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The Thouless pump is a phenomenon in which U (1) charges are pumped from an edge of a fermionic system
to another edge. The Thouless pump has been generalized in various dimensions and for various charges. In this
paper we investigate the generalized Thouless pumps of fermion parity in both trivial and nontrivial phases of
(1+ 1)-dimensional interacting fermionic short-range entangled (SRE) states. For this purpose, we use matrix
product states (MPSs). MPSs describe many-body systems in (1+ 1) dimensions and can characterize SRE
states algebraically. We prove fundamental theorems for fermionic MPSs (fMPSs) and use them to investigate
the generalized Thouless pumps. We construct nontrivial pumps in both the trivial and nontrivial phases, and
we show the stability of the pumps against interactions. Furthermore, we define topological invariants for
the generalized Thouless pumps in terms of fMPSs and establish consistency with existing results. These are
invariants of the family of SRE states that are not captured by the higher dimensional Berry curvature. We also
argue a relation between the topological invariants of the generalized Thouless pump and the twist of the K
theory in the Donovan-Karoubi formulation.
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I. INTRODUCTION

A. Kitaev’s argument and the Kitaev pump

A short-range entangled (SRE) state is a unique gapped
ground state for a system without a boundary.1 An inte-
ger quantum Hall state is a representative example of (2+
1)-dimensional SRE states. To date, SRE states with vari-
ous symmetries in various dimensions have been discovered,
which include physically important systems such as topologi-
cal insulators and topological superconductors [5–7].

A remarkable property of SRE states is invertibility: Any
SRE state |χ〉 in d + 1 space-time dimensions has an anti-
SRE state |χ̄〉 that satisfies

|χ〉d+1 ⊗ |χ̄〉d+1 ∼ |0〉d+1 ⊗ |0〉d+1 ∼ |χ̄〉d+1 ⊗ |χ〉d+1.

(1)

Here ∼ represents a continuous deformation keeping a gap
and symmetry, and |0〉d+1 is the trivial state in d + 1-
dimensions.2 Because of the invertibility, SRE states are often
called as invertible states.

A fundamental question for SRE states is what a kind of
quantum phases and the related phenomena they deliver for
fixed space-time dimensions and symmetry. Let MG

d+1 be the
set of all (d + 1)-dimensional SRE states with symmetry G.
The first step to answer the question is the identification of
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1There are several styles of how to define SRE states [1–4]. Our

definition here is what is sometimes called an invertible state.
2We often omit the space-time dimension when it is clear from the

context.

connected components π0(MG
d+1) of MG

d+1: Each connected
component in π0(MG

d+1) specifies a possible symmetry-
protected topological (SPT) phase (see Fig. 1).3

Importantly, we can also consider a more complicated
topology in MG

d+1, such as the fundamental group π1(MG
d+1).

In associated with this, Kitaev considered a loop in MG
d+1 that

gives a nontrivial topological phenomenon [8]. Following his
argument, let us start with a (d + 1)-dimensional trivial state
|0〉d+1 obtained by arranging the (d − 1+ 1)-dimensional
trivial states |0〉(d−1)+1 in a line:

|0〉 |0〉 |0〉 |0〉 · · · |0〉 |0〉 |0〉 |0〉 .
Then, choosing an arbitrary (d − 1+ 1)-dimensional SRE
state |χ〉, we perform the deformation |0〉|0〉 ∼ |χ〉|χ̄〉 on
neighboring trivial states:

|χ〉 |χ̄〉 |χ〉 |χ̄〉 · · · |χ〉 |χ̄〉 |χ〉 |χ̄〉
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∣

|0〉 |0〉 |0〉 |0〉 · · · |0〉 |0〉 |0〉 |0〉 ,

where is the continuous deformation in Eq. (1). Finally,

by accomplishing the reverse transformation |χ̄〉|χ〉 ∼ |0〉|0〉
for neighboring states shifted by one site, we obtain again
the (d + 1)-dimensional trivial state. This process defines a
loop in MG

d+1 that starts from the (d + 1)-dimensional trivial
state and returns to itself, and interestingly, if the system has a

3As in the case of SRE states, there are several styles of defining
the SPT phase. Our definition here is what is sometimes called an
invertible phase.
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FIG. 1. A schematic picture of the space of (d + 1)-dimensional
SRE states, where the asterisk represents the trivial state |0〉d+1. Each
connected component of Md+1 gives a different SPT phase. The
component including the trivial state belongs to the trivial SPT phase,
and the others are in nontrivial SPT phases. While the Kitaev pump
is a loop in the trivial phase, we also consider pumps (i.e., loops)
in nontrivial phases. We collectively call these pumps generalized
Thouless pumps.

boundary, the same process pumps (d − 1+ 1)-dimensional
SRE states at the boundary, as shown below:

|χ〉 |0〉 |0〉 |0〉 · · · |0〉 |0〉 |0〉 |χ̄〉
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|0〉 |0〉 |0〉 |0〉 · · · |0〉 |0〉 |0〉 |0〉 .

This is a generalization of the Thouless pump that pumps the
U (1) charge by a periodic change of a potential [9]. This Ki-
taev’s pump4 applies to any SRE states in arbitrary dimensions
with any symmetry.

Whereas the above procedure only provides an injective
map from a (d − 1+ 1)-dimensional SRE state to a loop of
(d + 1)-dimensional SRE states, Kitaev conjectured that this
correspondence is one-to-one (up to homotopy) [3,8,10,11],

MG
(d−1)+1 ∼ �MG

d+1, (2)

where �MG
d+1 is the based loop space of MG

d+1:

�MG
d+1 := {

γ : [0, 1]→MG
d+1|γ (0) = γ (1) = |0〉d+1

}
.

(3)

Mathematically, this means that {MG
d }d∈Z is an �-spectrum

with the base point {|0〉d}d∈Z. This conjecture is important
because this implies that a generalized cohomology theory
works for the classification of SRE states [12].

B. Summery of this paper

As discussed above, the space of SRE states MG
d+1 de-

termines both SPT phases and generalized Thouless pumps.
On the basis of K theory, previous researches specify MG

d+1
for free fermionic SRE states, i.e., fermionic SRE states with
quadratic Hamiltonians, with G onsite symmetry [13–15]. The
classification of the free fermionic SRE states has been done
both from field theory and lattice Hamiltonian perspectives.
On the other hand, for interacting fermionic SRE states, it is
difficult to determine MG

d+1, in particular, in lattice Hamilto-
nian formalism.

4In the following, we call this pump Kitaev’s canonical pump.

In this paper, using fermionic matrix product states
(fMPSs), we analyze the space M(1+1) with fermion parity
symmetry, in the presence of interactions. We establish the
existence of nontrivial pumps in both the trivial (orange loop
in Fig. 1) and the nontrivial SPT phases (blue loop in Fig. 1).

While the Kitaev’s (and the original Thouless) pump is
a pump in the trivial SPT phase as explained in the above,
pumps in the nontrivial SPT phase also have been studied,
especially in free fermionic systems [15–17].5 Pumps in our
analysis are consistent with these previous studies. We also
present the topological invariants that characterize pumps both
in trivial and nontrivial SPT phases in terms of fMPSs, and
check the validity of them for several interacting models.
We also give a geometric interpretation of the topological
invariants.

C. Outlook of this paper

The rest of the paper is organized as follows:
In Sec. II we give a quick review of the free Kitaev chain

as the simplest example of fermionic SRE states in (1+ 1)
dimensions (Sec. II A). This model hosts two SPT phases, the
trivial phase and the nontrivial phase, and shows a pump of
the fermion parity both in the trivial and nontrivial phases. We
explain the fermion parity pump of the Kitaev chain in the
trivial (Sec. II B) and nontrivial (Sec. II C) phase from several
perspectives.

In Sec. III we introduce MPSs of bosonic (Sec. III A) and
fermionic systems (Sec. III B) and identify several MPSs of
bosonic and fermionic models. In particular, we characterize
SRE states by an algebraic property of MPSs called an in-
jective MPS, where the (Z/2Z-graded) central simplicity of
the algebra generated by matrices of MPSs plays a crucial
role [18]. We also illustrate this by using concrete examples.
(We give a review of (Z/2Z-graded) central simple algebra in
Appendix A.) In addition, we provide the necessary and suffi-
cient condition for two injective fMPSs to give the same SRE
state and summarize the condition in the form of Theorems 3
and 4.

In Sec. IV we specify the space of the fMPS with the small
matrix sizes and we reveal the existence of a noncontractible
loop giving a pump in the nontrivial phase.

In Sec. V we present a general theory to construct topo-
logical invariants for pumps in (1+ 1)-dimensional fermionic
SRE states in the formulation of fMPSs. Our construction is
based on the Wall’s structure theorem and works both in trivial
and nontrivial phases. For the trivial phase, fMPSs are similar
to bosonic MPSs, and our construction is consistent with that
for bosonic MPSs proposed in Ref. [19] (Sec. V A). On the
other hand, our topological invariant in the nontrivial phase is
unique since the nontrivial phase appears only in the fermionic
case (Sec. V B). We also give geometric interpretations of the
topological invariants (Sec. V C).

In Sec. VI we apply our general theory of the pump topo-
logical invariants in Sec. V to several interacting fermionic

5In the following, we collectively refer to all of the above pumps as
a generalized Thouless pump, and, in particular, we call the pump in
the trivial phase the Kitaev pump.

165115-2



GENERALIZED THOULESS PUMPS IN … PHYSICAL REVIEW B 106, 165115 (2022)

models. We evaluate the topological invariants of pumps in
trivial (Sec. VI A) and nontrivial (Sec. VI B) phases and clar-
ify the robustness of pumps in the presence of interactions.

Prior works are listed here. Adiabatic pumps in SRE states
have been discussed in the context of the Floquet SPT phase
[20–23], where the periodic unitary time evolution which can
be stroboscopic is studied. Studies focusing more on adia-
batic pumps in SRE states/Hamiltonians themselves include
bosonic systems with onsite symmetry [19,24], multiple adia-
batic parameters [25–28], and topological ordered states [29].

II. GENERALIZED THOULESS PUMP IN SHORT-RANGE
ENTANGLE STATES IN KITAEV CHAIN

SRE states provide the simplest class of topological phases.
They are characterized by (a) the existence of global sym-
metry, (b) the uniqueness of the ground state, and (c) the
existence of a finite energy gap. Despite their simplicity,
SRE states describe many physically important systems, such
as topological insulators and superconductors, the Haldane
chain, and others.

In this section, we examine pump phenomena via the free
Kitaev chain. In Sec. II A we first review the Kitaev chain as
an example of (1+ 1)-dimensional SRE states. In Sec. II B
and Sec. II C we investigate pumps in the the free Kitaev
chain for the trivial and nontrivial phases, respectively. In each
phase, we investigate pumps in two different methods: The
first one is through the action of symmetry on the boundary of
the open chain (Secs. II B 2 and II C 2), and the second is via a
Hamiltonian with a texture mimicking a loop for pump in the
closed chain (in Secs. II B 3 and II C 3).

A. Ground states in the Kitaev chain

The Kitaev chain is a model of a (1+ 1)-dimensional su-
perconductor [16] with the Hamiltonian,

H =
L∑

j=1

[
−ωa†

j+1a j − ωa†
j a j+1 − μ

(
a†

j a j − 1

2

)

+�a ja j+1 +�∗a†
j a

†
j+1

]
, (4)

where L ∈ Z is the system size, a j and a†
j are the annihilation

and creation operators with the anticommutation relation

{ai, a j} = 0, {a†
i , a†

j} = 0, {ai, a†
j} = δi j, (5)

ω ∈ R is the hopping amplitude of the neighboring sites,
μ ∈ R is the chemical potential, and � = eiθ |�| ∈ C is the
gap function of the superconductivity. This Hamiltonian has
fermion parity symmetry

[H, P] = 0, (6)

with the fermion parity operator P := (−1)
∑

j a†
j a j . In the peri-

odic boundary condition, the Hamiltonian reads

H =
∑

k

1

2
(a†

k, a−k )HBdG(k)

(
ak

a†
−k

)
, (7)

with the Bogoliubov–de Gennes (BdG) Hamiltonian

HBdG(k) =
(−2ω cos(k)− μ i� sin(k)
−i� sin(k) 2ω cos(k)+ μ

)
, (8)

where k is the momentum k along the chain. Diagonalizing
the BdG Hamiltonian, we have the quasiparticle spectrum

ε(k) = ±
√

[2ω cos(k)+ μ]2 + 4|�|2 sin2(k), (9)

which is nonzero except for 2|ω| = |μ|. Thus, except for
2|ω| = |μ|, the ground state is gapped and unique on closed
chain with both periodic and antiperiodic boundary condi-
tions, and thus an SRE state.

The Kitaev chain has two different phases, trivial (2|ω| <
|μ|) and nontrivial (2|ω| > |μ|) phases, which are separated
by the gap closing point at 2|ω| = |μ|. For the description
of these phases, it is convenient to introduce the Majorana
fermion

c2 j−1 = ei θ
2 a j + e−i θ

2 a†
j , c2 j = −i

(
ei θ

2 a j − e−i θ
2 a†

j

)
, (10)

with the anticommutation relation

{ci, c j} = 2δi, j, c†
j = c j . (11)

In the Majorana representation, the Hamiltonian in Eq. (4) is
recast into

H = i

2

∑
j

[−μc2 j−1c2 j + (ω + |�|)c2 jc2 j+1

+ (ω − |�|)c2 j−1c2 j+2], (12)

with P =∏
j (−ic2 j−1c2 j ). The analysis of the phases is par-

ticularly simple for (i) |�| = ω = 0, μ < 0 (trivial phase) and
(ii) |�| = ω �= 0, μ = 0 (nontrivial phase), as shown below.

(i) |�| = ω = 0, μ < 0.
In this case, the Hamiltonian reads

H = μ

2

∑
j

(−ic2 j−1c2 j ). (13)

Because any terms in the Hamiltonian commute with each
other, and the eigenvalue of−ic2 j−1c2 j is±1, the ground state
|GS〉 obeys

−ic2 j−1c2 j |GS〉 = |GS〉 ⇔ a j |GS〉 = 0 (14)

for any sites j = 1, . . . , L. Thus, the ground state does not
have a fermion consisting of c2 j−1 and c2 j , which we repre-

sent by the diagram
•

2j−1
−−−−>−−−•

2j. In terms of the diagram, the

ground state is given as

|GS〉 = •
1
−−−>−−−•

2
•
3
−−−>−−−•

4
· · · •

2L−3
−−−>−−•

2L−2
•

2L−1
−−−−>−−−•

2L
.

(15)

As mentioned in the above, the ground state is unique as
Eq. (14) imposes L conditions on the Hilbert space with the
dimension 2L. Putting a fermion, say, at site 1, we have the
first excited state a†

1|GS〉, which we represent as

•
1
······>······•

2
•
3
−−−>−−−•

4
· · · •

2L−3
−−−>−−•

2L−2
•

2L−1
−−−−>−−−•

2L (16)
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The first excitation energy is −μ > 0. Since the ground state
has a finite energy gap independent of the size of the system,
it is an SRE state.

Note that the above analysis works both for closed and
open chains. For both cases, we can impose the same con-
dition in Eq. (14) on any site of the chain. In particular, no
gapless boundary state appears in the trivial phase.

(ii) |�| = ω > 0, μ = 0.
In this case, the Hamiltonian in the periodic boundary

condition reads

H = −ω
∑

j

(−ic2 jc2 j+1), (17)

with c2L+1 = c1. Introducing a virtual complex fermion ã j as

ã j = 1
2 (c2 j + ic2 j+1), (18)

we have

H = 2ω

L∑
j=1

(
ã†

j ã j − 1

2

)
, (19)

and thus the ground state satisfies

ã j |GS〉 = 0, (20)

for any j = 1, . . . , L. From Eq. (20), the ground state does
not have a fermion consisting of c2 j and c2 j+1, so we can
represented it by the following diagram:

|GS〉 = •
1

•
2
−−−>−−−•

3
•
4
−−−>−−−•

5
· · · •

2L−4
−−−>−−•

2L−3
•

2L−2
−−−>−−•

2L−1
•
2L

| |<
(21)

The ground state is unique and has a finite gap 2ω, and thus
an SRE state again.

In contrast to case (i), the present case shows zero energy
boundary modes in the open chain: In the open boundary
condition, no bond between site L and site 1 exists, and thus
the summation in Eq. (17) excludes j = L. As a result, the
ground state does not satisfy Eq. (20) at j = L. Therefore,
in addition to the original ground state obeying ãL|GS〉 = 0,
ã†

L|GS〉 also gives the ground state. Thus, the ground state in
the open boundary condition has twofold degeneracy. Phys-
ically, the twofold degeneracy originates from the Majorana
fermions c1 and c2L at the boundary of the system. Since
they do not participate in the Hamiltonian in Eq. (17), they
becomes gapless.

Note that fermion parity distinguishes the degenerate
ground states: ãL|GS〉 has an odd fermion parity relative to
|GS〉. The doubly degenerate ground states due to Majorana
boundary modes is a hallmark of the nontrivial phase in the
Kitaev chain, which remain in the entire parameter region with
2|ω| > |μ|.

B. Adiabatic pump in the nontrivial phase

To investigate the fermion parity pump in fermionic SRE
states, we consider a one-parameter family of unique gapped
Hamiltonians {H (θ )}θ∈[0,2π] with

H (0) = H (2π ). (22)

Below, we employ two different methods in the analysis of
such a family of Hamiltonians. The first one is through the
action of fermion parity symmetry on the boundary, and the
second one is via a Hamiltonian of a closed system with
spatially modulated θ mimicking a loop of a pump.

In this section, we examine the fermion parity pump in the
Kitaev chain in the nontrivial phase. We introduce a phase
of the gap function as the parameter of a pump (Sec. II B 1)
and perform both the boundary (Sec. II B 2) and texture
(Sec. II B 3) analyses for the fermion parity pump.

1. Model

As explained in the previous section, in the nontrivial
phase, the open chain hosts doubly degenerate ground states
with opposite fermion parity, caused by Majorana boundary
modes. For a finite chain, the degeneracy is slightly lifted, and
the true ground state has either an even or odd fermion parity.
As shown by Kitaev, the 2π phase rotation of the gap function
flips the fermion parity of the ground state [16]. Inspired
by this observation, we regard the Hamiltonian in Eq. (4)
with |�| = ω = 1 and μ = 0 as a one-parameter family of
Hamiltonians in the nontrivial phase,

H (θ ) = −
L∑

j=1

(a†
j+1a j + eiθ a j+1a j + H.c.), (23)

with fermion parity symmetry P =∏L
j=1(−1)a†

j a j . As already
shown in Sec. II A, the Hamiltonian and the fermion parity
operator read

H (θ ) = −
L∑

j=1

(−ic
θ
2
2 jc

θ
2
2 j+1

)
, P =

L∏
j=1

(−ic
θ
2
2 j−1c

θ
2
2 j

)
(24)

in terms of the Majorana fermion

c
θ
2
2 j−1 = ei θ

2 a j + e−i θ
2 a†

j , c
θ
2
2 j = −i

(
ei θ

2 a j − e−i θ
2 a†

j

)
. (25)

Note that the Majorana fermion c
θ
2
j is 4π periodic in θ , while

the Hamiltonian is 2π periodic.

2. Open chain

In the open chain, c
θ
2
2L+1 identically vanishes, and thus

the ground-state condition −ic
θ
2
2 jc

θ
2
2 j+1 = 1 excludes j = L.

The Majorana fermions c
θ
2
1 and c

θ
2
2L do not participate in the

Hamiltonian, so they are gapless in the whole region of θ .
We investigate here the action of fermion parity symmetry

on the boundary Majorana fermions and extract a topological
invariant of the adiabatic process given by θ . On the ground
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state, the fermion parity P is written as

P|G.S. = −ic
θ
2
1 c

θ
2
2L, (26)

from the ground-state condition −ic
θ
2
2 jc

θ
2
2 j+1 = 1 ( j =

1, . . . , L − 1). Therefore, the fermion parity is “fraction-
alized” on the ground state: it splits into two well-separated

Majorana fermions c
θ
2
1 and c

θ
2
2L. Note that the fractionalized

fermion parity is not compatible with the 2π periodicity in θ .

For instance, let us consider the left contribution γ L
θ = c

θ
2
1 of

P|G.S.. Using the U (1) phase ambiguity in the definition of γ L
θ ,

we can recover the 2π periodicity by multiplying a suitable

U (1) phase like γ L
θ = e

iθ
2 c

θ
2
1 . However, the choice γ L

θ = e
iθ
2 c

θ
2
1

does not provide a proper definition of the Majorana fermion
since it obeys (γ L

θ )2 = eiθ �= 1.
The incompatibility observed in the above is general and

originates from a topological obstruction. Since Majorana
boundary modes are only excitations between the (nearly)
degenerate ground states of the nontrivial phase, the fermion
parity always shows the fractionalization in the above. The
left contribution γ L

θ consists of the Majorana mode on the
left boundary and can be chosen to be 2π periodic in θ ,
γ L

θ+2π = γ L
θ , by using the U (1) phase ambiguity. However,

the square of the 2π periodic γ L
θ gives a nonzero U (1) phase

(γ L
θ )2 = ei�θ ∈ U (1) in general, from which we can define the

Z/2Z invariant

ν = 1

2π i

∮
d�θ. (27)

Although the above integral takes an integer, ν defines a
Z/2Z number because the 2π -periodic γ L

θ has the ambiguity
γ L

θ 
→ eiαθ γ L
θ with a smooth 2π -periodic function eiαθ , and

eiαθ changes ν by an even integer. Then, an odd ν obstructs the
2π -periodic γ L

θ to obey the proper parity relation (γ L
θ )2 = 1

at the same time. In the above case, we have ν = 1, and thus
the incompatibility remains for any deformation keeping the
gap.

3. Textured Hamiltonian

In the previous subsection, we investigate a family of
Hamiltonians H (θ ) (θ ∈ [0, 2π ]) in the open chain. Here we
examine the closed chain using a textured Hamiltonian similar
to H (θ ). The textured Hamiltonian is a Hamiltonian with a
spatially modulated parameter: Let hj (θ ) be the local term at
site j in Eq. (4) with � = |�|eiθ [i.e., H (θ ) =∑

j h j (θ )], then
we define the textured Hamiltonian Hl

text as follows:

Hl
text =

l∑
j=1

h j

(
θ = 2π j

l

)
+

L∑
j=l+1

h j (θ = 2π = 0), (28)

where l is the size of the texture. In the nontrivial phase, the
spatial texture in the gap function is expected to host an odd
fermion parity relative to that of an untextured Hamiltonian. In
fact, the ground states of the Kitaev chain in APBC and PBC
have relatively different fermion parities, and concentrating
the spatial texture at one point is equivalent to a system with
twisted boundary conditions. It is a fermion parity pump in
the spatial direction.

FIG. 2. The ratio of the fermion parity between the ground states
of the textured and the untextured Hamiltonian with L = l = 20 and
ω = |�| = 50. The ratio is −1 in the nontrivial phase (|μ| < 2|ω|).

Figure 2 shows our numerical result for the fermion parity
of the ground state. This result confirms that the texture in the
gap function actually induces a flip of the fermion parity in
the nontrivial phase.

We can also analytically demonstrate the flip of the fermion
parity. For simplicity, we consider h j (θ ) with |�| = ω = 1,
μ = 0, and L = l . When the system size L is sufficiently large,
the resultant textured Hamiltonian is almost approximated by
the unitary transformation

Utext =
∏

j

ei
θ j
2 n j , (θ j = 2π j/L, n j = a†

j a j ), (29)

on the Hamiltonian

H = −
L∑

j=1

(a†
j+1a j + a†

j+1a j + a†
j a

†
j+1 + a j+1a j ). (30)

Actually, we have

UtextHU †
text = −

L∑
j=1

(
ei

θ j+1−θ j
2 a†

j+1a j+ ei
θ j+1+θ j

2 a†
j a

†
j+1+ H.c.

)
(31)

= −
L−1∑
j=1

(
ei π

L a†
j+1a j + ei 2π j

L +i π
L a†

j a
†
j+1 + H.c.

)

− (ei π
L−iπ a†

1e
2πL

L +iπ aL + a†
La†

1 + H.c.
)
, (32)

which is almost the textured Hamiltonian if we ignore terms
O( π

L )� 1. However, because of the unnecessary factor e−iπ

between sites L and 1 in the second term of Eq. (32), this
Hamiltonian does not satisfy the periodic boundary condition
even for L � 1. To avoid this problem, we modify the unitary
transformation Utext as

Ũtext = c2LUtext, (33)

where c2L is the Majorana fermion at site L, then H̃text :=
ŨtextHŨ †

text approximates the textured Hamiltonian:

Hl=L
text = H̃text + O

(π

L

)
. (34)
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The ground state of Htext is given by |GS′〉 = Ũtext|GS〉
with |GS〉 the ground state of the untextured Hamiltonian in
Eq. (30). Since Ũtext anticommutes with the fermion parity
P = (−1)

∑
j n j , the ratio

〈GS′|P|GS′〉
〈GS|P|GS〉 (35)

is equal to −1.

C. Adiabatic pump in the trivial phase

In this section, we consider the fermion parity pump in
the trivial phase (Sec. II B 1). We perform both the boundary
(Sec. II B 2) and texture (Sec. II B 3) analyses.

1. Model

First, we give a solvable model of a pump in the trivial
phase, which is constructed from the pump Hamiltonian in
Eq. (24) in the nontrivial phase. For this purpose, it is useful
to rewrite the local term in (24) in the form of the unitary
transformation

−ic
θ
2
2 jc

θ
2
2 j+1 = U ′θ (−ic2 jc2 j+1)[U ′θ ]−1, (36)

where c j is the Majorana fermion in Eq. (10) with θ = 0, and

U ′θ =
∏
j∈Z

e−
iθ
2 a†

j a j =
∏
j∈Z

e−
iθ
2

1+ic2 j−1c2 j
2 (37)

is the (θ/2)-phase rotation of the complex fermion aj . Noting
that Eq. (13) of the trivial phase is related to Eq. (17) of the
nontrivial phase by the transformation c j → c j−1, we consider
the local term

Bj (θ ) := Uθ (−ic2 j−1c2 j )U
−1
θ (38)

with

Uθ =
∏
j∈Z

e−
iθ
2

1+ic2 j c2 j+1
2 . (39)

In terms of the original complex fermion, Bj (θ ) is given as

Bj (θ ) = 1+ cos θ

2
(1− 2a†

j a j )

− 1− cos θ

2
(a j−1 + a†

j−1)(a j+1 − a†
j+1)

+ i sin θ (a ja j+1 + a†
j a

†
j+1). (40)

The resultant Hamiltonian H (θ ) = −∑ j B j (θ ) has the 2π

periodicity in θ and is unitary equivalent to Eq. (13) with
μ = −1. Therefore, it defines a pump in the trivial phase. Note
that H (θ ) is solvable since the Bj (θ ) commute with each other
and have eigenvalues ±1.

2. Open chain

Similar to the analysis in Sec. II B 2, we investigate the
fermion pump in an open chain of the solvable model through
fermion parity on the boundaries. For the open chain with L
sites, we consider the Hamiltonian,

H (θ ) = Hbulk (θ )+ Hbdy(θ ), (41)

where Hbulk (θ ) is the bulk Hamiltonian

Hbulk (θ ) = −
L−1∑
j=2

Bθ
j = −

L−1∑
j=2

Uθ (−ic2 j−1c2 j )U
−1
θ , (42)

with Uθ in the open chain

U open
θ =

L−1∏
j=1

e−
iθ
2

1+ic2 j c2 j+1
2

=
L−1∏
j=1

e−i θ
4 [cos (θ/4)+ c2 jc2 j+1 sin (θ/4)]. (43)

We assume that the boundary Hamiltonian Hbdy(θ ), which
has support near the boundary, is 2π periodic in θ and small
compared to the bulk gap.6

The system supports fourfold ground-state degeneracy:
Since Hbulk (θ = 0) = 2

∑L−1
j=2 (a†

j a j − 1/2), the ground states
of Hbulk (θ = 0) are annihilated by aj with j = 2, . . . , L − 1,
which consist of the four states∣∣�1

0

〉 = |vac〉, ∣∣�2
0

〉 = a†
1|vac〉, ∣∣�3

0

〉 = a†
L|vac〉,∣∣�4

0

〉 = a†
1a†

L|vac〉, (44)

with the Fock vacuum |vac〉. Thus, from Hbulk (θ ) =
UθHbulk (θ = 0)U−1

θ , we have fourfold degenerate ground
states of Hbulk (θ )|� i

θ 〉 = Uθ |� i
0〉 (i = 1, 2, 3, 4). Note that

even in the presence of Hbdy(θ ), the ground states are nearly
degenerate as long as Hbdy(θ ) is small enough.

To study the fermion parity pump, we rewrite the four
states in Eq. (44) as

∣∣�1
0

〉 = 1

2L

∑
σ1,...,σL

|σ1, . . . , σL〉,

∣∣�2
0

〉 = 1

2L

∑
σ1,...,σL

σ1|σ1, . . . , σL〉,

∣∣�3
0

〉 = 1

2L

∑
σ1,...,σL

σL|σ1, . . . , σL〉,

∣∣�4
0

〉 = 1

2L

∑
σ1,...,σL

σ1σL|σ1, . . . , σL〉, (45)

with

|σ1, . . . , σL〉 = (1+ σ1a†
1)(1+ σ2a†

2) · · · (1+ σLa†
L )|vac〉,

(46)

where the summation in Eq. (45) runs over all possible σ j =
±1. Then, using the relation

c2 jc2 j+1|σ1, . . . , σL〉 = −i(a j− a†
j )(a j+1+ a†

j+1)|σ1, . . . , σL〉
= iσ jσ j+1|σ1, . . . , σL〉, (47)

6On the boundaries, we consider a local Hamiltonian Hbdy(θ ) in-
stead of Bθ

j=1,L , which are defined by Bθ
j=1 = U open

θ ( i
2 c1c2)[U open

θ ]−1

and Bθ
j=L = U open

θ ( i
2 c2L−1c2L )[U open

θ ]−1, respectively, because the lat-
ter terms are not 2π periodic in θ .
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we obtain∣∣�1
θ

〉 = 1

2L

∑
σ1,...,σL

e−
iθ
2 Ndw |σ1, . . . , σL〉,

∣∣�2
θ

〉 = 1

2L

∑
σ1,...,σL

e−
iθ
2 Ndwσ1|σ1, . . . , σL〉,

∣∣�3
θ

〉 = 1

2L

∑
σ1,...,σL

e−
iθ
2 NdwσL|σ1, . . . , σL〉,

∣∣�4
θ

〉 = 1

2L

∑
σ1,...,σL

e−
iθ
2 Ndwσ1σL|σ1, . . . , σL〉. (48)

Here Ndw =
∑L−1

j=1
1−σ jσ j+1

2 counts domain walls in the array
σ1, . . . , σL where adjacent σ j and σ j+1 have an opposite sign.

The above ground states |� i
θ 〉 exhibit a fermion (or an-

tifermion) pump. For instance, let us consider |�1
θ 〉, which is

the Fock vacuum |vac〉 at θ = 0. Because Ndw is even (odd)
when σ1 = σL (σ1 = −σL), we have∣∣�1

θ=2π

〉 = 1

2L

∑
σ1,...,σL−1

|σ1, . . . , σL−1, σ1〉

− 1

2L

∑
σ1,...,σL−1

|σ1, . . . , σL−1,−σ1〉

= a†
1a†

L|vac〉(=∣∣�4
0

〉)
. (49)

Thus, the one-cycle evolution pumps boundary fermions a†
1

and a†
L on |�1

0 〉. As a result, |�1
0 〉 goes to |�4

0 〉 and vice versa.
In a similar manner, we can show that |�2

0 〉 and |�3
0 〉 are

interchanged after the one-cycle evolution. We can construct
the Z/2Z number from the fermion parity operator.

To construct the Z/2Z number, we take the basis in which
the ground states of Hbulk (θ ) are 2π periodic in θ : Taking
linear combinations of � i

θ , we have

|�θ (σ1, σL )〉
=

∑
σ2,...,σL−1

e−
iθ
2 (Ndw+1− σ1+σL

2 )|σ1, σ2, . . . , σL−1, σL〉, (50)

where σ1 = ±1 and σL = ±1 are now the indices specifying
the fourfold degenerate ground states. The ground states in the
new basis are 2π periodic in θ since Ndw is even (odd) when
σ1 = σL (σ1 = −σL).

The fermion parity operator P = (−1)
∑

j a†
j a j acts on the

ground states as

P|�θ (σ1, σL )〉 = eiθ σ1+σL
2 |�θ (−σ1,−σL )〉.

=
∑
σ ′1,σ

′
L

[
e

iθ
2 σ̄ z

1 σ̄ x
1

]
σ1σ

′
1

[
e

iθ
2 σ̄ z

L σ̄ x
L

]
σLσ ′L
|�θ (σ ′1, σ

′
L )〉,

(51)

where σ̄
μ
i are the Pauli matrices acting on the index σi (i =

1, L). Therefore, we have the matrix representation of the
fermion parity in a fractionalized form

P|G.S. = pθ
1 pθ

L (52)

with

pθ
j = e

iθ
2 σ̄ z

j σ̄ x
j , j = 1, L. (53)

The fractionalized parity operator obeys (pθ
j )

2 = 1 like an
ordinary parity operator, but it is not 2π periodic in θ , i.e.,
pθ+2π

j = −pθ
j . We note that pθ

1 has a U (1) phase ambiguity: a
simultaneous redefinition pθ

1 
→ eiα pθ
1 and pθ

L 
→ e−iα pθ
L does

not change the equality (52). Whereas the 2π periodicity of
pθ

j can be recovered by using the phase ambiguity, it is not
compatible with (pθ

j )
2 = 1: Once we choose the U (1) phase of

pθ
1 such that pθ

1 is 2π periodic in θ , we have a nontrivial U (1)
phase in (pθ

1)2, (pθ
1)2 = ei�θ , and thus pθ

1 is now a projective
representation of the parity.

As discussed in Sec. II B 2, the incompatibility origi-
nates from a topological obstruction: In a manner similar to
Sec. II B 2, the phase �θ defines the topological number ν in
Eq. (27). Note that only the Z/2Z part of ν is relevant, since
the 2π -periodic pθ

1 still has a phase ambiguity pθ
1 
→ eiαθ pθ

1
with a periodic function eiαθ , which changes ν by an even
integer. In the present case, we obtain the 2π -periodic pθ

1 by
multiplying pθ

j in Eq. (53) by e
iθ
2 . Thus, we have ei�θ = eiθ

and ν = 1, which means that �θ cannot be identically zero.

3. Stacked Kitaev chain with texture

In a manner similar to Sec. II B 3, we can investigate the
fermion parity pump in the closed chain of the solvable model
in the above by introducing a texture in the Hamiltonian. We
expect that the fermion parity of the ground state changes by
−1 by introducing the texture, but instead of repeating the
straightforward analysis, we here consider another model of
the closed chain in the trivial phase.

A stack of two Kitaev chains is topologically trivial since
the Kitaev chain belongs to a Z/2Z phase. In this section, we
consider a pump in the following 4× 4 Hamiltonian describ-
ing the stack of Kitaev chains,

H = 1

2

∑
k,σ,σ ′

(a†
k,σ

, a−k,σ )HBdG(k)σ,σ ′

(
ak,σ ′

a†
−k,σ ′

)
, (54)

HBdG(k) = sin(k)τ1 ⊗ σ0 + [m+ cos(k)]τ3 ⊗ σ3, (55)

where τi are Pauli matrices in the Nambu space, σi are Pauli
matrices labeling the two Kitaev chains, and m is a real pa-
rameter. This model has particle-hole symmetry [H, �] = 0
with � = Kτ1 ⊗ σ0 and K the complex conjugate operator.

To investigate the fermion parity pump of this model, we
add a term with a spatial texture. The additional texture term
should keep particle-hole symmetry and commute with the
first term of the above Hamiltonian to maintain a gap of the
system. Based on this argument, we consider the following
one-parameter family of Hamiltonians:

HBdG(k, θ ) = sin(k)τ1 ⊗ σ0 + sin(θ )τ3 ⊗ σ1

+ [m + cos(θ )+ cos(k)]τ3 ⊗ σ3. (56)

Performing the Fourier transformation,

ak,σ =
∑

n

e−inkan,σ , a†
k,σ
=
∑

n

einka†
n,σ , (57)
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FIG. 3. The fermion parity of the ground state of the textured
Hamiltonian with the system L = 20. The fermion parity changes by
a factor of −1 at m = 2.

we have the Hamiltonian in the real space

H (θ ) =
∑
j,σ,σ ′

[
1

2
a†

j,σ (σ3)σ,σ ′a j−1,σ ′ + 1

2
a†

j−1,σ (σ3)σ,σ ′a j,σ ′

+ sin(θ )a†
j,σ (σ1)σ,σ ′a j,σ ′

+[m + cos(θ )]a†
j,σ (σ3)σ,σ ′a j,σ ′

]

+
∑
j,σ

[
+ 1

2i
a†

j,σ a†
j−1,σ−

1

2i
a†

j−1,σ a†
j,σ+

1

2i
a j,σ a j−1,σ

− 1

2i
a j−1,σ a j,σ

]
. (58)

When θ = 0, π , the system reduces to two decoupled Ki-
taev chains. The decoupled Kitaev chains belong to the same
phase, but the common phase can be different between θ = 0
and θ = π . Actually, this happens for |m| < 2, which suggests
that H (θ ) with |m| < 2 gives a nontrivial loop.

Similarly to Sec. II B 3, we numerically examine the
fermion parity pump of the stacked Kitaev chain under
the periodic boundary condition by introducing the textured
Hamiltonian Hl=L

text =
∑

j h j (θ = 2π j
L ), where h j (θ ) is the lo-

cal term of H (θ ) in Eq. (58), i.e., H (θ ) =∑
j h j (θ ). Figure 3

shows the numerical result for the ratio of the fermion parity
of the ground state for Hl=L

text and that for H (θ = 0). This result
suggests the presence of the fermion parity pump for |m| < 2.

III. MATRIX PRODUCT STATE

So far we have considered pumps in a particular model,
i.e., the free Kitaev chain. Now we develop a theory of pumps
in (1+ 1)-dimensional translation invariant SRE states in-
cluding interactions, based on matrix product states (MPSs)
representations [30].7 MPSs provide a systematic way to

7Most of these properties are stated in Ref. [31], but in a mathemat-
ical style.

describe (1+ 1)-dimensional many-body quantum states by
using a set of matrices. MPSs can approximate any non-
degenerate gapped ground states with arbitrary precision by
increasing the bond dimension as a polynomial function of
system size [32]. For bosonic states, a class of MPSs called
injective MPSs played an important role in studying topolog-
ical natures of the nondegenerate gapped ground states. An
injective MPS is a translation invariant MPS with a fixed finite
bond dimension, irrespective of system size, and has alge-
braic properties described below. In this section, we introduce
fermionic injective MPSs (fMPSs), Z2-graded generalization
of injective MPSs, along the lines of Ref. [18].

In contrast to general MPSs, injective MPSs have a limita-
tion to describe nondegenerate gapped ground states: Whereas
a generic nondegenerate gapped ground state may allow
power-law corrections in exponentially decaying correlation
functions [33], MPSs with a fixed bond dimension do not
have such corrections. We leave the topological classification
of pumps for general fermionic SRE states in future work.

Below we assume the translational invariance of states |ψ〉:
i.e., T |ψ〉 = |ψ〉 with T the translation operator by a lattice
constant.

A. Bosonic MPS

1. Injective MPS

Consider a one-dimensional lattice with L sites with lo-
cal Hilbert space spanned by the orthonormal basis {|ik〉}Nik=1
at site k. The lattice-translation operator T is defined by
T |i1i2 · · · iL〉 = |iLi1 · · · iL−1〉. We call states invariant un-
der the lattice translation T |ψ〉 = |ψ〉 translation-invariant
states. For the wave function ψ (i1, . . . , iL ) defined by |ψ〉 =∑N

i1,...,iL=1 ψ (i1, . . . , iL )|i1 · · · iL〉, the state |ψ〉 is translation
invariant if

ψ (i1, i2, . . . , iL ) = ψ (i2, . . . , iL, i1) (59)

holds for any i1, . . . , iL. It is known that any translation-
invariant state |ψ〉 is represented in the form of a translation-
invariant MPS [30]8

|ψ〉 = |{Ai}i〉L :=
N∑

i1,...,iL=1

tr[Ai1 · · ·AiL ]|i1 · · · iL〉, (60)

where Ais are n× n matrices. (n is called the bond dimension.)
For Ai

αβ , we call i the physical leg and α and β the virtual legs.
Apparently,the MPS representation of |ψ〉 is not unique.

For example, two MPSs related by Ai = eiβX−1BiX with eiβ a
U (1) phase and X an invertible matrix give the same physical
state with the same norm for any system size L ∈ N.

Definition 1 (Gauge equivalence condition of MPS). We
call two MPS representations by {Ai}i and {Bi}i are gauge

8A generic MPS is written in a form |ψ〉 =∑N
i1,...,iL=1 tr[Ai1

[1] · · ·AiL
[L]]|i1 · · · iL〉 where the set of matrices

{Ai
[x]}i at site x is site-dependent in general. We refer to an MPS with

site-independent matrices such that Ai
[1] = Ai

[2] = · · · = Ai
[L] for all i

as a translation-invariant MPS. Note that translation-invariant MPS
represents a generic MPS that is translation invariant in the sense
above, not an arbitrary translation-invariant state.
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equivalent {Ai}i ∼ {Bi}i if there exists a U (1) phase eiαL for
any L ∈ N such that

|{Ai}i〉L = eiαL |{Bi}i〉L. (61)

The condition in Eq. (61) is equivalent to

tr[Ai1 · · ·AiL ] = eiαL tr[Bi1 · · ·BiL ] (62)

for any L ∈ N and i1, . . . , iL.
To rephrase the gauge equivalence condition in terms of

the set of matrices {Ai}i, we introduce injective MPSs [30] de-
scribed below. A set of matrices {Ai}i is said to be irreducible
if any Ai does not have a proper left invariant subspace, i.e.,
there is no projector P such that AiP = PAiP for any i [30].
The irreducible condition is equivalent to that the algebra
generated by {Ai}i, which is spanned by all possible prod-
ucts of matrices Ai1 · · ·Aik with all k ∈ N, coincides with the
set of n× n matrices Mn(C), or in other words, the algebra
generated by Ais is central simple. (See Appendix A for the
definition of central simple.) Then a set of matrices {Ai}i
is said to be injective if all possible products of matrices
Ai1 · · ·Ail with a fixed l spans Mn(C) [30]. Obviously, if {Ai}i
is injective, {Ai}i is irreducible.9 The injective condition is
equivalently expressed as the following conditions for the
transfer matrix EA : Mn(C)→ Mn(C) defined by EA(X ) :=∑N

i=1 AiXAi† [34]: Let λA be the maximum of the absolute
values of eigenvalues (spectral radius) of the transfer matrix
EA. A set of matrices {Ai}i is injective if and only if (i) EA has a
unique eigenvalue, λ, with |λ| = λA and (ii) the corresponding
eigenvector is a positive definite matrix. An injective MPS
does not give a superposition of macroscopically different
states and shows exponentially decaying correlation func-
tions. It is known that if {Ai}i is injective, the smallest integer
lmin for which the set of products {Ai1 · · ·Ail } spans Mn(C) is
bounded from above as lmin < (n2 − N + 1)n2 [34].

2. Fundamental theorem of injective MPS

The necessary and sufficient conditions for two injective
MPSs to give the same physical state are known as the funda-
mental theorem of MPS [35]. Before stating the theorem, it is
useful to introduce the canonical form of MPS [30]. When
the set of matrices {Ai}i is irreducible, one can normalize
Ai so that

∑
i AiAi† = 1n while keeping the physical state

unchanged.10 The set of irreducible MPS with
∑

i AiAi† = 1n

is said to be in the canonical form. Note that the spectral radius
of EA is 1 when we take the canonical from. We start with
Theorem 7 in Ref. [30].11

9The converse is not true. For example, if we take A↑ = ( 1
0 )

and A↓ = ( 0
1 ), the algebra generated by them is isomorphic to

M2(C), and thus they are irreducible. However, they are not in-
jective because products of odd (even) numbers of them only span

C( 1
0 )⊕C( 0

1 )(C(1
0)⊕C(0

1)).
10Let Y be the eigenvector of the transfer matrix EA with the

eigenvalue λ = λA. The eigenvector Y is positive definite. Then
Ãi = λ

−1/2
A Y −1/2AiY 1/2 gives the canonical form.

11Theorem 7 in Ref. [30] states the equivalence condition for two
MPSs {Ai}i and {Ãi}i as |{Ãi}i〉L = |{Ai}i〉L . Namely, the equivalence

Theorem 1 ([30,36]). Let a set of n× n matrices {Ai}i be
injective and in the canonical form, and let another set of n× n
matrices {Ãi}i be irreducible and in the canonical form. Then
the following two statements are equivalent.

(i) Two sets {Ai}i and {Ãi}i represent the same physical
state for some length L > 2l + n4 in the sense that |{Ãi}i〉L =
eiα|{Ai}i〉L holds with a U (1) phase eiα .

(ii) There exist a unitary matrix V ∈ U (n) and a U (1)
phase eiβ ∈ U (1) satisfying

Ãi = eiβV †AiV. (63)

Here l is a positive integer for which the set of products
{Ai1 · · ·Ail } spans Mn(C), V is unique up to a U (1) phase, and
eiβ is unique.

See [30] for the existence of such V and eiβ . The unique-
ness of V and eiβ follows from the property that 1n is the
nondegenerate eigenvalue of the transfer matrix EA, and there
is no eigenvalues of magnitude 1 [36]. As a corollary, we have
the following, which we refer to the fundamental theorem for
bosonic MPS in this paper.

Theorem 2 (Fundamental theorem for bosonic MPS
[30,36]). Let {Ai}i and {Bi}i be injective MPSs in the canonical
form. They are gauge equivalent {Ai}i ∼ {Bi}i if and only
if there exist a unitary matrix V ∈ U (n) and a U (1) phase
eiβ ∈ U (1) satisfying

Bi = eiβV †AiV. (64)

V is unique up to a U (1) phase, and eiβ is unique.
This theorem means that a family of injective MPSs

for the same physical state over a parameter space X is
a U (1)× PU (n) bundle over X , where n is the bond di-
mension and PU (n) = U (n)/U (1) is the projective unitary
group of U (n) [37]. For adiabatic pumps, where X = S1,
U (1)× PU (n) bundle over S1 is always trivial, and thus no
nontrivial adiabatic pumps exist. However, in the presence of
onsite symmetry, nontrivial adiabatic pumps are possible, as
described in Sec. III A 3.

In the rest of this section, we give examples of an injective
MPS and a noninjective one, respectively.

Example 1: The Cluster Model (as an injective case)—
Consider the Hamiltonian of the cluster model on a periodic
chain [38]:

Hcluster =
L∑

j=1

σ z
j σ

x
j+1σ

z
j+2. (65)

This model has a Z/2Z× Z/2Z symmetry generated by
Ue =

∏
j σ

x
2 j and Uo =

∏
j σ

x
2 j+1. The ground state of this

as a vector in the Hilbert space. In Theorem 2 of this paper, the
equivalence condition is set as the same physical state with the same
norm.
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model is unique and gapped, which is given by

|GS〉 =
∑

σ1,...,σL

{
L∏

j=1

s(σ j, σ j+1)

}
|σ1, . . . , σL〉 (66)

=
∑

σ1,...,σL

(−1)NDW (σ1,...,σL )|σ1, . . . , σL〉, (67)

where σ j =↑,↓ and s(σ, σ ′) is given by

s(σ, σ ′) =
{−1 (σ, σ ′) = (↑,↓), (↓,↑)

1 (σ, σ ′) = (↑,↑), (↓,↓) , (68)

and NDW(σ1, . . . , σL ) is the number of j with
| . . . , σ j, σ j+1, . . . 〉 = | . . . ,↓,↑, . . . 〉 or | . . . ,↑,↓, . . . 〉.
An MPS of this model [39] is given by

A↑ =
(

1 1
0 0

)
, A↓ =

(
0 0
−1 1

)
. (69)

The set of matrices {AiAj}i, j∈{↑,↓} spans M2(C), and thus the
MPS is injective.

Example 2: The Ising model (as a noninjective case)—
Consider the Hamiltonian of the Ising model:

HIsing = −
∑
j∈Z

σ z
j σ

z
j+1. (70)

An MPS of this model is given by

A↑ =
(

1 0
0 0

)
, A↓ =

(
0 0
0 1

)
. (71)

The algebra generated by A↑ and A↓ is not M2(C).

3. Adiabatic cycle of injective MPS with onsite symmetry

Suppose that the total Hilbert space is equipped with a
group action of a symmetry group G such that it acts on the
local Hilbert space as

Ûg| j〉 = |i〉
∑

j

[ug]i j, g ∈ G, (72)

where ug are U (n) matrices. Some elements of G can be an-
tiunitary and are specified by a homomorphism s : G→ {±1}
so that ÛgiÛ−1

g = sgi. We also require Ûg to be a linear repre-
sentation, namely, ugu

sg

h = ugh holds. Here we have introduced
the notation

X sg =
{

X sg = 1,

X ∗ sg = −1,
(73)

for matrices X .
Now suppose that an injective MPS {Ai}i in the canonical

form preserves the G symmetry in the sense that for any
system size L ∈ N there exists eiαL ∈ U (1) such that

Ûg

∣∣{Ai}〉
L
= eiαL

∣∣{Ai}〉
L
. (74)

This is equivalent to say {∑ j[ug]i j (Aj )sg}i ∼ {Ai}i for any
g ∈ G as a bosonic MPS. From the fundamental theorem for
bosonic MPS, there exists a unique U (1) phase eiβg and a U (n)
matrix Vg such that∑

j

[ug]i j (A
j )sg = eiβgV †

g AiVg (75)

for g ∈ G, where Vg is unique up to U (1) phases. The linearity
of ug and the uniqueness of eiβg and Vg implies that eiβgeisgβh =
eiβgh and there exists zg,h ∈ U (1) such that

VgV
sg

h = zg,hVgh (76)

for g, h ∈ G. The equality Vg(VhV
sh

k )sg = (VgV
sg

h )V sgh

k implies
that zg,h is a two cocycle z ∈ Z2(G,U (1)s) as it satisfies the
two-cocycle condition

z
sg

h,kz−1
gh,kzg,hkz−1

g,h = 1 (77)

for g, h, k ∈ G, where U (1)s means the left module defined as
g.z = zsg for g ∈ G on z ∈ U (1).

Under these preparations, we consider a loop, parameter-
ized by θ ∈ [0, 2π ], of injective MPS {Ai(θ )}i in the canonical
form and with G symmetry which starts and ends at the same
physical state in the sense that {Ai(2π )}i ∼ {Ai(0)}i. Along
the loop, the G action on the Hilbert space is assumed to be
in common. As mentioned in Sec. III A 2, there always exists
a global gauge so that Ai(2π ) = Ai(0) holds; however, the
following discussion does not change irrespective of whether
Ai(2π ) = Ai(0) holds or not. For θ ∈ [0, 2π ], we have U (1)
matrices eiβg(θ ) and U(n) phases Vg(θ ) from the relations∑

j

[ug]i j[A
j (θ )]sg = eiβg(θ )Vg(θ )†Ai(θ )Vg(θ ) (78)

for g ∈ G. From the Vg(θ ), we have a parameter family of
two cocycle zg,h(θ ) ∈ Z2(G,U (1)s) which may not be 2π pe-
riodic zg,h(2π ) �= zg,h(0) but relates with each other with a one
coboundary. To see this, applying the fundamental theorem to
{Ai(2π )} and {Ai(0)}, we get

Ai(2π ) = eiγW †Ai(0)W (79)

with eiγ ∈ U (1) and W ∈ U (n). The G action on both sides
leads to the equality

Ai(2π ) = e−iβg(2π )eisgγ eiβg(0)Vg(2π )[W †]sgVg(0)†Ai(0)Vg(0)

×W sgVg(2π )† (80)

for g ∈ G. Then the uniqueness of eiβ and W gives us

eiβg(2π ) = ei(sgγ−γ )eβg(0) (81)

and

Vg(2π ) = eiφgW †Vg(0)W sg (82)

with eiφg ∈ U (1). Therefore, we have

zg,h(2π ) = eisgφh e−iφgh eiφgzg,h(0). (83)

Introducing a lift C1(G,Rs/2πZs) � φg 
→ φ̃g ∈ C1(G,Rs),
we define the following quantity:

ng,h = 1

2π
(δφ̃)g,h − 1

2π i

∫ 2π

0
d log zg,h(θ ). (84)

The relation (83) implies that ng,h is a two cocycle of
Z2(G,Zs). The change of lift φ̃g→ φ̃g + 2πbg with one
cochain bg ∈ C1(G,Zs) gives the shift ng,h 
→ ng,h + (δb)g,h.
Therefore, ng,h is well defined only as a cohomology group
H2(G,Zs). It is also shown that n is invariant under changes
of the U (1) phases of Vg(θ ). Therefore, [n] ∈ H2(G,Zs) ∼=
H1(G,U (1)s) is a topological invariant of adiabatic pumps.
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We comment on the simplification of the topological in-
variant [n] for the two cases. When the two cocycle zg,h(θ )
is 2π periodic as eiφg ≡ 1, ng,h is recast as the phase wind-
ing ng,h = − 1

2π i

∮
d log zg,h(θ ) [19]. When the two cocycle

zg,h(θ ) is constant for θ , then (83) means that eiφg is a one-
dimensional representation of G, and this is nothing but the
topological invariant [eiφ] ∈ H1(G,U (1)s).

B. Fermionic MPS

Fermionic MPSs (fMPSs) were first introduced in [40]
and developed in [18]. In this paper, we adapt the for-
mulation in [18,41]. See also [42] on an application of
fMPS to Lieb-Schultz-Mattis-type theorems for Majorana
fermion systems. For the classification of (1+ 1)-dimensional
fermionic SRE states without restricting SRE states to the
class of the fMPS; see [43]. Remark that fMPS was also
introduced independently in terms of spin TQFT state sum
construction [44].

1. Preliminary

Let us consider a one-dimensional fermionic system with
L sites. We denote the creation/annihilation operator of com-
plex fermions at cite k by a†

k, f /ak, f for f = 1, . . . , NF , where
NF is the number of flavors.12 We introduce the following
shorthand notations:

ik = (ik,1, . . . , ik,NF ) ∈ {0, 1}×NF , (85)

|ik| =
NF∑
f=1

|ik, f | (mod2) ∈ {0, 1}, (86)

(a†
k )ik = (a†

k1
)ik,1 · · · (a†

kF
)ik,NF , (87)

|i1 · · · iL〉 = (a†
1)i1 · · · (a†

L )iL |0〉, (88)

where |0〉 is the Fock vacuum defined by ak, f |0〉 = 0 for
all possible ks and f s. The index ik per site runs over
N = 2NF possible combinations of (i1, . . . , iNF ). Similarly
to the bosonic MPS, we also denote it by ik ∈ {1, . . . , N}
equipped with the definite parity |ik| ∈ {0, 1}. A fermionic
state is written as |ψ〉 =∑

{ik} ψ (i1, . . . , iL )|i1 · · · iL〉 with
ψ (i1, . . . , iL ) the wave function in the occupation basis.
We define the fermion parity operator (−1)F by (−1)F =∏

k, f (−1)a†
k, f ak, f , and assume that |ψ〉 has a definite fermion

parity (−1)F |ψ〉 = (−1)|ψ ||ψ〉, (−1)|ψ | ∈ {±1}, which im-
plies that only wave functions ψ (i1, . . . , iL ) with fermion
parity (−1)

∑L
j=1 |i j | = (−1)|ψ | can be nonzero. We also define

the translation operators for the periodic boundary condi-
tion (PBC) and the antiperiodic boundary condition (APBC)
by

TPa†
k, f T−1

P = a†
k+1, f for k = 1, . . . , L − 1,

TPa†
L, f T−1

P = a†
1, f , TP|0〉 = |0〉 (89)

12Note that if spin degrees of freedom coexist, they can be regarded
as internal degrees of freedom of complex fermions.

and

TAPa†
k, f T−1

AP = a†
k+1, f for k = 1, . . . , L − 1,

TAPa†
L, f T−1

AP = −a†
1, f , TAP|0〉 = |0〉, (90)

respectively. Assume that |ψ〉 is invariant under translation
with PBC,

TP|ψ〉P = |ψ〉P ⇔ ψ (i1, i2, . . . , iL )

= (−1)|i1|(|ψ |+1)ψ (i2, . . . , iL, i1), (91)

for any system size L.13 Fermionic unique gapped ground
states in (1+ 1) dimension are classified by Z/2Z [16],
and when they are translational invariant, TP|ψ〉P = |ψ〉P, the
Z/2Z class is detected by the fermion parity under PBC [16]:

(−1)F |ψ〉P = ±|ψ〉P. (92)

Also, assume that |ψ〉 is invariant under translation under
APBC,

TAP|ψ〉AP = |ψ〉AP ⇔ ψ (i1, . . . , iL )

= (−1)|i1||ψ |ψ (i2, . . . , iL, i1) (93)

for any system size L. Since (TAP)L = (−1)F holds, Eq. (93)
implies that for APBC, irrespective of the Z/2Z class, the
fermion parity of the ground state is always even:

(−1)F |ψ〉AP = |ψ〉AP. (94)

2. Fermionic MPS

We introduce translation invariant fMPSs in such a way
that (91), (93), (92), and (94) are satisfied.

In the case of fermionic systems, the local Hilbert space is
Z/2Z graded by the fermion parity

hk = h
(0)
k ⊕ h

(1)
k , (95)

where the superscripts (0) and (1) indicate the even and odd
fermion parities, respectively. The femrion anticommutation
relation implies that this space has the Z/2Z-graded tensor
product, which is a tensor product with the nontrivial braiding
rule

v ⊗gr w = (−1)|v||w|w ⊗gr v, (96)

where v ∈ V (|v|) and w ∈W (|w|) are elements of Z/2Z-graded
vector spaces V and W with the fermion parities |v| and
|w|. We call the basis that diagonalizes Z/2Z grading the
standard basis. The total Hilbert space is the Z/2Z-graded
tensor product space H =⊗

k hk .
For fMPSs, not only the physical Hilbert space,

but also the bond Hilbert space V is Z/2Z-graded
V = V (0) ⊕V (1). V (0) and V (1) need not be of the

13For translation-invariant fermionic states with fermion parity per
site, irrespective of the Z/2Z class, the Bloch momentum depends on
the number L of sites as in TP|ψ〉P = (−1)L−1|ψ〉P and TAP|ψ〉AP =
(−1)L|ψ〉AP. Even when this is the case, by regarding two sites as a
unit cell, the fermion parity per site can always be removed. There-
fore, the assumption in the main text should not lose the generality
for the purpose of studying pumps of fermionic states.
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same dimension, but to represent a nontrivial adi-
abatic pump, we assume dim V (0) = dim V (1) = n.
We introduce the grading matrix Z such that Zv = (−1)iv

for v ∈ V (i) (i = 0, 1). It holds that Z2 = 12n and Z† = Z .
To implement the fermion parity in fMPSs, we impose the
following constraint on matrices {Ai}i:

(−1)|i|Ai = ZAiZ, (97)

in the standard basis of the physical Hilbert space. In the
basis of the bond Hilbert space V such that Z = σz ⊗ 1n, the
matrices Ai are in the forms as

Ai =
(

Bi

Ci

)
for |i| = 0, (98)

Ai =
(

Bi

Ci

)
for |i| = 1. (99)

Then an fMPS for {Ai}i is introduced as∣∣{Ai}i,�
〉
L :=

∑
{ik}

tr[�Ai1 · · ·AiL ]|i1, . . . , iL〉 ∈ H, (100)

where � is a matrix only with virtual legs, called the boundary
matrix [18] to be determined depending on the boundary con-
dition and the Z/2Z class of the state. For the fMPS to have a
definite fermion parity, � is taken as Z� = ±�Z , i.e., Z� =
�Z for even parity, Z� = −�Z for odd parity. The translation
invariance further constrains �. Under APBC, from (94), the
fermion parity of fMPSs should be even, so the translation
invariance in (93) yields tr[�Ai1 · · ·AiL ] = tr[�Ai2 · · ·AiL Ai1 ].
For example, this condition is satisfied for the trivial boundary
matrix � = 12n. However, under PBC, from (92), the fermion
parity of fMPSs depends on the Z/2Z class, so does �, which
is determined so to obey the translation invariance in (91). We
give the explicit construction of � for PBC in Sec. III B 3.

We here settle what kind of space we regard as the set of
fMPSs. We abbreviate the unitary equivalence of two matrices
A and B to A ∼u B. Namely, A ∼u B means there exists a
unitary matrix U such that A = U †BU .

Definition 2 (Space of fMPS). For a given local Hilbert
space including fermions spanned by a standard basis |i〉, we
define the space M̃f

n of fMPSs with bond dimension 2n as
sets of 2n× 2n matrices {Ai}i equipped with a grading matrix
defined by (97). Explicitly,

M̃f
n := {{Ai}i|∃Z ∼u σz ⊗ 1n, s.t.(−1)|i|Ai = ZAiZ}. (101)

We note that the grading matrix Z is not unique in general.
We introduce the gauge equivalence condition in the space of
fMPSs as the equivalence of physical states in APBC.

Definition 3 (Gauge equivalence condition of fMPS). We
define that {Ai}i, {Bi}i ∈ M̃f

n are gauge equivalent {Ai}i ∼
{Bi}i if there exists a U (1) phase eiαL for any L ∈ N such that

|{Ai}i, 12n〉L = eiαL |{Bi}i, 12n〉L (102)

holds. This is equivalent to the wave function equalities

tr[Ai1 · · ·AiL ] = eiαL tr[Bi1 · · ·BiL ] (103)

for any L ∈ N and i1, . . . , iL.
Note that this definition does not depend on the Z/2Z class

of states, although as we will see later, the boundary matrix �

in PBC depends on the Z/2Z class.

3. Irreducible fMPS

In the next section, we introduce the injectivity of fMPS to
represent fermionic unique gapped ground states with finite
range correlation. Before doing so, it would be helpful to
introduce the irreducibility of fMPSs [18,41] as a necessary
condition for the injectivity, in view of its relation to the
graded algebra.

A set of matrices {Ai}i ∈ M̃f
n generates an algebra A that

is spanned by linear summations of products ci1,...,il A
i1 · · ·Ail

with ci1,...,il ∈ C for l ∈ N. The algebra A is a graded al-
gebra A = A(0) ⊕A(1) of which the grading is defined by∑l

k=1 |ik| (mod.2) ∈ {0, 1} for elements Ai1 · · ·Ail .14 Thus,
A(0) = Span({Ai1 · · ·Ail |∑l

k=1 |ik| ≡ 0 (mod.2), l ∈ N}), and
A(1) = Span({Ai1 · · ·Ail |∑l

k=1 |ik| ≡ 1 (mod.2), l ∈ N}). We
note that grading matrices Z can be used to detect even and
odd elements of A. If Za = aZ (Za = −aZ) for a ∈ A, then
a ∈ A(0) (a ∈ A(1)).

We define a set of matrices {Ai}i ∈ M̃f
n to be graded

irreducible if the graded algebra A generated by {Ai}i is
graded central simple [18].15 (We give a brief review of the
graded central simple algebra in Appendix A 2.) Note that
the above definition does not depend on choices of grading
matrices Z . It is known that graded central simple algebras
are classified into two types: (+)-algebra and (−)-algebra
[45].16 For each type of algebra, there is a characteris-
tic matrix u which is essentially unique up to a sign. We
call the type of algebra the Wall invariant and u the Wall
matrix.

If A is a (+)-algebra, then A is central simple as an
ungraded algebra. In addition, there is a unique element u ∈
Z (A(0) ) up to a phase factor so that u2 is proportional to
1 and u itself is not proportional to 1 [45]. Here Z (A(0) )
is the center of A(0). In terms of the matrices {Ai}i ∈ M̃f

n,
the ungraded central simplicity of A is rephrased as that the
set of all possible products of matrices Ai1 · · ·Ail span the
vector space M2n(C). This is equivalent to the absence of left
invariant subspace of Ais, i.e., there is no proper projectors
P such that AiP = PAiP holds for all i. The matrix u should
be proportional to the grading matrix Z since Z ∈ Z (A(0) ).
We note that the grading matrix Z is unique up to a sign.
In fact, if Z ′ is also a grading matrix satisfying (97), then
ZZ ′a = aZZ ′ holds true for any a ∈ A ∼= M2n(C). From the
Schur’s lemma we have ZZ ′ ∝ 1, thus, Z ′ = ±Z . Along the
line of thought above, we define the graded irreducibility with
the Wall invariant (+) as follows.

Definition 4 (Irreducible fMPS with Wall invariant (+)). A
set of matrices {Ai}i ∈ M̃f

n is graded irreducible with the
Wall invariant (+) if the set of products Ai1 · · ·Ail with all
possible l ∈ N and i1, . . . , il span the vector space M2n(C).
The grading matrix Z is unique up to a sign, and the Wall
matrix u is given by u = ±Z .

14Here we impose that A has the unit element and A(0) and A(1) are
nonzero.

15In other word, irreducibility is a condition that there are no graded
invariant subspace. See Def. IV.1 in Ref. [41].

16In [18], (+)-algebra is called even algebra and (−)-algebra is
called odd algebra.
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If A is a (−)-algebra, then A is not ungraded central simple
but A(0) is ungraded central simple. In addition, there is a
unique element u ∈ Z (A) ∩A(1) up to a phase factor so that
u2 is proportional to 1 and A(0)u = A(1) [45]. In terms of
matrices {Ai}i, A being the (−)-algebra implies that there is a
proper left invariant subspace of Ais. Let S1 be the left invari-
ant subspace that contains no smaller left invariant subspaces
of Ais, and let P be the orthogonal projector onto S1. P satisfies
P2 = P, P† = P, and AiP = PAiP for all i. Let Z be a grading
matrix satisfying (97). We find that [P, Z] �= 0, otherwise, A
is not graded central simple. From (97), Q = ZPZ is also an
orthogonal projector onto a different ungraded left invariant
subspace S2 = ZS1. It is found that PQ = 0, P + Q = 12n,
P − Q is unitary, the matrix u is given explicitly by u =
P − Q = 2P − 1, and [u, Ai] = 0 for all i [18,41]. In the basis
where Z = σz ⊗ 1n, solving u† = u, u2 = 1, {Z, u} = 0, u can
be written as

u =
(

U †

U

)
(104)

with U ∈ U (n) a unitary matrix. Solving AiP = PAiP, we
have

Ai =
(

1
U

)(
σ |i|x ⊗ Bi

)(1
U †

)

=
⎧⎨
⎩
(

1
UBiU †

)
(|i| = 0)(

BiU †

UBi

)
(|i| = 1)

, (105)

where Bis are n× n matrices. The condition that A(0)

is central simple and A(1) ∼= A(0)u can be expressed
for the matrices {Bi}i: Both the even subalgebra
{Bi1 · · ·Bil |∑l

k=1 |ik| ≡ 0 (mod.2), l ∈ N} and the odd
subalgebra {Bi1 · · ·Bil |∑l

k=1 |ik| ≡ 1 (mod.2), l ∈ N} span
the vector space Mn(C). Along the line of thought above, we
define the graded irreducibility with the Wall invariant (−) as
follows.

Definition 5 (Irreducible fMPS with Wall invariant (−)).
A set of matrices {Ai}i ∈ M̃f

n is graded irreducible with the
Wall invariant (−) if there exists a unitary matrix u ∈ U (2n)
such that the following two conditions are fulfilled: (i) u is
unitary equivalent to σx ⊗ 1n. (ii) Let W ∈ U (n) be a unitary
matrix that diagonalizes u as u =W (σx ⊗ 1n)W †. Then the
matrices Ai are written as

Ai =W
(
σ |i|x ⊗ Bi

)
W †, (106)

and both the even subalgebra {Bi1 · · ·Bil |∑l
k=1 |ik| ≡

0 (mod.2), l ∈ N} and the odd subalgebra
{Bi1 · · ·Bil |∑l

k=1 |ik| ≡ 1 (mod.2), l ∈ N} span the vector
space Mn(C).

The matrix u is unique up to a sign, as shown below.
Suppose that ũ = W̃ (σx ⊗ 1n)W̃ † is another Wall matrix in
Definition 5. The matrices Ai can also be written as Ai =
W̃ (σ |i|x ⊗ B̃i )W̃ †, and the even and odd subalgebras generated
by {B̃i}i span Mn(C). Set X =W †W̃ . We have

X (12 ⊗ b̃) = (12 ⊗ b)X, (107)

X (σx ⊗ b̃) = (σx ⊗ b)X (108)

for any b ∈ Mn(C). Let us write X in a block form X =
(x y

z w). If x is invertible, (107) leads to b̃ = x−1bx, and from
the Schur’s lemma we have y = λ2x, z = λ3x, z = λ4x with
λ2, λ3, λ4 ∈ C. Substituting them into (108), we get λ4 = η

and λ3 = ηλ2 with η a sign η ∈ {±1}. When x is nonin-
vertible, one can show X is in the form X = ( 0 y

ηy 0) with
η ∈ {±1}. Therefore, X can eventually be written as X =
( λ1x λ2x
ηλ2x ηλ1x) with λ1, λ2 ∈ C and η ∈ {±1}. We conclude that

Xσx = ησxX , and thus, ũ = ηu.
The sign ambiguity of u is the origin of the Z/2Z-

nontrivial pump in the (−)-algebra. To see this, let us consider
a periodic one-parameter family of the set of graded irre-
ducible matrices {Ai(θ )} in the basis such that Z = σz ⊗ 1n.
We have two orthogonal projectors P(θ ) and Q(θ ) which also
depend on θ . By a one cycle θ = 2π , the projector P(2π ) is
equal to either P(0) or Q(0), and the latter case indicates a
nontrivial pump.

Now we can represent a translation invariant fMPS with
PBC by using the Wall matrix u as the boundary operator
regardless of the type of the algebra (+) and (−) [18]:

|{Ai}i, u〉L =
∑
{ik}

tr(uAi1 · · ·AiL )|i1, . . . , iL〉 ∈ H =
⊗

k

hk .

(109)

It is easy to show TP|{Ai}i, u〉L = |{Ai}i, u〉L. Remark that an
MPS given by a (+)-algebra is fermion parity even and an
MPS given by a (−)-algebra is fermion parity odd. Note also
that although the Wall matrix u has sign ambiguity in general,
it only affects the MPS by an overall sign, so the physical
state is uniquely determined. We also introduce another equiv-
alence condition in the space of fMPSs as the equivalence of
physical states in PBC.

Definition 6 (Gauge equivalence condition of irreducible
fMPS in PBC). We define that two irreducible fMPSs
{Ai}i, {Ãi}i ∈ M̃f

n are gauge equivalent in PBC {Ai}i ∼PBC

{Ãi}i if there exists a U (1) phase eiαL for any L ∈ N such that

|{Ai}i, u〉L = eiαL |{Ãi}i, ũ〉L (110)

holds. Here u and ũ are Wall matrices for {Ai}i and {Ãi}i,
respectively. This is equivalent to the wave function equalities

tr[uAi1 · · ·AiL ] = eiαL tr[ũÃi1 · · · ÃiL ] (111)

for any l ∈ N and i1, . . . , iL.

4. Injective fMPS and fundamental theorem

For each type of the Wall invariant, we further impose the
following graded injectivity on graded irreducible fMPSs as
follows, which we call the injective fMPS. One can show
that an injective fMPS is essentially unique up to conjugate
transformations. First, we discuss the case of (+)-algebra.

Definition 7 (Injective fMPS with Wall invariant (+)). A
set of matrices {Ai}i ∈ M̃f

n is graded injective with the Wall
invariant (+) if the set of all possible products of matrices
Ai1 · · ·Ail with a fixed l ∈ N spans the vector space M2n(C).
The grading matrix Z is unique up to a sign, and the Wall
matrix u is given by u = ±Z .

Before moving on to the fundamental theorem of injective
fMPS, it is useful to introduce the canonical form of fMPS.
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Since {Ai}i is also ungraded irreducible, one can normalize
{Ai} to be the canonical form [30]∑

i

AiAi† = 12n. (112)

Theorem 3. (Fundamental theorem for fMPS with Wall
invariant (+))

Let {Ai}i and {Ãi}i be injective fMPSs with the Wall in-
variant (+) in the canonical form (112). They give the same
physical state in APBC, in other words, {Ai}i ∼ {Ãi}i holds if
and only if there exist a unitary matrix V ∈ U (2n) and a U (1)
phase eiβ ∈ U (1) obeying that

Ãi = eiβV †AiV. (113)

The unitary matrix V is unique up to U (1) phase, and eiβ is
unique.

Furthermore, if we take the Wall matrices for {Ai}i and {Ãi}i
to be u and ũ, respectively, they are connected by

ũ = ηV †uV (114)

with η ∈ {±1} a sign.
This theorem holds even if the assumption {Ai}i ∼ {Ãi}i is

changed to {Ai}i ∼PBC {Ãi}i.
The former part is the same as the fundamental theorem

of injective MPS in Theorem 2, since {Ai}i and {Ãi}i are also
ungraded injective. It is easy to show Eq. (114) as follows.
Substituting (113) into the relation (−1)|i|Ãi = ũÃũ, we have
Ãi = eiβ ũV †uAiuV ũ. The uniqueness of V and ũ2 = 12n gives
us (114). For a proof of PBC, see Appendix B.

We note that the sign η depends on the choice of signs of u
and ũ. Replacing the signs u and ũ with u 
→ μu and ũ 
→ μ̃ũ,
η changes to η 
→ ημμ̃. The sign η plays the central role in
the pump invariant. See Sec. V A.

Next, we will discuss the case of (−)-algebra.
Definition 8 (Injective fMPS with Wall invariant (−)). A

set of matrices {Ai}i ∈ M̃f
n is graded injective with the Wall

invariant (−) if there exists a unitary matrix u ∈ U (2n) such
that the following two conditions are fulfilled: (i) u is unitary
equivalent to σx ⊗ 1n. (ii) Let W ∈ U (2n) be a unitary matrix
that diagonalizes u as u =W (σx ⊗ 1n)W †. Then the matrices
Ai are written as

Ai =W
(
σ |i|x ⊗ Bi

)
W †, (115)

and both the even subalgebra {Bi1 · · ·Bil |∑l
k=1 |ik| ≡

0 (mod.2)} and the odd subalgebra {Bi1 · · ·Bil |∑l
k=1 |ik| ≡

1 (mod.2)} with a fixed l ∈ N span the vector space Mn(C).
The matrix u is unique up to a sign. Since the matrices

{Bi} is ungraded irreducible, one can normalize {Bi} to be the
canonical form

∑
i BiBi† = 1n, that is, we have the canonical

form (112) for {Ai}i.
Theorem 4. (Fundamental theorem for fMPS with Wall

invariant (−))
Let {Ai}i and {Ãi}i be injective fMPSs with the Wall in-

variant (−) in the canonical form (112). They give the same
physical state in APBC, in other words, {Ai}i ∼ {Ãi}i holds if
and only if there exist a unitary matrix V ∈ U (2n) and a U (1)
phase eiβ ∈ U (1) obeying that

Ãi = eiβV †AiV. (116)

The U (1) phase eiβ is unique. The unitary matrix V is unique
up to multiplications V 
→ eiθuVeiφũ, where eiθu and eiφũ are
any unitary matrices in the centers of the algebras generated
by {Ai}i and {Ãi}i, respectively.

Furthermore, if we take the Wall matrices for {Ai}i and {Ãi}i
to be u and ũ, respectively, they are connected by

ũ = ηV †uV (117)

with η ∈ {±1} a sign.
This theorem holds even if the assumption {Ai}i ∼ {Ãi}i is

changed to {Ai}i ∼PBC {Ãi}i.
We sketch the proof. Set Ai =W (σ |i|x ⊗ Bi )W † and Ãi =

W̃ (σ |i|x ⊗ B̃i )W̃ †. Correspondingly, the Wall matrices for {Ai}i
and {Ãi}i are u =W (σx ⊗ 1n)W † and ũ = W̃ (σx ⊗ 1n)W̃ †, re-
spectively. Then {Ai}i ∼ {Ãi}i ({Ai}i ∼PBC {Ãi}i) implies that
{σ |i|x ⊗ Bi}i ∼ {σ |i|x ⊗ B̃i}i ({σ |i|x ⊗ Bi}i ∼PBC {σ |i|x ⊗ B̃i}i). In
Appendix C we prove the following lemma.

Lemma 1. Let {σ |i| ⊗ Bi}i and {σ |i|x ⊗ B̃i}i be injective
fMPSs with the Wall invariant (−) in the canonical form
(112). If either {σ |i|x ⊗ Bi}i ∼ {σ |i|x ⊗ B̃i}i or {σ |i|x ⊗ Bi}i ∼PBC

{σ |i|x ⊗ B̃i}i holds true, then there exist a U (1) phase eiβ , a
unitary matrix v ∈ U (n), and a sign η ∈ {±1} such that

B̃i = eiβη|i|v†Biv. (118)

Moreover, the U (1) phase eiβ and the sign η are unique, and
the unitary matrix v is unique up to U (1) phases.

Setting V =W (σ
1−η

2
z ⊗ v)W̃ † yields the desired relations

(113) and (117). The matrix V is not unique. To see
this, suppose that a unitary matrix V ′ ∈ U (2n) also satis-
fies the relation (113) with the same U (1) phase eiβ . Then
we have the equality (σx ⊗ Bi )W †VV ′†W =W †VV ′†W (σx ⊗
Bi ). Since both the even and odd subalgebras generated
by {Bi}i produces the matrix algebra Mn(C), the matrix
W †VV ′†W can be written in the form W †VV ′†W = e−iθσx ⊗
1n with θ ∈ [0, 2π ]. Therefore, V ′ =WeiθσxW †V = eiθuV .
This ambiguity of V does not affect the relation (117). Using
(117), the ambiguity can also be written as eiθuV = Veiηθ ũ.

We note that the sign η depends on the choice of signs of u
and ũ. Replacing the signs u and ũ with u 
→ μu and ũ 
→ μ̃ũ,
η changes to η 
→ ημμ̃. The sign η plays the central role in
the pump invariant. See Sec. V B.

We would like to point out that these theorems naturally
include the fermion parity symmetry

Ai 
→ (−1)|i|Ai (119)

when we take V = Z , a grading matrix and eiβ = 1.
In the rest of this section, we give three examples of injec-

tive fMPSs.

5. Example 1: The Kitaev chain in the nontrivial phase

Let’s compute the MPS that represents the Kitaev chain
[18]. In the case of θ = 0, the expression that characterizes
the ground state of the Kitaev chain is Eq. (20), which can be
rewritten in terms of complex fermions as

(a ja j+1 + a†
j a j+1 − a ja

†
j+1 − a†

j a
†
j+1)|GS〉 = |GS〉. (120)

This is a local condition. Therefore, if we denote the basis of
the single particle Hilbert space by |0〉 and |1〉, and expand the
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state with respect to site j and j + 1 as

x1|0〉|0〉 + x2|0〉|1〉 + x3|1〉|0〉 + x4|1〉|1〉, (121)

the conditions on the coefficients are

x1 = −x4, x2 = x3. (122)

Therefore, an fMPS of the Kitaev chain is given by

A0 =
(

1
1

)
, A1 =

( −1
1

)
. (123)

In fact, we can verify that A0A0 = −A1A1 and A0A1 = A1A0

hold at the level of matrices, so we can see that the fMPS
constructed from them satisfies the condition (122). The alge-
bra generated by these matrices is A � CA0 ⊕CA1 which is
Z/2Z-graded central simple with the Wall invariant (−). In
this case, the Wall matrix u is given by

u =
( −i

i

)
, (124)

up to a phase factor.
Since it will be used in a later analysis, we will examine

how the MPS changes with respect to the phase shift of the
gap function. The phase shift of the gap function � 
→ eiθ�

can be regarded as that of the complex fermion

a j 
→ ei θ
2 a j a†

j 
→ e−i θ
2 a†

j , (125)

so the conditions on coefficients are modified as

x1 = −e−iθ x4, x2 = x3. (126)

Therefore, for example, the MPS of the Kitaev chain for
general θ ∈ [0, 2π ] is given by

A0 =
(

1
1

)
, A1 = e

iθ
2

( −1
1

)
,

u =
( −i

i

)
. (127)

6. Example 2: A domain wall counting model

Let’s compute an fMPS matrices of a domain wall counting
model which is introduced in Sec. II C 1. By introducing the
Majorana fermion ci, the Hamiltonian Eq. (40) recast into

H (θ ) =
∑

j

−1+ cos(θ )

2
ic2 j−1c2 j − 1− cos(θ )

2
ic2 j−2c2 j+1

− i
sin(θ )

2
(c2 j−2c2 j − c2 j−1c2 j+1), (128)

for θ ∈ [0, 2π ]. This Hamiltonian can be obtained from the
Kitaev chain in the trivial phase by unitary transformation

H (θ ) =
∑

j

Uθ (−ic2 j−1c2 j )U
†
θ , (129)

with a unitary operator Uθ =
∏

j∈Z e−i θ
2

1+ic2 j c2 j+1
2 .

An fMPS of this Hamiltonian is given by

A0(θ ) =
(

1 ei θ
2

ei θ
2 1

)
, A1(θ ) =

(
1 ei θ

2

−ei θ
2 −1

)
. (130)

In order to obtain this matrices, we recall that the ground state
in the open chain of this model was a state with a phase factor
on the domain wall:∑

σ2,...,σL−1

e
iθ
2 NDW (1+ σ1a†

1)(1+ σ2a†
2) · · · (1+ σLa†

L )|0〉,

σ j ∈ {±1}, (131)

where NDW =
∑

j
1−σ jσ j+1

2 . This is a variant of the cluster
model, and fMPS matrices for the state (131) is given by

Bθ,+ =
(

1 ei θ
2

0 0

)
, Bθ,− =

(
0 0

ei θ
2 1

)
, (132)

in the basis of |σ1 · · · σL〉 = (1+ σ1a†
1) · · · (1+ σLa†

L )|0〉.
When θ �= 0, the algebra generated by these matrices is A �
M2(C) which is Z/2Z-graded central simple with the Wall
invariant (+). In this case, the Wall matrix u is given by

u =
(

1
1

)
(133)

up to a sign.17 When θ = 0, the algebra A � C. This is a
central simple algebra, but the odd part is zero. In this case,
u which is not proportional to 1 does not exist, so we will take
1 as the boundary operator. Therefore the ground states with
antiperiodic boundary condition is∑

{σk}
tr(uBθ,σ1 · · ·Bθ,σL )|σ1, . . . , σL〉. (134)

Rewriting this into a basis of fermion occupation basis, we get∑
{σk}

tr(uBθ,σ1 · · ·Bθ,σL )|σ1, . . . , σL〉

=
∑
{σk}

tr(uBθ,+Bθ,σ2 · · ·Bθ,σL )|+, σ2, . . . , σL〉

+
∑
{σk}

tr(uBθ,−Bθ,σ2 · · ·Bθ,σL )|−, σ2, . . . , σL〉 (135)

=
∑
{σk}

tr(u(Bθ,+ + Bθ,−)Bθ,σ2 · · ·Bθ,σL )|0, σ2, . . . , σL〉

+
∑
{σk}

tr(u(Bθ,+ − Bθ,−)Bθ,σ2 · · ·Bθ,σL )|1, σ2, . . . , σL〉

(136)

=
∑
{σk ,i1}

tr(uAi1 (θ )Bθ,σ2 · · ·Bθ,σL )|i1, σ2, . . . , σL〉, (137)

where i1 = 0, 1 and

A0(θ ) = Bθ,+ + Bθ,− =
(

1 ei θ
2

ei θ
2 1

)
,

A1(θ ) = Bθ,+ − Bθ,− =
(

1 ei θ
2

−ei θ
2 −1

)
. (138)

17Since Z/2Z grading is given by whether the fermion parity is
even or odd, it gives the action of swapping + and − in the σ = ±
basis. This is confirmed by the fact that the MPS in the occupation
basis is given by A0(θ ) = Bθ,+ + Bθ,− and A1(θ ) = Bθ,+ − Bθ,−, as
we will see later.
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By applying this operation to all sites, finally we get the fMPS
representation with matrices

A◦(θ ) =
(

1 ei θ
2

ei θ
2 1

)
,

A•(θ ) =
(

1 ei θ
2

−ei θ
2 −1

)
, u =

(
1

1

)
. (139)

If we diagonalize u, we obtain

A0(θ ) =
(

1+ ei θ
2

1− ei θ
2

)
,

A1(θ ) =
(

1− ei θ
2

1+ ei θ
2

)
, u =

(
1
−1

)
. (140)

7. Example 3: The Gu-Wen model

Let’s compute an fMPS of the Gu-Wen model [46,47] as
an example of graded irreducible fMPS. The Hamiltonian of
this model is defined by

HGu-Wen = −
∑

j

(a†
j − a j )τ

x
j+ 1

2
(a j+1 + a†

j+1)

−
∑

j

τ z
j− 1

2
(1− 2a†

j a j )τ
z
j+ 1

2
, (141)

where τ x, τ y, and τ z are the Pauli matrices. This model has
a Z/2Z× Z/2Z symmetry generated by Uspin =

∏
j∈Z+ 1

2
τ x

and Ufermion =
∏

j∈Z(1− 2a†
j a j ). This model can be obtained

by applying the Jordan-Wigner transformation to one of the
Z/2Z of Z/2Z× Z/2Z symmetry of the cluster model de-
scribed in Sec. III A.

First, we investigate the ground state of the Gu-Wen model.
Any terms of the Hamiltonian commutes with each others, and
the eigenvalue is ±1. We call the first term in Eq. (141) as the
fluctuation term and the second term as the configuration term.
The configuration term is minimized by placing fermions only
at domain walls of spins:

· · · ↓ • ↑ ◦ ↑ ◦ ↑ • ↓ ◦ ↓ • ↑ · · · , (142)

where ◦ (resp. •) denote the state without (resp. with) fermion
and ↑ (resp. ↓) denote the state whose eigenvalue of τ z is 1
(resp. −1). We call such a state the decorated domain wall
(DDW) state [48].

The fluctuation term, on the other hand, map a DDW state
to another DDW state by the following processes:

· · · ↑ • ↓ • ↑ · · · � · · · ↑ ◦ ↑ ◦ ↑ · · · , (143)

· · · ↑ ◦ ↑ • ↓ · · · � · · · ↑ • ↓ ◦ ↓ · · · . (144)

Because no additional weight is given to the state by the
fluctuation term, the ground state is given by the summation
of all DDW states with the equal weights. The ground state is
unique and gapped, so it is an SRE state,

The MPS of this ground state is given as follows: Corre-
sponding to the ↑, ↓, ◦, and • configurations in Eq. (142),
we introduce A↑, A↑, B◦, and B•. Here the Z/2Z grading is
even for A↑, A↓, B◦ and odd for B•. Since the ground state
is invariant under the maps in Eqs. (143) and (144), these
matrices obey

↑ • ↓ • ↑=↑ ◦ ↑ ◦ ↑←→ A↑B•A↓B•A↑ = A↑B◦A↑B◦A↑

(145)

↑ ◦ ↑ • ↓=↑ • ↓ ◦ ↓←→ A↑B◦A↑B•A↓ = A↑B•A↓B◦A↓

(146)

and all other products are zero. In the standard basis of the
entanglement spaces, these matrices are written as

A↑ =
(

a↑

b↑

)
, A↓ =

(
a↓

b↓

)
,

B◦ =
(

a◦
b◦

)
, B• =

(
a•

b•

)
, (147)

so the above conditions read

b↓ = a↑ = 0, a◦a◦a↑ = ±b•b↓a•, (148)

b↓b◦ = ±a◦a↑, b◦b◦b↓ = ±a•a↑b•. (149)

When the matrix size is 2, we can easily solve the above
relation as

A↑ =
(

1
0

)
, A↓ =

(
0

1

)
,

B◦ =
(

1
1

)
, B• =

(
1

1

)
. (150)

The algebra generated by these matrices is A � M2(C),
which is central simple with the Wall invariant (+). In this
case, the Wall matrix u is given by

u =
(

1
−1

)
(151)

up to a sign.

IV. COMPUTATION OF THE SPACE OF SRE
STATES USING FMPS

In this section we compute the topology of the space of
injective fMPSs for a few cases. Our strategy is as follows.
First, let M̃inj

n,N be the set of N 2n× 2n matrices {Ai}Ni=1 such
that they are graded injective in the canonical form:

M̃inj
n,N =

{{Ai}Ni=1 ∈ M̃f
n

∣∣{Ai}Ni=1 is injective fMPS and in the canonical form
}
. (152)

For a fermionic system with NF flavors, N = 2NF . Let A be
the graded algebra generated by the set of matrices {Ai}Ni=1.
By Wall’s structure theorem (Appendix A 2, Theorem 8), a

Z/2Z-graded central simple algebra is isomorphic to either
M2n(C) [called (+)-type] or Mn(C)⊕Mn(C) [called (−)-
type], which physically correspond to the trivial and nontrivial

165115-16



GENERALIZED THOULESS PUMPS IN … PHYSICAL REVIEW B 106, 165115 (2022)

fermionic SPT phases, respectively [18,45]. Thus M̃inj
n,N con-

sists of two connected components

M̃inj
n,N = M̃triv.

n,N � M̃ non-triv.
n,N , (153)

defined as

M̃triv.
n,N =

{{Ai}Ni=1 ∈ M̃inj
n,N |A := Span({Ai}) � M2n(C)

}
(154)

and

M̃ non-triv.
n,N = {{Ai}Ni=1 ∈ M̃inj

n,N |A = Span({Ai})
� Mn(C)⊕Mn(C)

}
. (155)

As we saw in Sec. III B 4, injective fMPS has gauge redun-
dancy. Thus it is necessary to divide M̃inj

n,N by the gauge
redundancy, and then we can obtain an approximate space
Mn,N of the space of SRE states M:

Mn,N � M̃inj
n,N

/ ∼ . (156)

Finally, by taking n and N large enough, one would expect
to obtain the space of SRE states M. Although determining
such a space is in general difficult, it is possible in the non-
trivial phase to perform a specific analysis under appropriate
assumptions, as we will see later. Thus, in the following sec-
tions, we determine the space of injective fMPSs with the Wall
invariant (−) for several cases with small matrix sizes n and
compute the fundamental group of it. A more general charac-
terization of the pump in the trivial and nontrivial phases is
given in Sec. V.

A. Gauge-fixing condition

We compute the space Mnon-triv.
n,N = M̃non-triv.

n,N / ∼ for a few
cases with small matrix sizes. By taking the unitary matrix
V ∈ U (2n) in Theorem 4 to be W itself, the matrices Ai can
be in the form

Ai = σ |i|x ⊗ Bi. (157)

Under this gauge-fixing condition, the Wall matrix is given by

u = ±σx ⊗ 1n, (158)

and from Lemma 1, the residual gauge transformation is given
by

Bi ∼ eiβη|i|v†Biv, (159)

where eiβ , v, and η are U (1) phase, U (n) matrix, and a
sign, respectively. We note that the gauge transformation Bi ∼
(−1)|i|Bi is nothing but the fermion parity symmetry. The
condition for the matrices {σ |i|x ⊗ Bi}Ni=1 to be in the canonical
form (112) is

N∑
i=1

BiBi† = 1n. (160)

B. For 2 × 2 matrices and 1-flavor, n = 1, NF = 1

Consider the above problem for 2× 2 matrices and 1-
flavor (i.e., n = 1, NF = 1). Under the gauge-fixing condition

FIG. 4. (a) The space of parameters of fMPS with the Wall in-
variant (−) when the matrix size is 2 and the number of flavors is 1.
Since the north and south poles belong to the trivial phase, the space
is homotopic to the space of S2 with two points removed. There still
remains the gauge transformation of the fermion parity symmetry
Ai 
→ (−1)|i|Ai, which leads to the identification a1 ∼ −a1. (b) The
space of injective fMPSs when the matrix size is 2 and the number
of flavors is 1. By the gauge transformation of the fermion parity
symmetry Ai 
→ (−1)|i|Ai, the antipodal points at each circle that
appears when the sphere in the left figure is cut by a constant latitude
plane are identified.

(157), the matrices A0, A1 are given by

A0 = 1√
|a0|2 + |a1|2

(
a0

a0

)
,

A1 = 1√
|a0|2 + |a1|2

(
a1

a1

)
, a0, a1 ∈ C. (161)

The graded injectivity requires a0 �= 0 and a1 �= 0. Using the
residual gauge transformation by eiβ ∈ U (1), a0 can be a real
positive number a0 > 0. Furthermore, since A0 and A1 depend
only on the ratios a0/|a0|, a1/|a0|, a0 can be set as a0 = 1. We
considered the case where both a0 and a1 are nonzero because,
in fact, the fMPSs with a0 = 0 or a1 = 0 are

⊗ |0〉 and
⊗ |1〉

respectively, which belong to the trivial phase. As a result, the
parameters of the fMPS are in C ∪ {∞} ∼= S2. Thus, at this
stage, the space M̃non-trivial

n=1,N=2 is recast as the two-dimensional
sphere minus the north and south poles S2\2pts [Fig. 4(a)].
The remaining gauge transformation is the fermion parity
symmetry Ai 
→ (−1)|i|Ai, which leads to the identification
a1 ∼ −a1. This transformation acts on the space S2\2pts by
swapping the antipodal points at each circle that appears when
the sphere is cut by a constant latitude plane, which results in
the topologically same space S2\2pts. Now we have identified
all gauge redundancy, and the space of injective fMPSs in the
nontrivial phase Mnon-trivial

n=1,N=2 is homotopic to a sphere with two
points removed S2\2pts [Fig. 4(b)].

Let’s compute the classification of the Thouless pump in
nontrivial phases. Mnontrivial

n=1,N=2 := S2\2pts corresponds to the
nontrivial phase and its fundamental group is isomorphic
to Z:

π1
(
Mnon-trivial

n=1,N=2

) � Z. (162)

This result suggests the existence of a nontrivial Thouless
pump classified by Z. It can be seen that the 2π rotation of
the gap function of the Kitaev chain defines a path |a1| = 1
in Mnontrivial

n=1,N=2 (see Sec. III B 5), which defines the generator of
the fundamental group above. In the case of a free fermionic
system, such a path of the Kitaev chain also generates a
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nontrivial Thouless pump [15] and, in particular, when the
flavor number is 1, it is known that pumps are classified by
Z generated by the loop. Therefore, this result is consistent
with [15]. We also calculated the Berry phase of the ground
state for the nontrivial path in this space, and confirmed that
the ratio of the values calculated under the periodic boundary
condition and the antiperiodic boundary condition converges
to −1 in the limit of increasing the size of the system. See
Appendix F for details of the calculation.

C. For 2 × 2 matrices and generic flavors, n = 1, NF > 1

Keep the size of the matrix 2× 2 (i.e., n = 1) and firstly
consider the case of 2-flavors (i.e., NF = 2).18 We define

A00 =
(

a
a

)
, A11 =

(
b

b

)
,

A10 =
(

c
c

)
, A01 =

(
d

d

)
, (163)

with a, b, c, d ∈ C. The condition for the canonical form is

|a|2 + |b|2 + |c|2 + |d|2 = 1. (164)

The graded injectivity is met if both the conditions (a, b) �=
(0, 0) and (c, d ) �= (0, 0) are satisfied. Here we suppose that
a �= 0. Then, using the residual gauge transformation by
eiβ ∈ U (1), a0 can be a real positive number a0 > 0. Let us
parametrize (a, b, c, d ) by a real parameter t ∈ (0, 1), unit
2-sphere (n1, n2, n3) ∈ S2, and unit 3-sphere (n′1, n′2, n′3, n′4) ∈
S3 as in

(a, b) = t (n3, n1 + in2), (165)

(c, d ) =
√

1− t2(n′1 + in′2, n′3 + in′4). (166)

Here t = 0, 1 are excluded from the graded injectivity. Also,
a > 0 implies that (n1, n2, n3) runs only over the north
hemisphere, namely, a disk D2. Note that this map is home-
omorphic. The gauge transformation Bi ∼ (−1)|i|Bi leads to
the identification n′ ∼ −n′, that is, we have the real pro-
jective space RP3 = S3/(n′ ∼ −n′). Therefore, Mnon-triv

n=1,N=4 =
M̃non-triv

n=1,N=4/ ∼, the space of injective fMPSs with n = 1 and
NF = 2 divided by the gauge transformation, is found as

Mnon-trivial
n=1,N=4

∼= (0, 1)× D2 ×RP3, (167)

and this is homotopy equivalent to RP3. It is easy to generalize
the discussion above to generic flavor number NF > 1. The
space Mnontrivial

n=1,N=2NF >2 is homotopically equivalent to the real

projective space RP2NF−1. We get the first homotopy group19

π1
(
Mnontrivial

n=1,N=2NF >2

) � Z/2Z. (168)

This result suggests the existence of a nontrivial Thouless
pump classified by Z/2Z. In the case of the free Hamilto-
nian, a path that turns the phase of the gap function of the

18An example of a Hamiltonian corresponding to these fMPSs is
given in Sec. VI B 2.

19We will show in Sec. VI B 2 that a loop wrapped twice can be con-
tinuously transformed into a loop wrapped zero times, specifically in
terms of Hamiltonians.

Kitaev chain (see Sec. III B 5) by 2π generates a nontrivial
Thouless pump, and, in particular, when the number of flavors
NF is 2 or more, it is known that pumps are classified by
Z/2Z [15]. It can be seen that the the 2π rotation of the
gap function of the 2-flavor Kitaev chain model defines a path
in θ ∈ [0, 2π ] with a = 1/

√
2, b = 0, c = eiθ/2/

√
2, d = 0 in

Mnontrivial
n=1,N=4 (see Sec. VI), which defines the generator of the

fundamental group above. Therefore, this result is reasonable.

D. For 4 × 4 matrices and 1-flavor, n = 2, NF = 1

Consider the above problem for n = 2, NF = 1. It is diffi-
cult to analyze the case of 4× 4 matrices in general. So we
consider the following special case:

A0 =
(

12

12

)
, A1 =

(
0 Ã1

Ã1 0

)
, (169)

for arbitrary 2× 2 matrix Ã1. Since A0 is the unit matrix, the
graded injectivity is the same as that the algebra A generated
by the set of matrices {A0, A1} is graded central simple. In this
case,the following theorem holds:

Theorem 5.
Let A be the algebra generated by A0 and A1. When A0

equals to the unit matrix, the following conditions are equiva-
lent:

(A) A is a Z/2Z-graded central simple algebra
(B) (i) det(Ã1) �= 0 and tr(Ã1) = 0 or (ii) det(Ã1) �= 0 and

tr(Ã1)2 − 4tr(Ã1) = 0
where Ã1 is a 2× 2 matrix defined as the off-diagonal block
element of A1.

The proof of this theorem is given in Appendix D. Using
this theorem, we can determine the structure of a part of the
space of MPS as follows.

Theorem 6.
Consider the same situation as in Theorem 5, and let

M̃n�2,nontrivial
N=2 |A0=14

be the space of MPS in this case. Then
the topology of M̃n�2,nontrivial

N=2 |A0=14
is

M̃n�2,nontrivial
N=2 |A0=14

∼ R>0 ×
S1 × {S2 ∪ Z/2Z}

Z/2Zdiag
⊂ R>0 ×U (2), (170)

where Z/2Z is subgroup±12 in SU(2) and Z/2Zdiag is center
of U (2). In particular,

(i) R>0 ×
S1 × Z/2Z

Z/2Zdiag
⊂ M̃n�2,nontrivial

N=2 |A0=14
(171)

is parameterized by

A0 = 1√
1+ λ2

(
12

12

)
,

A1 = λeiθ

√
1+ λ2

⎛
⎜⎝

±1
±1

±1
±1

⎞
⎟⎠ (172)

for λ ∈ R>0, θ ∈ [0, 2π ), and

(ii) R>0 ×
S1 × S2

Z/2Zdiag
⊂ M̃n�2,nontrivial

N=2 |A0=14
(173)
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is parameterized by

A0 = 1√
1+ λ2

(
12

12

)
, A1 = λeiθ

√
1+ λ2

(
0 Ã1

Ã1

)
,

Ã1 =
(

i cos (χ ) −e−iϕ sin (χ )
eiϕ sin (χ ) −i cos (χ )

)
(174)

for λ ∈ R>0, θ ∈ [0, π ), ϕ ∈ [0, 2π ), χ ∈ [0, π ].
The proof of this theorem is given in Appendix E.
First, consider case (i). In this case, the matrix A1 is

A1 = λeiθ

⎛
⎜⎝

1
1

1
1

⎞
⎟⎠ = λeiθ

(
1

1

)
⊗ 12, (175)

so this can be regarded as an embedding of the case n = 1.
This is natural because a 4× 4 matrix can represent a 2× 2
matrix, and this component is ignored in the following. There-
fore, the space of MPS in the case of n = 2 is essentially

M̃n=2,nontrivial
N=2 |A0=14

∼ R>0 ×
S1 × S2

Z/2Zdiag
. (176)

Next, we consider the redundancy of the space
M̃n=2,nontrivial

N=2 |A0=14
. As in the case of n = 1, the action

of fermion parity symmetry is

AI 
→ (−1)|I|AI , (177)

and states are invariant under this transformation. Therefore,
by dividing M̃n=2

N=2|A0=14
by this transformation, we obtain

M̃n=2,nontrivial
N=2 |A0=14

/
Z/2Zdiag

∼ R>0 ×
S1 × S2

Z/2Zdiag

/
Z/2Z f .p.

∼ R>0 ×RP1 ×RP2. (178)

Note that we used the following relation in the last equation:

Z/2Zf.p.

(eiθ ,U ) ∼ (−eiθ ,U )
Z/2Zdiag ∼ ∼ Z/2Zdiag

(−eiθ ,−U ) ∼ (eiθ ,−U )
Z/2Zf.p.

.

(179)

Here the RP2 coordinates are redundancies that can be elimi-
nated by unitary transformations and do not change the fMPS.
In fact, the fMPS is given by

|{Ai(θ ), u(θ )}〉 =
∑
{ik}

tr(uAi1 · · ·AiL )|i1, ...iL〉

=
∑
{ik},odd

(λeiθ )
∑

k |ik ||i1, ...iL〉, (180)

so the fMPS does not depend on χ and ϕ, which are coor-
dinates of RP2. Therefore, the topology of the space of SRE
states is

Mn=2,nontrivial
N=2 |A0=14

∼ R>0 ×RP1. (181)

This has the same structure in the case of n = 1, N = 2, and
the classification of the Thouless pump in the nontrivial phase
is given by Z.

It is difficult to do the same computation for the case of
NF � 2. We can, however, partially compute the topology of
the space, and confirm that the Z classification is reduced to
Z/2, as in the case of n = 1.

V. INVARIANTS

In this section, we define the topological invariants that
detect the pump in trivial (in Sec. V A) and nontrivial (in
Sec. V B) phases. Each invariant is defined heuristically based
on the free Hamiltonian model introduced in Sec. II B and
Sec. II C. Applications of invariants to interacting systems are
given in Sec. VI.

A. Topological invariant of pump in the trivial phase

The pump invariant in the trivial phase is the same as the
pump invariant for bosonic MPS with Z2 onsite symmetry
constructed in Sec. III A 3.

Let {Ai(θ )}i for θ ∈ [0, 2π ] be a family of injective fMPS
with the Wall invariant (+) in the canonical form (112).
Suppose that the physical state is periodic in the sense that
{Ai(2π )}i ∼ {Ai(0)}i. Let u(θ ) for θ ∈ [0, 2π ] be a continu-
ous family of grading (Wall) matrices for {Ai(θ )}i. By using
Theorem 3, there exists a U (1) phase eiβ , a unitary matrix V ,
and a sign η

(+)
top ∈ {±1} such that

Ai(2π ) = eiβV †Ai(0)V, (182)

u(2π ) = η
(+)
top V †u(0)V. (183)

Since u(θ ) is continuous for θ ∈ [0, 2π ], the gauge transfor-
mation u(θ ) 
→ μu(θ ) with μ ∈ {±1} does not change the
sign η

(+)
top , meaning that the sign η

(+)
top is gauge invariant. Thus,

the sign η
(+)
top defined in (183) serves as the topological invari-

ant of pump.
Let us compute the pump invariant η

(+)
top for the domain wall

counting model (128). As we saw in Sec. III B 6, we have a
gauge such that the fMPS is given by

A◦(θ ) = 1

2

(
1+ ei θ

2

1− ei θ
2

)
,

A•(θ ) = 1

2

(
1− ei θ

2

1+ ei θ
2

)
, u(θ ) =

(
1
−1

)
,

(184)

for each θ .20 We find that Ai(θ + 2π ) = σxAi(θ )σx. There-
fore, the pump invariant is computed as η

(+)
top = sgn[u(θ +

2π )σxu(θ )σx] = −1, as expected.
Relaxing the condition u(θ )2 = 1 for the Wall matrix u(θ ),

we obtain an alternative expression of the pump invariant. As
discussed in Sec. III A 3, there always exists a 2π -periodic

20This fMPS is not injective at θ = 0. However, since it can be
made injective by an infinitesimal perturbation, the pump invariant η

is well defined.
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global gauge for {Ai(θ )}, which we denote them by {Ǎi(θ )},
such that Ǎi(2π ) = Ǎi(0) for all is. In the global gauge, the
grading matrix u(θ ) is also 2π periodic up to a U (1) phase.
Namely, for the global gauge, there is a 2π -periodic unitary
matrix ǔ(θ ) such that

(−1)|i|Ǎi(θ ) = ǔ(θ )†Ǎi(θ )ǔ(θ ), (185)

and ǔ(θ )2 ∝ 1 holds true. We have an integer-valued quantity
n(+)

top as the U (1) phase winding of ǔ(θ )2,

n(+)
top =

1

2π i

∮
d log tr[ǔ(θ )2] ∈ Z. (186)

The 2π periodicity of ǔ(θ ), however, remains satisfied even
after U (1) phase replacement ǔ(θ ) 
→ ǔ(θ )α(θ ) with a U (1)
valued periodic function α(θ ). Under this replacement, the
winding number n(+)

top changes as n(+)
top 
→ n(+)

top + 2m where

m = ∫
d log α ∈ Z. Therefore, the winding number n(+)

top is

defined up to 2Z and n(+)
top takes a value in Z/2Z. It can be

shown that the two pump invariants η
(+)
top and n(+)

top are related

to each other by η
(+)
top = (−1)n(+)

top .
For the domain wall counting model (128), with a gauge

transformation, a 2π -periodic fMPS {Ǎi(θ )}i and a 2π -
periodic Wall matrix ǔ(θ ) are given by

Ǎi(θ ) = ei σx

2
θ
2 Ai(θ )e−i σx

2
θ
2 , ǔ(θ ) = ei θ

2 ei σx

2
θ
2 Z (θ )e−i σx

2
θ
2 .

(187)

Then ǔ(θ )2 = eiθ 12 and the winding number is found to be
n(+)

top = 1.

B. Topological invariant of pump in the nontrivial phase

The construction of the pump invariant in the nontrivial
phase is parallel to that of the trivial phase.

Let {Ai(θ )}i for θ ∈ [0, 2π ] be a family of injective fMPS
with the Wall invariant (−) in the canonical form (112), and
we assume the physical state is periodic {Ai(2π )}i ∼ {Ai(0)}i.
Let u(θ ) with the condition u(θ )2 = 1 for θ ∈ [0, 2π ] be a
continuous family of the Wall matrices for {Ai(θ )}i. By using
Theorem 4, there exists a U (1) phase eiβ , a unitary matrix V ,
and a sign η

(−)
top ∈ {±1} such that

Ai(2π ) = eiβV †Ai(0)V, (188)

u(2π ) = η
(−)
top V †u(0)V. (189)

As with the trivial phase, the sign η
(−)
top is gauge invariant and

serves as the topological invariant of pump.
Let us compute the pump invariant η

(−)
top for a free Kitaev

chain model (23). As we saw in Sec. III B 5, the 2× 2 fMPS
of this Hamiltonian is given by

A0(θ ) = 1√
2

(
1

1

)
, A1(θ ) = e

iθ
2√
2

( −1
1

)
,

u(θ ) =
( −i

i

)
(190)

for each θ . We have Ai(2π ) = σzAi(0)σz, and thus, u(2π ) =
−σzu(0)σz. The pump invariant is found as η

(−)
top = −1.

In the same way as for the trivial phase, relaxing the
condition u(θ )2 = 1 for the Wall matrix u(θ ) gives us an
alternative expression of the pump invariant. Suppose that we
have a 2π -periodic global gauge of fMPS {Ǎi(θ )} satisfying
Ǎi(2π ) = Ǎi(0) for all i. In the global gauge, the Wall matrix
ǔ(θ ) without any constraint on the U (1) phase can also be
2π -periodic

ǔ(2π ) = ǔ(0). (191)

We have an integer-valued quantity n(−)
top as the U (1) phase

winding of ǔ(θ )2 as in

n(−)
top =

1

2π i

∮
d log tr[ǔ(θ )2] ∈ Z. (192)

The replacement ǔ(θ ) 
→ ǔ(θ )α(θ ) with a U (1)-valued pe-
riodic function α(θ ) yields n(−)

top 
→ n(−)
top + 2m with m =∫

d log α ∈ Z, implying that n(−)
top takes a value in Z/2Z. It

is easy to see the two pump invariants η
(−)
top and n are related

to each other by η
(−)
top = (−1)n(−)

top .
For the Kitaev chain model (23), a 2π -periodic fMPS

{Ǎi(θ )}i and a 2π -periodic Wall matrix ǔ(θ ) are given by

Ǎi(θ ) =
(

1
ei θ

2

)
Ai(θ )

(
1

e−i θ
2

)
,

ǔ(θ ) = ei θ
2

(
1

ei θ
2

)
u(θ )

(
1

e−i θ
2

)
, (193)

where we put ei θ
2 on the Wall matrix u so that ǔ(θ ) is 2π

periodic. Then ǔ(θ )2 = eiθ 12 and the winding number of the
proportional constant is a nontrivial value

n(−)
top =

1

2π i

∫
log tr(ũ(θ )2) = 1. (194)

C. Geometric interpretation

We have defined invariants heuristically in the previous
sections. From a geometric point of view, this topological
invariant can be regarded as a monodromy. First, let us explain
this interpretation.

The generalized Thouless pump is given by a loop γ =
{|Ai(θ )〉}0∼2π in the set of SRE states M. When the state goes
around the loop γ , it returns to the original one, but the matrix
representation of the MPS can only return to its original one
up to a unitary,

Ai(θ = 2π ) = eiβVAi(θ = 0)V †, (195)

for some V and eiβ of the form in Theorem 3 or 4.
The space of SRE states M can be constructed by dividing

the space of MPS M̃ by redundancy. Let A(θ ) be the algebra
generated by {Ai(θ )} and AutZ/2Z(A) be the Z/2Z-grading-
preserving automorphism group of fMPS, which is generated
by a unitary matrices of Theorem 3 or 4,

AutZ/2Z(A)

= {V ∈ PU(2n)|uV = Vu} ∪ {V ∈ PU(2n)|uV = −Vu},
(196)
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and for both (+) and (−) cases. We call an element of the first
component of AutZ/2Z(A) an even unitary, and an element
of the second component an odd unitary for both (+) and
(−) cases. Let s : AutZ/2Z(A)→ Z/2Z be the function that
measures whether it is even unitary or odd unitary. s is group
homomorphism.

Then M̃ is the principal AutZ/2Z(A)-bundle over M,

AutZ/2Z(A)→ M̃→M, (197)

and {Ãi(θ )}0∼2π gives the lift γ̃ of γ in M̃. In particular,
as a general theory of fiber bundles, it is known that the
fundamental group of the base space acts on the fiber, that
is, there exists a group homomorphism

m : π1(M)→ AutZ/2Z(A). (198)

As we saw in Sec. V A and Sec. V B, if the topological in-
variant ntop. ≡ 0, then MPS matrices are glued with an even
unitary matrix and if ntop. ≡ 1, then MPS matrices are glued
with an odd unitary matrix. This means that s ◦ m(γ ) coincide
with ntop.. In other words, ntop. is an invariant that measures
the Z/2Z monodromy for γ .

Such quantities are mathematically described as character-
istic classes of the Z/2Z-graded central simple algebra bundle
over a parameter space X = S1 [49].21 Here a Z/2Z-graded
central simple algebra bundle over X is a bundle over X whose
typical fiber is a Z/2Z-graded central simple algebra. In the
case of X = S1, such bundles are classified by characteristic
class u1(A) defined in [45]. When going around the circle
X = S1 from θ = 0 to 2π , u1(A) is defined as 1 if the fibers
are glued together by an even unitary matrix, and −1 if they
are glued together by an odd unitary matrix. Therefore, our
topological invariant can be regarded as the characteristic
class of Z/2Z-graded central simple algebra bundle u1(A)
over S1.

Note that these are invariants for families of SRE states
but are not detectable in the higher dimensional Berry cur-
vature, which was recently proposed in [25,26]. In fact, for
(1+ 1)-dimensional systems, the higher Berry curvature give
an invariant for three-parameter families and is an invariant
for the free part of the integer coefficient cohomology, so the
torsion part cannot be detected as in this case.

D. Stacking

It is not a coincidence that the classification of pumps in
the trivial phase coincides with that of pumps in the nontriv-
ial phase. This is because by stacking a trivial pump in the
nontrivial phase, it is possible to go back and forth between
the pump in the trivial phase and the nontrivial phase. As an
example, consider the Kitaev chain with nontrivial pumps

H (θ ) = −
L∑

j=1

(a†
j+1a j + eiθ a j+1a j + H.c.). (199)

21We would like to thank Mayuko Yamashita for telling us about
Z/2Z-graded central simple algebra bundles and twists of K theory.

The MPS representation of this model is given by

A0(θ ) = 1√
2

(
1

1

)
, A1(θ ) = e

iθ
2√
2

( −1
1

)
,

u(θ ) =
( −i

i

)
. (200)

Now take the tensor product with the Kitaev chain without
parameter. The MPS representation of this model {Ai} is given
by replacing θ by 0 in Eq. (199). In terms of fMPS, it is shown
by Bultinck et al. [18] that this can be achieved by taking
the graded tensor product of the fMPS matrices Ai j (θ ) :=
Ai⊗̂Aj (θ ), and its explicit formula is

A00(θ ) = 1

2

(
1

1

)
⊗
(

1
1

)
,

A11(θ ) = e
iθ
2

2

(
1

1

)
⊗
( −1

1

)
, (201)

A01(θ ) = e
iθ
2

2

( −1
1

)
⊗
(

1
−1

)
,

A10(θ ) = 1

2

( −1
1

)
⊗
(

1
1

)
. (202)

The algebraic structure of these matrices should be a Z/2-
graded central simple algebra with type(+), and in this case,
the algebra generated by these matrices is isomorphic to
M2(C). In fact, by applying a gauge transformation with

1

2

⎛
⎜⎝

0 −i i 0
0 1 1 0
i 0 0 −i
1 0 0 1

⎞
⎟⎠, (203)

the above MPS matrices become

A00(θ ) = 1

2
12 ⊕ 12, A11(θ ) = e

iθ
2

2
iσz ⊕ iσz, (204)

A01(θ ) = e
iθ
2

2
iσy ⊕−iσy, A10(θ ) = 1

2
σx ⊕−σx, (205)

and this is essentially equivalent to

A00(θ ) = 1

2
12, A11(θ ) = e

iθ
2

2
iσz, A01(θ ) = e

iθ
2

2
iσy,

A10(θ ) = 1

2
σx. (206)

The topological invariant of this family is ntop. = 1.
Assuming that pumps can be classified by a general-

ized cohomology, it can also be explained mathematically.
The classification of one-parameter families is given by
(I�spin )3(S1). By using the reduced cohomology ˜I�spin, it
split into

(I�spin )3(S1) � ( ˜I�spin )3(S1)⊕ (I�spin )3(pt.), (207)

� ( ˜I�spin )3(S1)⊕ Z/2. (208)

The choice of whether to consider pumps in the trivial or non-
trivial phase corresponds to whether the second component is
taken to be 0 or 1, respectively. Therefore, it is expected that
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the pumps in either phase will be classified in the same group
( ˜I�spin )3(S1) � Z/2. In the above example, the Kitaev chian
with nontrivial pump is the element (1,1) on the right-hand
side, and the Kitaev chian with trivial pump corresponds to
the element (0,1). The above computation implies that (1,0)
can be constructed by adding (0,1) to (1,1).

VI. EXAMPLES OF THOULESS PUMP

In this section we will calculate the invariants of pump
formulated in the previous section for a concrete system.

First, as an example of pumps in the trivial phase, we
implement the Kitaev’s canonical pump construction for the
fermionic case and confirm the existence of the nontrivial
pump (in Sec. VI A). We also show that a fermion parity
pump can be obtained in the Gu-Wen model by rotating
bosonic spins and give a physical interpretation of the pump
(in Sec. VI A 2).

Next, as an example of pumps in the nontrivial phase, we
consider a loop that rotates the phase of the gap function of
the Kitaev chain, and construct the corresponding families of
fMPSs and verify the existence of the nontrivial pump (in
Sec. III B 5). We also compute the fMPS of the multiflavor
Kitaev chain and give the homotopy of the Hamiltonian that
transforms the model with winding number 1 into the model
with winding number −1 (in Sec. VI B 2). This gives us a
concrete confirmation that the classification of the pump in
this model is given by Z/2Z.

A. Examples of the Thouless pump in the trivial phase

1. Kitaev’s canonical pump

As an example of the calculation of the pump in the trivial
phase, we derive the fMPS describing the Kitaev pump:

|χ〉 |0〉 |0〉 |0〉 · · · |0〉 |0〉 |0〉 |χ̄〉

|χ〉 |χ̄〉 |χ〉 |χ̄〉 · · · |χ〉 |χ̄〉 |χ〉 |χ̄〉

|0〉 |0〉 |0〉 |0〉 · · · |0〉 |0〉 |0〉 |0〉
Let’s consider the BdG Hamiltonian

hmat(θ ) = cos(θ )τz − sin(θ )τxσy, (209)

where τ acts on Nambu space and σ acts on flavor space, and
total Hamiltonian is defined by

H (θ ) =
∑

j

h j (θ ), (210)

where

h j (θ ) = (
ai†

j , ai
j

)
hmat(θ )

(
ai

j

ai†
j

)
, (211)

d and i =↑,↓, and we regard ↑ and ↓ as odd site and even
site, respectively. The ground state of the local Hamiltonian

h j (θ ) is

(
cos

(
θ

2

)
+ i sin

(
θ

2

)
a↑†

j a↓†
j

)
|00〉 j, (212)

where |00〉 j is vacuum state at site j, defined by a↑j a↓j |00〉 j =
0. Therefore, the variation of θ from 0 to 2π gives the vari-
ation of ground state from |00〉 j to |11〉 j := a↑†

j a↓†
j |00〉 j and

regarding ↑ and ↓ as two sites, this is the half of the Kitaev
pump from to in the case of |χ〉 = |1〉. For the remaining half
of the process, we perform the same transformation for one
shifted site.

It is easy to compute the fMPS in each process and there is
a 2× 2 representation labeled by i, j ∈ {0, 1}

A00 = cos

(
θ

2

)
, A11 = i sin

(
θ

2

)
, A01 = 0, A10 = 0,

(213)

for θ ∈ [0, π ] and

A00 =
(

cos
(

θ
2

)
0

)
, A11 =

(
0

i sin
(

θ
2

)),

A01 =
( √

cos
(

θ
2

)
sin

(
θ
2

)
0

)
,

A10 =
(

0√
cos

(
θ
2

)
sin

(
θ
2

)
)

, (214)

for θ = [π, 2π ]. For θ ∈ [0, π ], this MPS is already in the
canonical form. To get MPSs for θ ∈ (π, 2π ) to be in the
canonical form, we only need to find a positive and invertible
eigenmatrix of the CP map E (X ) :=∑

i AiXAi† [30]. In fact, if
we find a positive and invertible matrix X such that E (X ) = X ,
then X−

1
2 AiX−

1
2 is in the canonical form. In particular, the

existence of such a matrix is always guaranteed when the MPS
is central simple as ungraded algebra [30,50].22 In the case of

Eq. (214), we can easily check that X = (
cos( θ

2 )
sin( θ

2 )
) is a

positive and invertible eigenmatrix of the CP map. Therefore,
the canonical form of Eq. (214) is given by

A00 =
(

cos
(

θ
2

)
0

)
, A11 =

(
0

i sin
(

θ
2

)),

A01 =
(

sin
(

θ
2

)
0

)
, A10 =

(
0

cos
(

θ
2

) )
. (215)

For any θ ∈ [0, 2π ], however, they are Z/2Z-graded cen-
tral simple with the Wall invariant (+), in order to connect
these matrices continuously, we embed the matrices at θ ∈

22The existence of a positive eigenmatrix X of the CP map is
guaranteed in Ref. [50]. In the proof of Theorem 4 in Ref. [30] it
is shown that {Ai} is reducible if X is noninvertible. Therefore, if {Ai}
is central simple as ungraded algebra, X is invertible.

165115-22



GENERALIZED THOULESS PUMPS IN … PHYSICAL REVIEW B 106, 165115 (2022)

[0, π ] in a 2× 2 matrix as follows:

A00 =
(

0
cos

(
θ
2

)), A11 =
(

0
i sin

(
θ
2

)),

A01 =
(

sin
(

θ
2

)
0

)
, A10 =

(
cos

(
θ
2

)
0

)
, (216)

where we embed it in the (2,2) component so that it is contin-
uous at θ = π . Then the Wall matrix u is given by

u ∝
(

1
−1

)
, (217)

for θ ∈ [0, 2π ]. Nevertheless, the size of the matrix algebra
generated by the matrices still differs when θ ∈ [0, π ] and
θ ∈ [0, π ]. To avoid this difficulty, we introduce a perturba-
tion terms

δA00(θ ) = iε cos

(
θ

2

)
12, δA11(θ ) = ε sin

(
θ

2

)
12,

δA10(θ ) = δA01(θ ) = iε

[
cos

(
θ

2

)
− sin

(
θ

2

)]
σx, (218)

for a small number ε and redefine

Ai j (θ ) 
→ Ai j (θ )+ δAi j (θ )√
1+ ε2 + ε2

[
cos

(
θ
2

)− sin
(

θ
2

)] (219)

for [0, 2π ]. Here we chose these perturbation terms so that
the fMPS after perturbation also represents the same state
at θ = 0 and θ = 2π . Note that the matrices are still in the
canonical form. Since the algebra generated by the matrices is
isomorphic to M2(C) for all θ ∈ [0, 2π ], this is a perturbation
within the trivial phase.

Since this fMPS is not 2π -periodic as matrices, we perform
the unitary transformation

Ãi j (θ ) =
{

Ai j (θ ) θ ∈ [0, π ]
ei(θ−π )e−i σx

2 (θ−π )Ai j (θ )ei σx
2 (θ−π ) θ ∈ [π, 2π ]

(220)

to compute the topological invariant of this pump.23 Then we
can take a 2π -periodic Wall matrix, for example,

ũ(θ ) =
{(1

−1

)
(θ ∈ [0, π ])

ei(θ−π )e−iσx (θ−π )
(1

−1

)
(θ ∈ [π, 2π ])

, (221)

and the topological invariant (186) is

n(+)
top ≡

∫
d log tr(ũ2) ≡ 1. (222)

Therefore, this is a nontrivial pump in the trivial phase.
The algebraic pump invariant η

(+)
top defined in (183) is

equivalent to the pump invariant by the winding number, but
this one is easier to compute. For the gauge equations (215)
and (216), the transition function at θ = 2π is V = σx, and
the Wall matrix is given in (217). Thus, the pump invariant is
η

(+)
top = −1, and this is consistent with Eq. (222).

23If we choose the perturbation terms δA10 and δA01 to be propor-
tional to σx , we cannot take a gauge that is exactly 2π periodic.
In that case, however, the above gauge also gives a periodic MPS
up to ε.

2. The Gu-Wen model

In Sec. III B we derive the fMPS of the Gu-Wen model.
In this section, we show that a fermion parity pump can be
obtained in the Gu-Wen model by rotating bosonic spins and
give a physical interpretation of the pump.

Let’s consider the Hamiltonian

H (θ ) = −
∑

j

(a†
j − a j )τ

x
j+ 1

2
(a j+1 + a†

j+1)

−
∑

j

τ z,θ
j− 1

2

(1− 2a†
j a j )τ

z,θ
j+ 1

2

, (223)

where θ ∈ [0, π ] and τ z,θ
j is defined by

τ z,θ
j = ei θ

2 τ x
j τ z

j e
−i θ

2 τ x
j =

(
cos (θ ) −i sin (θ )
i sin (θ ) − cos (θ )

)
. (224)

The periodicity of θ is π . Let |↑〉θ and |↓〉θ be the eigenvectors
of τ z,θ with eigenvalues 1 and −1, respectively:

τ z,θ |↑〉θ = |↑〉θ , (225)

τ z,θ |↓〉θ = −|↓〉θ . (226)

Since the action of τ x on them is

τ x,θ |↑〉θ = |↓〉θ , (227)

τ x,θ |↓〉θ = |↑〉θ , (228)

the structure of the ground state is the same as in the original
Gu-Wen model. Therefore, the fMPS of this model is

∑
tr(Ai1 B j1 · · ·AiL B jL )|i1〉θ | j1〉 · · · |iL〉θ | jL〉, (229)

where the matrices are defined by

A↑ =
(

1
0

)
, A↓ =

(
0

1

)
, B◦ =

(
1

1

)
,

B• =
(

1
1

)
. (230)

We rewrite this fMPS in the basis of τ z. Since |i〉θ = ei θ
2 |i〉

for i =↑,↓,

|↑〉θ = ei θ
2 |↑〉 = cos

(
θ

2

)
|↑〉 + i sin

(
θ

2

)
|↓〉 (231)

and

|↓〉θ = ei θ
2 |↓〉 = i sin

(
θ

2

)
|↑〉 + cos

(
θ

2

)
|↓〉. (232)
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By substituting Eq. (231) and (232) in |i1〉 of Eq. (229), we obtain∑
tr(Ai1 B j1 · · ·AiL B jL )|i1〉θ | j1〉 · · · |iL〉θ | jL〉

=
∑

tr(A↑B j1 · · ·AiL B jL )

[
cos

(
θ

2

)
|↑〉 + i sin

(
θ

2

)
|↓〉

]
| j1〉 · · · |iL〉θ | jL〉

+ tr(A↓B j1 · · ·AiL B jL )

[
i sin

(
θ

2

)
|↑〉 + cos

(
θ

2

)
|↓〉

]
| j1〉 · · · |iL〉θ | jL〉

=
∑

tr(Ai1,θ B j1 Ai2 B j2 · · ·AiL B jL )|i1〉| j1〉|i2〉θ | j2〉 · · · |iL〉θ | jL〉, (233)

where A↑,θ = cos ( θ
2 )A↑ + i sin ( θ

2 )A↓ and A↓,θ =
i sin ( θ

2 )A↑ + cos ( θ
2 )A↓. By applying this operation to all

sites, the fMPS of H (θ ) is given by

A↑,θ =
(

cos
(

θ
2

)
i sin

(
θ
2

)), A↓,θ =
(

i sin
(

θ
2

)
cos

(
θ
2

)),

B◦ =
(

1
1

)
, B• =

(
1

1

)
. (234)

Let’s compute the topological invariant of this fMPS. In
order to have translational symmetry, we combine the sublat-
tices into one and consider (i, j) as one site. Therefore we
consider the following fMPS:

C↑,◦(θ ) = 1√
2

A↑,θ B◦ = 1√
2

(
cos

(
θ
2

)
i sin

(
θ
2

)),

C↓,◦(θ ) = 1√
2

A↓,θ B◦ = 1√
2

(
i sin

(
θ
2

)
cos

(
θ
2

)), (235)

C↑,•(θ ) = 1√
2

A↑,θ B• = 1√
2

(
cos

(
θ
2

)
i sin

(
θ
2

) )
,

C↓,•(θ ) = 1√
2

A↓,θ B• = 1√
2

(
i sin

(
θ
2

)
cos

(
θ
2

) )
. (236)

In order to make the matrices to be π periodic, we perform a
gauge transformation as follows:

C̃i, j (θ ) = e−i θ
2 ei θ

2 σxCi, j (θ )e−i θ
2 σx , (237)

where σx = ( 1
1 ) acts on a virtual index of the fMPS. Then

a π -periodic Wall matrix is given by

ũ(θ ) = eiθ ei θ
2 σx

(
1
−1

)
e−i θ

2 σx = eiθ eiθσx

(
1
−1

)
. (238)

Since ũ(θ )2 = −ei2θ 12, the topological invariant is n(+)
top = 1.

Therefore, {H (θ )}θ∈[0,π] has a nontrivial pump of the fermion
parity.

The algebraic pump invariant η
(+)
top defined in (183) is

equivalent to the pump invariant by the winding number, but
this one is easier to compute. In the gauge equations (235) and
(236), the transition function at θ = π is given by V = σx,
which anticommutes with the Wall matrix u(θ ) = σz. There-
fore, the invariant is given by η

(+)
top = −1.

Let’s consider the physical description of this pump. When
θ = 0, the ground state contains the following configuration:

· · · ↑ ◦ ↑ ◦ ↑ · · · , · · · ↑ • ↓ • ↑ · · · , (239)

where ↑,↓ are bosonic spin and ◦ and • is fermion unoccupied
and occupied state. Performing π -rotation on the middle spin,
we obtain

· · · ↑ ◦ ↓ ◦ ↑ · · · , · · · ↑ • ↑ • ↑ · · · . (240)

Comparing two configurations (239) and (240), we can see
that the fermion parity of both sides of the middle site is
flipped. By applying this operation to even sites, the fermion
parity of all fermions is flipped. This state corresponds to the
intermediate state in the Kitaev pump. Then, by applying the
same operation to odd sites, the fermion parity of all fermions
is flipped again and the ground state return to the original
state. This corresponds to the final state of the Kitaev pump.
Therefore, if we consider a system with edges, the fermion
parity is pumped to both edges of the system.

As a concrete example, consider a system with edges.
Assuming that the number of sites is four, and the spins at
both edges are fixed to up as a boundary condition, then the
ground state at θ = 0 is a superposition of

↑ ◦ ↑ ◦ ↑ ◦ ↑, ↑ ◦ ↑ • ↓ • ↑,
↑ • ↓ • ↑ ◦ ↑, ↑ • ↓ ◦ ↓ • ↑, (241)

and the ground state at θ = π is a superposition of

↑ • ↑ ◦ ↑ • ↑, ↑ • ↑ • ↓ ◦ ↑,
↑ ◦ ↓ • ↑ • ↑, ↑ ◦ ↓ ◦ ↓ ◦ ↑ . (242)

Comparing configurations (241) and (242), we can see that the
bulk (i.e., the middle fermion and two spins) is in the same
state and the fermion parity flips only at both edges. This is
nothing but a pumping of fermion parity, and this result does
not change when the number of sites is increased.

B. Examples of the Thouless pump in the nontrivial phase

1. The interacting Kitaev chain in the nontrivial phase

Let’s consider the Kitaev chain with interactions

H =
∑

j

−t (a†
j a j+1 + a†

j+1a j )+ |�|(a ja j+1 + a†
j a

†
j+1)

− μ

2
(2n j − 1)+U (2n j − 1)(2n j+1 − 1), (243)

where nj = a†
j a j is a number operator at site j and U � 0 is

the strength of the nearest-neighbor repulsive interaction. It is
known that the model is frustration free [51], at

μ = μ∗ := 4

√
U 2 + tU + t2 − |�|2

4
, (244)

165115-24



GENERALIZED THOULESS PUMPS IN … PHYSICAL REVIEW B 106, 165115 (2022)

and its ground state in PBC is given by

|ψodd〉 = eλa†
1 eλa†

2 · · · eλa†
L |0〉 − e−λa†

1 e−λa†
2 · · · e−λa†

L |0〉, (245)

where λ = √cot(φ∗/2) and φ∗ = arctan(2|�|/μ∗) [52,53].
It is easy to check that the fMPS matrices of this ground

state is given by

A0 = 1√
1+ λ2

(
1

1

)
,

A1 = iλ√
1+ λ2

( −1
1

)
u =

( −i
i

)
. (246)

In fact, explicitly, the fMPS is

|{Ai, u}〉 =
∑
{ik}

tr(uAi1 · · ·AiL )|i1, ...iL〉

=
∑
{ik},odd

λ
∑

k |ik ||i1, ...iL〉, (247)

and this is nothing but the state (245) (up to a normalization
factor). We can show that, as with the interaction-free Kitaev
chain, this model gives rise to a fermion parity pump by
rotating the phase of the gap function |�|eiθ . Actually, the
fMPS matrices of this path is given by

A0 = 1√
1+ λ2

(
1

1

)
,

A1 = iλeiθ

√
1+ λ2

( −1
1

)
u =

( −i
i

)
. (248)

Similar to the calculation in the case of free Kitaev chain (see
Sec. V B), we can easily check that the pump invariants η

(+)
top =

(−1)n(+)
top of this path is nontrivial.

This result indicates that the fermion parity pump is stable
to the interaction.

2. The homotopy of the Hamiltonian

Let’s show that the two laps of the path that turns the phase
of the Kitaev chain is a trivial path. For this purpose, it is
sufficient to construct a homotopy that connects the model
with a winding number of 1 to the one with a winding number
of −1.

First, consider a homotopy of fMPS. Let t ∈ [0, π ] be a
parameter of the homotopy and at t = 0, the fMPS is given by

A0(θ ) = 12, A1,a(θ ) = ei θ
2 iσ2, (249)

where a is a label of a flavor and θ ∈ [0, 2π ] is a parameter of
the path. To deform this path, let’s introduce a second flavor b
and define

A0(θ, t ) = 12, (250)

A1,a(θ, t ) =
[

cos

(
θ

2

)
+ i sin

(
θ

2

)
cos (t )

]
iσ2, (251)

A1,b(θ, t ) = i sin

(
θ

2

)
sin (t )iσ2, (252)

which will be

A0(θ, t ) = 12, (253)

A1,a(θ, t ) =
[

cos

(
θ

2

)
− i sin

(
θ

2

)]
iσ2 (254)

at t = π . By multiplying a by −1 using fermion parity sym-
metry, we get

A0(θ, t ) = 12, (255)

−A1,a(θ, t ) = −
[

cos

(
θ

2

)
− i sin

(
θ

2

)]
iσ2 = e−i θ

2 iσ2, (256)

which gives a model of winding −1.
Next, consider a Hamiltonian which corresponds to the fMPS (250)–(252). Such a Hamiltonian is given by

H (θ, t ) =
∑

j

ã†,a
j (θ, t )ãa

j (θ, t )+
∑

j

a†,b
j (θ, t )ab

j (θ, t ), (257)

where complex fermions aa
j (θ, t ) and ab

j (θ, t ) are defined by(
aa

j (θ, t )

ab
j (θ, t )

)
=
(

cos
(

θ
2

)+ i sin
(

θ
2

)
cos (t ) i sin

(
θ
2

)
sin (t )

−i sin
(

θ
2

)
sin (t ) − cos

(
θ
2

)+ i sin
(

θ
2

)
cos (t )

)(
aa

j

ab
j

)
, (258)

and virtual complex fermion ãa(θ, t ) is defined by replacing a
and b with ã and b̃ in Eq. (258) respectively.

Before showing that the ground state of this Hamiltonian
is given by the MPS above, we note that this Hamiltonian is a
homotopy connecting the Kitaev chain with a winding number
of 1 and that with a winding number of −1. In fact, at t = 0,

the Hamiltonian reads to

H (θ, t = 0)

= −
∑

j

(a†
j a j+1 + a†

j+1a j + eiθ a ja j+1 + e−iθ a†
j+1a†

j )

+
∑

j

a†,b
j ab

j . (259)
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Since the second term is a Kitaev chain in the trivial phase
without θ dependence, it does not affect the pump. Therefore,
this is a model with winding number 1. Similarly, at t = π ,
the Hamiltonian reads to

H (θ, t = π )

= −
∑

j

(a†
j a j+1 + a†

j+1a j + e−iθ a ja j+1 + eiθ a†
j+1a†

j )

+
∑

j

a†,b
j ab

j, (260)

and this is a model with winding number 1.
We conclude this section by proving that the ground state

of the Hamiltonian is given by fMPS (250)–(252). Let |0〉θ,t be

a vacuum state of aa
j (θ, t ) and ab

j (θ, t ) i.e., aa
j (θ, t )|0〉θ,t = 0

and ab
j (θ, t )|0〉θ,t = 0. Then fermionic MPS representation of

the ground state |GS(θ, t )〉 is given by

|GS(θ, t )〉
=
∑

tr(�Ai1 · · ·AiL )(aa,†(θ, t )1)i1 · · · (aa,†(θ, t )L )iL |0〉θ,t ,

(261)

where A0 = 12 and A1 = iσ2. Here � is a boundary operator.
Remark that since the transformation (258) is invertible, the
vacuum |0〉θ,t for aa

j (θ, t ) and ab
j (θ, t ) is equal to the vacuum

|0〉 for aa
j and aa

j i.e., |0〉θ,t = |0〉.
Now, substituting ã(θ, t ) of Eq. (258) for site 1 in

Eq. (261), we get

|GS(θ, t )〉 =
∑

tr(�A0 · · ·AiL )
(
aa,†

2 (θ, t )
)i2 · · · (aa,†

L (θ, t )
)iL |0〉

+
∑

tr(�A1 · · ·AiL )

[
cos

(
θ

2

)
+ i sin

(
θ

2

)
cos (t )

]
aa,†

1 ·
(
aa,†

2 (θ, t )
)i2 · · · (aa,†

L (θ, t )
)iL |0〉

+
∑

tr(�A1 · · ·AiL )i sin

(
θ

2

)
sin (t )ab,†

1 ·
(
aa,†

2 (θ, t )
)i2 · · · (aa,†

L (θ, t )
)iL |0〉

=
∑

tr(�Ai1, j1 (θ, t )Ai2 · · ·AiL )(a j1,†
1 )i1

(
aa,†

2 (θ, t )
)i2 · · · (aa,†

L (θ, t )
)iL |0〉, (262)

where {Ai(θ, t )}i=0,(1,a),(1,b) is defined by (250)–(252). By applying this operation to all sites, we see that the ground state of
H (θ, t ) is given by fMPS (250)–(252).

VII. SUMMARY AND DISCUSSION

A. Summary

We used the fermionic MPS to study the space of (1+ 1)-
dimensional interacting SRE states M. In particular, using
this, we study the generalized Thouless pump in the nontrivial
phase in interacting systems, which has not been investigated
before. As a result, for approximations with matrix sizes up
to 4× 4, we obtained the topology of the space of SRE states
M in several cases, and revealed the existence of nontrivial
Thouless pumps classified by Z or Z/2Z. As a special case,
this result includes the pumping of the fermion parity in
the Kitaev chain [16], which was already known in the free
fermion system, in a manner consistent with previous studies
[15,17], and this study shows that this pump is stable in the
presence of the interaction.

In addition, we used MPS to construct invariants of the
pump in the trivial and nontrivial phases. This invariant also
works in models with interactions, and we used this invariant
to construct models of the fermion parity pump: Kitaev’s

cononical pump model, the Gu-Wen model, a domain-wall
counting model, and the interacting Kitaev chain. We also
showed that this invariant is related to the characteristic class
of Z/2Z-graded central simple algebra bundles that have
been studied mathematically in the context of a twist of K
theory [49].

B. Discussion and future direction

In this paper we studied the pumping phenomenon in the
trivial and nontrivial phases of the SRE state using MPS.
The fundamental and important problem is to generalize our
approach to a more general symmetry.

It is also an interesting problem to investigate the classi-
fication of pumps parameterized by a more general X . This
is a difficult problem in general, but mathematically there are
several known results for the classification of Z/2Z-graded
central simple algebra bundles [49]: let X be a parame-
ter space. Then the graded Brauer group over X is defined
by

GBrU(X ) := {isomorphic class of a Z/2Z-graded central simple C-algebra bundle over X }/ ∼, (263)

where [A] ∼ [B] if and only if there are vector space E0, E1, F0, F1 such that A⊗ End(E0 ⊕ E1) � B ⊗ End(F0 ⊕ F1). GBrU(X )
has a group structure under the graded tensor product, and the isomorphism

GBrC(X ) � H0(X ;Z/2Z)× H1(X ;Z/2Z)× H3(X ;Z)tor. (264)

is known as a group. Here H3(X ;Z)tor. is the torsion subgroup of H3(X ;Z) and the group structure of the right-hand side is
defined by

(l, a, b)+ (l ′, a′, b′) = [l + l ′, a+ a′, b+ b′ + β(a ∪ a′)] (265)
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using the Bockstein map β : H2(X ;Z/2Z)→ H3(X ;Z).
We do not know whether the equivalence relation in the definition (263) is appropriate from the perspective of pump

classification. However, the E2 page of the Atiyah-Hirzebruch spectral sequence (AHSS) of the Anderson dual of spin bordism
group (I�Spin )n+2(X ), a candidate for the group that gives the classification of (n+ 1)-dimensional SRE states (predicted by
field theory [10,54]), is given by

and the right-hand side of Eq. (264) is a subset of a line corresponding to (I�Spin )3(X ) (i.e., a line with p+ q = 3). In this sense,
we expect to be able to construct some nontrivial pumping models by using GBrC(X ).

Similarly, for

GBrO(X ) := {isomorphic class of a Z/2Z-graded central simple R-algebra bundle over X }/ ∼, (266)

it is known that there is an isomorphism of a group

GBrO(X ) � H0(X ;Z/8Z)× H1(X ;Z/2Z)× H2(X ;Z/2Z),
(267)

where the group structure of the right-hand side is defined by

(l, a, b)+ (l ′, a′, b′) = (l + l ′, a+ a′, b+ b′ + a ∪ a′).
(268)

Physically, Z/2Z-graded central simple R-algebra describes a
(1+ 1)-dimensional SRE state with time-reversal symmetry,
so GBrO(X ) is expected to be related to the Anderson dual of
a Pin-bordism group. In fact, the right-hand side of Eq. (267)
is the same as a line corresponding to (I�Pin− )3(X ) (i.e., a line
with p+ q = 3) in the E2 page of the AHSS of coefficients
(I�Pin− )3(pt):

Actually, the isomorphism

GBrR(X ) � (I�Pin− )3(X ) (269)

as a group has been mathematically proven in [55]. Therefore,
we expect that the invariant of pumps can be defined by a

similar construction for the interacting fermionic SRE state
with time-reversal symmetry.
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APPENDIX A: CENTRAL SIMPLE ALGEBRAS
AND THE BRAUER GROUP

In this section we summarize the classical results on central
simple rings in mathematics, with the minimum definitions
and theorems needed for this paper.

1. Central simple algebras over k

Let k be the field. First, we give the definition of a central
simple algebra over k.

Definition 9. Let A be the algebra over k.
(1) A is simple if and only if there are not nontrivial both-

side ideals.
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(2) A is central if and only if the center Z (A) of the algebra
A is isomorphic to k.

An algebra which is simple and central is called a central
simple algebra. For example, the matrix algebra Mn(R) is
central simple as an algebra over R, and C is not central
simple algebra over R because the center of C is C itself and
not isomorphic to R. There are two different characterizations
of central simple algebras.

Theorem 7. (Wedderburn)
Let A be an algebra over k, dim(A) = n <∞ and A �= 0.

Then the following conditions are equivalent:
(1) A is central simple.
(2) There exist the a division algebra D over k and m ∈ N

such that

A � Mm(D). (A1)

(3) The map

A⊗k Aop → End(A) � Mn2 (k) (A2)

gives an isomorphism, where Aop is the opposite algebra of
A, that is, Aop is the algebra that is the same as A as a set but
whose product ◦ is defined by a ◦ b = b · a.

The tensor product of two central simple algebras is again
central simple. Therefore, it is expected that the set of all cen-
tral simple algebras MCSA has a group structure with respect
to the tensor product. However, this does not make it a group,
so the following equivalence relation is introduced.

Definition 10. Let A and B are central simple algebras.
They are the Brauer equivalence if and only if there exist
integers p, q ∈ N such that

A⊗k Mp(k) � B ⊗k Mq(k). (A3)

We denote A ∼ B when A and B are the Brauer equivalence.
Then, we can define the Brauer group as follows:
Definition 11. Let MCSA be the set of all central simple

algebras and ∼ be the Brauer equivalence. The Brauer group
is the Abelian group defined by

Br(k) = MCSA/ ∼ (A4)

with the unit [k] and inverse [A]−1 = [Aop].
One way of understanding the Brauer group is to consider

it as a group that classifies division algebras. In fact, there is a
one-to-one correspondence between the Brauer group and the
set of equivalence classes of the division algebra.

For example, it is known that Br(C) � 0. Therefore the
only division algebra over C is C itself, and the algebra A is
central simple over C if and only if there exist m ∈ N such
that A � Mm(C).24 For another example, it is known that
Br(R) � Z/2Z � {[R], [H]}. In fact, H⊗H is known to be
isomorphic to M4(R), indicating that [H]2 = [R].

2. Z/2Z-graded central simple algebras over k

The theory of central simple algebras and Brauer groups is
known to be extended to the Z/2Z-graded algebra [45]. We
will first define a Z/2Z-graded algebra.

24In addition, it is known that if an algebra over C is simple, then it
is central simple.

Definition 12. An algebra A is Z/2Z-graded if and only
if there exists a direct product decomposition

A � A(0) ⊕A(1) (A5)

such that A(i) ·A( j) ⊂ A(i+ j) for i, j ∈ {0, 1}.
Simplicity and centrality for Z/2Z-graded algebras are

extended as follows.
Definition 13. Let A be a Z/2Z-graded algebra over k.
(1) A is simple if and only if there are no Z/2Z-graded

nontrivial both-side ideals.
(2) A is central if and only if the even part of the center

Z (A) ∩A(0) is isomorphic to k.
An Z/2Z-graded algebra which is simple and central is

called a Z/2Z-graded central simple algebra. For example, let
A be the Z/2Z-graded algebra over C generated by matrices

A0 =
(

1 0
0 1

)
, A1 =

(
0 −1
1 0

)
(A6)

with Z/2Z-grading 0 and 1, respectively. This algebra is
neither simple nor central as an ungraded algebra. In fact, this
algebra has nontrivial ideals25

I± = (A0 ± iA1), (A7)

and since A is a commutative algebra, the center Z (A) is
isomorphic to A itself and not to C. However, this algebra is
simple and central as Z/2Z-graded algebra. In fact, the only
nontrivial ideals of A are the ideals of Eq. (A7), these are not
Z/2Z-graded, and the even part of the center Z (A) ∩A(0) is
isomorphic to C.

As we observed above, an algebra that is not central or
simple as an ungraded algebra may be central or simple as
a Z/2Z-graded algebra. Given a Z/2Z-graded algebra, the
pattern of breaking centrality and simplicity as an ungraded
algebra is classified by the following structure theorem [45].

Theorem 8. Let A be the Z/2Z-graded central simple
algebra. Then either one of the following is satisfied.

(1) A is central simple as an ungraded algebra, there exists
u ∈ A(0) such that u2 = a · 1 for some a ∈ k, and the center
Z (A(0) ) is isomorphic to Span(1, u).

(2) A(0) is central simple as an ungraded algebra, there
exists u ∈ A(1) such that u2 = a · 1 for some a ∈ k, and the
center Z (A) is isomorphic to Span(1, u).

In Wall’s paper, the case (1) is called (+), and the case
(2) is called (−). It is possible to define the analog of the
Brauer group for Z/2Z-graded algebra, it is called a graded
Brauer group or Brauer-Wall group denoted by BW(k). The
Brauer-Wall group can be regarded as a group that classifies
three sets of data: (+) or (−), a ∈ k, and division algebra D
such that if A is a (+)-algebra, A � Matn(D) and if A is a
(−)-algebra, A(0) � Matn(D). For example, BW(C) � Z/2Z
and BW(R) � Z/8Z, which is known as the complex and real
Bott periodicity.

APPENDIX B: A PROOF OF THEOREM 3 FOR PBC

For a Wall matrix u of {Ai}i, the set of matrices {uAi}i
is also injective fMPS with the Wall invariant (+) in the

25Here (a) denotes the both-sides ideal generated by a ∈ A.
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canonical form.26 Let us consider the wave functions of the
bosonic MPS |{uAi}i〉L for odd length L,

tr[(uAi1 ) · · · (uAiL )] = (−1)
∑(L−1)/2

k=1 |i2k |tr[uAi1 · · ·AiL ]. (B1)

Since the overall sign (−1)
∑(L−1)/2

k=1 |i2k | does not depend on
{Ai}i or u, the gauge equivalence {Ai}i ∼PBC {Ãi}i implies that
the equivalence of two injective bosonic MPSs |{uAi}i〉 =
eiαL |{ũÃi}i〉 for any odd L. From Theorem 1, there exists a

unique U (1) phase eiβ and U (2n) matrix V such that

ũÃi = eiβV †uAiV (B2)

holds. Here V is unique up to U (1) phase. It can also be
written as

ũÃi = eiβ (uV ũ)†uAi(uV ũ). (B3)

From the uniqueness of V , uV ũ = eiφV , and u2 = ũ2 = 1
gives us ũ = ±V †uV .

APPENDIX C: A PROOF OF LEMMA 1

Before going into the proof of Lemma 1, we prove two lemmas.
Lemma 2. Let {Bi}i=1,...,N be a set of n× n matrices. For L ∈ N, we introduce

�e
L(X ) :=

∑
{ik |

∑
k |ik |≡0}

tr(XBi1 · · ·BiL )|i1, . . . , iL〉 (C1)

and

�o
L(X ) :=

∑
{ik |

∑
k |ik |≡1}

tr(XBi1 · · ·BiL )|i1, . . . , iL〉. (C2)

Then {Bi1 · · ·BiL |∑k |ik| ≡ 0} ({Bi1 · · ·BiL |∑k |ik| ≡ 1}, resp.) span the matrix algebra Mn(C) as vector space if and only if (�e
L)

(�o
L, resp.) is injective.
Proof. (⇒):Let X be a n× n matrix such that �e

L(X ) = 0. Then

tr(XBi1 · · ·BiL ) = 0 (C3)

for any (i1, . . . , iL ) with
∑

k |ik| ≡ 0. Since {Bi1 · · ·BiL |∑k |ik| ≡ 0} span the matrix algebra Mn(C), there are ck,l
i1,...,iL

∈ C× such

that ek,l =
∑
{ik |

∑
k |ik |≡0} c

k,l
i1,...,iL

Bi1 · · ·BiL for any k, l ∈ {1, . . . , n}. Here ek,l is a matrix in which only the (k, l ) component is

1 and the others are 0. By taking a linear combination of Eq. (C3) with weight ck,l
i1,...,iL

, we obtain 0 = tr(Xek,l ) = Xl,k and thus
X = 0. Therefore �e

L is injective. In the same way, we can also show the injectivity of �o
L.

(⇐) : Note that �e
L : Cn2 → CNL. Taking {ek,l} and {|i1, . . . , iL〉|

∑L
k=1 |ik| ≡ 0} as the basis of Cn2

and CNL, the matrix
representation of �e

L is (
�e

L

)
(i1,...,iL ),(k,l ) = (Bi1 · · ·BiL )l,k . (C4)

The (i1, . . . , iL )thth row vector is identified with the matrix Bi1 · · ·BiL . Since the matrix rank of �e
L is n2 from the injectivity of

�e
L, {Bi1 · · ·BiL |∑k |ik| ≡ 0} is a basis of the n× n matrix algebra Mn(C). The odd case can be proved in the same way. �

Lemma 3. For L ∈ N, suppose that both {Bi1 · · ·BiL |∑k |ik| ≡ 0} and {Bi1 · · ·BiL |∑k |ik| ≡ 1} span the matrix algebra
Mn(C) as vector space. Then the same is true for L + 1.

Proof. By Lemma 2, it is sufficient to show that �e
L+1 and �o

L+1 are injective. Let X be a n× n matrix such that �e
L+1(X ) = 0.

Then

�e
L+1(X ) = 0⇔

∑
iL+1,|iL+1|=0

�e
L(BiL+1 X )|iL+1〉 +

∑
iL+1,|iL+1|=1

�o
L(BiL+1 X )|iL+1〉 = 0

⇔
{
�e

L(BiL+1 X ) = 0, (|iL+1| = 0)
�o

L(BiL+1 X ) = 0, (|iL+1| = 1)

⇔ BiL+1 X = 0 (any iL+1). (C5)

Since {Bi1 · · ·BiL |∑k |ik| ≡ 0} span the matrix algebra Mn(C), there are ce
i1,...,iL ∈ C× such that 1 =∑

{ik |
∑

k |ik |≡0} c
e
i1,...,iL Bi1 · · ·BiL . By taking a linear combination of Eq. (C5) with weight ck,l

i1,...,iL
, we obtain X =∑

{ik |
∑

k |ik |≡0} c
e
i1,...,iL Bi1 · · ·BiL X = 0 and thus X = 0. Therefore �e

L+1 is injective. In the same way, we can also show the
injectivity of �o

L+1. �
We also provide a type of the fundamental theorem for bosonic injective MPS matrices not in the canonical form:
Lemma 4.
Let {Ai} and {Ãi} be injective n× n MPSs. The following are equivalent:

26The products generated by the matrices {uAi}i are written as uAi1 · · · uAil ∝ (u)
1−(−1)l

2 Ai1 · · ·Ail . Thus, if the set {Ai1 · · ·Ail } spans M2n(C),
so is {(uAi1 ) · · · (uAil )}.
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(i) They give the same states for any even system sizes, i.e., for any L ∈ 2N there exists a U (1) phase eiαL such that |{Ai}〉L =
eiαL |{Ãi}〉L holds.

(ii) There exist an invertible matrix M and a U (1) phase z ∈ U (1) satisfying Ai = zM−1ÃiM.
Here z is unique and M is unique up to C×. This statement holds when L rums over odd integers L ∈ 2N + 1.
Proof. To make injective MPS matrices into the canonical form, we can use the following procedure: Let E (X ) =∑

i AiXAi†

and Ẽ (X ) =∑
i ÃiX Ãi† be the transfer matrices and ρ, ρ̃ ∈ R>0 be its spectral radius. It is known that if � is an eigenmatrix

of E with eigenvalue ρ, � is unique up to C× and positive definite [30]. It is also known that if �′ is an eigenmatrix of E
with eigenvalue λ and |λ| = ρ, then �′ = � and λ = ρ [34]. Therefore if we define A′i = 1

ρ
1
2
�−

1
2 Ai�

1
2 , then

∑
i A′iA′i† =

1
ρ

∑
i X−

1
2 Ai�

1
2 (�−

1
2 Ai�

1
2 )† = �−

1
2 XX

1
2 = 1, so the canonical form. Let � and �̃ be the positive definite eigenmatrix of E

and Ẽ .
Assume that ρ = ρ̃. Then, since |{Ai}〉L = eiαL |{Ãi}〉L,

tr(Ai1 · · ·AiL ) = eiαL tr(Ãi1 · · · ÃiL )⇔ tr(A′i1 · · ·A′iL ) = eiαL tr(Ã′i1 · · · Ã′iL ). (C6)

By using the fundamental theorem for bosonic MPS in the canonical form (Theorem 1), there is a unitary matrix U and a unique
U (1) phase z such that

A′i = zUÃ′iU † ⇔ Ai = z(�
1
2 U �̃−

1
2 )Ãi(�

1
2 U �̃−

1
2 )−1, (C7)

and �
1
2 U �̃−

1
2 is unique up to C×.

Finally we show that ρ = ρ̃. The norm of an MPS is given by

〈{Ai}|{Ai}| 〉 =
∑
{ik}}

tr(Ai1 · · ·AiL )tr(Ai1 · · ·AiL )∗ =
∑
{ik}

∑
k,l

〈k|Ai1 · · ·AiL |k〉〈l|Ai1† · · ·AiL†|l〉

=
∑
k,l

〈k|EL(〈k|l〉)|l〉 = tr(EL ). (C8)

Since |{Ai}〉L = eiαL |{Ãi}〉L, for sufficiently large even integer L,

〈{Ai}|{Ai}〉 = 〈{Ãi}|{Ãi}〉 ⇔ tr(EL ) = tr(ẼL ) (C9)

⇔ ρL

(
1+

∑
i

(
ρi

ρ

)L
)
= ρ̃L

(
1+

∑
i

(
ρ̃i

ρ̃

)L
)

, (C10)

where ρ > ρ1 � ρ2 � · · · and ρ̃ > ρ̃1 � ρ̃2 � · · · are eigenvalues of E and Ẽ . Therefore, if we take the limit of large L, we
obtain ρ = ρ̃. It is obvious that this is true if instead of the condition that L is even, we change it to odd. �

Proof of Lemma 1. First, introduce some notations. We denote products of matrices Bis by

BI (L)
:= Bi1 · · ·BiL for I (L) = (i1, . . . , iL ). (C11)

We denote the even and odd sets of L labels of i as

Ie
L =

{
(i1, . . . , iL )|

L∑
k=1

|ik| ≡ 0

}
, (C12)

Io
L =

{
(i1, . . . , iL )|

L∑
k=1

|ik| ≡ 1

}
, (C13)

respectively. By using these notations, the injectivity of {σ |i|x ⊗ Bi} is that both the sets of matrices {BI (l ) |I (l ) ∈ Ie
l } and {BI (l ) |I (l ) ∈

Io
l } span Mn(C) for some l ∈ N. Both sets of matrices {BI (L)}I (L)∈Ie

L
and {BI (L)}I (L)∈Io

L
can also regarded as injective MPS with the

length l = 1, but not in the canonical form because
∑

I (L)∈Ie/o
L

BI (L)
(BI (L)

)† = 1n does not hold in general. The same is true for the

set of matrices {B̃i}i.
In the following, we denote l as the smallest integer such that all sets of matrices {BI (l ) |I (l ) ∈ Ie

l }, {BI (l ) |I (l ) ∈ Io
l }, {B̃I (l ) |I (l ) ∈

Ie
l }, and {B̃I (l ) |I (l ) ∈ Io

l } span Mn(C). We introduce weight vectors ce
I (l ) , co

I (l ) , c̃e
I (l ) and c̃o

I (l ) so that∑
I (l )∈Ie

l

ce
I (l ) BI (l ) =

∑
I (l )∈Io

l

co
I (l ) BI (l ) =

∑
I (l )∈Ie

l

c̃e
I (l ) B̃I (l ) =

∑
I (l )∈Io

l

c̃o
I (l ) B̃I (l ) = 1n (C14)

is satisfied.
We give a proof of Lemma 1 for APBC and PBC separately.
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The case of APBC—Suppose {σ |i|x ⊗ Bi}i ∼ {σ |i|x ⊗ Bi}i. This is equivalent to say that for any L ∈ N there exists eαL ∈ U (1)
such that

tr[Bi1 · · ·BiL ] = eiαL tr[B̃i1 · · · B̃iL ] for all (i1, . . . , iL ) ∈ Ie
L. (C15)

For the integer l , we formally think of I (l ) ∈ Ie/o
l as a basis at one site and consider the bosonic MPS of the set of matrices

{BI (l )}I (l )∈Ie/o
l

. From (C15), for any even integers M ∈ 2N, we have the wave function equalities

tr[BI (l )
1 · · ·BI (l )

M ] = eiαlM tr[B̃I (l )
1 · · · B̃I (l )

M ] for
(
I (l )
1 , . . . , I (l )

M

) ∈ (Ie/o
L

)×M
. (C16)

Applying Lemma 4 to the bosonic MPSs of {BI (l )}I (l )∈Ie
l

and {BI (l )}I (l )∈Io
l
, there exist unique U (1) phases z(l )

e , z(l )
o and invertible

matrices x(l )
e , x(l )

o ∈ GLn(C) such that

B̃I (l ) = z(l )
e

(
x(l )

e

)−1
BI (l )

x(l )
e for I (l ) ∈ Ie

l (C17)

and

B̃I (l ) = z(l )
o

(
x(l )

o

)−1
BI (l )

x(l )
o for I (l ) ∈ Io

l (C18)

hold. Here x(l )
e and x(l )

o are unique up to C× numbers.
By Lemma 3, we can apply the same argument to the even MPS {BI (l+1)}I (l+1)∈Ie

l+1
of length l + 1 and obtain a unique U (1)

phase z(l+1)
e and an invertible matrix x(l+1)

e such that

B̃I (l+1) = z(l+1)
e

(
x(l+1)

e

)−1
BI (l+1)

x(l+1)
e for I (l+1) ∈ Ie

l+1, (C19)

where x(l+1)
e is unique up to C×. Substituting Eqs. (C17) and (C18) into Eq. (C19), we get

B̃i0 B̃I (l ) = z(l+1)
e

(
x(l+1)

e

)−1
Bi0 BI (l )

x(l+1)
e (C20)

=
{

z(l+1)
e

(
z(l )

e

)−1(
x(l+1)

e

)−1
Bi0 x(l )

e B̃I (l )(
x(l )

e

)−1
x(l+1)

e (for |i0| = 0),

z(l+1)
e

(
z(l )

o

)−1(
x(l+1)

e

)−1
Bi0 x(l )

o B̃I (l )(
x(l )

o

)−1
x(l+1)

e (for |i0| = 1).
(C21)

Taking linear sum
∑

I (l )∈Ie
l

c̃e
I (l ) for |i0| = 0 and

∑
I (l )∈Io

l
c̃o

I (l ) for |i0| = 1, we obtain

B̃i0 =
{

z(l+1)
e

(
z(l )

e

)−1(
x(l+1)

e

)−1
Bi0 x(l+1)

e (for |i0| = 0)

z(l+1)
o

(
z(l )

e

)−1(
x(l+1)

e

)−1
Bi0 x(l+1)

e (for |i0| = 1)

= eiβη|i0|
(
x(l+1)

e

)−1
Bi0 x(l+1)

e , (C22)

where we have put eiβ = z(l+1)
e (z(l )

e )−1 and η = z(l )
e (z(l )

o )−1.
Next, we show η = ±1. Applying the above argument to the MPS {BI (2l )}I (2l )∈Ie

2l
of length 2l , there are a unique z(2l )

e ∈ U (1)
and a matrix x(2l )

e ∈ GLn(C) such that

B̃I (l )
B̃J (l ) = z(2l )

e

(
x(2l )

e

)−1
BI (l )

BJ (l )
x(2l )

e (C23)

for |I (l )| + |J (l )| ≡ 0. Substituting (C17) and (C18) in the left-hand side of (C23) yields the equation

z(2l )
e

(
x(2l )

e

)−1
BI (l )

BJ (l )
x(2l )

e =
{(

z(l )
e

)2(
x(l )

e

)−1
BI (l )

BJ (l )
x(l )

e (for |I (l )| ≡ |J (l )| ≡ 0),(
z(l )

o

)2(
x(l )

o

)−1
BI (l )

BJ (l )
x(l )

o (for |I (l )| ≡ |J (l )| ≡ 1).
(C24)

Taking the linear sum
∑

I (l ),J (l )∈Ie
l

ce
I (l ) ce

J (l ) for |I (l )| ≡ |J (l )| ≡ 0 and
∑

I (l ),J (l )∈Io
l

co
I (l ) co

J (l ) for |I (l )| ≡ |J (l )| ≡ 1, we obtain z′ = z2
e =

z2
o. Therefore η = ±1.

Finally, we show that x(l+1)
e can be unitary. From (C22), we have∑

i

Bi
(
x(l+1)

e

(
x(l+1)

e

)†)
Bi† = x(l+1)

e

(
x(l+1)

e

)†
. (C25)

Since the set of matrices {Bi}i is injective in the bosonic sense and in the canonical form, 1n is the only eigenmatrix of the
eigenvalue 1 of the transfer matrix EB(X ) =∑

i BiXBi†. Therefore, x(l+1)
e (x(l+1)

e )† = λ1n with λ ∈ C×. Normalizing x(l+1)
e to

x(l+1)
e (x(l+1)

e )† = 1n, we conclude that x(l+1)
e is unitary and unique up to U (1) phase.

The case of PBC—Suppose {σ |i|x ⊗ Bi}i ∼PBC {σ |i|x ⊗ Bi}i. This is equivalent to say that for any L ∈ N there exists eαL ∈ U (1)
such that

tr[Bi1 · · ·BiL ] = eiαL tr[B̃i1 · · · B̃iL ] for all (i1, . . . , iL ) ∈ Io
L . (C26)
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From (C26), for any odd integers M ∈ 2N + 1, we have the wave function equalities

tr[BI (l )
1 · · ·BI (l )

M ] = eiαlM tr[B̃I (l )
1 · · · B̃I (l )

M ] for
(
I (l )
1 , . . . , I (l )

M

) ∈ (Io
L

)×M
. (C27)

Applying Lemma 4 to the bosonic MPS of {BI (l )}I (l )∈Io
l
, there exist a unique U (1) phase z(l )

o and an invertible matrix x(l )
o ∈ GLn(C)

such that

B̃I (l ) = z(l )
o

(
x(l )

o

)−1
BI (l )

x(l )
o for I (l ) ∈ Io

l (C28)

holds. Here x(l )
o is unique up to C× numbers. Taking the linear sum

∑
I (l )∈Io

l
c̃o

I l , we get∑
I (l )∈Io

l

c̃o
I (l ) BI (l ) = (

z(l )
o

)−1
. (C29)

In the same way, for the length 2l , there are a unique z(2l )
o ∈ U (1) and a matrix x(2l )

o ∈ GLn(C) such that

B̃I (l )
B̃J (l ) = z(2l )

o

(
x(2l )

o

)−1
BI (l )

BJ (l )
x(2l )

o (C30)

for any I (l ) and J (l ) satisfying |I (l )| + |J (l )| ≡ 1. Here x is unique up to C×. Taking the linear sum
∑

I (l )∈Io
l

c̃o
I l , we get

B̃J (l ) = z(2l )
o

(
z(l )

o

)−1(
x(2l )

o

)−1
BJ (l )

x(l )
o for J (l ) ∈ Ie

l , (C31)

and the linear sum
∑

J (l )∈Ie
l

c̃e
J (l ) gives us ∑

J (l )∈Ie
l

c̃e
J (l ) BJ (l ) = z(2l )

o

(
z(l )

o

)−1
. (C32)

By Lemma 3, we can apply the same argument to the odd MPS {BI (l+1)}I (l+1)∈Io
l+1

of length l + 1 and obtain a unique U (1)

phase z(l+1)
o and an invertible matrix x(l+1)

o such that

B̃I (l+1) = z(l+1)
o

(
x(l+1)

o

)−1
BI (l+1)

x(l+1)
o for I (l+1) ∈ Io

l+1, (C33)

where x(l+1)
o is unique up to C×. Using (C28) and (C31), we have

B̃i0 B̃I (l ) = z(l+1)
o

(
x(l+1)

o

)−1
Bi0 BI (l )

x(l+1)
o (C34)

=
{

z(l+1)
o

(
z(l )

o

)−1(
x(l+1)

o

)−1
Bi0 x(l )

o B̃I (l )(
x(l )

o

)−1
x(l+1)

o (for |i0| = 0),

z(l+1)
o

(
z(2l )

o

)−1
z(l )

o

(
x(l+1)

o

)−1
Bi0 x(2l )

o B̃I (l )(
x(2l )

o

)−1
x(l+1)

o (for |i0| = 1).
(C35)

The linear sum
∑

I (l )∈Io
l

c̃o
I (l ) for |i0| = 0 and

∑
I (l )∈Ie

l
c̃e

I (l ) for |i0| = 1 leads to

B̃i0 =
{

z(l+1)
o

(
z(l )

o

)−1(
x(l+1)

o

)−1
Bi0 x(l+1)

o (for |i0| = 0),

z(l+1)
o

(
z(2l )

o

)−1
z(l )

o

(
x(l+1)

o

)−1
Bi0 x(l+1)

o (for |i0| = 1),

= eiβη|i0|
(
x(l+1)

o

)−1
Bi0 x(l+1)

o , (C36)

where we have put eiβ = z(l+1)
o (z(l )

o )−1 and η = (z(2l )
o )−1(z(l )

o )2.
We show η = ±1. Applying the above argument to the MPS {BI (3l )}I (3l )∈Io

3l
of length 3l , there are a unique z(3l )

o ∈ U (1) and a
matrix x(3l )

o ∈ GLn(C) such that

B̃I (l )
B̃J (l )

B̃K (l ) = z(3l )
o

(
x(3l )

o

)−1
BI (l )

BJ (l )
BK (l )

x(3l )
o (C37)

for |I (l )| + |J (l )| + |K (l )| ≡ 1. Using (C29) and (C32), the linear sums
∑

I (l ),J (l ),K (l )∈Io
l

c̃o
I (l ) c̃o

J (l ) c̃o
K (l ) and∑

I (l ),J (l )∈Ie
l ,K

(l )∈Io
l

c̃e
I (l ) c̃e

J (l ) c̃o
K (l ) gives z(3l )

o (z(l )
o )3 = z(3l )

o ((z(2l )
o )−1z(l )

o )2z(l )
o which leads to η2 = 1. �

In the same way as in the case of APBC, x(l+1)
o can be unitary and is unique up to U (1) phases.

APPENDIX D: A PROOF OF THEOREM 5

In this section, we prove Theorem 5 and determine the
necessary and sufficient conditions for the algebra A to be
Z/2Z-graded central simple algebra in the 4× 4 MPS when
A0 = 1. First, we prove the following lemma.

Lemma 5.
Let A0 = 14, and let A be the Z/2Z-graded algebra gen-

erated by A0 and A1. In this case, the structure of A is given
by

A � C[t]/( f ) (D1)
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as a Z/2Z-graded algebra. Here the right-hand side is re-
garded as a Z/2Z-graded algebra with the degree of t being
1, and � means an isomorphism, and f be the minimal poly-
nomial of A1, and ( f ) denote the two-sided ideals generated
by f .

Proof. Let p : C[t]→ A be the map t 
→ A1. All we have
to do is show ker(p) � ( f ).

(1) ( f ) ⊂ ker(p): This is obvious.
(2) ker(p) ⊂ ( f ): For any g ∈ ker(p), g(A1) = 0 by def-

inition. Since f is the minimal polynomial, f divides g, so
g ∈ ( f ), i.e., ker(g) ⊂ ( f ).

Therefore, ker(p) � ( f ) and from the fundamental theo-
rem on homomorphisms theorem,

A � C[t]
/

( f ) (D2)

as a Z/2Z-graded algebra. �
From Lemma 5, we need to find the minimal polynomial f

of A1. Since the degree of A1 is odd, f has degree 2 at least.
Since

(A1)2 =
(

(Ã1)2 0
0 (Ã1)2

)
, (D3)

denoting eigenvalues of (A1)2 by α and β, then

α = β ⇒ f (t ) = (t2 − α)(t2 − β ), (D4)

α �= β ⇒ f (t ) = (t2 − α). (D5)

Therefore, the structure of the algebra A is determined as
follows.

Proposition 1.
Let α and β be the eigenvalues of−(Ã1)2. Then the follow-

ing holds:

A �
{
C[t]/(t2 − α)(t2 − β ) (α = β )
C[t]/(t2 − α) (α �= β ) , (D6)

where t has a degree 1 and � means isomorphism as Z/2Z-
graded algebra.

Therefore, the structure of the ideals in A can be classified
as follows:

The case of α �= β.
Using Chinese remainder theorem, we can decompose A
into

C[t]/(t2 − α)(t2 − β ) � C[t]/(t2 − α)×C[t]/(t2 − β ).

(D7)

Thus A is not simple since each component is a subalge-
bra of A.

The case of α = β.
When α = β = 0, since A has a nontrivial ideal (t ), A
is not simple. When α = β �= 0, (t − α) is a ideal of A
but not Z/2Z-graded algebra. Therefore, in this case, A
is central simple as a Z/2Z-graded algebra.

The above shows that when A0 = 14, the necessary and
sufficient condition for A to be a Z/2Z-graded central simple
algebra is

α = β �= 0, (D8)

where α and β are eigenvalues of (Ã1)2.

Next, we denote

Ã1 =
(

a b
c d

)
(D9)

and rewrite this condition for components a, b, c, and d . Since
the square of Ã1 is

(Ã1)2 =
(

a2 + bc ab+ bd
ac+ dc bc+ d2

)
, (D10)

the eigenvalue of −(Ã1)2 is

det[λ− (Ã1)2]

= 0⇔ λ

= (a2 + d2 + 2bc)±
√

(a+ d )2[(a− d )2 + 4bc]

2
. (D11)

Therefore, Eq. (D8) can be rewritten as

Eq.(D8)⇔
⎧⎨
⎩

(a+ d )2[(a− d )2 + 4bc] = 0
and

a2 + d2 + 2bc �= 0
(D12)

in terms of components. In particular, we rewrite the first
condition as follows:

In the case of a+ d = 0 (⇔ trÃ1 = 0):

a2 + d2 + 2bc �= 0⇔ (a+ d )2 − 2(ad − bc)

�= 0⇔ det(Ã1) �= 0. (D13)

In the case of (a− d )2 + 4bc = 0 [⇔ (a+ d )2 − 4(ad −
bc) = 0⇔ tr(Ã1)2 − 4 det(Ã1) = 0]:

a2 + d2 + 2bc �= 0⇔ tr(Ã1)2 − 2 det(Ã1)

�= 0⇔ det(Ã1) �= 0. (D14)

Finally, we obtain the following formula:

Eq.(D8)⇔ det(Ã1) �= 0 and

⎧⎨
⎩

tr(Ã1) = 0
or

tr(Ã1)2 − 4 det(Ã1) = 0
.

(D15)

This is the claim of Theorem 5.

APPENDIX E: A PROOF OF THEOREM 6

In this section, we prove Theorem 6 and determine the
topology of the space of MPS when A0 = 14. As we saw
in Appendix D, the necessary and sufficient conditions for
A to be a Z/2Z-graded central simple algebra were given
by (i) det(Ã1) �= 0, and tr(Ã1) = 0 or (ii) det(Ã1) �= 0, and
tr(Ã1)2 − 4 det(Ã1) = 0. In the following, we determine the
topology of the space represented by each of cases (i) and (ii).

(i) det(Ã1) �= 0, tr(Ã1) = 0
First, recall the polar decomposition theorem for com-

plex matrices.
Theorem 9. Let A ∈ Mn(C) be a n× n matrix, then there

exist a unitary matrix U ∈ U (n) and positive-semidefinite
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Hermitian matrix P such that

A = U · P. (E1)

In particular, if A ∈ GL(n;C), U and P are unique.
Applying the polar decomposition theorem to A1, there is a

unique unitary matrix U and positive-semidefinite Hermitian
matrix P such that A1 = U · P, since the determinant of A1 is
not zero. In addition, since P is Hermitian, it can be diagonal-
ized using the unitary matrix V :

P = V ·� ·V †, � =
(

λ1 0
0 λ2

)
. (E2)

Here, from the semipositivity of P, λ1, λ2 ∈ R>0. Therefore,
Ã1 = U ·V ·� ·V †.

Next, we calculate tr(Ã1). First, from the cyclicity of trace,

tr(Ã1) = tr(U ·V ·� ·V †) = tr(V †U ·V ·�). (E3)

Any 2× 2 unitary matrix W ∈ U (2) can be written by

W = eiθ

(
a −b∗
b a∗

)
, (E4)

where a, b ∈ C satisfying |a|2 + |b|2 = 1 and θ ∈ [0, 2π ).
Therefore, we denote V †UV ∈ U (2) as

V †UV = eiθ

(
a −b∗
b a∗

)
(E5)

for some a, b, and θ as described above, we can rewrite Ã1 as

tr(Ã1) = eiθ tr

[(
a −b∗
b a∗

)(
λ1 0
0 λ2

)]
= eiθ (aλ1 + a∗λ2).

(E6)

Accordingly, we obtained the following necessary and suffi-
cient conditions:

tr(Ã1) = 0⇔ aλ1 + a∗λ2 = 0. (E7)

(1) In the case of a �= 0.
In this case, λ1 = λ2 since λ1 = − a∗

a λ2 and λ1 and λ2 are
positive real numbers. Therefore,

Ã1 = U ·V ·� ·V † = λU, (λ ∈ R>0). (E8)

(2) In the case of a = 0.
In this case, it is obvious that tr(Ã1) = 0 for any λ1 and λ2.

By substituting

V †UV � = eiθ

(
0 −b∗
b 0

)(
λ1 0
0 λ2

)
(E9)

into Ã1 = UV �V † = V (V †UV �)V †, we get

Ã1 = λ1eiθV

(
0 −b∗
b 0

)(
1 0
0 λ2/λ1

)
V †. (E10)

We can use continuous deformation to make λ2/λ1 = 1 since
λ2/λ1 > 0. Accordingly, we obtain

Ã1 = V †UV � = λ1eiθV

(
0 −b∗
b 0

)
V †, (E11)

and this comes down to the case of a �= 0.

As a result, it was found that the range of Ã1 is

{λeiθU |λ > 0,U ∈ U (2), tr(U ) = 0 }. (E12)

We need, therefore, to find the topology of this space. Let U ∈
U (2) be

U =
(

a −b∗
b a∗

)
. (E13)

Since tr(U ) = 0, a = −a∗ and therefore a is pure imaginary.
We define x = −ia ∈ R and by using x2 + |b|2 = 1, we get

U =
(

ix −
√

1− |x|2e−iϕ√
1− |x|2eiϕ −ix

)
(E14)

=
(

i cos(χ ) −e−iϕ sin(χ )
eiϕ sin(χ ) −i cos(χ )

)
, (E15)

where ϕ is phase of b and x = cos (χ ). We can see that χ, φ

are the coordinates of S2, which is the equator of S3 ∼ SU(2).
Note that λ does not contribute to the homotopy of M, so
the topology is S1×S2

Z/2Zdiag
. Also, the case a = 0 can be deformed

smoothly to the equator S2 by continuous deformation. The
above shows that condition (i) det(Ã1) �= 0, tr(Ã1) = 0 is ho-
motopic to R>0 × S1×S2

Z/2Zdiag
.

(ii) det(Ã1) �= 0, tr(Ã1)2 − 4 det(Ã1) = 0
By using polar decomposition theorem again, we get

tr(Ã1)2 − 4 det(Ã1) = 0⇔ tr(UV �V †)2 − 4 det(UV �V †)

= 0, (E16)

⇔ tr(V †UV �)2 − 4 det(V †UV ) det(�) = 0. (E17)

Since V †UV ∈ U (2), this can be denoted

V †UV = eiθ

(
a −b∗
b a∗

)
, � =

(
λ1

λ2

)
(E18)

using θ ∈ [0, 2π ) and a, b ∈ C such that |a|2 + |b|2 = 1. By
substituting this into Eq. (E17), we get

e2iθ tr

[(
a −b∗
b a∗

)(
λ1

λ2

)]2

− 4e2iθλ1λ2 = 0 (E19)

⇔ (aλ1 + a∗λ2)2 − 4λ1λ2 = 0 (E20)

⇔ a2λ2
2 + 2|a|2λ1λ2 + a∗2λ2

2 − 4λ1λ2 = 0 (E21)

⇔ a2

(
λ2

λ1

)2

+ 2(|a|2 − 2)
λ2

λ1
+ a∗2 = 0. (E22)

Therefore,

λ1

λ2
= −|a|

2 + 2±
√

1− |a|2
a2

= 1+ |b|2 ± 2|b|
a2

= (1± |b|)2

a2
. (E23)

In particular, since a ∈ R (due to λ1
λ2
∈ R>0), we get

(1± |b|)2

a2
= (1± |b|)2

(1+ |b|)(1− |b|) =
1± |b|
1∓ |b| . (E24)
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Suppose λ1 � λ2 without loss of generality,

λ1

λ2
= 1+ |b|

1− |b| =: r (1 � r <∞). (E25)

Substituting this into Eq. (E22),

λ2(ra+ a∗)2 − 4λ2r = 0 (E26)

and simplify the above equation, paying attention to a = a∗,
we get

a = ±2
√

r

1+ r
, |b| =

√
1−

(
2
√

r

1+ r

)
= r − 1

1+ r
. (E27)

Substituting this result into Eq. (E18),

V †UV =
( ±2

√
r

1+r − r−1
1+r e−iϕ

r−1
1+r eiϕ ±2

√
r

1+r

)
, (E28)

and finally we get

Ã1 = UV �V † = λeiθV

( ±2
√

r
1+r − r−1

1+r e−iϕ

r−1
1+r eiϕ ±2

√
r

1+r

)(
r

1

)
V †.

(E29)

The matrix part is homotopic to two two-dimensional open
disks D2

open, each of which contains ±1 � Z/2Z ∈ SU(2).
The above shows that condition (ii) det(Ã1) �= 0, tr(Ã1)2 −
4 det(Ã1) = 0 is homotopic to R>0 × S1×Z/2Z

Z/2Zdiag
.

APPENDIX F: THE BERRY PHASE

In Sec. IV B we construct a nontrivial path {a1 = λeiθ |θ ∈
[0, π ]} in Mnon-trivial

n=1,N=2 . In this section, let’s compute the Berry
phase of the ground state along this path. Although, in general,
the Berry phase is not quantized, we claim that the ratio in
periodic and antiperiodic systems is quantized for a large
system size limit and it is a candidate for invariant of the
pump.

The fermionic MPSs with the Wall matrix u are given by

|{Ai(θ ), u(θ )}〉 =
∑
{ik}

tr(uAi1 · · ·AiL )|i1, ...iL〉 (F1)

=
∑
{ik},odd

(λeiθ )
∑

k |ik |(−1)
∑
{ik } |ik |+1

2 |i1, ...iL〉

(F2)

=
∑
{ik},odd

i(iλeiθ )
∑

k |ik ||i1, ...iL〉, (F3)

where
∑
{ik} means summing over all combinations of

{i1, ...., iL}, and
∑
{ik},odd means summing over all combina-

tions whose sum is odd. Since the normalized ground state is
given by

|�(θ )〉 := 1√〈MPS|MPS〉 |MPS〉 (F4)

= 1√∑
{ik},odd(λ2)

∑
k |ik |

∑
{ik},odd

i(iλeiθ )
∑

k |ik ||i1, ...iL〉,

(F5)

the Berry connection A (θ ) is

A (θ ) = 〈�(θ )| ∂
∂θ
|�(θ )〉 (F6)

= 1∑
{ik},odd(λ2)

∑
k |ik |

∑
{ik},odd

(
i
∑

k

|ik|
)

(λ2)
∑

k |ik |

(F7)

= λ2∑
{ik},odd(λ2)

∑
k |ik |

(
d

dλ2

∑
{ik},odd

(λ2)
∑

k |ik |
)

(F8)

= L

(
1− (1+ λ2)L−1 − (1− λ2)L−1

(1+ λ2)L − (1− λ2)L

)
. (F9)

Note that we used the identity

∑
{ik},odd

(λ2)
∑

k |ik | = (1+ λ2)L − (1− λ2)L

2
(F10)

in the last line. Since the phase of the state differs by a factor
of −1 between θ = 0 and θ = π , the Berry phase in periodic
systems iηP, including this contribution, is

eiηP = exp

[
iLπ

(
1− (1+ λ2)L−1 − (1− λ2)L−1

(1+ λ2)L − (1− λ2)L

)
+ iπ

]

(F11)

= exp

[
−iLπ

(1+ λ2)L−1 − (1− λ2)L−1

(1+ λ2)L − (1− λ2)L + i(L + 1)π

]
.

(F12)

Similarly, we can compute the Berry phase in antiperiodic
system

eiηAP = exp

[
iLπ

(
1− (1+ λ2)L−1 + (1− λ2)L−1

(1+ λ2)L + (1− λ2)L

)]

(F13)

= exp

[
−iLπ

(1+ λ2)L−1 + (1− λ2)L−1

(1+ λ2)L + (1− λ2)L + iLπ

]
.

(F14)

Note that since |{Ai(θ ), 12}〉 is 2π periodic, there is not an
additional phase iπ .

The difference of values of η is

iηP − iηAP = iπ + i
4πLλ2(1+ λ2)(1− λ2)

(1+ λ2)2L − (1− λ2)2L
, (F15)

and since the second term converges to zero as L to ∞, the
ratio

eiηP

eiηAP
(F16)

exponentially converges to −1.
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