained from the spectrum of the one-particle reduced density
matrix can exhibit a nonmonotonic dependence on momen-
tum. This behavior can occur for both small and large values
of q, and may highlight dynamic signatures of the asymptoti-
cally flat momentum distributions in these two extreme limits
of localized fermions.

For quenches within the quantum liquid regime, we can uti-
lize continuum field theory calculations based on bosonization
of the fermionic degrees of freedom within the Luttinger liq-
uid phase (|V/J| � 2). With access to numerical predictions
for L → ∞, a comparison between field theory and numerical
results is possible. We use a self-consistent approach for deter-
mining the interaction cutoff of the Luttinger model necessary
due to the finite range nature of interactions in the lattice
Hamiltonian. A fixed value of the cutoff is determined in the
ground state, which can then be applied to the nonequilibrium
postquench dynamics. This provides a route to determining
entanglement properties which depend on high energy degrees
of freedom via bosonization.

Much work remains to be done to understand particle
entanglement in interacting quantum many-body systems.
For example, bosonization not only gives access to the one-
particle reduced density matrix, but higher order density
matrices (e.g., n = 2) are also computable as correlation func-
tions by similar methods. More generally, the one-particle
reduced density matrix is the starting point for an expansion
of the entanglement entropy in terms of higher order density
matrices. Such a research program will require generalizing
the Kirkwood expansion of the thermal entropy in terms of
irreducible distribution functions [33] to keep track of the
required antisymmetrization of fermionic density matrices.
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APPENDIX A: COMPARISON WITH
LATTICE GREEN FUNCTION

Consider a 1D lattice with L sites and periodic boundary
conditions, where lengths are measured in units of the lattice
constant. The Hamiltonian for N free fermions is given by

H = −2
∑

k

cos(k)c†
kck, (A1)

where we measure energies in units of the hopping (i.e., J =
1). Here, our quantization condition for periodic boundary
conditions is

km = 2π

L
m with m ∈ [−N, N ). (A2)
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For N odd, the ground state is |�〉 = ∏
|k|<kF

c†
k |0〉 with kF =

π (N − 1)/L and the momentum distribution is

nk = 〈c†
kck〉 =

{
1 |k| < kF

0 otherwise . (A3)

To compute the Green function, we define the Fourier trans-
form:

c j = 1√
L

∑
k

eık jck . (A4)

Thus we can write

〈c†
i c j〉 = 1

L

∑
k,k′

e−ıkieık′ j〈c†
kck′ 〉 (A5)

= 1

L

∑
|m|<(N−1)/2

e−ı2πm |i− j|/L

= 1

L

sin πN
L |i − j|

sin π
L |i − j| . (A6)

The normalization condition that Trρ1 = 1 gives us

ρ1(|i − j|) = 1

NL

sin
(

πN
L |i − j|)

sin
(

π
L |i − j|) . (A7)

This gives the same result as Eq. (37) by using x → (i − j).

APPENDIX B: DEFINITION OF SYMMETRY OPERATORS
BASED ON FERMION OPERATORS

In this Appendix, we provide additional details and a pre-
cise definition of a set of lattice symmetry operators, which
are conserved by the J-V Hamiltonian [Eq. (2)]. Starting from
the definition of the operators by their action on the fermionic
occupation basis, we write them in terms of the fermionic
annihilation ci and creation c†

i operators, taking into account
the anticommutation relations {ci , c j } = 0, {c†

i , c†
j } = 0, and

{c†
i , c j } = δi, j .

1. Spatial inversion operator R

We start by defining the spatial inversion operator R =
R−1 = R†, which reflects the fermionic occupation numbers
across the center of the lattice, e.g., R|011001〉 = |100110〉,
where 0 and 1 denote the empty and occupied sites respec-
tively. If we define the occupation basis in terms of the action
of the creation operator c†

j on the vacuum state |0〉, then we

have, for example, |011001〉 = c†
2c†

3c†
6|0〉, with the convention

of having the site labels j of c†
j in an ascending order. For

the above case, we can write Rc†
2c†

3c†
6|0〉 = c†

1c†
4c†

5|0〉, where
R|0〉 = |0〉.

In general, for a lattice with L sites, R sets the occupation
state of site j in the resulting basis ket to the occupation state
of site L − j + 1 in the original basis ket. Based on this, if we
define the operator R′ such that

R′c†
j = c†

L− j+1R′, (B1)

with R′|0〉 = |0〉 and then apply R′ on the above example, we
find

R′|011001〉 = R′c†
2c†

3c†
6|0〉 = c†

5c†
4c†

1|0〉
= −c†

1c†
4c†

5|0〉 = −|100110〉. (B2)

Therefore R′ 	≡ R, due to the appearance of the negative phase
factor, where, in general, this phase factor depends on the
number of fermions N described by the occupation basis ket
and it is given by (−1)N (N−1)/2.

To obtain a proper definition of R, we consider attach-
ing the fermionic strings Kj = e

∑ j−1
k=1 −ıπnk and K†

j = K−1
j =

e
∑ j−1

k=1 ıπnk to the operators c j and c†
j , respectively, where

n j = c†
j c j . Having the relations K†

j |0〉 = |0〉 and for j � i,

[K†
j , c†

i ] = 0, allows us to insert the fermionic strings in

the expression of any basis ket, for example, c†
2c†

3c†
6|0〉 =

c†
2c†

3c†
6K†

2 K†
3 K†

6 |0〉 = c†
2K†

2 c†
3K†

3 c†
6K†

6 |0〉. Also, we have the
commutation relations [Ki ci , Kj c j ] = 0, [c†

i K†
i , c†

j K
†
j ] = 0,

and for i 	= j, [c†
i K†

i , Kj c j ] = 0. We take advantage of the
above commutation relations and define

Rc†
j K

†
j = c†

L− j+1K†
L− j+1R, (B3)

with R|0〉 = |0〉. Taking the Hermitian conjugate of the above
equation and using R2 = 1, yields RKj c j = KL− j+1cL− j+1R.
If we now use R instead of R′ in the previous example, we get

R|011001〉 = Rc†
2K†

2 c†
3K†

3 c†
6K†

6 |0〉
= c†

5K†
5 c†

4K†
4 c†

1K†
1 |0〉

= c†
1K†

1 c†
4K†

4 c†
5K†

5 |0〉
= c†

1c†
4c†

5|0〉 = |100110〉, (B4)

where we reordered the commuting operators c†
j K

†
j after the

action of R takes place, then we removed the fermionic strings
K†

j , similarly to their insertion. Accordingly, defining R as in
Eq. (B3) prevents the appearance of any negative factors.

To simplify the definition in Eq. (B3), we first consider the
action of R on the occupation number operators nj = c†

j c j ,
which is

Rnj = nL− j+1R. (B5)

Hence, RKj = Re
∑ j−1

k=1 −ıπnk = e
∑L

k=L− j+2 −ıπnk R and thus,

Rc†
j = c†

L− j+1K†
L− j+1RKj = c†

L− j+1eıπnL− j+1 e−ıπN̂ R, where

N̂ = ∑L
k=1 nk . Using c†

j n j = 0, we finally arrive at the useful
results:

Rc†
j = c†

L− j+1e−ıπN̂ R,

Rcj = eıπN̂ cL− j+1R.
(B6)

2. Particle-Hole exchange operator P

The particle-hole exchange operator P changes the occupa-
tion states of each site on a basis ket of spinless fermions by
emptying the occupied sites and occupying the empty ones,
e.g., P|010011〉 = |101100〉, where P = P−1 = P†.

Similar to spatial inversion operator case, to avoid negative
phase factors, we include the fermions strings in the definition

165116-16



ONE-PARTICLE ENTANGLEMENT FOR ONE-DIMENSIONAL … PHYSICAL REVIEW B 106, 165116 (2022)

of P as

Pc†
j K

†
j = Kj c j P, (B7)

and P|0〉 = |11 . . . 1〉. Consequently,

Pnj = (1 − n j )P, (B8)

and PKj = Pe
∑ j−1

k=1 −ıπnk = (−1) j−1K†
j P. Thus we simplify

Eq. (B7) and obtain

Pc†
j = (−1) j−1c j P. (B9)

3. Translation operator T

We now consider translations, where the unitary operator T
rotates the occupation basis of the fermionic ring by one site,
e.g., T |010011〉 = |101001〉, where T L = 1 and T |0〉 = |0〉.
Similarly to the previous operators, we define T as

T c†
j K

†
j = c†

j+1K†
j+1T,

T c†
LK†

L = c†
1K†

1 T,
(B10)

hence

T nj = n j+1T,

T nL = n1T .
(B11)

To simplify the definition in Eq. (B10), we use Eq. (B11)
to write K†

j+1T Kj = e
∑ j

k=1 ıπnk Te
∑ j−1

k=1 −ıπnk = eıπn1 T and

K†
1 T KL = Te

∑L−1
k=1 −ıπnk = eıπn1 e−ıπN T , resulting in

T c†
j = c†

j+1eıπn1 T,

T c†
L = c†

1e−ıπN̂ T,
(B12)

where we used c†
1eıπn1 = c†
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