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Spin-charge separation in two dimensions: Spinon-chargon gauge theories from duality
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Strong interactions between electrons in two dimensions can realize phases where their spins and charges
separate. We capture this phenomenon within a dual formulation. Focusing on square lattices, we analyze the
long-wavelength structure of vortices when the microscopic particles—electrons or spinful bosons—are near
half-filling. These conditions lead to a compact gauge theory of spinons and chargons, which arise as the
fundamental topological defects of the low-energy vortices. The gauge theory formulation is particularly suitable
for studying numerous exotic phases and transitions. We support the general analysis by an exact implementation
of the duality on a coupled-wire array. Finally, we demonstrate how the latter can be exploited to construct parent
Hamiltonians for fractional phases and their transitions.
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I. INTRODUCTION

Electrons have charge e and spin-1/2—this fundamen-
tal property determines the possible excitations of most
condensed-matter systems. The basic quasiparticles of most
metals and insulators carry the same quantum numbers and
may thus be viewed as “dressed” electrons. In magnets, the
charge degrees of freedom are frozen at low energies, and
the elementary quasiparticles are quantized spin waves. Mi-
croscopically, these are spin-triplet electron-hole pairs. More
generally, excitations comprised of finitely many electrons can
either have odd charge and half-integer spin or even charge
and integer spin. Violations of this rule imply the fractional-
ization of electrons, e.g., a splitting between their spin and
charge. Experimental indications of this phenomenon arise,
e.g., in high-temperature superconductors [1,2] and frustrated
magnets [3–7].

Excitations with fractional quantum numbers cannot be
created locally or captured with perturbative methods. To
describe them efficiently, “dual” formulations, which encode
microscopic degrees of freedom nonlocally, have proven very
powerful. A well-known example is the boson-vortex dual-
ity in two dimensions [8,9]. The vortices are the elementary
topological excitations of a bosonic superfluid but can be
introduced without reference to any specific state. A vortex
operator at r is defined to yield a phase αr,r′ , with

∮ ∇α · ds =
2π , when interchanged with a boson operator at r′. For this
relation to be satisfied, the vortex must be nonlocal in terms
of the microscopic bosons. Conversely, a microscopic boson is
represented nonlocally in terms of vortices, i.e., it is a “vortex
in the vortex.”

The utility of this duality for capturing fractionalization
follows directly from the conjugate nature of bosons and
vortices. Periodicity of the one implies a specific quantiza-
tion of the other, similar to position and momentum. For
example, condensation of vortices with a flux of 4π (in units
of h̄c/e) but not the elementary 2π ones [10,11] results

in a phase with half-charge excitations. Systems describ-
able as bosons at half-filling may exhibit this type of vortex
condensation. The average boson number translates to a π -
flux background for the vortices, which leads to their band
structure exhibiting two degenerate valleys. We thus expand
each lattice vortex into two “low-energy” vortices as V̂R ∼
v̂1,Rψ1,R + v̂2,Rψ2,R, where ψi are linear combinations of vor-
tex wave functions at the two minima. Condensing the vortex
pair v1v2 but not individual vortices may become energeti-
cally favorable, e.g., due to their transformations under lattice
symmetries.

This perspective on fractionalization has been explored
in quantum magnets [12–14] and superconductors [15] (see
also Ref. [16] for a one-dimensional analog). In the former
case, the spins are represented through hard-core bosons,
which are at half-filling for vanishing magnetization. The
condition for two low-energy vortex flavors is thus satisfied.
Phases resulting from v1v2 condensation exhibit fractional-
ization in the spin sector, i.e., they host spin-1/2 neutral
excitations dubbed spinons. In superconductors, spin-singlet
Cooper pairs play the role of the microscopic bosons. The con-
dition for two low-energy vortex flavors is met at electronic
half-filling. In this case, fractionalization occurs in the charge
sector instead; the phases with 〈v1v2〉 �= 0 host charge-e/2
excitations.

In this paper, we apply a similar approach to both the spin
and charge sectors of two-dimensional bosonic or electronic
systems. Specifically, we insist that total charge and one spin
component are conserved, i.e., we study models with U (1) ×
U (1). A larger SU (2) spin-rotation symmetry may still be
present but will not be kept manifest in our dual description.
Its status is thus similar to the case of Abelian bosoniza-
tion in one dimension [17]. We find that at low energies,
the dual theory is comprised of three vortices. The topolog-
ical defects therein encode spinons and chargons—fractional
quasiparticles that carry the spin and charge, respectively, of
the microscopic electrons or bosons.
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The rest of the paper is organized as follows: In Sec. II,
we introduce the spin-charge separation duality in three steps.
We begin with a discussion of topological defects and their
symmetries. Next, we formalize these considerations to derive
a field-theoretic duality. Finally, we provide a concrete imple-
mentation thereof within the coupled-wire framework. Two
generalizations of the duality are then provided in Sec. III.
In Sec. IV, we describe various symmetry-broken phases and
their transitions within the dual formulation. Section V applies
the coupled-wire implementation of the duality to derive par-
ent Hamiltonians for phases that host fractional excitations.
The paper concludes in Sec. VI with a discussion of possible
applications and extensions.

II. SPIN-CHARGE SEPARATION (SCS) DUALITY

We first formulate the duality for two conserved flavors
of bosons Bσ at half-filling. Initially, we treat each fla-
vor independently; interactions between different flavors will
eventually be included based on symmetries. The analysis
summarized in the introduction applies to each flavor sepa-
rately, and the dual formulation of the model contains four
low-energy vortices vσ,l . Their numbers are not separately
conserved. Specifically, the operators M̂σ ≡ v

†
σ,1vσ,2 have no

net vorticity and carry neither charge nor spin. As such, their
presence in any effective low-energy theory can only be ex-
cluded based on discrete symmetries. For example, Mσ must
be odd under lattice translations. Otherwise, there would be
a single minimum in the vortex band structure, despite the
π -flux background. Conversely, breaking translation symme-
try induces unit filling in a doubled unit cell. Adding the
operators Mσ to the half-filled theory yields a single species
of low-energy vortices.

Our interest lies in the translation-symmetric case. We
parametrize the vortex-mixing terms via M̂c ≡ M↑M↓ and
M̂s = M↑M†

↓. Both operators are translation-symmetric yet
transform nontrivially under other discrete symmetries, e.g.,
lattice rotations. Indeed, under square lattice symmetries, M̂s

and M̂2
c are invariant, but M̂c is not [15]. The higher symmetry

of M̂s compared to M̂c arises from a cancellation between
M↑,↓. Thus, vortex mixing is described by the Hamiltonian
density

HM ∼ λM̂ns
s + κM̂nc

c + H.c., (1)

with ns � nc. Our goal is to describe spin-charge separation
without committing to a specific set of symmetries, which
leaves nc,s unspecified.

The topological defects dσ,l in vσ,l encode the quasipar-
ticles of the theory (see Fig. 1). The microscopic bosons
are represented as 2π defects in both low-energy vortices
of matching spin, i.e., Bσ = dσ,1dσ,2. Single dσ,l describe
fractional excitations and do not carry well-defined phys-
ical quantum numbers that are independent of a specific
ground state. Still, it is beneficial to associate them with
half the quantum numbers of Bσ , i.e., charge e/2 and spin
±1/4. In particular, this perspective suggests introducing
charge-neutral spin- 1

2 spinons as bσ = dσ,2d†
−σ,1. Crucially,

the spinons do not acquire any nontrivial phases upon encir-
cling M̂s.

FIG. 1. Dual perspective on fractionalization of bosons at half-
filling. First line: A lattice-scale vortex in the microscopic boson
field is expanded into two low-energy vortices. Second line: A
microscopic boson is represented as the elementary defect in the
lattice-scale vortex and thus in both low-energy vortices. Defects in
an individual low-energy vortex describe fractional excitations.

The complete set of low-energy defects may be encoded
through bσ and dσ,1. Equivalently, we parametrize low-energy
vortices by the duals of bσ and dσ,1, i.e., vbσ

≡ vσ,2 and vdσ
≡

vσ,1v−σ,2. In terms of the new vortex variables, the operators
Mc,s take the form

M̂c = v
†
d↑v

†
d↓v

2
b↑v

2
b↓ , (2a)

M̂s = v
†
d↑vd↓ . (2b)

When individual M̂s are permitted (ns = 1 in HM), the two fla-
vors vdσ

hybridize, and their band minima split. We discard the
one at higher energies and replace vdσ

with the linear combina-
tion vc ∼ ∑

σ vdσ
. Its dual, c ≡ d↑,1d↓,1, is a spinless charge-e

“chargon.” As the elementary defect in a single vortex, it is
at integer filling. Following the same logic, we conclude that
also the spinons are at integer filling. We address this apparent
paradox in Sec. II A 1 and within the coupled-wire realization
of Sec. II B. The various quasiparticles are summarized in
Table I.

TABLE I. Representation of various quasiparticles through de-
fects in the low-energy vortices and their (apparent) quantum
numbers.

Quasiparticle Defects in Charge Spin
v↑,1 v↑,2 v↓,1 v↓,2

Boson B↑ 2π 2π 1 1/2
Boson B↓ 2π 2π 1 −1/2
Spinon b↑ 2π −2π 0 1/2
Spinon b↓ −2π 2π 0 −1/2
Chargon c 2π 2π 1 0
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A. Field-theoretic derivation

To formally implement the duality, we describe the micro-
scopic lattice bosons with the (Euclidean) action

SBoson =
∫

τ

∑
r,σ

B∗
r,σ (∂τ − iAσ

τ,r)Br,σ

+
∫

τ

∑
r,r′,σ

tr,r′ B∗
r,σ eiAσ

r,r′ Br′,σ + · · · (3)

Here Aσ ≡ Ac + σAs with σ = +,− for spin ↑,↓. Ac is the
electromagnetic vector potential, and As is a “spin” vector
potential, which we include to keep track of the spin degree
of freedom through the manipulations below. The ellipses
denote symmetry-allowed short-range interactions within and
between species; we insist on translation symmetries and con-
servation of spin and charge. Additional discrete symmetries,
such as lattice rotations, may play an important role and will
also be discussed when they do.

The standard boson-vortex duality expresses the conserved
three currents of the two species as field strengths of emergent
noncompact gauge fields ãσ . The latter thus couple to the
external probing fields Aσ via the Lagrangian density

LAda = i
2π

∑
σ

Aσ dãσ . (4)

Vortex configurations in Bσ are encoded by vortices Vσ that
reside on dual lattice sites r̃ [8,9]. The model LBoson is then ex-
pressed through the lattice vortex action SVortex = SV − SAda

with

SV =
∫

τ

∑
r̃,σ

V ∗
r̃,σ

(
∂τ − iãσ

τ,r̃

)
Vr̃,σ

+
∫

τ

∑
r̃,r̃′,σ

t̃r̃,r̃′V ∗
r̃,σ eiãσ

r̃,r̃′Vr̃′,σ + · · · (5)

Here, the ellipses include symmetry-allowed interactions for
the vortices and kinetic terms for the gauge fields. The latter
arise with nonuniversal coefficients of order unity.

Half-filling of the microscopic bosons translates to a back-
ground flux of 〈� × aσ 〉 = π per dual-lattice plaquette. We
choose a gauge for this flux, which requires (at minimum) a
two-site unit cell. Consequently, there are two energy bands
per vortex species. The lower band exhibits two degenerate
minima in the reduced Brillouin zone, reflecting that physical
symmetries are not broken by gauge choices. We expand each
vortex Vσ around its minima and discard the upper band.
These steps yield four low-energy vortices vσ,l , which trans-
form nontrivially under lattice symmetries (see Refs. [12,15]).

By discarding the upper bands, we have eliminated half of
the degrees of freedom. Consequently, vσ,l (unlike Vσ ) provide
a dual description for LBoson only near half-filling and at low
energies. We describe them by the continuum Lagrangian
density Lv = ∑

l Ll − LadA with

Ll =
∑

σ

[∣∣(∇μ − iãσ
μ

)
vσ,l

∣∣2 − m|vσ,l |2 + · · · ]. (6)

Here, the ellipsis includes kinetic terms for the gauge fields
ãσ , symmetry-allowed interactions such as |vσ,l |4, and the
vortex-mixing terms of Eq. (1).

We proceed by rewriting the vortex theory in terms of vbσ

and vdσ
defined in Sec. II. The former are identical to vσ,2 and

are thus described by L2 of Eq. (6). The latter couple to both
ã↑, ã↓ with unit charge. They are thus governed by

Ld =
∑

σ

[∣∣(∇μ − iãc
μ

)
vdσ

∣∣2 − md |vdσ
|2]

+ [λ(v∗
d↑vd↓ )ns + H.c.] + · · · , (7)

with ãc = ã↑ + ã↓. We have explicitly included the first term
of Eq. (1) to emphasize its key role here. In particular, for
ns = 1, the second line in Ld amounts to substituting vdσ

→
vc in the first line. This value of ns is consistent, e.g., with
translations and rotations on a square lattice. Indeed, defining
vσ,l as in Ref. [15], we find that vd↑ and vd↓ interchange under
x̂ or ŷ translations and are invariant under C4 rotations.

We focus on ns = 1 and perform a second set of boson-
vortex dualities. Specifically, we dualize each of the three
low-energy variables vc, vb↑ , vb↓ separately into c, b↑, b↓ and
three new emergent gauge fields a, a↑, a↓. Subsequently, in-
tegrating over ãσ enforces the two constraints aσ

μ = Aσ
μ − aμ.

We arrive at LSCS
Boson = Lc + Lb + La with

Lc = ∣∣(∇μ − iaμ − iAc
μ

)
c
∣∣2 + · · · , (8a)

Lb =
∑

σ

∣∣(∇μ + iaμ − iσAs
μ

)
bσ

∣∣2 + · · · , (8b)

La = κMnc
c + H.c. + · · · , (8c)

where the ellipsis includes a Maxwell term for a with a coef-
ficient of order unity. The κ term introduces 4πnc monopoles
into the gauge field. The latter is thus compact, in contrast to
ãσ . Equation (8) is a key result of our paper. It describes a
representation of microscopic bosons as Bσ = bσ c. Crucially,
deriving it did not require us to insist on such a decomposition
on the lattice scale nor invoke a specific saddle point. Instead,
it arose naturally from the low-energy properties of vortices
that encode bosons at half-filling.

1. Connection to partons

The Lagrangian in Eq. (8) strongly resembles the outcome
of parton approaches [1,18]. Specifically, the microscopic bo-
son operator may be expressed as

Bσ,r = b̃σ,rc̃r, (9)

with the constraint c̃†
r c̃r = ∑

σ b̃†
σ,rb̃σ,r. This representation

is suitable for exploring saddle points where spinons b̃ and
chargons c̃ decouple, i.e.,

B†
σ,rBσ,r′

mean-field−−−−−→ χb̃σ
c̃†

r c̃r′ + χc̃b̃†
σ,rb̃σ,r′ , (10)

with χb̃σ
= 〈b̃†

σ,rb̃σ,r′ 〉 and χc̃ = 〈c̃†
r c̃r′ 〉. Phase fluctuations of

the mean-field parameters χc̃,b̃ take the form of an emergent
U (1) gauge field. The low-energy field theory for c̃, b̃ is thus
of the form given by Eq. (8).

The density of b̃σ spinons is identical to that of Bσ . In
particular, at half half-filling, vortices in either exhibit two
minima in the band structure. By contrast, the spinons bσ

introduced above are each dual to a single low-energy defect,
indicating that they are at integer filling. Still, the total number
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of bσ spinons and Bσ agree. The resolution to this apparent
paradox lies in the steps between Eqs. (5) and (6). Discarding
the high-energy band amounts to working with a doubled
unit cell, for which the microscopic bosons are at unit filling.
Crucially, we have not committed to any specific choice of
unit cell at this stage and thus did not break any symmetries.
However, the lattice symmetries are no longer manifest. They
are broken, e.g., by the seemingly innocuous formation of a
Mott state with one spinon bσ per unit cell.

The partons b̃ permit more straightforward access to some
phases, e.g., ones that break lattice symmetries. On the other
hand, the formulation in terms of b allows more direct access
to unconventional phase transitions (cf. Sec. IV). Finally, the
dual field theory has a gauge-field coupling of order unity, as
in the conventional boson-vortex duality [8,9]. By contrast,
the gauge-field coupling in parton-based derivations is for-
mally infinite at the lattice scale. Approximate methods such
as variational techniques may thus be more reliable in the dual
formulation.

2. Fermions

A fermionic version of Eq. (8) is readily generated via
flux attachment [19,20]. There are multiple ways to achieve
this, and the most suitable choice depends on the system in
question. In the quantum Hall context, statistical flux quanta
are typically bound to the electric charge [21]. Alternatively,
Ref. [11] considered flux attachment to the spin and described
various superconductors. Either of these choices yields a
fermionic analog of Eq. (8). Here, we adopt a different pre-
scription that closely aligns with the spirit of the derivation
above.

We introduce independent Chern-Simons gauge fields for
each species and attach fluxes with opposite signs. Formally,
we construct the fermionic theory as

LFermion = LBosons

∣∣
Aσ →Aσ +aσ

CS
+ LCS, (11)

where the statistical gauge fields aσ
CS are governed by

LCS = i
∑

σ

σ

4π
aσ

CSdaσ
CS. (12)

Notice that LFermion is symmetric under time reversal, with T :
aσ

CS → a−σ
CS . The presence of LCS does not affect the manipu-

lations performed above. To obtain the fermionic duality, we
replace Aσ → Aσ + aσ

CS in Eq. (8) and add LCS to both sides.
Shifting the gauge field according to a → a + 1

2 (a↑
CS + a↓

CS)
decouples the chargon from the Chern-Simons gauge fields
and changes the spinon Lagrangian to

L′
b =

∑
σ

∣∣(∇μ + iaμ + iaσ
CS,μ − iσAs

μ

)
bσ

∣∣2 + · · · (13)

Finally, the model L′
b + LCS describes fermionic spinons min-

imally coupled to the dynamical gauge field a and the probing
field σAs.

We have thus achieved a representation of microscopic
fermions Fσ in terms of a bosonic chargon and fermionic
spinons as Fσ = fσ c. We point out that the spinons’ inte-
ger filling (cf. Sec. II A 1) implies that metallic states with
uncompensated particle or hole pockets are beyond the dual
low-energy theory.

3. Doping

We derived the spin-charge separation duality specifically
for the case of half-filling. However, the presence of Aσ on
either side suggests that they remain operable after doping
the system. Indeed, small deviations of the filling amount
to an additional flux 2πδn per plaquette for the lattice vor-
tices. For δn  1, the additional flux can be incorporated
perturbatively after introducing the low-energy vortices. The
flux experienced by the latter acts as a chemical poten-
tial for the chargons and spinons, modifying their density
accordingly.

B. Coupled-wire realization

To implement the schematic manipulations on a concrete
model, we use the “coupled-wire” framework. There, duality
can be established by an explicit, nonlocal mapping between
quantum partition functions. All the ingredients required for
deriving the SCS-duality are readily available: References
[22,23] implemented boson-vortex duality and flux attach-
ment. Using these results, retracing the steps leading to Eq. (8)
and its fermionic counterpart is straightforward. We derive the
mapping in Appendix A and summarize only the final result
here.

We consider an array of one-dimensional wires extend-
ing along the x̂ direction and labeled by integers y. Each
wire hosts electrons close to half-filling, i.e., with kF ≈
π
2 , and is described by a Luttinger-liquid Hamiltonian.
The long-wavelength expansion of the electron operators
is

ψy,σ (x) = eikF xψy,σ,R(x) + e−ikF xψy,σ,L(x) + · · · (14)

Each species of fermionic spinons resides on half the dual
wires ỹ ≡ y + 1/2 [24]. We expand them analogously as

fỹ,σ (x) = ei2kF x fỹ,σ,R(x) + e−i2kF x fỹ,σ,L(x) + · · · , (15)

with σ =↑ for odd ỹ and σ =↓ for even ỹ. By contrast, the
bosonic chargons occupy all wires. They are expanded as

c̃y(x) = cy(x)[1 + ei4kF xPy(x) + H.c.] + · · · , (16)

where Py(x) creates a 2π phase slip in cy at position x. We
will suppress the x dependence of operators and the wire index
when unneeded from here on.

Individual spinons and chargons are nonlocal. This aspect
is reflected in their intrawire kinetic terms, which take the
form of Luttinger liquids minimally coupled to an emergent
photon [22–25]. Nevertheless, many of their basic processes
are locally expressible. For the chargons, we find [26]

Py = ψ
†
y,↑,Rψy,↑,Lψ

†
y,↓,Rψy,↓,L, (17a)

c†
y+1cy =

{
ψ

†
y+1,↓,Lψy,↓,R y even,

ψ
†
y+1,↑,Rψy,↑,L y odd.

(17b)

In particular, a Mott state of bosonic chargons, driven by the
proliferation of phase slips Py, corresponds to a Mott insulator
of microscopic electrons on each wire.
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Spinon interwire hopping is conveniently expressed in
terms of the microscopic spin-densities near ±2kF , i.e., �sR =
ψ

†
τ,R �στ,τ ′ψτ ′,L and �sL = ψ

†
τ,L �στ,τ ′ψτ ′,R, as

f †
2ỹ+1,↑,R f2ỹ−1,↑,L = s+

2y+1,Rs−
2y,L, (18a)

f †
2ỹ−2,↓,R f2ỹ,↓,L = s−

2y,Ls+
2y−1,R. (18b)

Notice that �sR = P�sL. Consequently, in the Mott state where
〈P〉 �= 0, the two are identical and reduce to the Néel vector.
Intrawire spinon umklapp processes translate to

f †
ỹ,σ,R fỹ,σ,L = ψ

†
y+1,σ,Rψy+1,σ,Lψ

†
y,σ,Rψy,σ,L, (19)

with σ =↓ for even ỹ and σ =↑ for odd. These, along with the
interwire hopping, facilitate a local description for any spinon
band structure.

Finally, certain microscopic single-fermion operators have
a simple expression in terms of c and f . We find

ψ2y,σ,L = c2y f2y− σ
2 ,σ,L, (20a)

ψ2y+1,σ,R = c2y+1 f2y+ σ
2 ,σ,R. (20b)

These microscopic fermions become identified with their
spinon counterparts once chargons are condensed. We elabo-
rate on this situation and other sample phases for the chargons
in Sec. V.

III. GENERALIZATIONS

The derivation in Sec. II follows three readily-
generalizable steps: (i) Duality is performed on the
high-energy degrees of freedom. (ii) The low-energy limit
is taken within the dual description. (iii) Another duality is
applied to the long-wavelength continuum variables. We now
describe two additional examples of this approach.

A. Interchanging spin and charge

In the duality of Sec. II, we describe the microscopic
bosons in terms of one chargon and two spinons. The structure
of low-energy defects dσ,l suggests an alternative description
in terms of a single spinon s and two chargons h±. To construct
them, we parametrize the low-energy vortices by

v+ = v↑,1, v↑ = v↓,1v
†
↑,1,

(21)
v− = v

†
↓,2, v↓ = v↑,2v

†
↓,2.

The chargons h+ = d↑,1d↓,1 and h− = d†
↑,2d†

↓,2 are dual to v±.

Moreover, Ms = v
†
↓v↑, so for ns = 1 the low-energy vortices

vσ hybridize into a single vortex vs ∼ v↑ + v
†
↓ whose dual is

s = d†
↓,1d↑,2.

The field-theoretic derivation proceeds as before, and we
arrive at LCSS

Boson = Lh + Ls + La with

Ls = ∣∣(∇μ − iaμ − iAs
μ

)
s
∣∣2 + · · · , (22a)

Lh =
∑
τ=±

∣∣(∇μ + iaμ − iτAc
μ

)
hτ

∣∣2 + · · · , (22b)

and La as in Eq. (8c). Here, microscopic bosons are rep-
resented as B↑ = h+s and B↓ = h†

−s†. This charge-spin
separation (CSS) is complementary to that of Sec. II, and

either may be preferable, depending on the specific question.
As before, a fermionic representation F↑ = ψ+s and F↓ =
ψ

†
−s† with a bosonic spinon s and fermionic chargons ψ± is

obtained via flux attachment.

B. N flavors of bosons

So far, we considered the most prevalent physical setup,
i.e., two flavors at half-filling. However, the SCS-duality is
readily adapted for N � 2 flavors of microscopic bosons, all at
filling ν = 1

N . Here, we describe the generalized SCS-duality
and focus on the characterization of topological defects at low
energies. The generalized duality reduces to the one in Sec. II
for N = 2.

The lattice vortices dual to each flavor α = 1, . . . N of the
1
N -filled microscopic bosons experience a background flux of
2π
N . Their band structures thus exhibit N degenerate valleys in

the lowest energy band. We label these minima by l = 1, . . . N
and expand each flavor of lattice vortices. The dual description
is thus comprised of N2 low-energy vortices. We describe
them by vα,l , defined such that x̂ translations cyclically per-
mute them, l → l + 1 mod N , and ŷ translations introduce
l- but not α-dependent phases.

With this parametrization, we construct (N − 1)2 vortex-
mixing terms analogous to Ms of Sec. II, i.e.,

Mα,l
s = v

†
α,lv

†
α+1,l+1vα,l+1vα+1,l (23)

with l, α = 1, . . . N − 1. These have no net vorticity and are
invariant under ŷ transitions. Under x̂ translations, they per-
mute according to l → l + 1 mod N − 1. Consequently, a
translation-symmetric theory permits all Mα,l

s to linear order.
Each Ms introduces hybridization between two vortices, and
the number of independent low-energy vortices reduces to
2N − 1. Equivalently, the individual topological defects dα,l

in vα,l are confined. By contrast, the composites

bα =
∏

j

dα, j

(∏
β

dβ,1

)†

, cl =
∏
β

dβ,l , (24)

with α = 1, . . . N and l = 1, . . . N − 1, are unaffected by the
vortex hybridizations. They are thus analogous to the spinons
and chargons of Sec. II.

Microscopic bosons can be represented as

Bα =
∏

j

dα, j = bαc1, (25)

without reference to ci �=1. It is thus appealing to attribute the
microscopic charge to c1 and the flavor to bα . The remaining
ci �=1 are not associated with these quantum numbers and may
condense without breaking physical symmetries [27] Still,
their state may affect the microscopic phase. For example,
we expect that a gapped state for some of the ci �=1 breaks
lattice symmetries. The gauge theory describing bα and c ≡ c1

mirrors the N = 2 case. We introduce a probing field Aα for
each flavor and define Ac = 1

N

∑
β Aβ . The dual theory is

LSCS
N-Boson = Lb,N + Lc + La, with

Lb,N =
∑

α

∣∣(∇μ + iaμ − iAα,μ + iAc
μ

)
bα

∣∣2 + · · · , (26)

and Lc,La of Eq. (8).
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IV. SIMPLE PHASES AND PHASE TRANSITIONS

The long-wavelength description derived in Sec. II read-
ily captures superfluid and insulating phases with or without
magnetic order. Their analysis is relatively standard. The
vortex formulation, Eqs. (6) and (7), closely relates to dual
descriptions of quantum magnets [12,13] and superconductors
[15]. The spinon-chargon formulation, Eq. (8), has a struc-
ture common to the low-energy theory obtained via parton
decompositions. However, as discussed in Sec. II A 1, the two
are not the same. We illustrate the differences by focusing on
relatively simple phases and transitions, summarized in Fig. 2.
Specifically, we describe phases of bosons characterized by
spin rotation symmetry, particle number conservation, trans-
lations, and C4 rotations.

A. Phases

Spatially-homogeneous phases entirely determined by the
continuous symmetries are straightforward to analyze in the
vortex and the spinon-chargon formulations. Both symmetries
are broken in a magnetically ordered superfluid. Here, the
two spinons and the chargon each form a condensate. Two of
the three associated phase fluctuations correspond to the two
microscopic Goldstone modes; the third gaps out along with
the emergent gauge field a via the Higgs mechanism. In the
dual formulation, all vortices are massive. The gauge fields ãσ

remain gapless and encode the two Goldstone modes.
When only spin-rotation symmetry is broken, a

magnetically-ordered insulator forms. Such a phase arises
when both spinons are condensed, and the chargon forms
a Mott state. The total phase fluctuations of both spinon
condensates consume the emergent gauge field a and
become massive. Their relative fluctuations describe a single
Goldstone mode, i.e., spin waves. In the vortex formulation,
vc is condensed and generates a Higgs mass for ãc. The
vortices vbσ

are massive, and the gapless photon ãs encodes
the spin waves.

The converse situation where only particle number con-
servation is broken arises in paired superfluid of charge-2e
singlets. Here, the chargon and the product of both spinons
acquire nonzero expectation values, yet individual spinons are
gapped. This phase is expressed most naturally within the
CSS formulation of Eq. (22). There, both chargons h± are
condensed, and the spinon s forms a Mott state. This paired
superfluid is thus related to the magnetic insulator via the
interchange of spinons and chargons. The vortex description
follows analogously: ãs is swallowed by fluctuations of vs

while ãc remains gapless and encodes the superfluid phase
fluctuations.

Finally, if both continuous symmetries remain intact, the
system realizes a trivial or fractional nonmagnetic insulator.
In the former case, spatial symmetries must break. This fact
is not readily apparent in the continuum theory of Eq. (8);
the spinons are at unit filling, so a trivial symmetric insulator
appears possible. Recall, however, that their filling refers to
an enlarged unit cell (cf. Sec. II A 1), whose specifics are
immaterial when they are condensed. By contrast, if at least
one spinon is gapped, the specific unit cell is cemented. The
spatial symmetry breaking is more readily apparent in the

FIG. 2. Phases and transitions discussed in Sec. IV. The phases
covered by the red (right) circle have a simple description in terms of
the SCS variables. Specifically, each spinon and chargon either forms
a Mott state or a condensate (as indicated in the figure). The same
applies to phases covered by the blue (left) circle and CSS variables.

vortex formulation. There, a Mott phase of the σ spinons
corresponds to either vσ,2 or v−σ,1 obtaining an expectation
value. Both such condensates transform nontrivially under
spatial symmetries (cf. Sec. II).

Within the vortex formulation, these nonmagnetic insula-
tors are captured by Eq. (6), with m < 0. On a square lattice,
the leading interaction terms are

L′
v =

∑
l

[u|v↑,l |4 + u|v↓,l |4 + gs|v↑,l |2|v↓,l |2]

+
∑

σ

[g1|vσ,1|2|vσ,2|2 + g2|vσ,1|2|v−σ,2|2], (27)

and vortex mixing is described by Eq. (1) with ns = 1 and
nc = 2. In Sec. II, we took the limit λ → ∞ first and thereby
reduced the available degrees of freedom from four to three.
It is instructive also to follow a complementary approach, i.e.,
first analyze L′

v and then add Eq. (1) as a perturbation.
For negative g1, g2, gs, all vortices vσ,l acquire nonzero

expectation values. Two of the four resulting phase fluctua-
tions are consumed by ãσ . The remaining two are rendered
massive by the terms in Eq. (1). The κ term implies four
degenerate states [12,15], each with a different symmetry-
breaking pattern. The ground state is chosen spontaneously.
In the spinon-chargon formulation, all matter fields form Mott
states. The low-energy theory is described by La of Eq. (8c),
with nc = 2. In particular, the relevant monopole contribution,
∼M2

c , renders the gauge field confining and spontaneously
breaks spatial symmetries. This phase is dubbed nonmagnetic
insulator I in Fig. 2.

As a final example, consider the nonmagnetic insulator
where vσ,2 condense, and vσ,1 are massive, or vice versa. The
two cases are related by x̂ translations and may arise for large,
positive g1,2. Due to ãσ , the resulting phase is gapped even
without the terms in Eq. (1). In the spinon-chargon formu-
lation of this phase, both spinons form Mott states. The two
possible ground states correspond to a nonzero expectation
value for c or the composite cb↑b↓. Either carry unit charge
under the gauge field a and render it massive via the Higgs
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mechanism. This phase is dubbed nonmagnetic insulator II in
Fig. 2.

Fermionic phases follow straightforwardly from the
bosonic ones via the flux attachment in Eq. (12). For exam-
ple, Mott insulators of bosons correspond to fermionic band
insulators, and a boson superfluid to an integer quantum Hall
state of fermions. In particular, when both bosons are super-
fluid, the corresponding fermions realize a quantum spin Hall
state. Finally, the paired superfluid of charge-2e singlets corre-
sponds to an s-wave superconductor. The linear combination
aCS

↑ + aCS
↓ is massive due to its coupling to the Cooper-pair

condensate; aCS
↑ − aCS

↓ corresponds to the Goldstone mode.

B. Phase transitions

The transitions between the phases described above are
illustrated in Fig. 2. They can be readily deduced based on
symmetry considerations. For completeness, we still provide
their vortex and spinon-chargon descriptions.

We begin with transitions that do not involve any change
in spatial symmetries. Such is the case, for example, for the
transition between the magnetic insulator and magnetic su-
perfluid. The two phases are distinct by charge conservation,
which is spontaneously broken in the superfluid. Conse-
quently, the transition must fall into the universality class
of the classical three-dimensional XY model. The critical
fluctuations decouple from the gapless spin waves, which
exist on both sides of the transition due to the broken spin
rotation symmetry. In the spinon-chargon formulation, both
spinons are condensed throughout the transition. Their rela-
tive phase fluctuations correspond to the gapless Goldstone
mode. Their total phase fluctuations are rendered massive due
to the gauge field a, and the interactions between chargons
are short ranged. The latter then undergoes a conventional
superfluid–Mott insulator transition. In the dual formulation,
the vortices vbσ

are massive in both phases, and the photon ãs

describes the gapless spin waves. It decouples from ãc and the
critical fluctuations of vc as the latter undergoes a (dual) Mott
insulator–superfluid transition [9].

Transitions determined by spatial symmetries are subtler
than those discussed above. Consider, for example, nonmag-
netic insulators I and II of Sec. IV. The combinations v

†
↑,1v↓,1

and v
†
↑,2v↓,2 are condensed on both sides of the transition due

to the presence of Ms in Eq. (1). We encode the remaining fluc-
tuations by the U (1) variables �l = vl,↑vl,↓. The transition is
then governed by

L� =
∑

l

[∣∣(∇μ − iãc
μ

)
�l

∣∣2 − α|�l |2 + β|�l |4
]

+ γ |�1|2|�2|2 + κ[(�†
1�2)2 + H.c.], (28)

with positive α, β, γ . The first line of L� describes two U (1)
variables that condense independently. The second line con-
sists of competing coupling terms. For small γ , the κ term
locks the relative phases of the two condensates and gaps
the corresponding Goldstone mode. The resulting phase is
nonmagnetic insulator I. By contrast, for sufficiently large
γ , it is preferable to have either �1 or �2 massive. Here,
nonmagnetic insulator II is realized. The gauge field ãc is

massive on both sides of the transition and thus does not
directly enter the critical properties.

Perhaps the most interesting situation arises when both
spatial symmetries and continuous U (1) symmetries play a
role at the transition. A well-known example is the transition
between an easy-plane antiferromagnet and a valence bond
solid [13,14]. In Fig. 2 these phases correspond to the mag-
netic insulator and nonmagnetic insulator I. In both phases, c
is trivially gapped and we recover the known critical theory
for this transition, i.e., Ldeconfined = Lb + La, with Lb,La of
Eq. (8). The same critical theory also describes the transition
between the nonmagnetic insulator I and the paired superfluid.
This result is most apparent using the CSS duality, i.e., by
replacing c → s, bσ → h±. Here, the spinon s is in a Mott
state, and the chargons h± are deconfined at the transition.

V. PARENT HAMILTONIANS OF FRACTIONAL PHASES

The operator mappings summarized in Sec. II B readily
generate coupled-wire models for a wide variety of phases.
Any local model where spinons and chargon are separately
conserved maps onto a local model of microscopic electrons.
We exemplify this through three natural phases for the char-
gon.

First, the chargon can form a Mott insulator. A model
achieving this is given by the Hamiltonian density

HMott = Py + P†
y . (29)

Microscopically, HMott maps onto an on-site density-density
interaction for the electrons [cf. Eq. (17a)]. When dominant,
this interaction localizes the electron charge. Consequently,
the system realizes a pure spin model. In particular, spin-
exchange terms are encoded in spinon hopping as described
by Eq. (18) with �sR/L → �N , the Néel vector. The description
of spin models in terms of spinons coupled to a compact gauge
field was thoroughly analyzed in Ref. [24]. In particular, var-
ious examples of trivial and fractional phases were described
in detail.

Alternatively, the chargon can realize a superfluid phase,
e.g., when its nearest-wire hopping is dominant. Once cy

spontaneously acquires an expectation value, the gauge field
acquires a Higgs mass. Microscopically, nearest-wire hopping
for the chargon translates to

Hm = ψ
†
2y+1,↓,Lψ2y,↓,R + ψ

†
2y,↑,Rψ2y−1,↑,L + H.c. (30)

The same Hamiltonian was instrumental to the analy-
ses of Mott transitions out of various superconductors in
Ref. [28]. There, it was constructed to permit the countering
of interwire charge transfer without competing against the
superconducting parent Hamiltonian. Here, Hm places half of
the long-wavelength electrons into a trivially gapped phase.
The remaining electrons are identified with the spinons by
the chargon-condensate [cf. Eq. (20)]. Notice that the local
electron model H[ψσ ] obtained from Hm[c] + H ′[ fσ ] does not
microscopically coincide with H ′[ψσ ]. However, we expect
H[ψσ ] and H ′[ψσ ] to realize the same phase. This property
was shown for an s-wave superconductor in Ref. [28] and is
demonstrated for the K = n state in Appendix B.
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The chargon can also form fractional phases. For example,
a ν = 1

2n Laughlin state for cy arises when the interaction

HQH = c†
y+1(Py+1Py)ncy + H.c. (31)

dominates. The gauge field a becomes massive due to an
induced Chern-Simons action. The spinons are then compos-
ite fermions. Specifically, they are related to the microscopic
electrons by the attachment of 4πn flux independent of their
spin. They are natural variables for describing various spinful
quantum Hall states. Coupled-wire models HKML[ψσ ] for such
phases have been previously constructed, following a different
philosophy, in Refs. [29,30].

VI. DISCUSSION

We have analyzed spin-1/2 particles on a square lattice
near half-filling within a vortex formulation. Taking the long-
wavelength limit within the dual theory, we found a dynamical
decoupling of electrons into charge-neutral spinons and spin-
less chargons. The latter encode the emergent degrees of
freedom at various unconventional phase transitions, such
as between superconductors and valence bond solids. In ad-
dition, they readily capture various phases with fractional
excitations. As our analysis is tailored to nearly half-filled
systems, it takes into account the most important lattice effect
at the leading order. The impact of additional perturbations,
such as phonons, disorder, or spin-orbit coupling, can be read-
ily deduced from within the theory, based on symmetries and
relevance under renormalization.

Similar decompositions into spinons and chargons are of-
ten asserted on the lattice scale as the starting point of parton
approaches. These are more general than the dual formula-
tion and can access a broader range of phases. In particular,
parton field theories are not restricted to systems that are
close to the Mott transition. They thus provide little guidance
for finding microscopic systems that realize any given parton
ansatz. By contrast, our dual formulation utilizes only the
long-wavelength degrees of freedom near the Mott transition.
Consequently, we expect all phases discussed here to be ac-
cessible by weakly perturbing systems near such a transition.

The narrower applicability of the dual description is offset
by retaining more microscopic information. In coupled-wire
systems, the duality even provides an exact mapping be-
tween microscopic variables and gauge-theory quantities.
More generally, we expect the dual approach to be suitable
for properties that do not directly relate to symmetries and
thus difficult to incorporate in parton-based field theories.
A prominent example of such a property may be geometric
frustration. In its absence, on a square lattice, we found that
the long-wavelength structure leads to spinons at integer fill-
ing. Consequently, it does not readily permit spinon Fermi
surface states. Such states have been proposed, in particular,
for triangular lattices [18,31]. It would thus be very interesting
to perform a similar analysis there.

Our considerations apply to systems that conserve charge
and one spin component. We do not explicitly retain the full
SU (2) spin-rotation symmetry, which would be a fruitful av-
enue for future work. Instead, the charge and the conserved
spin component are treated on equal footing. Interchanging
them leads to an alternative decomposition of electrons into a

single spinon and a pair of chargons. Similarly, it maps certain
phases and transitions onto each other.

Another fruitful direction is the exploration of one-
dimensional analogues of the systems described here. Refer-
ence [16] showed that the transition between an Ising magnet
and VBS in one dimension shares many features of the Néel-
VBS transition with continuous spin-rotation symmetry in two
dimensions. Their finding is a nontrivial manifestation of the
close correspondence between the one-dimensional Kramers-
Wannier and two-dimensional boson-vortex dualities [32,33].
We expect that a similar analog exists for SCS-duality pre-
sented here. Its study may provide an interesting perspective
on phase transitions in one dimension and valuable lessons for
two-dimensional models.

Finally, we complemented the field-theoretic duality with
an exact microscopic implementation within the coupled-
wire framework. It readily yields parent Hamiltonians for
numerous fractional phases and the transitions between them.
Specifically, one can construct concrete models where the
charge (spin) response changes qualitatively, but the spin
(charge) gap remains. Such wire constructions are readily
translated to lattice Hamiltonians that may then be studied
numerically.
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APPENDIX A: COUPLED-WIRE DERIVATION
OF SCS-DUALITY

Here we derive the SCS-duality in an array of one-
dimensional systems, i.e., wires. Each wire, labeled by the
index y and extending along x̂, hosts spinful bosons By,σ at an
average filling of ρ0

σ = 1
2 . We use Abelian bosonization [17]

to encode the bosonic long-wavelength fluctuations through
pairs of conjugate fields �y,σ and �y,σ with the convention

By,σ = ei�y,σ , ρy,σ = ρ0
σ + 1

π
∂x�y,σ . (A1)

Here ρy,σ is the total density operator for spin- σ
2 bosons.

Each step in the field-theoretic derivation of the SCS duality
corresponds to a specific, nonlocal mapping for the bosonized
operators [22–25].

Step 1: First duality and low-energy vortices

The creation operator of a vortex Vσ ≡ ei�̃σ , and the cor-
responding density ρV

σ = 1
π
∂x�̃σ are expressible through the

conjugate variables [23]

�̃ỹ,σ =
∑

y′
sgn(y′ − ỹ)�y′,σ , (A2a)

�̃ỹ,σ = 1
2 (�y+1,σ − �y,σ ), (A2b)

with ỹ = y + 1
2 denoting dual wires. In the wire framework, it

is most convenient to work in a gauge where vortex hopping
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along the wire is translation invariant. As a consequence, the
two-degenerate valleys in the vortex band structure arise at
momenta ky = 0, π . Even and odd linear combinations of the
low-energy vortices then each reside on dual wires with a
specific parity. Specifically, we identify

v↑,1 = V2ỹ−1,↑, v↓,1 = V2ỹ,↓,
(A3)

v↑,2 = V2ỹ,↑, v↓,2 = V2ỹ−1,↓.

The operator Mσ defined in Sec. II translates to

My,σ = eiσ (−1)y (�̃ỹ,σ −�̃ỹ−1,σ ) = e−iσ (−1)y2�y,σ , (A4)

and is odd under translations along x. The operator ei2�c

with �c = (�↑ + �↓) introduce a 2π phase slip into both
spin species and is even under translations. Equation (A4)
identifies it with the operator Ms of Sec. II. Similarly, ei2�s

with �s = (�↑ − �↓) corresponds to the operator Mc. Notice
that C4 rotations are necessarily broken in the wire setup.
The operators Mc,s are both even under translations and C2

rotations.
The low-energy vortices couple minimally to two emer-

gent, noncompact gauge fields ãσ
ỹ governed by Maxwell

dynamics [23]. We express the four low-energy vortices via

�̃� = (�̃2,↑ �̃2,↓ �̃1,↑ �̃1,↓)
T
, (A5a)

�̃� = (�̃2,↑ �̃2,↓ �̃1,↑ �̃1,↓)
T
, (A5b)

and find that ãσ couple to the vortex densities via

Lcoupling = i

π

∑
σ

∂x
�̃� · �Qσ ãσ

0 , (A6)

with charges �Q↑ = (1 0 1 0) and �Q↓ =
(0 1 0 1).

Step 2: Reparametrization and hybridization of vortices

Following Sec. II, which introduced vbσ
= vσ,2

and vdσ
= vσ,1v−σ,2, we define their coupled-wire

implementations vbσ
≡ eiϕ̃b

σ and vdσ
≡ eiϕ̃d

σ . The phase
variables are conveniently expressed through the vector
�̃ϕ = (ϕ̃b

↑ ϕ̃b
↓ ϕ̃d

↑ ϕ̃d
↓ )

T
, which is related to �̃� as

�̃ϕ ≡ W �̃�; W =

⎛⎜⎝1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1

⎞⎟⎠. (A7)

The conjugate fields, given by �̃θ ≡ W −T �̃� encode the corre-
sponding densities. Consequently, vbσ

, vdσ
couple to the gauge

fields ãσ with charges �q = W �Q, in agreement with Eq. (7). In
terms of the new vortices we find Ms = v

†
d↑vd↓ . In its presence,

vdσ
hybridize. We, therefore, define a single vortex vc = eiϕ̃c

with

ϕ̃c
ỹ =

{
ϕ̃d

ỹ,↑, ỹ odd,

ϕ̃d
ỹ,↓, ỹ even,

(A8)

and the corresponding density ρ̃c = 1
π
∂x θ̃

c.

Step 3: Second duality yielding spinons and chargons

We complete the derivation by introducing the chargon c =
eiϕc

as the vortex in vc and the spinons bσ = eiϕb
σ as vortices in

vbσ
. Their density fluctuations are given by δρc = 1

π
∂xθ

c and
δρb

σ = 1
π
∂xθ

b
σ , respectively. The new fields follow relations

similar to Eq. (A2), i.e.,

ϕc
y =

∑
y′

sgn(y − ỹ′)θ̃ c
ỹ′ , (A9a)

θ c
y = 1

2

(
ϕ̃c

ỹ−1 − ϕ̃c
ỹ

)
, (A9b)

ϕb
2ỹ+1,↑ = −

∑
ỹ′

sgn(2ỹ − 2ỹ′ − 1)θ̃b
2ỹ′,↑, (A9c)

θb
2ỹ+1,↑ = 1

2
(ϕ̃b

2ỹ,↑ − ϕ̃b
2ỹ+2,↑), (A9d)

ϕb
2ỹ,↓ = −

∑
ỹ′

sgn(2ỹ − 2ỹ′ − 1)θ̃b
2ỹ′−1,↓, (A9e)

θb
2ỹ,↓ = 1

2

(
ϕ̃b

2ỹ−1,↓ − ϕ̃b
2ỹ+1,↓

)
. (A9f)

These relations, combined with Eq. (A7) and Eq. (A2) yield
nonlocal expressions for individual chargon and spinon cre-
ation operators in terms of the microscopic bosons. By
contrast, the densities and hopping operators of spinon and
chargons are all local microscopic operators. They are given
by

ϕc
y+1 − ϕc

y =
{
�y+1,↑ − �y,↑, y odd,

�y+1,↓ − �y,↓, y even,
(A10a)

θ c
y = �y,↑ + �y,↓, (A10b)

ϕb
ỹ+1,σ − ϕb

ỹ,σ = �y+1,σ − �y+1,−σ − �y,σ + �y,−σ ,

(A10c)

θb
ỹ,σ = �y+1,σ + �y,σ . (A10d)

The creation operators of microscopic bosons are represented
as

B2y,σ = c2yb2y− σ
2 ,σ

, (A11a)

B2y+1,σ = c2y+1b2y+1+ σ
2 ,σ

. (A11b)

Step 4: Fermions

We turn to a microscopic wire array that hosts spinful
fermions at an average filling of ρ0

σ = 1
2 . We express the

long-wavelength fermions within the framework of Abelian
bosonization as ψy,σ,χ = ei(�ψ,σ +χ�ψ,σ ), with χ = R/L. Their
density fluctuations are encoded as δρy,σ, ≡ 1

π
∂x�y,σ . The

flux attachment of Eq. (12) corresponds to the operator map-
ping

�ψ,y,σ = �y,σ + σ
∑

y′
sgn(y′ − y)�y′,σ , (A12a)

�ψ,y,σ = �y,σ . (A12b)
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We use the same flux attachment to express the fermionic
spinons in terms of the bosonic ones (cf. Sec. II A 2). The
operator mapping is the same as in Eq. (A12) with

�ψ,y,σ → ϕ f ,ỹ,σ ,

�y,σ → ϕỹ,σ ,
(A13)

�ψ,y,σ → θ f ,ỹ,σ ,

�y,σ → θỹ,σ ,

and where for σ = ↑ (↓) the sum in Eq. (A12a) only in-
cludes odd(even) ỹ′. Finally, chiral spinons are expressed as
fỹ,σ,χ ≡ ei(ϕ f ,ỹ,σ +χθ f ,ỹ,σ ). The operator mappings of the bosonic
SCS, along with the flux attachment identities, relate micro-
scopic fermionic operators and those describing the emergent
chargons and spinons. These mappings are listed in Sec. II B.

APPENDIX B: STITCHING TOGETHER TWO DIFFERENT
COUPLED-WIRE MODELS

We demonstrate here that two distinct coupled-wire mod-
els for the K = n state of fermions realize the same phase.
Specifically, we consider the coupled-wire model HKLM as in-
troduced in Refs. [29,30] and HSCS obtained from translating
Hm[c] + HKML[ fσ ] to microscopic variables. We follow the
bosonization conventions adopted in step 4 of Appendix A.
Dropping the index ψ to lighten the notation, we define
φχ,σ ≡ �ψ,σ + χ�ψ,σ .

The first model is conveniently expressed through the vari-
ables [30]

φ̃y,R,σ ≡ n + 1

2
φy,R,σ − n − 1

2
φy,L,σ , (B1a)

φ̃y,L,σ ≡ n + 1

2
φy,L,σ − n − 1

2
φy,R,σ . (B1b)

It is then given by

HKML =
∑

σ

cos[φ̃y+1,L,σ − φ̃y,R,σ ]. (B2)

A semi-infinite array of wires with y > 0, say, exhibits
fractional edge modes described by φ̃1,L,σ . For HSCS we anal-
ogously introduce

φ2y,L,σ ≡ n + 1

2
φ2y,L,σ − n − 1

2
φ2y−σ,R,σ , (B3a)

φ2y,R,σ ≡ n + 1

2
φ2y−σ,R,σ − n − 1

2
φ2y,L,σ , (B3b)

and find

HSCS =
∑

σ

cos[φ2y,R,σ − φ2y−σ,L,σ ]

+
∑

σ

cos[φ2y+2,L,σ − φ2y,R,σ ]. (B4)

A semi-infinite array of wires with y � 0 exhibits fractional
edge modes described by φ0,R,↑, φ−2,R,↓. In this termination,
the ↓ species additionally exhibits an unprotected pair of
counter-propagating modes, which we express by φ̃0,χ,↓.

The two semi-infinite wire arrays can be stitched together
by the local interaction

δH = cos[φ̃1,L,↑ − φ0,R↑]
+ cos[φ̃1,L,↓ − φ̃0,R,↓] + cos[φ̃0,L,↓ − φ−2,R↓]

∝ (ψ1,L,↑ψ
†
−1,R,↑)

n+1
2 (ψ†

1,R,↑ψ0,L,↑)
n−1

2

+ (ψ1,L,↓ψ
†
0,R,↓)

n+1
2 (ψ†

1,R,↓ψ0,L,↓)
n−1

2

+ (ψ0,L,↓ψ
†
−1,R,↓)

n+1
2 (ψ†

0,R,↓ψ−2,L,↓)
n−1

2 + H.c. (B5)

For odd n, all exponents are integers and the interaction δH
is microscopically allowed. It results in a fully gapped array
and permits fractional excitations to traverse the boundary be-
tween y < 0 and y > 0. Consequently, HKML and HSCS realize
the same topological phase.
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