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Spin-orbit coupling plays a pivotal role in condensed matter physics. For instance, spin-orbit interactions
affect the magnetization and transport dynamics in solids, while spins and momenta are locked in topological
matter. Alternatively, spin-orbit entanglement may play an important role in exotic phenomena, like quantum
spin liquids in 4d and 5d systems. An interesting question is how electronic states mixed by spin orbit coupling
interact with electromagnetic fields, which may hold potential to tune their properties and reveal interesting
physics. Motivated by our recent discovery of large gyrotropic signals in some Jahn-Teller manganites, here we
explore the interaction of light with spin-mixed t2g − eg states in a d4 transition metal. We show that spin-orbit
mixing enables electronic transitions that are sensitive to circularly polarized light, giving rise to a gyrotropic
response that increases with spin-orbit coupling. Interestingly, photoexcited transitions that involve spin reversal
are behind such gyrotropic resonances. Additionally, we find that the interaction with the electromagnetic field
depends strongly on the relative orientation of the propagation of light with respect to Jahn-Teller distortions and
spin quantization. We suggest that such interactions offer the opportunity to use electromagnetic waves at optical
wavelengths to entangle orbital and spin degrees of freedom. Our approach, which includes a group-theoretical
treatment of spin-orbit coupling, has wide applicability and provides a versatile tool to explore the interaction of
electromagnetic fields with electronic states in transition metals with arbitrary spin-orbit coupling strength and
point-group symmetries.
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I. INTRODUCTION

Orbital degrees of freedom are an essential ingredient of
the physics and chemistry of transition metal compounds
[1–5]. The coupling of orbitals to spin, charge, or lattice
determines many properties of solids and molecules. In the
presence of orbital degeneracy, the symmetry of nonlinear
molecules and solid state systems is broken spontaneously
through the Jahn-Teller effect [6–8]. This phenomenon has
far-reaching consequences in spectroscopic and chemical
properties [9–11], and is also responsible for the emergence
of nontrivial quantum effects, associated with the appearance
of rotational quantization of vibronic states and geometric
phases [12–14]. On the other hand, spin orbit interactions are
key to new developments in classical and quantum compu-
tation and lie beneath new discoveries in condensed matter
physics related to topological matter, such as the quantum
spin Hall effect or the realization of topological insula-
tors and Weyl semimetals [15–17] and Kitaev physics in
quantum spin-liquids [18–21]. At the same time, there is a
highly nontrivial interplay between spin-orbit coupling and
the Jahn-Teller effect when t2g states are partially filled, where
entangled quantum spin-orbital states may emerge [22–24].

An interesting question is how electromagnetic fields in-
teract with spin-orbit mixed states, which could pave the
ground to explore quantum physics in these systems. Mo-
tivated by our recent finding of large gyrotropic signals in
La2/3Ca1/3MnO3 (originated by the different optical response
to light of opposite handedness in the presence of Jahn-Teller
distortions) [25], we present here a group-theoretical analysis
to study this problem. Our formalism has general applicability

and provides a useful route to extend the analysis to heavy
transition metals in arbitrary point-group symmetries. In the
following, we describe in great detail the interaction with an
electromagnetic field of spin-orbit mixed t2g − eg states in a
3d metal, which provides the clues to its generalization to
other transition metals.

We first note that when dealing with spin-orbit physics
in light transition metals, the mixing between t2g and eg or-
bitals is usually neglected, since crystal-field splitting and
exchange energies are much larger than spin-orbit coupling
[22]. However, this approximation breaks down under par-
ticular conditions. To illustrate this point, we consider the
Tanabe-Sugano diagram for the case of an ion with d4 con-
figuration in Oh symmetry [1,26]. We see that for values
of the crystal field 10Dq and the Racah parameter B that
fulfill the condition (Dq/B)c � 2.7 the ground-state term is
5Eg, whereas for large enough Dq/B the ground state is 3T1g

[Fig. 1(a)]. In both limits, a good approximation is that spin-
orbit interactions act only on the t2g manifold (the orbital
moment is quenched for eg states), and the spin-orbit mixing
of eg and t2g states (and, therefore, between 5Eg and 3T1g)
can be ignored, at least to first order in spin-orbit coupling.
This results in the so-called T − P equivalence, where the
spin-orbit physics of the t2g manifold can be described with
an effective angular momentum L = 1, like for p orbitals [1].

However, this approximation breaks down for specific situ-
ations. For instance, in 4d/5d transition metals, where several
energy scales (including spin-orbit coupling and crystal field)
are comparable [27,28], the t2g − eg mixing can not be gen-
erally ignored [29,30], which is relevant to predict magnetic
excitations in heavy transition metal oxides. Alternatively,
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FIG. 1. (a) Tanabe-Sugano diagram for a d4 configuration, representing the lowest energy terms 5T2, 3T1, and 5E in Oh point symmetry [1].
Along the ordinate axis, the energy E is shown relative to the Racah parameter B. The abscissa displays the ratio between the “differential of
quanta” Dq and B (for octahedral complexes the crystal field energy is 10Dq). (b) Splitting of the spectroscopic lines in Oh, D4h, and spin-orbit
coupling (SOC) point symmetries. In this paper, we consider that the reduction to D4h symmetry is driven by Jahn-Teller interactions.

the T − P equivalence fails when the difference in energies
between spectroscopic terms becomes comparable with spin-
orbital coupling. This may happen for ratios (Dq/B)c ≈ 2.7
in the Tanabe-Sugano diagram [1], which may occur in 3d-
transition metals [Fig. 1(a)]. Alternatively, a reduction from
Oh to D4h symmetry (e.g., induced by a Jahn-Teller instability,
as we discuss below), may lead to spin-orbital mixing between
spectroscopic terms 5A1g and 3Eg away from (Dq/B)c ≈ 2.7,
see Fig. 1(b). As we show below, spin-orbital mixing between
t2g and eg states—which may be also induced by electronic
correlations or structural distortions—enables optical transi-
tions that can be probed by circularly polarized light. The
sensitivity to circular polarization stems from terms of dif-
ferent spin multiplicity mixed by spin-orbit coupling (e.g.,
S = 1 for 3Eg and S = 2 for 5A1g in D4h point symmetry),
which allows optical transitions between states with different
spin projections, which, otherwise, are absent in the absence
of spin-orbit mixing. For the sake of conciseness, we restrict
our discussion to 3d4 ions in which spin-orbital mixing is
induced by symmetry reduction to D4h induced by Jahn-Teller
instabilities [Fig. 1(b)]. At the end we discuss briefly how the
group-theoretical analysis can be extended to other transition
metals with arbitrary spin-orbit coupling strength and their
interaction with electromagnetic radiation.

To describe the physics of spin-orbital mixing we consider
a Hamiltonian that has the following form:

H = HS + W =
∑
ψi

Eψi |ψi〉〈ψi| +
∑
ψi,φi

Vψiφi |ψi〉〈φi|

+
∑
i �= j
ψi,ψ j

αi j |ψi〉〈ψ j | (1)

where HS stands for on-site interactions and W repre-
sents the interaction of electrons with an electromagnetic
field. We consider that the interaction with light induces
the hopping with amplitude αi j of the fourth electron in
the d4 ion to neighboring d3 sites i, j in the lattice. The

on-site Hamiltonian HS contains diagonal terms denoted
by Eψi |ψi〉〈ψi| and off-diagonal Vψiφi |ψi〉〈φi| contributions,
coming from vibronic couplings and spin-orbit interactions.
The Hamiltonian can be formally expressed in terms of ir-
reducible representations |ψi〉, |φi〉 ∈ {3A2g, [B1g + B2g], Eg,
[A1g + A2g], 5A1g,

5B1g}. The terms of this basis are expressed
as linear combinations of Slater determinants of monoelec-
tronic orbitals t2g ∈ (|xy〉, |yz〉, |xz〉) and eg ∈ (|x2 − y2〉, |z2〉)
that respect the Pauli exclusion principle and the point-group
symmetries in orbital (D4h, due to Jahn-Teller instabilities)
and spin spaces. (In Appendix A we give a detailed deriva-
tion of this basis and the development of the corresponding
Slater determinants). We note that (B1g,B2g) and (A1g,A2g) are
degenerate (possibly this accidental degeneracy is broken if
we consider higher-order relativistic corrections) and they are
lumped together in the basis |ψi〉. Additionally, the presence
of magnetic fields can lift the 2S + 1-fold degeneracy of terms
3A2g (S = 1), 5A1g (S = 2), and 5B1g (S = 2), giving a total of
19 states for the full dimensionality of the |ψi〉 basis. The
on-site Hamiltonian HS can be decomposed as

HS = H0 + HJT + HSO, (2)

where H0 includes the energy splitting between Oh point-
group terms 5Eg and 3T1g due to crystal field and exchange
interactions [see Fig. 1(b)], while HJT takes into account
interactions with Jahn-Teller modes and HSO is the spin-orbit
coupling contribution.

The paper is organized as follows. In Sec. II A, we de-
scribe the spontaneous breaking of orbital degeneracy driven
by Jahn-Teller instabilities in a d4 ion under Oh symme-
try. In this situation, 5Eg and 3T1g electronic states interact
with doubly degenerate Eg Jahn-Teller modes, resulting in
E ⊗ e and T ⊗ e vibronic interactions. As a result, the
point-group symmetry is reduced to D4h and the terms split
into 3A2g, 3Eg, 5A1g, and 5B1g states [see Fig. 1(b)]. In Sec. II B
we study the point symmetries in orbital and spin spaces
related to the spin-orbit operator. The combination of Jahn-
Teller and spin-orbit interactions split further these terms
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(a) (b)

(c) (d)

FIG. 2. (a) Depiction of a transition metal in an octahedral
coordination with six oxygen ligands. (b) Tetragonal Jahn-Teller
distortion corresponding to the mode Q = Q3. (c) Orthorhombic
Jahn-Teller distortion corresponding to the mode Q = Q2. (d) Su-
perposition of the two distortion modes corresponding to Q =
Q3 cosϑ + Q2 sin ϑ .

into irreducible representations |ψi〉 ∈ {3A2g, [B1g + B2g], Eg,
[A1g + A2g], 5A1g,

5B1g}, see Fig. 1(b) and Appendix A. In
Sec. III, we describe the interaction of electrons with elec-
tromagnetic fields. As a result of this interaction, we assume
that electrons hop between neighboring sites. We focus on
the problem of a lattice in which the fourth electron of an
isolated Jahn-Teller d4 ion hops to d3 nearest neighbors. We
assume that the solid is a transition metal oxide with per-
ovskite structure with ABO3 chemical formulation, in which
generally A is a rare-earth element, B a transition metal, and O
is oxygen. These systems form a large family of materials that
includes La2/3Ca1/3MnO3, with a broad diversity of physical
properties, including magnetism, ferroelectricity or supercon-
ductivity [31–34]. The undisturbed perovskite is formed by
octahedral unit cells with the metal B sitting at the center of an
octahedron formed by six ligand oxygen anions with Oh point
symmetry [35,36], see Fig. 2(a). Using the formalism of two-
center Slater-Koster integrals, we derive analytic expressions
for the light-induced hopping amplitudes between lattice sites.
The perturbative analysis discussed in Sec. IV demonstrates
that spin-orbit coupling and intra-atomic t2g − eg mixing are

essential to the appearance of gyrotropic responses, and that
the latter involve photoexcitations in which one of the spins
is inverted. Remarkably, this observation opens the possibil-
ity of using electromagnetic fields to manipulate spins via
the mechanism described here. Subsequently, in Sec. V, we
analyze the electronic response to circularly polarized elec-
tromagnetic waves. For that purpose, we analyze the density
of 5B1g states from the imaginary part of quantum propagators
of the different electronic orbitals and obtain expressions for
their spectral functions. In Sec. VI we analyze these spectral
functions in circularly polarized electromagnetic fields as a
function of the relative strength of Jahn-Teller and spin-orbit
interactions. From this analysis, we extract information about
the gyrotropic responses, by which the polarization of light is
changed as a result of the interactions with t2g − eg spin-orbit
mixed states. Finally, in Sec. VII, we summarize the main
results and discuss perspectives of further work, especially the
possibility of entangling spin and orbital degrees of freedom
using electromagnetic waves, which could be relevant in the
framework of nontrivial quantum states in other systems, in-
cluding heavy 4d-5d transition metals.

II. THEORY: ON-SITE INTERACTIONS

A. Jahn-Teller interactions

We first derive the Hamiltonian terms for the interaction
of electron orbitals with Jahn-Teller modes. Under Oh point-
group symmetry they can interact with two degenerate repre-
sentations for Eg Jahn-Teller vibrational modes corresponding
to tetragonal modes QEgu = Q3 = 2�z − �x − �y and or-
thorhombic modes QEgv = Q2 = √

3(�x − �y), respectively
(see Fig. 2). We thus need to solve the E ⊗ e and T ⊗ e
problems to derive analytic expressions for the corresponding
vibronic interactions between Jahn-Teller Eg modes and dou-
bly degenerate Eg and triply degenerate T1g electronic states in
Oh symmetry [37]. A convenient way to derive these expres-
sions is to write the Jahn-Teller modes in terms of an angle ϑ
as Q3 = cosϑ and Q2 = sin ϑ [38,39]. Using Pauli matrices
υi in the pseudospin space of [5A1g,

5B1g] states in D4h symme-
try, the E ⊗ e Jahn-Teller interaction can be expressed as

HE⊗e
JT = FE + 2GE

2
υ0 + (FE + GE )υz

+ (FE − 2GE )δϑυx, (3)

where FE and GE are linear and quadratic vibronic constants,
and δϑ represents perturbative Q2 orthorhombic distortions
that will be described below. The dependence of Jahn-Teller
modes on ϑ defines a potential energy surface, which, in
the case of harmonic approximation (i.e., GE = 0), defines a
“Mexican hat” [40]. In solids, however, anharmonic contri-
butions are usually relevant and quadratic constants (so that
GE �= 0) must be included in Eq. (3). As a result, the surface
potential warps producing three minima at ϑn = 2nπ/3,
which correspond to tetragonal elongations of the octahedral
cell along z, y, and x axes for n = 0, 2, 1, which stabilize
the occupation of dz2 , dy2 , and dx2 orbitals, respectively
[41–43] (see also Appendix B for a detailed description of
the Jahn-Teller Hamiltonian and the vibronic interactions).
Actually, the stabilization of tetragonal Jahn-Teller distortions

165108-3



A. S. MIÑARRO AND G. HERRANZ PHYSICAL REVIEW B 106, 165108 (2022)

in solids has been confirmed experimentally in a large number
of compounds [44], including manganites [45–48].

Now we derive the analytic expressions for vibronic inter-
actions involving T1g electronic states, which can interact with
Eg and T2g representations of Jahn-Teller modes [37]. Conse-
quently, such derivation requires solving the T ⊗ e and T ⊗ t
problems [41]. We assume, however, that the T ⊗ t contribu-
tion is negligible, since in our case lattice deformations are
predominantly driven by Jahn-Teller instabilities of electrons
in eg states. Therefore, we only consider the contribution of
T ⊗ e to the Hamiltonian as follows:

HT ⊗e
JT = 1

2 FT [λ0 −
√

3λ8 − δϑλ3], (4)

where FT is the vibronic coupling constant for T ⊗ e and λ2

and λ8 are Gell-Mann matrices, defined as

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, (5a)

λ8 = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (5b)

As mentioned above, anharmonic lattice contributions stabi-
lize tetragonal elongations along the three main axes of the
ABO3 octahedral cell units, denoted as ϑn = 2nπ/3. This en-
tails breaking the degeneracy of 5Eg electronic states in Oh into
5A1g and 5B1g terms in D4h symmetry, being the latter lower in
energy for the elongated tetragonal distortions [Fig. 1(b)]. In
this paper we also consider small orthorhombic Jahn-Teller
distortions corresponding to Q2 modes, which modify pertur-
batively the elongated tetragonal distortions, so that the angle
in Q2 − Q3 space is mapped to ϑn → ϑn + δϑn. As can be
inferred from the E ⊗ e Hamiltonian (2), these orthorhombic
perturbations induce nondiagonal transitions between 5A1g and
5B1g terms. On the other hand, for the t2g sector, the reduction
to D4h symmetry splits the 3T1g term into single-degenerate
3A2g and doubly degenerate 3Eg terms, being the latter lower
in energy. In this case, it can be shown that, to first-order,
ϑn + δϑn perturbations do not mix 3A2g and 3Eg terms.

B. Spin-orbit coupling

In order to compute the matrix elements of spin-orbit
coupling in D4h symmetry we use the operator equivalent
method [1,49]. In this approach, the spin-orbit operator is
defined by linear combinations V�

λq = T�
λ S1

q , where T�
λ cor-

responds to irreducible representations � in the orbital space
with basis λ and S1

q corresponds to irreducible representations
D(1)

q in the spin-rotation group. Since the T ⊗ e Hamiltonian
term in Eq. (3) is relatively small—i.e., FT δϑ � ξSO, where
ξSO is the spin-orbit coupling constant—we can study the
orbital space T�

λ in the D4h point group. Therefore, while
T�
λ transforms as T1g in Oh symmetry, the reduction to D4h

implies that T�
λ transforms according to irreducible repre-

sentations A2g with spatial symmetry ν and Eg with spatial
symmetries κ, μ (see Appendix A 2 b for a definition of
these symmetries). On the other hand, the spin part S1

q is
expressed using spherical coordinates, with quantum numbers
q = 0,±1. Taking this into account, it can be demonstrated

that the spin-orbit coupling Hamiltonian can be expressed in
terms of operator equivalent matrices V

Eg

κ±1, V
Eg

μ±1 and V
A2g

ν0 as
follows:

HSO = ξSO 
L · 
S = ξSO

[
− 1√

2

(
V

Eg

κ1 − V
Eg

κ 1̆

)

+ ı√
2

(
V

Eg

μ1 + V
Eg

μ1̆

)
+ V

A2g

ν0

]
, (6)

where the sign of q is denoted by a breve symbol, i.e.,
q̆ = −q. Then we apply the Wigner-Eckart theorem to V�

λq ,
which implies working with reduced matrices 〈�S||V�||�′S′〉
[50]. In our case, these are 4 × 4 matrices defined in terms
of the irreducible representations of the D4h point group
{3Eg,

3A2g,
5A1g,

5B1g}, which are expressed as follows (see Ap-
pendix C for the details of this derivation):

VA2g = ı

⎛
⎜⎜⎝

√
3 0 0 0

0 0
√

10 0
0

√
10 0 0

0 0 0 0

⎞
⎟⎟⎠, (7a)

VEg = ı

⎛
⎜⎜⎝

0
√

3
√

5 −√
15√

3 0 0 0√
5 0 0 0

−√
15 0 0 0

⎞
⎟⎟⎠. (7b)

Once the reduced matrices are computed, the spin-orbit
elements can be found using Clebsch-Gordan coefficients as
follows:

〈3EgκM ′|
L · 
S|3EgμM〉 = − ı

2
δM

M ′ , (8a)

〈3A2gνM ′|
L · 
S|3EgκM〉 = 1

2
√

2

[
δM+1

M ′ − δM−1
M ′

]
, (8b)

〈3A2gνM ′|
L · 
S|3EgμM〉 = −ı

2
√

2

[
δM+1

M ′ + δM−1
M ′

]
, (8c)

〈3A2gνM ′|
L · 
S|5A1guM〉 = −ı

√
4 − |M|

3
δM

M ′ , (8d)

〈3EgκM ′|
L · 
S|5A1guM〉 = ı

4

√
M2 + 3|M| + 2

6

×[
δM+1

M ′ − δM−1
M ′

]
, (8e)

〈3EgμM ′|
L · 
S|5A1guM〉 = 1

4

√
M2 + 3|M| + 2

6

× [
δM+1

M ′ + δM−1
M ′

]
, (8f)

〈3EgκM ′|
L · 
S|5B1gvM〉 = ı

4

√
M2 + 3|M| + 2

2

× [
δM+1

M ′ − δM−1
M ′

]
, (8g)

〈3EgμM ′|
L · 
S|5B1gvM〉 = −1

4

√
M2 + 3|M| + 2

2

× [
δM+1

M ′ + δM−1
M ′

]
. (8h)
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With these relations, and taking the basis {|3Egκ1〉,
|3Egκ0〉, |3Egκ 1̆〉, |3Egμ1〉, |3Egμ0〉, |3Egμ1̆〉, |3A2gν1〉, |3A2gν0〉,
|3A2gν1̆〉, |5A1gu2〉, |5A1gu1〉, |5A1gu0〉, |5A1gu1̆〉, |5A1gu2̆〉,

|5B1gv2〉, |5B1gv1〉, |5B1gv0〉, |5B1gv1̆〉, |5B1gv2̆〉}, where again
the breve symbol denotes the sign of spin quantum numbers,
one can write the full 19x19-dimensional spin-orbit matrix as

(9)

In this expression, solid lines separate the matrix elements corresponding to spectroscopic terms {3Eg,
3A2g,

5A1g,
5B1g} ordered

from left to right columns. On the other hand, dotted lines separate the orbital angular momentum components (γ = κ, μ) for
the 3Eg term. Finally the spin projections M of the different elements are displayed in decreasing order from left to right.

We note that matrix Eq. (9) is represented for the quantization of 
L and 
S along the same axis. However, in general, the
quantum spin axis can be oriented along arbitrary directions with respect to 
L. Therefore, it is convenient to apply appropriate
rotations R in the spin space to orient the spin quantization axis along arbitrary directions defined by n̂ as follows:

S′
z = RSzR† = n̂ · 
S. (10)

This rotation is characterized by an axis t̂ = (ẑ × n̂)/|ẑ × n̂| and a rotation angle θ = arccos ẑ · n̂,

R = e−ıθ t̂ ·
S. (11)

If we define n̂ = (sin θ cosφ, sin θ sin φ, cosθ ), we have t̂ = (− sin φ, cosφ). Then, we obtain the following spin-rotation
matrices for the cases S = 1 and S = 2:

R(S=1) = 1

2

⎛
⎜⎜⎝

1 + cos θ
√

2eıφ sin θ e2ıφ (1 − cos θ )

−√
2e−ıφ sin θ 2 cos θ

√
2eıφ sin θ

e−2ıφ (1 − cos θ ) −√
2e−ıφ sin θ 1 + cos θ

⎞
⎟⎟⎠, (12a)

R(S=2) = 1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2(1 + cosθ )2 4eıφ sin θ (1 + cos θ ) 2
√

6e2ıφ (sin θ )2

−4e−ıφ sin θ (1 + cos θ ) [(1 + 4 cos θ )2 − 9]/2 4
√

6eıφ sin θ cos θ

2
√

6e−2ıφ (sin θ )2 −4
√

6e−ıφ sin θ cos θ 4[3(cos θ )2 − 1]

−4e−3ıφ sin θ (1 − cos θ ) −e−2ıφ[(1 − 4 cos θ )2 − 9]/2 −4
√

6e−ıφ sin θ cos θ

2e−4ıφ (1 − cosθ )2 −4e−3ıφ sin θ (1 − cos θ ) 2
√

6e−2ıφ (sin θ )2

4e3ıφ sin θ (1 − cos θ ) 2e4ıφ (1 − cosθ )2

−e2ıφ[(1 − 4 cos θ )2 − 9]/2 4e3ıφ sin θ (1 − cos θ )

4
√

6eıφ sin θ cos θ 2
√

6e−2ıφ (sin θ )2

[(1 + 4 cos θ )2 − 9]/2 4eıφ sin θ (1 + cos θ )

−4e−ıφ sin θ (1 + cos θ ) 2(1 + cosθ )2

⎞
⎟⎟⎟⎟⎟⎟⎠
. (12b)

We use these matrices to compute the spin-orbit elements of Eq. (8) for arbitrary directions of the quantized spin
axis.
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εd

εp

εd′

(1)

(2)

FIG. 3. Diagram of the electron transfer between neighboring
sites mediated by oxygen ions, induced by the interaction with an
electromagnetic field. In the process, there is a first transition from
oxygen p-orbital to neighboring manganese d’-orbital. A second
transition involves a transfer from a manganese d-orbital to an oxy-
gen p-orbital.

III. THEORY: INTERACTION WITH
ELECTROMAGNETIC FIELDS

A. Light-induced electron transfer between lattice sites

So far we have considered on-site interactions of electronic
orbitals with the crystal field, Jahn-Teller vibrational modes
and atomic spin-orbit coupling. In the following, we describe
their interaction with electromagnetic fields, which we as-
sume induce electron transfer between neighboring sites in the
perovskite lattice. The idea of light-induced electron transfer
has been proposed, e.g., in some manganites, where optical
energy excitations have been associated to polaronic transport
due to intersite eg − eg photoinduced transitions [25,51,52].
Since the cation separation in perovskites (≈4 Å) is large for
significant direct overlap [53–55], we consider the electron
transfer dominated by hopping through p orbitals of oxygen.
As depicted in Fig. 3, we consider the transfer between neigh-
boring d4 and d3 ions, which can be described as

d4 p6d3 → d4 p5d4 → d3 p6d4. (13)

In order to describe this transfer, we define the following
many-electronic wavefunctions for the two neighboring d ions
and the oxygen ligands:

|�〉 = |2S+1�γM〉|1S〉|4A2gN〉, (14a)

|�pw
〉 = |2S+1�γM〉|2Pw ± 1

2 〉|2S+1�′γ ′M〉, (14b)

|� ′〉 = |4A2gN〉|1S〉|2S+1�′γ ′M〉. (14c)

Equation (14a) corresponds to the initial configuration
d4 p6d3, where the d4 ion is described by some of the 2S+1�

representations discussed in Sec. I, whereas 4A2g is the ground
state for the d3 ion, according to the Tanabe-Sugano diagram
[1]. On the other hand, the ligand orbitals, which have filled
shells, are described by 1S and Eq. (14c) describes the final
state of the transfer, where the spin part of the wavefunction
is unchanged since light cannot interact directly with spins.
Finally, Eq. (14b) is the intermediate state where the two tran-
sition metals have 4 d-electrons and there is a vacancy in the
ligand in a pw orbital (w ∈ {x, y, z}). This intermediate state
requires an energy equivalent to the charge transfer energy,
�CT ≈ 4 eV for Mn3+ [44]. Therefore, in the presence of an
electromagnetic field, the orbitals p and d are coupled, so that

the states |�〉 and |� ′〉 are perturbed by the intermediate states
|�pw

〉 as follows:

|�̃〉 ≈ |�〉 − ı
tpd

2�CT
ε̂ ·

∑
w

〈�pw
| 
∇|�〉|�pw

〉, (15a)

|�̃ ′〉 ≈ |� ′〉 − ı
tpd

2�CT
ε̂ ·

∑
w

〈�pw
| 
∇|� ′〉|�pw

〉, (15b)

where tpd/2 is the p − d hopping amplitude induced by the
electromagnetic field, which allows nonzero matrix elements
between states |�̃〉 and |�̃ ′〉.

We treat the interaction with light to first order, so that
the amplitude of the light-induced transfer requires the com-
putation of electromagnetic matrix elements that involve
two-center integrals including the vector potential −ı 
∇ (de-
fined in the Coulomb gauge),

Pψ

qε̂w =
(

1

ı

∫
ψ (
r) 
∇φpw

(
r ± aêq)d
r
)

· ε̂, (16)

where êq indicates the hopping direction in the lattice, ε̂ is the
unit vector along the orientation of the vector potential, a is
the lattice parameter, and ψ , φpw

describe monoelectronic or-
bitals in the transition metal and oxygen, respectively, that are
involved in the photoinduced transfer. We note that although
the spectroscopic terms are given as combinations of Slater
determinants, the vector potential in Eq. (16) is a one-body
operator that acts only on the monoelectronic orbital where the
transferred electron resides (see Appendix D for a detailed dis-
cussion of how one-body operators act on the many-electron
wavefunctions). The matrix elements shown in Eq. (16) are
therefore expressed in terms of monoelectronic functions ψ

and φpw
. This derives from the properties of the one-body

potential, whereby matrix elements such as −ı〈�pw
| 
∇|�〉,

where |�pw
〉, |�〉 are many-electron functions described by

Eq. (14), can be rewritten as −ı〈ψ | 
∇|φpw
〉, where |φpw

〉, |ψ〉
describe monoelectronic orbitals.

On the other hand, while the expression in Eq. (16) corre-
sponds to a transfer from a p to a d orbital, the d to p transition
is described by its complex conjugate (Pψ

qε̂w )∗. Interestingly, it
can be shown that expressions like ∂ε̂ϕpw

(with ε̂ along x̂, ŷ, or
ẑ) appearing in Eq. (16) can be expressed as linear combina-
tions of Slater-Koster coefficients (see Ch. 7 in Ref. [31] for
a derivation). For instance, for the vector potential along ε̂||x̂,
we make use of the following coefficients:

(sdσ ) ≡ 1

a

∫
ψz2 (
r)ψ̄s(
r ± aêz )d
r, (17)

(ddσ ) ≡ 1

a

∫
ψz2 (
r)ψ̄z2 (
r ± aêz )d
r, (18)

(ddπ ) ≡ 1

a

∫
ψxy(
r)ψ̄xy(
r ± aêx )d
r, (19)

(ddδ) ≡ 1

a

∫
ψxy(
r)ψ̄xy(
r ± aêz )d
r, (20)

where ψz2 , ψxy are wavefunctions for the monoelectronic
states |z2〉 and |xy〉, and ψ̄s, ψ̄z2 , and ψ̄xy are effective wave-
functions, which have the same symmetries as s, dz2 , and dxy

orbitals (see Ref. [31]). Table I displays all nonzero matrix
elements for the vector potential along the three directions in
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TABLE I. Nonzero matrix elements ıPψ

qε̂w for the vector potential along the three directions in space ε̂ = x̂, ŷ, ẑ in terms of Slater-Koster
coefficients.

χ w q = x q = y q = z

ε̂ = x̂

u x −1

2
sdσ − 1

2
√

3
ddσ −1

2
sdσ + 1

4
√

3
ddσ +

√
3

8
ddδ sdσ − 1

2
√

3
ddσ

v x

√
3

2
sdσ + 1

2
ddσ −

√
3

2
sdσ + 1

4
ddσ − 1

8
ddδ −1

4
ddδ

η z 1
2 ddπ 1

2 ddδ 1
2 ddπ

τ y 1
2 ddπ 1

2 ddπ 1
2 ddδ

ε̂ = ŷ

u y −1

2
sdσ + 1

4
√

3
ddσ +

√
3

8
ddδ −1

2
sdσ − 1

2
√

3
ddσ sdσ − 1

2
√

3
ddσ

v y

√
3

2
sdσ − 1

4
ddσ + 1

8
ddδ −

√
3

2
sdσ − 1

2
ddσ

1

4
ddδ

ζ z 1
2 ddδ 1

2 ddπ 1
2 ddπ

τ x 1
2 ddπ 1

2 ddπ 1
2 ddδ

ε̂ = ẑ

u z −1

2
sdσ + 1

4
√

3
ddσ −

√
3

8
ddδ −1

2
sdσ + 1

4
√

3
ddσ −

√
3

8
ddδ sdσ + 1√

3
ddσ

v z

√
3

2
sdσ − 1

4
ddσ − 1

8
ddδ

−√
3

2
sdσ + 1

4
ddσ + 1

8
ddδ 0

ζ y 1
2 ddδ 1

2 ddπ 1
2 ddπ

η x 1
2 ddπ 1

2 ddδ 1
2 ddπ

space in terms of the coefficients (sdσ ), (ddσ ), (ddπ ), and
(ddδ).

The hopping amplitudes αψiφ j
q between ψi and φ j orbitals

located at neighboring sites (i, j such that 
ri − 
r j ‖ êq) are
calculated perturbatively, taking into account the p − d hop-
ping tpd and the charge transfer energy �CT between p and d
orbitals [44],

α
ψiφ j

ε̂q = t2
pd

�CT

∑
w

P
φ j

qε̂w

(
Pψi

qε̂w

)∗
. (21)

Since the electromagnetic field cannot interact directly with
spins, the matrix elements of the electromagnetic operator Wε̂

have the following form:

〈i�γ SM|Wε̂ | j�′γ ′S′M ′〉 = α
ψiφ j

ε̂q δS′
S δ

M ′
M , (22)

where i, j refer to neighboring locations in the lattice. In the
next section we explain how the hopping amplitudes depend
on the light polarization, which is described by the unit polar-
ization vector ε̂ along an arbitrary direction.

B. Cooperative Jahn-Teller effects

Although we address the dynamics of electron transfer
from isolated Jahn-Teller ions, we incorporate coopera-
tive effects, known to be relevant in solids [39,44,56–61].
The reason is that the dynamics of ions is much slower
than the electronic transfer rates, so that we assume that coop-
erative effects restrict the possible Jahn-Teller deformations
of the neighboring sites where the transferred electron can
jump into (see Fig. 4). As discussed in Sec. II A, we consider
Jahn-Teller modes of the d4 ion described by angles ϑn =
2nπ/3 + δϑ, n = 0, 1, 2, and δϑ � 2π/3. In consequence,

there are three possible orientations for the transfer across the
six oxygen anions surrounding the initial d site, namely, along
±x̂, ±ŷ or ±ẑ. Then, cooperative effects are incorporated
by imposing restrictions on the hopping from an initial d4

ion with tetragonal distortion along ẑ (Jahn-Teller mode with
angle ϑ0) to neighboring sites along the three directions (see
Fig. 4). For instance, when δϑ > 0 there is a contraction along
y axis, forcing neighbors on the xy plane to be distorted along

x

y

z

(1)

(2)

FIG. 4. Graphical representation of the cooperative distortions
taking place during the light-induced transfer of electrons across the
lattice. One of such transfers is illustrated by labels “1” and “2”,
where the electron jumps through an intervening oxygen. Each vertex
represents a transition metal, around which the octahedron elongates
along the solid lines. The electron is initially located at d4 sites whose
distortion is along z. Due to cooperative effects, the d3 sites around
the initial d4 site are elongated along directions perpendicular to z.
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the y direction with δϑ < 0. On the other hand, when a site
distorted along z has δϑ < 0, there is a slight contraction
along x, so their neighbors are distorted along x with δϑ > 0.
Our model considers the orbital ordering with maximum en-
tropy, which consists in having half of the octahedra distorted
along a particular direction (chosen to be z) and the rest is
equally distributed among elongations along x and y [62]. The
resulting orbital ordering is depicted in Fig. 4.

C. Hopping amplitudes for circularly polarized light

1. Left- and right-handed basis for circularly polarized light

We describe the polarization of light by a complex vector
ε̂ ∈ C3 normalized to ε̂ · ε̂∗ = 1,

ε̂ = 1√
E2

0x + E2
0y + E2

0z

⎛
⎝ E0x

E0ye−ı(φy−φx )

E0ze−ı(φz−φx )

⎞
⎠. (23)

Here E0i is the amplitude of the i-th component of the electric
field and φi the correspondent phase, defined in this expres-
sion to keep εx real.

Since light is a transverse wave, we need only two complex
vectors to define a basis for the polarization, both orthogonal
to propagation direction k̂. For circularly polarized light we
use left-handed and right-handed polarizations, which, in the
case of wave propagation along k̂ = ẑ are defined as

ς̂L = 1√
2

⎛
⎝1

ı

0

⎞
⎠ ς̂R = 1√

2

⎛
⎝ 1

−ı

0

⎞
⎠. (24)

For arbitrary orientations of the propagation of light, we
use the rotation matrix R to find the new basis ε̂L,R = Rς̂L,R for
the polarization. This rotation is characterized by an axis û =
(ẑ × k̂)/ sin α and an angle of rotation cosϕ = ẑ · k̂. Since
every unit vector k̂ can be described using polar and az-
imuth angles, α, β, then k̂ = (sin α cosβ, sin α sin β, cosα),
û = (− sin β, cosβ, 0) and ϕ = α. Then, the rotation matrix
for arbitrary wave propagation can be defined as

R =
⎛
⎝cα + s2

β (1 − cα ) −sβcβ (1 − cα ) sαcβ
−sβcβ (1 − cα ) cα + c2

β (1 − cα ) sαcβ
−sαcβ −sαsβ cα,

⎞
⎠ (25)

where a contracted notation for trigonometric functions is
used, namely, sx = sin x and cx = cos x. Finally the polar-
ization vector for arbitrary wavevector orientation has the
following expression:

ε̂L,R(k̂) = 1√
2

⎛
⎝ cα ∓ ısβ (1 − cα )e±ıβ

±ı[cα + cβ (1 − cα )e±ıβ]
−sαe±ıβ

⎞
⎠. (26)

2. Electromagnetic response and time-reversal symmetry

Left- and right-handed polarizations are related to each
other by complex conjugation, ε̂∗

L = ε̂R. With this relation we
can deduce that (Pψ

qLw )∗ = −Pψ
qRw [see Eq. (16)] if ψ (
r) ∈ R,

∀
r ∈ R3, in other words: ψ has real spatial symmetry, which
is the case of the basis used here. Time reversal involves com-
plex conjugation (since light acts only on the orbital angular
momentum) and the interchange of the initial and final orbitals

in the hopping, so that we have(
α
ψφ
qL

)∗ = α
φψ
qL = α

ψφ
qR , (27)

which means that KWLK† = WR, being K the complex con-
jugation operator and WL,R the electromagnetic operator for
left- and right-handed light. We note that the Hamiltonian
terms [see Eq. (2)] H0 and HJT are expressed as real matrices,
while HSO is complex. Thus, in the absence of spin-orbit
coupling (ξSO = 0), we have KHLK† = HR and, as a conse-
quence, the gyrotropic signal is zero. A nonzero gyrotropic
response (a different response to electromagnetic waves of op-
posite handedness) arises only when ξSO �= 0, which implies
KHRK† �= HL. This conclusion does not depend on the basis,
since it holds even when the wavefunctions are not real, for
instance, when they are expressed in spherical basis. Indeed,
transforming from spherical to a real basis involves a unitary
transformation U , so that the relation between WL and WR is

U†KUWLU†KU = K̃WLK̃† = WR, (28)

where K̃ is also an antiunitary transformation that keeps in-
variant H0 and HJT . This confirms that a change of basis does
not break the time-reversal invariant relation between HL and
HR when ξSO = 0.

3. Orbital-selective gyrotropic responses in broken
time-reversal symmetry

The origin of the gyrotropic responses can be traced back
to the transfer induced by light between specific orbitals in the
d manifold. To shed light on this issue, it is convenient to ex-
press the polarization as ε̂L = (a, b, c) and ε̂R = (a∗, b∗, c∗).
With this, the transfer amplitudes tψφqε̂ in Eq. (27) can be

expanded as products of Pψ

qε̂ŵ integrals [see Eq. (16)] as

α
ψφ
qL = −

∑
w

[|a|2Pψ
qxwPφ

qxw + |b|2Pψ
qywPφ

qyw

+ |c|2Pψ
qzwPφ

qzw + a∗bPψ
qxwPφ

qyw

+ a∗cPψ
qxwPφ

qzw + ab∗Pψ
qywPφ

qxw

+ b∗cPψ
qywPφ

qzw + ac∗Pψ
qzwPφ

qxw

+ bc∗Pψ
qzwPφ

qyw

]
. (29)

By inspection of Eq. (22) one realizes that any transfer involv-
ing hopping between eg and t2g orbitals at neighboring sites is
forbidden, since S = 2 and S′ = 1 (or vice versa). Then, by
taking into account Eq. (29) and the nonzero transfer integrals
Pψ

qε̂w displayed in Table I, one can verify that all hopping
amplitudes involving hopping between neighboring eg − eg

orbitals are real and are consequently time-reversal invari-
ant. Therefore, the transfer between eg − eg orbitals cannot
give a gyrotropic response, at least to first-order perturbation
in the electromagnetic field. On the other hand, the light-
induced transfer between neighboring t2g − t2g orbitals has
complex amplitude and breaks time-reversal symmetry, caus-
ing distinct electromagnetic responses for light of opposite
handedness. As a consequence, both the presence of spin-orbit
coupling and intersite t2g − t2g transfer are key ingredients to
have a gyrotropic signal.
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5B1g

5A1g

3Eg

3A2g

tpd

E
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en
va
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FIG. 5. Schematic depiction of the dependence on the tpd hop-
ping of the eigenvalues of the wavefunctions corresponding to the
irreducible representations 5A1g, 5B1g, 3Eg, and 3A2g. The shadowed
area corresponds to the parameter space where the spin-orbit mixing
between t2g and eg states and, consequently, the gyrotropic response,
are both strong.

In the light of the previous discussion, one expects a strong
influence of the tpd hopping integral on the gyrotropic signal.
Since the overlapping integrals (sdσ ) and (ddσ ) are signifi-
cantly larger than (ddπ ) and (ddδ), the energy of t3

2ge1
g states

(corresponding to 5A1g and 5B1g representations) is influenced
much more strongly by tpd than t4

2g states with 3Eg and 3A2g

representations (see Fig. 5). It is then expected that as the
value of tpd grows, the eigenvalues of t4

2g states will cross
eventually the eigenvalues of t3

2ge1
g states, producing a strong

spin-orbit mixing and enhancing the gyrotropic signal (shad-
owed area in Fig. 5). In the present problem, we have verified
numerically that this condition is fulfilled for values in the
range t2

pd/�CT ∼ 0.3 eV − 0.5 eV.

IV. PERTURBATION ANALYSIS OF THE GYROTROPIC
RESPONSE

As discussed previously, a gyrotropic signal requires pho-
toinduced transfer between adjacent t2g − t2g orbitals. In
consequence, the unperturbed ground state of the isolated
Jahn-Teller ion 5B1g (t3

2ge1
g) has to be excited to a t4

2g con-
figuration to activate this transfer channel. Here we derive a
perturbation analysis in spin-orbit coupling and orthorhombic
modes to understand the electronic transitions that contribute
to the gyrotropic signal. First of all, we introduce the notation
|i2S+1�γM〉, which indicates the irreducible representation of

the wavefunction at the ith site in the lattice. The introduction
of intersite hopping by interaction with the electromagnetic
field breaks the degeneracy between the same state at different
sites, originating 0th order eigenstates denoted by

|α2S+1�γM〉 =
∑

i

cαi |i2S+1�γM〉. (30)

To continue with the perturbed states we have to understand
how the Hamiltonian acts on those 0th order eigenstates.
Recalling that the Hamiltonian has on-site HS and inter-site
electromagnetic W terms, we have

〈α′2S′+1�′γ ′M ′|HS|α2S+1�γM〉
=

∑
i

(
c′α′

i

)∗
cαi 〈i2S′+1�′γ ′M ′|HS|i2S+1�γM〉, (31a)

〈α′2S′+1�′γ ′M ′|W|α2S+1�γM〉
=

∑
i �= j

(
c′α′

i

)∗
cαj 〈i2S′+1�′γ ′M ′|W| j2S+1�γM〉. (31b)

A difficulty arises to compute such matrix elements due
to cooperative Jahn-Teller effects. In particular, a given irre-
ducible representation may contain different wavefunctions at
adjacent sites in the lattice. For instance, the 3A2g term corre-
sponds to a |ζητ τ̄ | Slater determinant if the distortion is along
the z direction, but if this distortion is along y it corresponds to
|ζητ η̄|. Thus, the computation of matrix elements described
by Eq. (31), necessary to determine the perturbed eigenstates,
is challenging. We sort out this difficulty by approximating
the matrix elements, for instance, 〈α′3Egtq′M ′|H|α3EgtqM〉 ∼
(t2

pd/�CT )(ddπ )2 + ξSO + FT . In this example, which can
be generalized to arbitrary elements, every term is not de-
termined exactly, but it gives a reasonable estimate of the
contributions coming from intersite hopping, spin-orbit cou-
pling, and Jahn-Teller interactions.

Now we develop the perturbative analysis. Since we con-
sider the dynamics of an electron initially located in a
tetragonally elongated site, we are therefore interested in cal-
culating the transition rates between 5B1g (corresponding to a
t3
2ge1

g configuration) and 3Eg or 3A2g terms (both corresponding
to a t4

2g configuration). By the effect of spin-orbit coupling and
orthorhombic distortions, the nonperturbed wavefunctions
|α3A2gνM〉 and |α3EgtqM〉 become, respectively, |α3A2gνM〉•
and |α3EgtqM〉•, where spherical harmonics are used to de-
scribe the orbital components tq of the wavefunctions [see
Eq. (A10) for the definition of tq]. The matrix elements are
then approximated to first order in spin-orbit coupling and
orthorhombic modes as follows:

〈5B1gv(±1 − q)|3Egtq(±1)〉• ∼ ξSO

EEB
, (32a)

〈5B1gv(±1 + q)|3Egtq(±1)〉• ∼ δϑ

EEB

[
FT − ξSO

EEA

(
FE − 2GE ± t2

pd

�CT

(sdσ )2

δϑ

)]
, (32b)

〈5B1gv(±1)|3Egκ0〉• ∼ ξSO

EEB

[
1 + δϑ

EEA

(
FE − 2GE ± t2

pd

�CT

(sdσ )2

δϑ

)]
, (32c)
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〈5B1gv(±1)|3Egμ0〉• ∼ ξSO

EEB

[
1 − δϑ

EEA

(
FE − 2GE ± t2

pd

�CT

(sdσ )2

δϑ

)]
, (32d)

〈5B1gvM|3A2gνM〉• ∼ ξSOδϑ

EABEAA

(
FE − 2GE ± t2

pd

�CT

(sdσ )2

δϑ

)
, (32e)

where EEB and EEA are, respectively, the energy gaps between
3Eg and 5B1g and between 3Eg and 5A1g, while EAB and EAA

are the analogous gaps corresponding to 3A2g instead of 3Eg.
These energy gaps determine the degree of orbital mixing
between eg and t2g states. The vibronic constants (FE ,GE ,FT ),
spin-orbit coupling (ξSO) and intersite hopping (tpd ) are also
included in the expressions above. According to this pertur-
bational analysis, the different transitions contributing to the
gyrotropic signal are sketched in Fig. 6. We first note that
spin-orbit corrections connect 5B1g with 3Eg, giving rise to the
matrix element of Eq. (32a). On the other hand, Eq. (32b)
stems from inter-site hoppings and orthorhombic corrections
connecting 5B1g and 5A1g followed by spin-orbit mixing of
5A1g with 3Eg, while Eq. (32e) takes account of inter-site
hoppings and orthorhombic corrections connecting 5B1g and
5A1g plus spin-orbit coupling between 5A1g and 3A2g. Finally,
Eq. (32c) and Eq. (32d) come from spin-orbit interactions
within the 3Eg subspace with M = 0, where the degener-
acy of the wavefunctions, which is preserved by spin-orbit
coupling, lifts under the action of orthorhombic modes. An
inspection of these expressions allows to extract the following
conclusions:

(i) A relevant gyrotropic signal appears when the eg − t2g

spin-orbit mixing is large. According to Fig. 5, this happens
when the gap EEA between 5A1g and 3Eg is reduced by the effect
of light induced transfer through the tpd hopping integral. In
this case, the strong reduction of EEA entails an enhancement
of contributions described by Eqs. (32b)–(32e).

(ii) All amplitudes involving 5B1g, 3Eg, and 3A2g described
by Eq. (32) imply transitions between t3

2ge1
g and t4

2g configura-
tions, where one of the spins is inverted during the transition.

5B1g

5A1g

3Eg

3A2g

|tqq〉

|tq q̆〉

|μ0〉
|κ0〉

FIG. 6. Sketch of the transitions allowed by intersite hopping in-
duced by light (green-solid lines), spin-orbit coupling (brown-dashed
lines), and Jahn-Teller orthorhombic distortions (blue-dashed-dotted
lines). Thicker arrows indicate stronger interactions, corresponding
to transitions between 5B1g and 5A1g mediated by intersite hopping
and between 5A1g and 3Eg mediated by spin-orbit coupling.

The only exception is the transition described by Eq. (32e),
which is a second-order correction in ξSOδϑ , i.e., it requires
the simultaneous action of spin-orbit and orthorhombic inter-
actions. Since δϑ is small, and considering typical values for
the vibronic constants (FT ,FE ,GE ; see Sec. VI), the contri-
bution of this term is negligible. Therefore, we conclude that
the observation of a large gyrotropic signal is fundamentally
contributed by transitions that involve a spin reversal.

(iii) The perturbative influence of orthorhombic Jahn-
Teller modes is described by the parameter δϑ . For small
values of the 5A1g − 3Eg gap, i.e., EEA � ξSO, the predomi-
nant transition contributing to the gyrotropic signal is given
by Eq. (32b). In this case, in addition to spin-orbit cou-
pling, the hopping between neighboring t2g − t2g states and
orthorhombic modes enhance the gyrotropic signal. However,
since the intersite hopping is far larger than the energy of the
orthorhombic distortions, the dependence of the gyrotropic
response on δϑ is very weak. On the other hand, for large
enough values of the gap EEA > ξSO, the transition described
by Eq. (32a) becomes predominant, but its amplitude is sig-
nificantly smaller than for the case EEA � ξSO. We can then
conclude that the role of orthorhombic perturbations is minor,
at least in the regime where FT δϑ � ξSO and, therefore, the
gyrotropic response is dominated by transitions between 5A1g

and 3Eg, where the wavefunctions are perturbed by spin-orbit
coupling.

We end this section by discussing the effects of the ge-
ometry on the gyrotropic signal, stemming from the relative
orientations of light propagation and spin quantization, tak-
ing ẑ as the orientation along the tetragonal distortion. An
inspection of Eq. (29) reveals that for light propagating along
k̂ = ẑ, namely, when light propagates along the distortion, the
allowed gyrotropic hopping channel is mediated by ζ − η or-
bitals. In contrast, when light propagates perpendicular to the
Jahn-Teller distortion the allowed gyrotropic hopping is η − τ

for k̂ = x̂, while for propagation along k̂ = ŷ the gyrotropic
hopping is mediated by τ − ζ orbitals [see Eqs. (A3c)–(A3e)
for a definition of the t2g orbitals ζ , η, and τ ]. As a result,
the magnitude of the gyrotropic signal strongly depends on
both spin axis and light propagation. The reason is as follows.
In general, for a given couple of t2g orbitals in the hopping
channel, the matrix elements of the angular momentum are
nonzero only if the direction of the momentum component is
contained in both spatial symmetries of the orbitals. For in-
stance, for τ ∼ xy and η ∼ xz orbitals, the only nonvanishing
element is 〈τ |lx|η〉 �= 0. In addition, for a given pair of coupled
orbitals in the hopping channel, it can be shown that the spin
axis has to be oriented along the component of the nonzero
matrix element to have a gyrotropic signal. For instance, for
light propagating along the Jahn-Teller distortion, i.e., for
k̂ = ẑ, the only gyrotropic channel is ζ − η, Therefore, if the
spin is quantized along x, then 〈ζ |lx|η〉 = 0 and the gyrotropic
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signal is completely extinguished. Numerical calculations,
discussed below, have been performed to study systematically
the effect of geometry on the response to circularly polarized
light.

In the following, we introduce the formalism to evaluate
the gyrotropic response (Sec. V), which we use to perform
numerical calculations based on the exact diagonalization of
the full Hamiltonian. In Sec. VI we analyze the influence of
spin-orbit coupling and orthorhombic Jahn-Teller modes on
the gyrotropic response, which confirms the general tenden-
cies discussed in this section.

V. RESPONSE TO CIRCULARLY POLARIZED
ELECTROMAGNETIC WAVES

We consider the excitation of an electron located initially
in a d4 site distorted along z, see Fig. 4. In the presence of an
electromagnetic field, this electron is transferred to any of the
six nearest neighboring d3 sites in the lattice. As explained in
Sec. III A, we assume that cooperative effects induce orbital
ordering around the initial d4 site, so that the site that receives
the transferred electron can only deform along particular ori-
entations, as shown in Fig. 4. In the calculations, the orbital
ordering is extended periodically throughout the solid. To
compute the dynamics, we suppose that the system is prepared
in an ensemble

� =
∑
ψ

pψ |ψ〉〈ψ |, (33)

where ψ refers to state 5B1g in the central site, which has
the lowest energy [see Fig. 1(b)]. Here, pψ is the relative
weight assigned to each spin projection allowed by the irre-
ducible representations of the corresponding many-electron
wavefunctions. The values of pψ are indeed obtained for each
specific case after diagonalization of the full Hamiltonian. The
ensemble in Eq. (33) evolves in time as

�(t ) = e−ıHt�eıHt , (34)

which allows us to compute the quantum propagator [63,64]

G(t ) = −ı�(t )〈[�(t ), �]〉, (35)

where the Heaviside function �(t ) accounts for causality and
〈O〉 is the thermal average of the operator O,

〈O〉 = tr[ρO]. (36)

Here ρ is the density matrix for a thermal bath

ρ = 1

Z

∑
k

e−βH|k〉〈k| = 1

Z

∑
k

e−βωk |k〉〈k|, (37)

where Z is the partition function and the second equality holds
if {|k〉} is an eigenbasis of the Hamiltonian. We can then
express the quantum propagator in the following way:

G(t ) = −ı�(t )
1

Z

∑
ψ

k,m

p2
ψ (e−βωk − e−βωm )

× eı(ωm−ωk )t |〈k|ψ〉|2|〈m|ψ〉|2. (38)

Here we have introduced the identity using the Hamiltonian
eigenbasis labeled with m. Defining "km = |ωk − ωm| and

approximating e−βω ≈ 1 for ω < β−1 and e−βω ≈ 0 for ω >

β−1 we can rewrite the propagator as follows preserving only
the terms such that ωk � ωm:

G(t ) = −ı�(t )
1

Z

∑
ψ

p2
ψ

∑
k,m

e−ı"kmt

× |〈k|ψ〉|2|〈m|ψ〉|2 + c.c. (39)

The first term in Eq. (39) corresponds to the retarded prop-
agator, while the complex conjugate term is the advanced
propagator. In order to compute the spectral response, we use
the Heaviside function in the frequency domain

�(t ) = − 1

2π ı
lim
η→0+

∫ ∞

−∞
dω

e−ıωt

ω + ıη
. (40)

Using the expression Eq. (40) we can write the spectral repre-
sentation of the propagator in frequency domain

Gr (ω) = 1

Z

∑
ψ,m

p2
ψ |〈m|ψ〉|2

∑
k

|〈k|ψ〉|2
ω − "km + ıη

, (41)

where "km denotes the frequency eigenvalues of the full
Hamiltonian. In the limit η → 0+, we have

ς (ω) = − 1

π
�[Gr (ω)] = 1

Z

∑
ψ,m

p2
ψ |〈m|ψ〉|2

×
∑

k

|〈k|ψ〉|2δ(ω − "km), (42)

which has the form of a density of states, which we denote as
ς (ω), while the parameter η is related to the lifetime of the
excited states. After some algebra, the spectral function can
be rewritten as

ς (ω) = η

Zπ

∑
ψ,m

p2
ψ |〈m|ψ〉|2

∑
k

|〈k|ψ〉|2
(ω − "km)2 + η2

. (43)

In the next section, we use this function to evaluate the
gyrotropic response when time-reversal symmetry is broken.

VI. NUMERICAL SIMULATIONS

A. Calculation of the spectral functions
for circularly polarized light

For the calculation of the spectral functions defined by
Eq. (43) we have solved the full Hamiltonian [Eq. (1)] to
compute the eigenvalues. The spectral functions have been
obtained for left- (ςL) and right- (ςR) circularly polarized
light, by calculating the hopping amplitudes as described in
Sec. III C. From these functions, we have built nongyrotropic
(ςng) and gyrotropic (ςgy) spectral functions in frequency
space, which give account, respectively, of the dynamic re-
sponses that are insensitive and sensitive to the handedness
of the polarization of light. These functions are defined as
follows:

ςng(ω) = ςL(ω) + ςR(ω)

2
, (44a)

ςgy(ω) = ςL(ω) − ςR(ω)

2
. (44b)
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FIG. 7. Nongyrotropic (ςng) (black-solid lines) and gyrotropic (ςgy) (red-dashed lines) spectral functions calculated for different energy
gaps � defined between 5A1g and 3Eg terms [see Fig. 1(b)]. The spectra computed for � = 1.36 eV, 0.89 eV, 0.44 eV, 12.5 meV are displayed
in descending order for each column [labelled (a), (b), and (c)]. The different functions have been computed in different geometric
configurations, as sketched on the top of each column. The visible part of the spectrum has been shadowed and divided in two parts, below
and above 550 nm. This division enables an easier comparison with the experimental magneto-optical spectra reported in Ref. [25]. Those
experiments show two absorption peaks centered, respectively, at wavelengths <550 nm and >550 nm, where only the latter gives rise to a
gyrotropic response. The spectra computed in column (b) for a gap � = 0.89 eV are in agreement with the experimental spectra reported in
[25].

Finally, we define a function that integrates the gyrotropic
signal over the analyzed spectral range (0 eV − 5 eV):

Ngy =
∫ ∞

0
|�(ω)|dω. (45)

The numerical calculations were carried out by setting
the vibronic constants to FE = 450 meV, FT = 130 meV and
GE = 20 meV. These values are in agreement with the Jahn-
Teller splitting observed for eg and t2g electrons in 3d elements
[44]. On the other hand, the charge transfer gap has been set
to �CT = 4 eV [44], the damping factor to η = 180 meV [see
Eq. (43)] and the p − d hopping to tpd = 1.2 eV [Eq. (21)].
Finally, the Slater-Koster coefficients were set to (sdσ ) = 1,
(ddσ ) = 0.82, (ddπ ) = 0.29, and (ddδ) = 0.07.

We studied different geometries by varying the relative
orientation of the light propagation, Jahn-Teller distortions
and spin quantization. By way of illustration, the spectral
functions ςng and ςgy displayed in Fig. 7 were calculated
for three different geometries, which are sketched in the top
panels of each column. The spectral functions were computed
for four different values of the energy gap � (as indicated

in the panels of Fig. 7), while the spin-orbit coupling was
set to ξSO = 20 meV. The gap � is defined as the energy
difference between the unperturbed 5A1g and 3Eg terms [see
Fig. 1(b)], which gives an estimation of the degree of t2g − eg

mixing before the introduction of the electromagnetic field.
All parameters, including �, were chosen to work in a region
of the Tanabe-Sugano diagram appropriate for manganese
ions, for which the crystal field is 10Dq ≈ 2 eV and the Racah
parameter is B ≈ 0.11 − 0.13 eV [26,65,66]. On the other
hand, in Fig. 8, the integrated gyrotropic signal described by
Ngy [Eq. (45)] is mapped as a function of spin-orbit coupling
ξSO and orthorhombic perturbations δθ for each value of �.
Panels in Fig. 8 are organized in the same way as in Fig. 7, i.e.,
each column corresponds to each of the geometries sketched
on the top.

B. Discussion of gyrotropic and nongyrotropic responses

We first discuss the nongyrotropic spectra described by
functions ςng shown in Fig. 7. First of all, we observe that
the structure of resonances remains virtually unchanged, as
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FIG. 8. Maps of the integrated spectral function Ngy defined by Eq. (45), as a function of the spin-orbit coupling (ξSO) and orthorhombic
perturbations (δϑ). The maps were computed for the different geometries sketched in the top of each column, labeled as (a), (b), and (c). For
each column, the integrated spectral functions Ngy were calculated for different values of the energy gap �.

long as the geometry is fixed, regardless of the values of
the other parameters. In addition, a comparison between the
ςng spectra displayed in Figs. 7(a) and 7(c) shows that the
nongyrotropic response does not depend on the direction of
the spin quantization ŝ, provided that the relative orientations
of light propagation and distortions remain the same. This is
an indication that the nongyrotropic spectra are contributed
essentially by transitions between 5B1g and 5A1g states. This
observation is supported by the fact that the corresponding
spin-orbit elements are zero for these states [see Eq. (9)],
which explains why the ςng spectra remain unchanged as
the axis of spin quantization changes. Therefore, the struc-
ture of resonances observed in ςng arises basically from the
interactions between 5B1g and 5A1g states, mostly through in-
tersite hopping induced by light (Fig. 5). More specifically,
such transitions connect 5B1g and 5A1g bonding/antibonding
states emerging from light-induced hybridization, which ex-
plains the structure of the peaks in the spectra (Fig. 7). The
resonances located at lower energy, below the visible range
(shadowed areas in Fig. 7) are mostly contributed by transi-
tions between hybridized 5B1g orbitals, while the resonances
located in the visible region correspond to transitions involv-
ing 5A1g states.

We turn now our attention to the gyrotropic ςgy spectra.
As observed in Fig. 7, their structure is much simpler, with
a main resonance located in the visible or near infrared, de-
pending on the geometry and value of �. The contributions
to this resonance come mainly from transitions between 3Eg

and 3A2g states that are perturbed by spin-orbit coupling (see
Sec. IV). The spectral weight of these transitions is too small
to be observed in the nongyrotropic spectra. Nonetheless, their
effect on the gyrotropic response is crucial, via the orbital
mixing induced by spin orbit coupling. One way to evaluate
this mixing is by varying the energy gap � defined above. In
particular, we observe in Fig. 7 that the gyrotropic signal is
the smallest for the largest value of �, as expected from the
smaller orbital mixing in this case.

Let us now discuss the effect of orbital hybridization
induced by the coupling to the electromagnetic field. As
discussed in Sec. IV, the coupling to light induces p − d
hybridization, which causes an evolution of the eigenstates
as a function of the overlapping between oxygen and tran-
sition metal states, as sketched in Fig. 5. In our numerical
calculations we observe that for values tpd ≈ 1.2 eV and � ≈
0.89 eV there is a strong orbital mixing. Indeed, for this
choice of values, the calculated spectra are in agreement with
the experimental spectra reported in Ref. [25]. In particu-
lar, in the calculated spectra we observe two nongyrotropic
resonances in the red and blue parts of the visible range,
respectively, while a main gyrotropic resonance is seen in the
blue region, in agreement with the experiments [25].

Next we discuss the effects of the geometry on the gy-
rotropic response. The data shown in Figs. 7 and 8 reveals
the strong dependence of the spectral functions on geometric
factors. The effect is particularly evident for spectra shown
in panels (c) of both figures, which show that the gyrotropic
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signal is completely extinguished for this particular geometry.
As discussed in Sec. IV, the reason for this extinction is that
the matrix elements of the angular momentum that connect
the t2g orbitals in adjacent sites are null in this case, because
the direction of the momentum component is not contained
in the space symmetries of the t2g orbitals involved in the
transfer. On the other hand, the gyrotropic signal for the ge-
ometry sketched in panels (b) of both figures is significantly
larger than for the spectra and maps shown in panels (a).
The reason is that for the geometry of spectra and mappings
shown in Figs. 7(a) and 8(a), the photoinduced transfer that
contributes to the gyrotropic response happens only between
adjacent η − τ orbitals. In contrast, for the geometry studied
in Figs. 7(b) and 8(b) both ζ − η and ζ − τ hopping channels
are allowed, increasing the gyrotropic signal.

Finally, the data shown in the maps of Fig. 8 reveals the
dependence of the gyrotropic response on spin-orbit coupling.
Indeed, when the latter tends to zero, the gyrotropic signal
becomes vanishingly small, while it becomes progressively
more intense as the spin-orbit coupling increases. On the other
hand, we see that orthorhombic perturbations barely modify
the gyrotropic spectra, as expected from the fact that these
perturbations are much smaller than the intersite hopping
induced by coupling to the electromagnetic field. Both obser-
vations are in agreement with the conclusions drawn from the
perturbative analysis discussed in Sec. IV.

VII. CONCLUSIONS AND PERSPECTIVES

We used a group theoretical approach to study the interac-
tion of transition metals with electromagnetic fields. For that
purpose, we described the relevant electronic states by irre-
ducible representations of pertinent point-group symmetries,
which were constructed from many-electron wavefunctions
based on Slater determinants. The energetics of the problem
was established to comply with Tanabe-Sugano diagrams cor-
responding to the particular ion under study [1]. Starting from
an initial Oh symmetry, we analyzed the effect of symme-
try reduction due to Jahn-Teller interactions and spin-orbit
coupling. The interaction with electromagnetic fields was as-
sumed to produce photoinduced transfer of electrons across
the lattice. The model predicts an electronic response that de-
pends on the handedness of circular polarization of light. Key
ingredients to this gyrotropic response are spin-orbit coupling
and intra-atomic eg − t2g orbital mixing. Remarkably, the gy-
rotropic resonances are related to photoexcitations where one
of the spins is inverted, enabling the use of electromagnetic
fields to manipulate spins. We also analyzed the dependence
of the gyrotropic response on the relative orientation of Jahn-
Teller distortions, light propagation, and spin quantization.
In particular, we found specific conditions for which the gy-
rotropic response is largely reduced or even extinguished. We
focused our analysis on 3d ions, with the aim of understanding
our recent observation of a gyrotropic response associated
with Jahn-Teller polarons in La2/3Ca1/3MnO3 [25]. Using
standard values for Jahn-Teller constants, spin-orbit coupling
and charge transfer our model replicates a gyrotropic response
in the blue region of the visible range, in agreement with the
experiments [25].

Beyond this particular case, a similar approach may be gen-
eralized to study the interaction with electromagnetic fields
of transition metals with arbitrary point symmetries and spin-
orbit couplings. One perspective is the entanglement of spin
and orbital degrees of freedom using light at optical wave-
lengths. One could think, for instance, of studying quantum
tunneling of E ⊗ e or T ⊗ e Jahn-Teller vibronic states [37].
In particular, the interaction with light may drive photoexcited
states, whose ground state is formed by coherent superpo-
sitions of those vibronic states through quantum tunneling,
which may be detected with polarized light. Such excitations
could form the basis for quantum states of interest for quan-
tum technologies [22,67]. Another prospect may be the study
of 4d-5d transition metals hosting (quantum) spin liquids
[18–21]. In this case, magnetic interactions would compete
with the coupling to the electromagnetic field, which could
lead to a rich diagram of quantum phases as a function of
the wavelength of the electromagnetic radiation. To solve this
problem, a group-theoretical approach would require working
in appropriate regions of Tanabe-Sugano diagrams [1,49].
For instance, for heavy metal d4 ions the ground state is
3T1g instead of 5Eg, due to the larger crystal field that leads
to the condition (Dq/B)c > 2.7, see Fig. 1(a). Additionally,
since in this case Jahn-Teller interactions in the t2g manifold
are typically smaller than spin-orbit coupling [20,37,44], the
group-theoretical analysis should consider lowering the point
symmetry by spin-orbit interactions in the first place.

We note that our model Hamiltonian considers electrons
that are subject to Jahn-Teller instabilities. In general, these
may coexist with electrons in delocalized bands. This is in-
deed the case of many oxides, including La2/3Ca1/3MnO3,
where both Jahn-Teller polarons and delocalized electrons
participate in transport [68–70]. We stress that our model
captures the essential physics of electrons that are affected
by Jahn-Teller interactions, neglecting contributions from de-
localized electrons. As we demonstrate here, this is enough
to describe the specific contribution of Jahn-Teller vibronic
states to the gyrotropic response, which is experimentally
distinguishable from the conventional response arising from
delocalized bands [25]. On the other hand, although the
analysis based on spectral functions gives a fundamental un-
derstanding of light-matter interactions in these solids, further
developments can address linear response theory to obtain
responses like optical conductivity and permittivity that can
be matched with experiments.

We also note that our assumption of photoinduced elec-
tron transfer implies an enhanced conductivity at resonant
frequencies, which, eventually could be tested experimen-
tally by measuring electronic transport under illumination at
relevant wavelengths. These experiments could be done in
La2/3Ca1/3MnO3, but other candidates would also comprise
materials like (PrxLa1−x )2/3Ca1/3MnO3 [71] or magnetite
[72], where optical signatures of Jahn-Teller polarons have
been observed [73]. Generally, materials prone to Jahn-Teller
instabilities, including colossal magnetoresistance manganites
[68–70], could be worth exploring in search for gyrotropic
responses arising from spin-orbital mixing. On the theo-
retical side, other models can extend the analysis to the
optical responses of clusters of Jahn-Teller ions rather than
isolated ions. Alternative models may also explore these
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responses in the absence of phototransfer, e.g., the photoex-
citation of Jahn-Teller states in molecules [37,74], in which
the group-theoretical approach should be applied at the level
of molecular orbitals. Finally, in the present model, the elec-
tromagnetic radiation and the lattice modes are treated as
classical fields. Further extensions would require a full quan-
tum approach to describe these fields, especially relevant for
the application of the aforementioned ideas to concepts like
cavity quantum electrodynamics [67,75].
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APPENDIX A: WAVEFUNCTIONS OF MANY-ELECTRON
STATES

1. Notation

We use group theory to construct many-electron wavefunc-
tions. We work in a product basis between orbital and spin
momenta, so that wavefunctions are defined by kets like

|(G)2S+1�(γ )M〉. (A1)

Here S is the spin magnitude, so that 2S + 1 is the spin degen-
eracy, and � is the irreducible representation in orbital space
of group G, expressed in the basis γ (which is omitted for
unidimensional representations). Finally M is referred to the
spin quantum number, M = −S, ..., S. In the description of
spin-orbit coupling, wavefunctions are denoted by |�γ 〉 since
orbital and spin angular momenta are coupled and double
group representations are best suited to take into account the
electron spin.

The wavefunctions describe multi-electronic states, so they
are linear combinations of Slater determinants,

|ψ1 · · ·ψN | = 1√
N!

∣∣∣∣∣∣
ψ1(1) · · · ψN (1)
...

. . .
...

ψ1(N ) · · · ψN (N )

∣∣∣∣∣∣. (A2)

Here ψi = φiχi is the ith mono-electronic wavefunction,
where the orbital angular momentum part is described by φi =
ζ , η, τ, u, v [labels are defined in Eq. (A3)] and χi = α, β is
the spinor part. Being n̂ the quantization axis for the spin,
then n̂ · ŝα = +1/2α and n̂ · ŝβ = −1/2β. For brevity, the
notation inside the Slater determinants is written as φα → φ

and φβ → φ̄, which is taken from Ref. [1]. Finally, the sign in
bras and kets for wavefunctions is denoted by a breve symbol,
i.e., M̆ = −M.

2. Construction of the wavefunctions

a. Oh point symmetry

In the case of one electron in a d shell in a cubic crystal
field the tenfold degeneracy of the free ion is broken into a eg

shell (with fourfold degeneracy) and a t2g shell (sixfold degen-
eracy). The basis angular functions of these two shells can be

expressed as linear combinations of spherical harmonics Y m
l

to get real spatial symmetries,

u = Y 0
2 ∼ 1

2
(3z2 − r2), (A3a)

v = 1√
2

[
Y +2

2 + Y −2
2

] ∼
√

3

2
(x2 − y2), (A3b)

ζ = ı√
2

[
Y +1

2 + Y −1
2

] ∼
√

3yz, (A3c)

η = − 1√
2

[
Y +1

2 − Y −1
2

] ∼
√

3xz, (A3d)

τ = − ı√
2

[
Y +2

2 − Y −2
2

] ∼
√

3xy, (A3e)

u and v are the basis for the eg shell and ζ , η, and τ are the
basis for the t2g shell.

When there is more than one electron in the d shell we
construct many-electron wavefunctions using Slater determi-
nants. Since the spin-orbit interaction is small compared to
exchange interactions, the many-electron wavefunctions are
built by coupling separately the orbital and spin momenta,
following the Russell-Saunders coupling scheme and using
Clebsch-Gordan coefficients. For the orbital part, the coef-
ficients are adapted for the Oh point-group symmetry. The
many-electron wavefunctions are expressed as linear com-
binations of Slater determinants, which take all possible
permutations of electrons sitting on the different monoelec-
tronic orbitals and having all possible spin orientations [1].

In the d3 configuration the ground state for all values of the
crystal field parameter Dq/B in the Sugano-Tanabe diagrams
is 4A2g. It can be shown that the wavefunction that describes
this fourfold degenerated term is built from Slater determi-
nants with the three monoelectronic orbitals of t2g as follows
[1]:

|4A2g
3
2 〉 = −|ζητ |, (A4a)

|4A2g
1
2 〉 = − 1√

3
[|ζητ̄ | + |ζ η̄τ | + |ζ̄ ητ |], (A4b)

|4A2g
1̆
2 〉 = − 1√

3
[|ζ̄ ητ̄ | + |ζ η̄τ̄ | + |ζ̄ η̄τ |], (A4c)

|4A2g
3̆
2 〉 = −|ζ̄ η̄τ̄ |. (A4d)

When a fourth electron is added to the t2g shell, the many-
electron wavefunction transforms as a T1g representation with
total spin S = 1 and is built from nine degenerate Slater deter-
minants as follows:

|3T1gκ1〉 = |ζητ ζ̄ |, (A5a)

|3T1gκ0〉 = 1√
2

[|ζ η̄τ ζ̄ | + |ζητ̄ ζ̄ |], (A5b)

|3T1gκ 1̆〉 = |ζ η̄τ̄ ζ̄ |. (A5c)

The orbital basis functions for T1g are κ, μ, ν, which have
the same relation under rotations as the Cartesian coordinates
x, y, z but being even under parity. Eq. (A5) give us three
determinants. The remaining six are obtained for the μ and
ν basis of the 3T1g representation. The latter are obtained from
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κ by rotating in the orbital space by ±2π/3 around the [111]
axis.

On the other hand, if the fourth electron is in the eg shell
the many-electron wavefunction corresponds to an Eg rep-
resentation. In this case, the spin number is S = 2 and the
many-electron wavefunctions can be expressed as ten linear
combinations of determinants as follows:

|5Egγ 2〉 = ±|ζητγ ′|, (A6a)

|5Egγ 1〉 = ±1

2
[|ζητ γ̄ ′| + |ζ̄ ητγ ′| + |ζ η̄τγ ′| (A6b)

+ |ζητ̄γ ′|], (A6c)

|5Egγ 0〉 = ± 1√
6

[|ζ̄ ητ γ̄ ′| + |ζ η̄τ γ̄ ′| + |ζητ̄ γ̄ ′| (A6d)

+ |ζ η̄τ̄ γ ′| + |ζ̄ ητ̄ γ ′| + |ζ̄ η̄τγ ′|],
|5Egγ 1̆〉 = ±1

2
[|ζ̄ η̄τ̄ γ ′| + |ζ η̄τ̄ γ̄ ′| + |ζ̄ ητ̄ γ̄ ′|

+ |ζ̄ η̄τ γ̄ ′|], (A6e)

|5Egγ 2̆〉 = ±|ζ̄ η̄τ̄ γ̄ ′|. (A6f)

Here the bases for the irreducible representation 5Eg are
γ , γ ′ = u, v being γ �= γ ′ and the positive (+) signs corre-
sponding to γ = u and the negative (−) signs corresponding
to γ = v.

b. D4h point symmetry

When the cell is tetragonally distorted by a Jahn-Teller
instability (reducing the symmetry to D4h), the T1g representa-
tion is broken into a representation A2g with orbital symmetry
γ = ν, and Eg with symmetries γ = κ, μ. On the other hand,
the reduction to D4h symmetry splits the Eg representation into
A1g with basis γ = u and B1g with basis γ = v. Therefore,
in D4h point symmetry the terms are split in the following
representations (we show only the terms with maximum spin
quantum number):

|3A2gν1〉 = |ζητ τ̄ |, (A7a)

|3Egκ1〉 = |ζητ ζ̄ |, (A7b)

|3Egμ1〉 = |ζητ η̄|, (A7c)

|5A1gu2〉 = |ζητv|, (A7d)

|5B1gv2〉 = |ζητu|. (A7e)

We note that under a tetragonal elongated distortion the term
5B1g is lowest in energy. Although in the mono-electronic pic-
ture the fourth electron that drives the Jahn-Teller instability
sits in an orbital with u symmetry, the many-electron wave-
function of the 5B1g term has v symmetry. We also note that
we introduce a global phase −1 in the term 5B1g to eliminate a
minus sign.

c. Spin-orbit coupling

Finally, we analyze how spin-orbit coupling splits the rep-
resentations expressed in Eq. (A7). We remind that under
spin-orbit coupling, wavefunctions are expressed as double
group representations |�γ 〉. In Eqs. (A8) and (A9), double
group representations (on the left side) are expressed in terms

TABLE II. Clebsch-Gordan coefficients for E ⊗ E in D4h group.

A1 A2 B1 B2

E E u ν v τ

κ κ 1√
2

0 −1√
2

0
μ 0 −1√

2
0 −1√

2

μ κ 0 1√
2

0 −1√
2

μ 1√
2

0 1√
2

0

of the irreducible representations in D4h point symmetry (right
side). First of all, note that the only term that splits under
spin-orbit coupling is 3Eg. This can be understood by observ-
ing the reduced matrices in Eq. (7a) of the main text: only
the reduced matrix VA2g has one nonzero diagonal element
corresponding to this term. The spin part of 3Eg cannot be
described by a j = 1 representation in continuous rotation
group because spins interact with the orbital space, which, in
this case, is described by the Eg representation in D4h. In this
symmetry, the continuous spin rotation group D(S=1) decom-
poses into A2g + Eg representations—which are gerade, since
spinors are even under parity inversion [76]—with represen-
tations in spherical basis A2g with q = 0, and Eg with q = ±1.
Therefore, we need to obtain the representation of the com-
posite product (A2g + Eg) ⊗ Eg = A2g ⊗ Eg + Eg ⊗ Eg. Thus,
for A2g ⊗ Eg, i.e., when the orbital component Eg couples
to the A2g representation in the spin space, it generates two
functions that transform as Eg representations,

|Egκ〉 = |3Egμ0〉, (A8a)

|Egμ〉 = −|3Egκ0〉. (A8b)

On the other hand, the Eg representation of the orbital part
combines with the Eg representation of the spin part, giv-
ing the following irreducible representations Eg ⊗ Eg = A1g +
A2g + B1g + B2g, which are expressed as follows:

|A1g〉 = −1

2
[|3Egκ1〉 − |3Egκ 1̆〉 − ı|3Egμ1〉 − ı|3Egμ1̆〉],

(A9a)

|A2g〉 = ı

2
[|3Egκ1〉 + |3Egκ 1̆〉 − ı|3Egμ1〉 + ı|3Egμ1̆〉],

(A9b)

|B1g〉 = 1

2
[|3Egκ1〉 − |3Egκ 1̆〉 + ı|3Egμ1〉 + ı|3Egμ1̆〉],

(A9c)

|B2g〉 = − ı

2
[|3Egκ1〉 + |3Egκ 1̆〉 + ı|3Egμ1〉 − ı|3Egμ1̆〉].

(A9d)

Note that we used the Clebsch-Gordan coefficients displayed
in Table II in Appendix C to obtain the expressions in
Eqs. (A8) and (A9). On the other hand, for some calculations
it may be convenient to express Eqs. (A8) and (A9) in spher-
ical basis for the orbital angular momentum of the 3Eg term,
which contains components with quantum numbers ML = ±1
labeled as t±, and t0. We can then rewrite the corresponding
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terms as

|3Egt±M〉 = ∓ 1√
2

[|3EgκM〉 ± ı|3EgμM〉], (A10)

|A1g〉 = − 1√
2

[|3Egt+1̆〉 + |3Egt−1〉], (A11a)

|A2g〉 = − ı√
2

[|3Egt+1̆〉 − |3Egt−1〉], (A11b)

|Egκ〉 = ı√
2

[|3Egt+0〉 − |3Egt−0〉], (A11c)

|Egμ〉 = − 1√
2

[|3Egt+0〉 + |3Egt−0〉], (A11d)

|B1g〉 = − 1√
2

[|3Egt+1〉 + |3Egt−1̆〉], (A11e)

|B2g〉 = ı√
2

[|3Egt+1〉 − |3Egt−1̆〉]. (A11f)

Finally, we discuss how spin-orbit coupling splits the rep-
resentation 3Eg in D4h symmetry, see [Fig. 1(b)]. For that
purpose, we use the Wigner-Eckart theorem to compute
the eigenenergies of the spin-orbit matrix elements. First,
since 〈Egκ|EgγEgκ〉 = 〈Egμ|EgγEgμ〉 = 0 for γ = κ, μ, ν,
the spin-orbit eigenenergies of the Eg terms [see Eq. (A8)] are
0. On the other hand, by virtue of the expressions in Eq. (A11),
the terms in Eq. (A9) can be expressed in the following way:

|�̄〉 =
∑
γ ,q

cγ q|3Egγ q〉, (A12)

where cγ q can be obtained from Eq. (A11). The Clebsch-
Gordan coefficients necessary to apply Wigner-Eckart
are 〈Egγ |A2gνEgγ

′〉 = (δκγ − δμγ )(1 − δ
γ ′
γ ) and 〈1q|101q′〉 =

δ
q′
q q/

√
2, so that the matrix elements can be computed as

〈�̄|
L · 
S|�̄〉 = ı√
2

∑
γ ,q
γ ′,q′

qc∗
γ qcγ ′q′

(
δκγ − δμγ

)(
1 − δγ

′
γ

)
. (A13)

This gives matrix elements 〈A1g|
L · 
S|A1g〉 = 〈A2g|
L ·

S|A2g〉 = −1/2 and 〈B1g|
L · 
S|B1g〉 = 〈B2g|
L · 
S|B2g〉 = 1/2.
As a result, spin-orbit coupling does not change the energy of
the doubly degenerated Eg spin-orbit term, while symmetric
(A1g,A2g) and antisymmetric (B1g,B2g) representations split
by ∓ξSO/2 with respect to the Eg term [Fig. 1(b)]. We also
note that the accidental degeneracy of (A1g,A2g) and (B1g,B2g)
terms may be eventually lifted if one considers developments
beyond first-order relativistic contributions.

APPENDIX B: JAHN-TELLER HAMILTONIAN

Atoms or ions in a molecule or a unit cell have a position
where the energy of the system is minimized. Sufficiently
small deviations from these equilibrium positions can be de-
scribed through a force constant:

K��̄ =
(
∂2E�

∂Q�̄2

)
0

. (B1)

Here Q�̄ are the vibronic coordinates that transform un-
der irreducible representation �̄, which can be described
in the frame of group theory being linear combinations
of the displacements of the atoms in Cartesian coordinates
�Xn,�Yn,�Zn, and E� is the energy of the system, which
depends on the irreducible representation � of the elec-
tronic wavefunction. In the presence of orbital degeneracy,
the equilibrium positions change spontaneously, reducing the
symmetry through the Jahn-Teller theorem [6]. This situation
can be described by the addition of another term in the energy
of the system that includes the potential energy of the nuclei in
the field of the electrons in the state defined by the representa-
tion � and basis γ , i.e., the adiabatic potential energy surface
(APES) ε�γ ( 
Q) [9]:

ε( 
Q) =
∑
�,�̄

[
1

2
K��̄Q2 + ε�γ ( 
Q)

]
, (B2)

where ε�γ ( 
Q) is obtained by solving the secular equation for
the vibronic coupling matrix operator W , which, to second
order, is defined as

W (r,Q) =
∑
�γ

(
∂V

∂Q�
γ

)
0

Q�
γ

+ 1

2

∑
�′γ ′�′′γ ′′

(
∂2V

∂Q�′
γ ′∂Q�′′

γ ′′

)
0

Q�′
γ ′ Q�′′

γ ′′ , (B3)

where V refers to the electron-ion interaction potential.
We can thus define first-order Eq. (B4a) and second-order
Eq. (B4b) vibronic coupling terms as follows [9]:

X�
γ =

(
∂V

∂Q�
γ

)
0

, (B4a)

X�1�2
γ1γ2

=
(

∂2V

∂Q�1
γ1 ∂Q�2

γ2

)
0

. (B4b)

These operators transform as the representation of the
group corresponding to the lattice distortions [9], so for the
computation of the matrix elements we can use the Wigner-
Eckart theorem.

For the E ⊗ e problem, the following matrix elements can
be derived using the functions defined in Eq. (A3):

FE = 〈v|X Eg
u |v〉, (B5)

GE = 〈u|X EgEg
vv |u〉. (B6)

By using the Wigner-Eckart theorem we can develop the cor-
responding Hamiltonian as

HE⊗e
JT = 1

2 KEρ
2υ0

+ [FEρ cosϑ + GEρ
2 cos(2ϑ )]υz

+ [FEρ sin ϑ − GEρ
2 sin(2ϑ )]υx, (B7)

where υi are the Pauli matrices in the pseudospin space of
{v, u} and the vibronic coordinates have been normalized
as Q2 = ρ sin ϑ and Q3 = ρ cosϑ . The eigenstates of this
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Hamiltonian are

εE (ρ, ϑ ) = 1
2 KEρ

2

± ρ

√
F 2

E + G2
Eρ

2 + 2FE GEρ cos(3ϑ ) (B8)

with the following eigenstates:

w+ = 1√
2

(
v cos

"

2
+ u sin

"

2

)
, (B9a)

w− = 1√
2

(
u cos

"

2
− v sin

"

2

)
. (B9b)

The energy minima are found when ϑ = 2nπ/3, n =
0, 1, 2—which corresponds to tetragonal elongations along
the three axes—and ρ = FE/(KE − 2GE ). In order to sim-
plify the computation, the radial variable is normalized to
ρ = 1. Around the tetragonal elongations, the parameter " in
Eq. (B9), which is defined as

tan" = FE sin ϑ + |GE | sin(2ϑ )

FE cosϑ − |GE | cos(2ϑ )
(B10)

can be approximated as " ≈ ϑ . In this situation, w− has a
u-like symmetry and w+ has a v-like symmetry. Since we con-
sider tetragonal elongations with orthorhombic perturbations
(ϑ = 2nπ/3 ± δϑ), we can work with the following basis:

v̌ = 1√
2

(
v cos

ϑ

2
+ u sin

ϑ

2

)
, (B11a)

ǔ = 1√
2

(
u cos

ϑ

2
− v sin

ϑ

2

)
. (B11b)

With this basis, and taking into account δϑ , the expression
Eq. (B7) is transformed as

HE⊗e
JT = FE + 2GE

2
υ0 + (FE + GE )υz

+ (FE − 2GE )δϑυx. (B12)

As argued in the main text, in the t2g shell we only con-
sider the T ⊗ e problem. For this problem we also neglect
second-order vibronic constants. The T ⊗ e vibronic constant
is defined as

FT = 〈τ |QEg
u |τ 〉. (B13)

Using again the Wigner-Eckart theorem, the Hamiltonian of
the T ⊗ e Jahn-Teller interaction is derived as a function of
Gell-Mann matrices λk in the basis {ζ , η, τ },
HT ⊗e

JT = 1
2 KTρ

2λ0 − 1
2 FTρ[

√
3λ8 cosϑ + λ3 sin ϑ]. (B14)

The energy minima correspond again to the tetragonal elonga-
tions with ρ = FT /KT . Since the nuclei motion is much slower
than the electronic transitions, we can make the assumption
that these minima are the same as the ones for the E ⊗ e
problem, so we normalize again ρ = 1, so that FT = KT .
These minima correspond to the basis defined before. We can
generalize the expression Eq. (B14) to the local basis at each
value ϑn, denoted as {ζ̌ , η̌, τ̌ }, which is defined by rotations
around the [111] axis in the orbital space, i.e., τ̌ = R̂n

3(xyz)τ ,
where R̂n

k (x...) defines a rotation of kth order (angle 2π/k)
executed n times along the axis defined by the coordinates in

the parentheses. Then, the orthorhombic distortions in T ⊗ e
are described by

HT ⊗e
JT = 1

2 FT
[
λ0 −

√
3λ8 − δϑλ3

]
. (B15)

The description so far is done with monoelectronic orbitals.
We can generalize these results to many-electron wavefunc-
tions. The vibronic constants are calculated using a one-body
potential, so that for the nondiagonal matrix elements we
only need to check the orbitals that are different (see also
Appendix D). All the wavefunctions described by Eq. (A5)
and Eq. (A6) are defined in the orbital part in terms of deter-
minants of the type |ζητγ |. Since there is just one different
orbital in each Slater determinant, the off-diagonal elements
are not modified. Then, for the first-order vibronic constants,
since the sums for 〈t |X Eg

u |t〉 and 〈t |X Eg
v |t〉 for t = ζ , η, τ are

null, the results for many-electron wavefunctions are the same
as for the monoelectronic orbitals. We note that the same
arguments apply for the T ⊗ e problem, since second-order
vibronic constants are neglected.

APPENDIX C: REDUCED MATRIX ELEMENTS
OF THE SPIN-ORBIT COUPLING OPERATOR

For the computation of the matrix elements of the spin-
orbit coupling, we use the Wigner-Eckart theorem applied
to the spin-orbit operator V�

λq defined in Sec. II B, see also
Ref. [1]. This operator transforms according to irreducible
representations � in the orbital space with basis λ and S1

q
corresponds to irreducible representations in the spin-rotation
group. To calculate a given matrix element, we apply the
Wigner-Eckart theorem as follows:

〈�γ SM|V�
λq|�′γ ′S′M ′〉 = (−1)1−g�

√
g� (2S + 1)

× 〈�S||V�||�′S′〉〈�γ |�λ�′γ ′〉
× 〈SM|1qS′M ′〉, (C1)

where |�γ SM〉 and |�′γ ′S′M ′〉 correspond to wavefunctions
that transform as irreducible representations �, �′ in bases γ ,
γ ′ with spin S, S′ and spin quantum numbers M, M ′, while
g� and g� are the dimensionality of representations � and
�. The application of the Wigner-Eckart theorem requires
the computation of the reduced matrices 〈�S||V�||�′S′〉. The
latter have to be hermitic, which, as will be shown below, is
guaranteed by the following expression [1]:

〈�′γ ′S′M ′|V�
λq|�γ SM〉

= −(−1)q〈�γ SM|V�
λq̆|�′γ ′S′M ′〉, (C2)

where, since 
S is expressed in spherical coordinates, we have
q = +1, 0,−1. One has to consider also the following rela-
tions between the Clebsch-Gordan coefficients:

〈SM|1qS′M ′〉 = (−1)S−S′+q

√
2S + 1

2S′ + 1
(C3a)

× 〈S′M ′|1q̆SM〉, (C3b)

〈SM|1qS′M ′〉 = (−1)1+S′−S〈SM|S′M ′1q〉, (C3c)
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〈�γ |�λ�′γ ′〉 =
√

g�
g�′

ε(���′)〈�′γ ′|�λ�γ 〉, (C3d)

〈�γ |�λ�′γ ′〉 = χ (���′)〈�γ |�′γ ′�λ〉. (C3e)

The factors ε(���′) and χ (���′) depend on the phase
convention [50]. We have fixed this convention by imposing
〈�γ |A1gu�γ 〉 = 1 for any representation � and basis γ . As-
suming this convention, we have

ε(A1gEgEg) = ε(B1gEgEg) = 1, (C4a)

ε(A2gEgEg) = ε(B2gEgEg) = −1, (C4b)

ε(A2gA2gA1g) = 1, (C4c)

χ (EgEgA1g) = χ (EgEgB1g) = 1, (C4d)

χ (EgEgA2g) = χ (EgEgB2g) = −1, (C4e)

χ (A2gA2gA1g) = 1. (C4f)

One can verify that Eqs, (C3) and (C4) imply that
〈�S||V�||�′S′〉 = 〈�′S′||V�||�S〉, which, as mentioned
above, guarantees the expected Hermiticity of the spin-orbit
operator.

As shown in Sec. II B, the reduced matrices for the
spin-orbit operator are expressed through irreducible repre-
sentations VA2g and VEg . To derive the matrix elements of these
matrices, we use the Clebsch-Gordan coefficients expressed in
Table II and the ladder operators defined as

J±|m〉 =
√

j( j + 1) − m(m ± 1)|m ± 1〉, (C5)

which are related to the spherical components of the angular
momentum operators through

J± = ∓ 1√
2

J±1. (C6)

We first derive the matrix elements corresponding to the
representation VA2g . We remind that the reduced matrices are
expressed in the basis {3Eg,

3A2g,
5A1g,

5B1g} (see discussion in
Sec. II B). We first note that the direct product A2g ⊗ A2g =
A1g implies that the spin-orbit operator in representation A2g

has nonzero matrix elements connecting 5A1g and 3A2g. Let
us find such elements by applying the operators of angular
and spin momenta to the wavefunctions of representation
3A2g. We choose a spin-orbit operator in representation q = 1
(corresponding to spin operator s+) and |3A2gν1〉 expressed in
terms of the corresponding Slater determinants [Eq. (A7a)].
By applying the operators directly to the wavefunctions it
follows that

〈5A1gu2|V A2g

ν1 |3A2gν1〉

= − 1√
2
〈v|lz|τ 〉〈+ 1

2 |s+| − 1
2 〉 = ı

√
2. (C7)

On the other hand, by applying the Wigner-Eckart theorem
[Eq. (C1)], we obtain

〈5A1gu2|V A2g

ν1 |3A2gν1〉 = 1√
5
〈5A1g||VA2g||3A2g〉. (C8)

Combining Eqs. (C7) and (C8) we obtain the reduced ma-
trix element 〈5A1g||VA2g||3A2g〉 = ı

√
10.

Next, we note that the direct product Eg ⊗ A2g = Eg im-
plies that Eg wavefunctions can be connected through the

spin-orbit operator only to wavefunctions of the same repre-
sentation. This gives a diagonal element in the VA2g matrix.
To find such element we apply, as before, the operators of
angular and spin momenta to wavefunctions 3Eg [Eqs. (A7b)
and (A7c)] and choose a representation q = 0, involving the
spin operator s0. The application of the operators to the wave-
functions gives

〈3Egκ1|V A2g

ν0 |3Egμ1〉 = 〈ζ |lz|η〉〈− 1
2 |s0| − 1

2 〉 = − ı

2
. (C9)

On the other hand, the application of the Wigner-Eckart
theorem gives

〈3Egκ1|V A2g

ν0 |3Egμ1〉 = − 1√
12

〈3Eg||VA2g||3Eg〉. (C10)

We therefore obtain 〈3Eg||VA2g||3Eg〉 = ı
√

3. Using similar
arguments, it can be shown that the rest of matrix elements
of VA2g are zero, resulting in the reduced matrix described by
Eq. (7a).

We derive now the matrix elements corresponding to the
representation VEg . We first note that the direct product Eg ⊗
Eg = A1g ⊕ A2g ⊕ B1g ⊕ B2g means that the term 3Eg can be
connected by the spin-orbit operator to all other representa-
tions. As done for VA2g , we combine the application of the
operators of angular and spin momenta to the pertinent wave-
functions with the application of the Wigner-Eckart theorem.
We obtain the following expressions:

〈3A2gν1|V Eg

κ0 |3Egx1〉
= 〈τ |lx|ζ 〉〈− 1

2 |s0| − 1
2 〉 = ı

2

= 1√
12

〈3A2g||VEg||3Eg〉, (C11)

〈5A1gu2|V Eg

κ1 |3Egκ1〉
= 〈v|lx|ζ 〉〈+ 1

2 |s+| − 1
2 〉 = − ı√

2

= − 1√
10

〈5A1g||VEg||3Eg〉, (C12)

〈5B1gv2|V Eg

κ1 |3Egκ1〉

= 〈u|lx|ζ 〉〈+ 1
2 |s+| − 1

2 〉 = −ı

√
3

2

= 1√
10

〈5B1g||VEg||3Eg〉, (C13)

which allow us to obtain all the matrix elements for the VEg

matrix as follows: 〈3A2g||VEg||3Eg〉 = ı
√

3, 〈5A1g||VEg||3Eg〉 =
ı
√

5 and 〈5B1g||VEg||3Eg〉 = −ı
√

15.
These elements give the reduced matrix VEg expressed in

Eq. (7b).

APPENDIX D: ONE-BODY OPERATORS

In this paper, Jahn-Teller and spin-orbit Hamiltonians
contain one-body operators. In the same way, light-induced
transfer requires also one-body operators in the electromag-
netic Hamiltonian. In the following, we explain how one-body
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operators act in the formalism of the many-electron wavefunc-
tions defined in Appendix A.

For that purpose, we recall that to comply with Pauli
exclusion principle we need to define a multielectronic wave-
function � through the antisymmetrization operator A acting
on the product of monoelectronic states occupied by electrons,

� =
√

N!A
∏

i

ψi(i) = 1√
N!

∑
σ∈P

(−1)σ
∏

i

ψσ (i)(i), (D1)

where σ is an element in the permutation group P , N is the
number of fermions of the system and in (−1)σ represents
the parity of the permutation. This results in the formation of
Slater determinants.

We can define a one-body operator O as the sum of opera-
tors ok acting over the kth fermion as follows:

O =
∑

k

ok . (D2)

To find the matrix elements, we take into account the follow-
ing properties of the antisymetrization operator:

(i) Applying A to a Slater determinant returns the same
Slater determinant, so that A2 = A.

A� = 1√
N!

∑
σ∈P

(−1)σA
∏

i

ψσ (i)(i)

= 1

(N!)3/2

∑
σ,τ∈P

(−1)σ+τ
∏

i

ψτ (σ (i))(i)

= 1√
N!

∑
κ∈P

(−1)κ
∏

i

ψκ (i)(i). (D3)

We see that the composition of the two antisymmetrization op-
erators defines another permutation in P , κ (i) = τ (σ (i)) with
parity κ = τ + σ , with N! possible different compositions τσ
that return κ .

(ii) Since A is a real operator A† = A.
(iii) Since any one-body operator is even under permuta-

tions it always commute with A, [O,A] = 0.
Consequently, the matrix elements involving one-body op-

erators between many-electron wavefunctions can be found as
follows:

〈�|O|�〉 = N!〈
∏

j

φ j ( j)|A†OA|
∏

i

ψi(i)〉 =
∑

k

∑
σ∈P

(−1)σ 〈
∏

j

φ j ( j)|ok|
∏

i

ψσ (i)(i)〉

=
∑

k

∑
σ∈P

(−1)σ 〈φk (k)|ok|ψσ (k)(k)〉
∏

i

〈φi(i)|ψσ (i)(i)〉 =
∑

k

〈φk (k)|ok|ψk (k)〉
∏

i

〈φi(i)|ψi(i)〉. (D4)

By orthogonality, the only permutation that does not vanish
is the identity. Note that diagonal elements (� = �) do not
vanish,

〈�|O|�〉 =
∑

k

〈ψk (k)|ok|ψk (k)〉. (D5)

On the other hand, off-diagonal elements (� �= �) can
be nonzero only if the many-electron wavefunctions differ

only by one one-body wavefunction. Otherwise, if they differ
by more than one one-body wavefunction, the inner product
vanishes,

〈�|O|�〉 = 〈φ|o|ψ〉. (D6)
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