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Layer pseudospin magnetism in a transition metal dichalcogenide double-moiré system
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Spontaneous order of layer pseudospins in two-dimensional bilayers is common in quantum Hall systems,
where it is responsible for hysteretic responses to gate fields in states with Ising order and giant drag voltages in
states with XY (spontaneous interlayer phase coherence) order. In this article we predict that layer pseudospin
order will also occur in double-moiré strongly correlated two-dimensional electron systems. We comment on
similarities and differences in the competition between the two types of order in quantum Hall and double-moiré
systems, and relate our findings to previous work on Falicov-Kimball models of electronic ferroelectrics.

DOI: 10.1103/PhysRevB.106.165105

I. INTRODUCTION

Bilayer two-dimensional electron systems possess a which
layer degree of freedom that is conveniently regarded as an
artificial pseudospin. When the two layers are electrically
isolated, conservation of their electron number difference is
manifested by invariance under global rotations about the ẑ
direction in layer pseudospin space, like the spins of a lattice
XXZ model which in two dimensions can have Ising or XY
Kosterlitz-Thouless order depending on model parameters.
In the case of bilayers in the quantum Hall regime [1,2], it
has been established that at some Landau-level filling factors
ν, the layer pseudospins have XY order. Layer pseudospin
order is especially robust near ν = 1, where the ordered state
can be viewed as an exciton condensate of electrons in the
lowest Landau level of one layer and the holes in the lowest
Landau level of the other layer, and is responsible for fantastic
electrical anomalies, including large transport drag signals
and dissipationless counterflow transport.

In recent years, experimenters have developed moiré super-
lattices [3–7], two-dimensional semiconductors, or semimetal
bilayers in which a moiré pattern has formed as an attrac-
tive platform for studies of highly tunable strong correlation
physics. In this article we propose that the bilayer coun-
terflow superfluid states discovered first in quantum Hall
systems [8–10] also occur at zero magnetic field in double
moirés—systems with two moiré superlattices separated by
an insulating layer as illustrated schematically in Fig. 1. As
in the quantum Hall case, counterflow superfluids are most
stable near ν = 1, where ν in this case is the number of
carriers per moiré lattice site. In the double-moiré case, the
spontaneous coherence states compete with a series of broken
translational symmetry exciton crystal states that reduce to
lattice gas states in the long-moiré period limit and are re-
sponsible for the hysteretic response of the layer polarization
to externally applied displacement fields. We find that the
crystalline states prevail at small fields and at small twist
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angles, whereas the layer-coherent states are more common
at larger displacement fields before the system become fully
layer polarized. For the honeycomb (bipartite) lattice case, this
spontaneous coherence state can also be viewed as spin-flop
states of the layer pseudospin. For the triangular (nonbipar-
tite) lattice, layer-magnetic frustration forces coherent states
to break the translational symmetry and become supersolid
phases of excitons.

II. TMD DOUBLE-MOIRÉ SYSTEMS

The low-energy electronic physics of long-period moiré
superlattices is accurately described by continuum mod-
els [11–13]. In the case of p-type group-VI transition metal
dichalcogenide semiconductor (TMD) heterobilayers [12],
there is only one low-energy orbital state per spin, and the
moiré pattern acts like a periodic modulation potential. The
single-particle Hamiltonian of valence-band holes is therefore

H0 = − h̄2k2

2m
+ �(r), (1)

where m is the effective mass and �(r) is the moiré modula-
tion potential. The moiré potential extrema form a triangular
lattice with period aM , the moiré lattice constant.

The situation is different for AA stacked TMD homobi-
layers [13,14], because strong interlayer hybridization leads
to an emergent C2 symmetry in the moiré potential. The
valence-band maximum for most TMD homobilayers lies at
the � point and is spin degenerate. The low-energy physics of
valence-band holes is described by the same Hamiltonian as in
the heterobilayer case (1), except that the moiré potential has
higher symmetry and the potential maxima form a honeycomb
lattice.

In this work we consider two moiré TMD bilayers sepa-
rated by a few-layer hexagonal boron nitride (hBN) tunnel
barrier, as shown in Fig. 1. We assume the two moirés
are composed of the same materials, that they have the
same moiré periods, and that they are perfectly aligned both
rotationally and translationally. Later we will discuss the ex-
perimental relevance of these assumptions and the robustness
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FIG. 1. A dual-gated transition metal dichalcogenide (TMD)
double-moiré system. Each moiré layer has a periodic lateral modu-
lation. The two moiré layers are assumed to be identical and perfectly
aligned horizontally. Negative voltages are applied at the top and
bottom gates to induce positive charge carriers (holes) in the moiré
layers, both of which are grounded. A difference between the top
and bottom gate voltages produces a vertical electric field that cre-
ates an electric potential difference between the two moiré layers
that can be varied at fixed carrier density. Dielectric tunnel barriers
(gray regions) are inserted between the layers to suppress interlayer
tunneling.

of our results in the presence of a small lateral displace-
ment between the two moirés. The double-moiré system is
described by the Hamiltonian

H = H0 ⊗ τ0 − Vz

2
τz + H1, (2)

where τ0 and τz are the identity matrix and Pauli-z matrix in
layer pseudospin space, Vz is the electric potential difference
between the two layers produced by a perpendicular electric
field, and H1 is the Coulomb interaction between electrons:

H1 = 1

2A

∑
ll ′

∑
kk′q

Vll ′ (q)a†
k+q,l a

†
k′−q,l ′ak′,l ′ak,l . (3)

Here A is the area of the two-dimensional system and l, l ′ are
the layer indices. a†

k,l and ak,l are the creation and annihilation
operators associated with the Bloch state with momentum k
in layer l . To emphasize the pseudospin analogy we label
the two layers as ↑,↓. The intralayer and interlayer Coulomb
interactions are

Vll ′ (q) =
{

2πe2/εq, l = l ′,
(2πe2/εq)e−qd , l �= l ′, (4)

where ε is the effective dielectric constant and d is the effec-
tive layer separation between the two moirés. In this article
we focus on layer pseudospin magnetism and neglect the
electron spin (valley) degree of freedom by assuming that the
energy scale associated with spin ordering is much lower than
that associated with layer pseudospin ordering. We will later
discuss the validity of this assumption and briefly explain how
spin ordering may affect our results.

III. EFFECTIVE LATTICE MODELS

The continuum model we study reduces in certain limits
to lattice models that have been extensively studied in the
literature and have properties that are well understood. Below

we will refer to these lattice models to provide intuition on the
physics behind our continuum model. Lattice models are most
relevant in the limit of long moiré periods in which holes are
strongly localized at the moiré potential maxima, which can
form triangular or honeycomb lattices as we have explained.

The single-particle physics in the lattice limit is accurately
described by a tight-binding model [12],

H0 = −
∑
i j,l

ti j,l c
†
il c jl − Vz

2

∑
i

(ni↑ − ni↓), (5)

where c†
il is the creation operator of a hole in the localized

Wannier orbital at site i in layer l , nil is the number operator,
Ri is the position of site i, and ti j,l is a hopping parameter in
layer l that decreases rapidly with the distance between sites
|Ri − R j |. In the strong moiré modulation limit, the interac-
tion Hamiltonian takes the generalized Hubbard form

H1 = 1

2

∑
i j,ll ′

Ui j,ll ′c
†
il c

†
jl ′c jl ′cil , (6)

where Ui j,ll ′ = Ull ′ (|Ri − R j |) > 0 is the interaction energy
between site i in layer l and site j in layer l ′. The value of
U can in principle be calculated [12] by projecting Coulomb
repulsion onto the localized Wannier orbitals, but at large
distance it takes a simple Coulomb form:

Ull ′ (r) ≈
{

e2/εr, l = l ′,
e2/ε

√
r2 + d2, l �= l ′.

(7)

Equation (7) applies when the spatial extent of the Wannier
orbitals is negligible compared to the intersite distance. We
notice that the lattice Hamiltonian (5)–(6) has the same form
as the extended Falicov-Kimball model, which has been ex-
tensively studied in the literature [15–20], except that the
interactions and hopping terms are generalized beyond the
on-site and nearest-neighbor contributions that are normally
retained.

The pseudospin analogy is most transparent in the strong
interaction limit when we assume that the filling factor is
such that on average one hole is present at each site. In
the language of band filling, the filling factor ν = 1 in the
triangular-lattice case and ν = 2 in the honeycomb-lattice
case. Since the on-site repulsion U↑↓(0) is much stronger than
the repulsion between different sites when the two moirés are
horizontally aligned, the low-energy subspace of the system
consists in the weak intersite hopping limit of states with only
one hole at each site in one of the two layers. The which layer
degree of freedom then acts as a localized layer pseudospin at
each lattice site that interacts with neighboring pseudospins.
In the rest of the paper we study the consequences of these
interactions for pseudospin magnetic order.

If we start from the lattice Hamiltonians (5) and (6), treat
the hopping terms as perturbations, and expand the Hamilto-
nian in the low-energy subspace where each site i is occupied
once, we obtain [up to order O(t2/U )] the XXZ spin model:

HXXZ =
∑
i< j

[
Jz

i jτ
z
i τ

z
j + J⊥

i j

(
τ x

i τ x
j + τ

y
i τ

y
j

)] − Vz

2

∑
i

τ z
i , (8)
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FIG. 2. (a) Model modulation potential for a moiré TMD homobilayer. Valence band holes are localized at the potential maxima (shifted
to zero energy here), which in this case form a honeycomb lattice. This modulation potential describes [13] holes in WS2 homobilayers.
(b) Phase diagram of double WS2 homobilayer moirés at hole-filling factor ν = 2 (one hole per site) in the plane of displacement field Vz and
twist angle θ . When the possibility of broken translational symmetry is discarded we find four distinct phases separated by continuous phases
marked by dashed lines; a layer antiferromagnet (LAF) at weak Vz, and layer-polarized (LP) state at large Vz, and two distinct layer-coherent
states at intermediate values of Vz. The layer-coherent state at larger Vz is analogous to the spin-flop state in magnetic systems, and we
therefore call it the layer-flop (LF) state. The layer-coherent states at smaller Vz are unstable against translational symmetry breaking. The
colored stripes at intermediate Vz represent dipole crystal states with various different layer polarizations [P = (n↑ − n↓)/(n↑ + n↓)] that
appear only when translational symmetry breaking is permitted. The hatched region is a supersolid state with both interlayer phase coherence
and broken translational symmetry, and the remaining white regions are layer-coherent states that preserve translational symmetry. (c) The layer
polarization P as a function of displacement field Vz at fixed twist angle θ = 3 ◦. The orange curve shows the result obtained for layer-coherent
states when translational symmetry breaking is not allowed. The transition point between the two distinct layer-coherent states is marked by the
green dot, and the difference between their layer pseudospin configurations is schematically indicated by arrows. The black curve illustrates the
layer-polarization plateaus obtained when translational symmetry breaking is allowed. The red triangles show the intralayer charge excitation
gaps in the majority layer of the layer-incoherent states, which we expect to be relevant to transport properties.

with the coupling parameters

Jz
i j = Ui j,↑↑ − Ui j,↑↓

2
+ t2

i j,↑ + t2
i j,↓

2U↑↓(0)
, J⊥

i j = ti j,↑ti j,↓
U↑↓(0)

. (9)

Equation (9) shows that the pseudospin couplings are
easy-axis antiferromagnetic: Jz

i j > J⊥
i j > 0. Besides the usual

t2/U terms, the difference between intralayer and interlayer
Coulomb repulsions gives rise to an extra term in Jz

i j . Since the
hopping parameter t decays exponentially with distance [12],
at large distance the Coulomb term dominates and the pseu-
dospin coupling is of dipolar form:

Jz
i j ≈ e2d2

4ε|Ri − R j |3 . (10)

As we will see later, the long-range nature of pseudospin
couplings plays an important role in the rich phases the system
displays.

IV. MEAN-FIELD PHASE DIAGRAMS

We study the pseudospin order of double-moiré systems
by projecting the Coulomb interaction (3) onto the highest
moiré bands that are relevant—one band for triangular-lattice
systems and two bands for honeycomb-lattice systems—and
then approximating interaction effects using Hartree-Fock
mean-field theory. We construct the phase diagrams by
identifying changes in the symmetries of the lowest-energy
self-consistent solutions as the twist angle and displacement
field tuning parameters are varied. The numerical calcu-
lations are performed for two different moiré modulation

potentials which illustrate the honeycomb-lattice (homobi-
layer) and triangular-lattice (heterobilayer) cases. The moiré
potentials for the two systems are plotted in Figs. 2(a)
and 3(a), respectively. The derivation of the projected Hartree-
Fock equations is detailed in Appendix A, and the continuum
model parameters for the two systems are specified in

FIG. 3. (a) The moiré potential for a TMD heterobilayer in
which the potential maxima form a triangular lattice. The system
parameters are adopted from Ref. [31]. (b) The phase diagram of
triangular-lattice double moirés at filling factor ν = 1 in the plane
of displacement field Vz and twist angle θ . The solid filled regions
represent states with no interlayer coherence, and different colors
represent different layer polarizations P = (n↑ − n↓)/(n↑ + n↓). The
hatched regions represent supersolid states that break both layer-
U (1) and translational symmetries. The arrows schematically show
the pseudospin configurations of different states.
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Appendix B. Other system parameters include the dielectric
constant ε = 6 and interlayer distance d = 2 nm.

We start with the honeycomb-lattice systems, as they are
expected to be simpler due to the lack of geometric frustration
of near-neighbor antiferromagnetic couplings. Figure 2(b)
shows the mean-field phase diagram for WS2 homobilayers
at filling factor ν = 2 (two holes per unit cell, one hole per
site) vs twist angle θ and displacement field Vz. For one hole
per site, the low-energy states of insulators may be mapped to
those of honeycomb lattices with a layer pseudospin degree
of freedom. If we limit our search for the ground state to
states in which translational symmetry is not spontaneously
broken, the phase diagram [see the dashed lines in Fig. 2(b)] is
similar to that of the square-lattice XXZ model [16]. When the
displacement field is absent, the two moiré layers have identi-
cal potentials and the system forms a layer-antiferromagnet
(LAF) in which holes at neighboring sites are localized in
different layers, breaking sublattice symmetry. At large field
Vz the system is fully layer polarized (LP) and all holes
move to the moiré layer with lower electric potential. At
intermediate Vz the system forms a layer-coherent state. In
the language of layer pseudospins localized at moiré lattice
sites, the pseudospins develop an in-plane component at in-
termediate Vz. The in-plane components of the pseudospins
on the two sublattices point in opposite directions due to the
antiferromagnetic coupling.

In our mean-field results we find two different layer-
coherent states. At large Vz near the LP state, the pseudospins
on both sublattices have the same z component and equal but
opposite in-plane components. This is analogous to the spin-
flop phase of canted antiferromagnets in a magnetic field, and
we call it the layer-flop (LF) state. In the other layer-coherent
state at smaller displacement field, the z components of neigh-
boring pseudospins are different [21–25]. The small Vz state is
stabilized by the long-range interaction Jz

i j [21]. We find that
the layer-coherent state regions in the phase diagram get dra-
matically wider as the twist angle increases. This is because
the in-plane pseudospin coupling strength J⊥ is proportional
to the square of the hopping parameter t between different
sites [Eq. (9)], which increases as the neighboring sites get
closer at larger twist angles. Our mean-field results show that
all four phases are connected by continuous phase transitions.
The orange line in Fig. 2(c) shows the layer polarization
(defined as P = (n↑ − n↓)/(n↑ + n↓) where nl = ∑

i nil ) as
a function of Vz at fixed θ = 3 ◦, together with the schematic
illustration of the pseudospin orientations on neighboring sites
that distinguish the two layer-coherent states.

The phase diagram becomes much more complex when
we allow translational symmetry breaking in our calculations.
The colored stripes in Fig. 2(b) show the low-energy states
that emerge when we perform the calculations in

√
3 × √

3
and 2 × 2 supercells, with different colors representing states
with different values of layer polarization. We see that in-
side the previously identified layer-coherent regions a series
of lower-energy states appear that break translational sym-
metry. Most of these states (solid filled regions) are dipole
crystals without interlayer coherence (see Appendix C for
details on the spatial distribution of layer pseudospins). Each
of these dipole crystal states is stable over a finite range
of displacement field Vz, and as shown in Fig. 2(c), the

layer-polarization curve (black) has a series of plateaus and
discontinuous jumps. We also find supersolid states that break
both layer-U (1) and translational symmetry inside the hatched
region in Fig. 2(b). The remaining white regions, mostly near
the LP state region, are the layer-coherent states that do not
break translational symmetry. Inside these layer-coherent state
regions, the layer polarization varies continuously with the
displacement field Vz.

The phase diagram in Fig. 2(b) is not complete since more
crystal states are expected to appear as we increase the maxi-
mum size of our supercells. These crystal states are stabilized
by long-range dipolar interactions between different sites. The
energy competition between these states is in general very
complicated and sensitive to parameter choices. Nevertheless,
the phase diagram contains two generic features. First, as
the twist angle θ is reduced, the layer-coherent state regions
rapidly narrow and nearly disappear at very small θ . This
behavior is expected given that the in-plane pseudospin cou-
pling J⊥ decreases rapidly with θ . At small θ the system is
well approximated by a lattice-gas model, in which classical
charges are localized at lattice sites, and the polarization vs
Vz curve approaches a devil’s staircase structure [26–30] with
many small closely spaced polarization jumps. The ground-
state polarization P is rational at all values of Vz. Although
large portions of the stability regions of the layer-coherent
states are replaced by dipole crystal states that don’t have
interlayer coherence, the layer flop state remains the ground
state in a region near the LP state and the width of this region
increases with the twist angle. We can understand this behav-
ior if we recognize that when the carriers are nearly polarized
to one of the layers, the low-energy degrees of freedom are
electron-hole excitations that move carriers from the majority
layer to the minority layer, and the system is equivalent to
a dilute gas of excitons. At low temperatures the excitons
condense, establishing interlayer coherence. As we will see in
the next section, this argument allows us to generalize some of
our results beyond the perfectly aligned limit of double-moiré
systems on which we focus.

In Fig. 2(c) we also plot the transport gap Eg of the
layer-incoherent phases. In these states strong suppression
of interlayer tunneling by the dielectric barriers implies that
quasiparticles are localized in definite layers which conduct
independently. The transport gap is defined as the charge gap
between occupied and empty states localized in the same
layer, since this is the quantity that controls thermally acti-
vated transport; typically the values are similar in the majority
and minority layers. The charge gaps are therefore indepen-
dent of Vz within a given polarization plateau. The gap is
maximized at large Vz when the system is fully layer polarized
and is significantly reduced at small Vz where each layer is
partially polarized.

Next we turn to triangular-lattice systems. Figure 3 shows
the moiré potential and the phase diagram (at filling factor ν =
1) for a twisted TMD heterobilayer, with the same parameter
choices as in Ref. [31]. We focus on the case of one hole per
site for both lattice types. Due to the geometric frustration of
antiferromagnetic pseudospin couplings on triangular lattices,
in this case all states in the phase diagram break translational
symmetry, except for the fully layer-polarized states at large
displacement field. For clarity we show in the phase diagram
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only states with
√

3 × √
3 and 2 × 2 supercells, although

states with larger supercells are expected to be energetically
preferred in part of the diagram due to the long-range dipolar
interactions discussed previously. At zero displacement field
the ground state is a stripe state in which all holes in a single
stripe occupy one of the layers, while the holes in nearby
stripes are localized in the other layer. At intermediate Vz we
find that dipole crystal states appear for both

√
3 × √

3 and
2 × 2 supercells. In the phase diagram, we label these two
states as ↑↑↓ and ↑↑↑↓, respectively. In the remaining part
of the phase diagram we find layer-coherent states that also
break translational symmetry, i.e., supersolid states (hatched
regions). At small Vz (near the stripe state) we find supersolid
states in which the three pseudospins within a supercell are
oriented at approximately 120 ◦ with respect to each other. As
Vz increases this state gradually deforms into the ↑↑↓ dipole
crystal state. The other two supersolid states are located near
the LP state. All pseudospins in these states have nonzero
in-plane components, with the majority pointing in the same
direction with positive z components. The pseudospin ar-
rangements of all states are schematically shown in Fig. 3. It is
interesting to compare our phase diagram with those obtained
in previous work on the triangular-lattice XXZ model [32,33].
We see that although our results are in good agreement with
those studies when restricted to

√
3 × √

3 supercells, the long-
range dipolar interactions in our case lead to states with larger
supercell sizes in parts of the phase diagram.

V. DISCUSSION

Insulating states are common at fractional layer polariza-
tions of double-moiré systems. From our mean-field results
we see that the physics of double-moiré Mott insulators is in
many ways similar to that of near-neighbor XXZ spin models
under the influence of a magnetic field in the ẑ direction,
which has been studied in previous work [16,32,33]. In the
double-moiré case layer plays the role of spin, gate-controlled
vertical displacement fields play the role of magnetic field,
and the physics is enriched by the long-range nature of dipo-
lar pseudospin interactions. The dipole crystal states we find
will give rise to plateaus in layer-polarization variation with
vertical displacement fields. We do anticipate that some long-
period pseudospin crystals, that are stable at the mean-field
level, will melt to yield pseudospin liquid states or possibly
states with interlayer phase coherence. In quantum Hall bilay-
ers, for example, charge density wave states are predicted by
mean-field theory [34–36] at intermediate layer separations
but seem to be preempted in reality [8,9,37] by a first-order
transition between a small-d uniform density superfluid and
a large-d fluid state that has neither interlayer coherence nor
crystalline order. The long-period states rely on dipolar inter-
actions between widely separated neighbors, which are much
weaker than nearest-neighbor interactions, so the system gains
little energy by forming these states.

Since these states have very low entropy, they can in any
case appear only at very low temperatures. Based on the
Monte Carlo simulations in Ref. [38], we can estimate the
melting temperature Tm of the crystal states on the triangu-
lar lattice by neglecting J⊥, which is weak. Using a typical
experimental value for the moiré lattice constant aM = 8 nm,

we estimate that the largest ordering temperature occurs for
P = 1/3 (2/3 of the holes in one layer and 1/3 in the other),
where we find that Tm ≈ 0.25e2d2/2εa3

M ≈ 3 K. The second-
highest critical temperature occurs for P = 1/2 (3/4 of the
holes in one layer and 1/4 in the other layer), for which
Tm ≈ 0.05e2d2/2εa3

M ≈ 0.5 K. Tm is likely reduced compared
to these estimates by imperfections in the double-moiré struc-
ture, for example, misalignment of two moiré superlattices
(see discussions below), but can be enhanced by increasing
the layer separation d .

In our study we have ignored the spin degree of freedom,
implicitly assuming that the energy scale of spin ordering
is much lower than that of layer pseudospin ordering. From
the point of view of strong-coupling t2/U expansions, this is
true when the onsite repulsion U↑↑(0) (where the arrows are
pseudospin labels) for holes in the same layer is much stronger
than U↑↓(0), the onsite repulsion for holes in different layers.
In this case we can treat spin order as a perturbative effect
on top of layer pseudospin ordering. Since Pauli blocking
occurs only for hopping processes within the same layer, the
layer-polarized state is able to gain more energy than other
states by suitably arranging its spins. Therefore when spin
is taken into account, we expect that our phase diagrams for
layer pseudospin ordering will stay largely unchanged, except
that the layer-polarized regions in the phase diagram will
expand while the weakly polarized regions, like the LAF state
region, will shrink. The spin ordering of the layer-polarized
state has been studied in previous work on TMD moir
és [31,39–41]. The spin-ordering properties of other states and
their interplay [42,43] with layer pseudospin ordering are left
for future work.

In our model we have assumed that the two moiré layers
are perfectly aligned horizontally. To our knowledge there
is currently no experimental technique to control the rela-
tive alignment between two moirés [44]. However, there is
recent evidence that moiré self-alignment can occur [45] in
the course of double-moiré device processing procedures. If
the two moiré patterns are laterally displaced by a distance
s that is small compared to the moiré period, the low-energy
subspace still consists of states with one hole per site, and
the XXZ spin model (8) receives perturbative corrections. The
t2/U terms in the coupling constants (9) stay unchanged, ex-
cept that the value of onsite repulsion U↑↓(0) is reduced. The
lateral displacement modifies the form of intersite Coulomb
repulsion and therefore pseudospin couplings. Consider two
sites i and j. The lateral displacement between two layers
breaks the degeneracy between the two states |↑i↓ j〉 and
|↓i↑ j〉 and is captured by an extra term in the Hamiltonian
that is proportional to τ z

i − τ z
j . All such terms add up to zero

at first order due to lattice symmetry. Higher-order corrections
lead to anisotropic pseudospin coupling Jz

i j and staggered sub-
lattice potential for honeycomb-lattice systems. The explicit
derivation of these results is shown in Appendix D. Since the
corrections start at second order, we expect that our results
stay qualitatively unchanged for systems with a small lateral
displacement between two moirés. On the other hand, if the
lateral displacement is comparable to the moiré lattice con-
stant, the localized pseudospin analogy does not work and the
results will change qualitatively; see Appendix D and E for
more discussions.
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FIG. 4. TMD monolayer-moiré coupled system at total hole fill-
ing factor ν = 1. (a) When the majority of doped holes are localized
in the moiré layer forming a lattice Wigner crystal, the rest of the
holes in the monolayer will stay near the region right on top of the
empty sites in the moiré layer so that Coulomb repulsion energy is
minimized. In this case the system is similar to the double moirés in
which the two moiré layers are perfectly aligned. (b) A particle-hole
transformation in the moiré layer turns the system into a dilute gas
of dipolar excitons that can be described by the hard-core boson
Hubbard model.

Our study of perfectly aligned double moirés also provides
insight for another system which consists of a TMD moiré
bilayer and a TMD monolayer separated by a dielectric barrier
(Fig. 4). As before we consider the total filling factor such
that on average one hole is present at each moiré site but
limit our study to the case where nearly all holes are located
in the moiré layer. When a hole goes from the moiré layer
to the monolayer, interaction with nearby sites limits its in-
plane motion to be localized near the moiré site it comes
from, as shown in Fig. 4(a). In other words, interaction effects
produce an effective moiré potential in the monolayer that is
perfectly aligned with that in the moiré layer. If we take the
Mott insulator state in the moiré layer as the vacuum state,
then the low-energy states of the system are built from the
vacuum by dilute particle-hole excitations that take holes from
the moiré layer to the monolayer. This is more clearly seen
after performing a particle-hole transformation in the moiré
layer, as shown in Fig. 4(b). The low-energy subspace of
the system is the same as that of the double-moiré system
near the layer-polarized limit, so we expect the two systems
to have similar behavior in this regime. The particle-hole
excitations are bosonic in nature but cannot doubly occupy
a single site, so the low-energy behavior of the system is
described by the hard-core boson Hubbard model [26,46–50].
Due to the existence of an exact mapping [51] between the
hard-core boson Hubbard model and the XXZ spin model,

the monolayer-moiré system can be also described by the
XXZ model near the moiré-layer-polarized limit. Recent ex-
periments [52,53] have found excitonic insulator behavior
of monolayer-moiré coupled systems near the moiré-layer-
polarized limit, and we expect that future work based on this
system can explore a larger portion of our phase diagrams.

Note added. A recent experiment [54] found correlated
insulating states in TMD double moirés formed by angle-
aligned WS2/bilayer WSe2/WS2 multilayers at hole filling
factor ν = 1 as well as some fractional fillings.
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APPENDIX A: DERIVATION OF PROJECTED
HARTREE-FOCK EQUATIONS

We derive the projected Hartree-Fock equations starting
from the microscopic Hamiltonian in Sec. II. The single-
particle physics of each TMD moiré layer is described by
the continuum model (1). When the moiré modulation po-
tential �(r) is sufficiently strong, the top few moiré valence
bands are very flat and separated from lower bands by a large
gap [12,13]. The moiré states are related to the plane-wave
states by a unitary transformation,

c†
nl (k) =

∑
g

u(l )
ng (k)a†

l (k + g), (A1)

with the inverse transformation,

a†
l (k + g) =

∑
n

u(l )∗
ng (k)c†

nl (k). (A2)

Here c† and a† are the creation operators of moiré states and
plane-wave states, respectively, n is the moiré band index,
l is the layer index, k labels momentum inside the moiré
Brillouin zone, and g is the moiré reciprocal lattice vector. The
u coefficients are obtained by diagonalizing the continuum
model Hamiltonian (1) in the plane-wave basis. In the new
basis,

H0 =
∑
nlk

εnl (k)c†
nl (k)cnl (k). (A3)

The interaction Hamiltonian (3) can be written in the new
basis as

H1 = 1

2A

∑
l ′l q

Vl ′l (q)
∑

n′n
m′m

∑
k′k

	
(l )
n′n(k + q, k)	(l ′ )

m′m(k′ − q, k′)

× c†
n′l (k + q)c†

m′l ′ (k
′ − q)cml ′ (k

′)cnl (k), (A4)

where

	
(l )
n′n(k′, k) =

∑
g

u(l )∗
n′g (k′)u(l )

ng (k). (A5)
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In the above equations we have extended the domains of c†

and u outside the moiré Brillouin zone by defining

c†
nl (k + g) = c†

nl (k), ung′ (k + g) = un,g+g′ (k), (A6)

so that Eq. (A1) remains true for any momentum k + g. The
Coulomb interaction is taken as the gate-screened form [55],
with metallic gates on both sides of the double-moiré system
separated by distance dg:

Vll ′ (q) = 2πe2

εq

(eqd − e−qdg )(e−qd − e−qdg )

1 − e−2qdg
, l = l ′, (A7)

Vll ′ (q) = 2πe2

εq

eqd (e−qd − e−qdg )2

1 − e−2qdg
, l �= l ′, (A8)

which in the limit of dg → ∞ reduces to the unscreened
form (4). In our numerical calculations we take dg = 100 nm.

With the Hartree-Fock approximation we decompose the
interaction Hamiltonian (A4) into the Hartree term


H = 1

A

∑
l ′l g

∑
n′n
m′m

∑
k′k

Vl ′l (g)	(l )
n′n(k + g, k)	(l ′ )

m′m(k′ − g, k′)

× ρml ′
m′l ′ (k

′)c†
n′l (k)cnl (k) (A9)

and the Fock term


F = − 1

A

∑
l ′l g

∑
n′n
m′m

∑
k′k

Vl ′l (g + k′ − k)	(l )
m′n(k′ + g, k)

× 	
(l ′ )
n′m(k − g, k′)ρml ′

m′l (k′)c†
n′l ′ (k)cnl (k), (A10)

with the density matrix defined as

ρnl
n′l ′ (k) = 〈c†

n′l ′ (k)cnl (k)〉, (A11)

where 〈. . . 〉 implies ground-state expectation values. The
mean-field solutions are obtained by numerically solving
the mean-field Hamiltonian HMF = H0 + 
H + 
F self-
consistently, with band index n running over only the top
few isolated moiré bands. In our calculations we keep one
band for each layer for triangular-lattice systems and two for
honeycomb-lattice systems. Including more bands will make
some quantitative changes in quantities such as the gap size
but will not change our conclusions qualitatively.

APPENDIX B: CONTINUUM MODEL PARAMETERS

The single-particle physics of valence-band holes is de-
scribed by the continuum model Hamiltonian:

H0 = − h̄2k2

2m
+ �(r). (B1)

The moiré potential �(r) is given by the Fourier expansion

�(r) =
∞∑

s=1

∑
j=1,3,5

2Vs cos
(
gs

j · r + φs
)
, (B2)

where gs
j for j = 1, 2, . . . , 6 are the six moiré reciprocal lat-

tice vectors in the sth momentum shell related by C6 rotational
symmetry: gs

j+1 = C6gs
j . s = 1, 2, . . . labels g vectors with

increasing magnitudes; in practice it is often a good approx-
imation to keep only one or a few momentum shells in the
Fourier expansion of moiré potentials.

For the TMD homobilayer moiré, we choose the material
WS2 with m = 0.87me,V1 = 33.5 meV,V2 = 4.0 meV,V3 =
5.5 meV,Vs>3 = 0, φs = 180 ◦, and the lattice constant a0 =
3.18 Å obtained from ab initio calculations [13].

For the heterobilayer, doped holes populate the valence
band of only one of the layers (the active layer). The other
layer generates a potential with the moiré periodicity that
affects holes in the active layer. We assume the active layer
is WSe2 with m = 0.35me. We neglect the lattice mismatch
between two layers and use the lattice constant of WSe2 a0 =
3.32 Å. Including a small lattice mismatch in our calculation
will change the relation between the twist angle θ and the
moiré lattice constant aM , but the phase diagram for given
aM should not change. We take the following moiré po-
tential parameters [31]: V1 = 11 meV,Vs>1 = 0, φ1 = −94 ◦.
The strength of the modulation potential depends on the mate-
rial choice of the inactive layer and can be effectively modified
by pressure.

APPENDIX C: SPATIAL DISTRIBUTION
OF LAYER PSEUDOSPINS

In this Appendix we plot the spatial distribution of layer
polarization of the dipole crystal states. The local layer polar-
ization τ z(r) = 〈
†(r)τ z
(r)〉 is computed as follows:

τ z(r) = 1

A

∑
ng,n′g′,k

(
ρ

n↑
n′↑(k) − ρ

n↓
n′↓(k)

)
u∗

n′g′ (k)ung(k)ei(g−g′ )·r

(C1)
where we defined the electron annihilation operator 
(r) and
expanded it in the band basis cnl (k). The layer superscripts
of the Bloch wave functions u are dropped because we only
study the case when two layers are identical in the main
text. For sufficiently large Vz, the holes are polarized in the
top layer [τ z(r) > 0]. As Vz decreases, part of the holes are
transferred to the bottom layer. Our mean-field calculations
show that a large density of holes in the minority layer could
crystallize and become localized in red regions, as plotted in
Figs. 5 and 6. Figure 5 shows the spatial distribution of layer
pseudospins for several dipole crystal states on double WS2

homobilayer moirés, while Fig. 6 is for double heterobilayer
moirés.

In the following, let us focus on the triangular-lattice case.
Figure 6(b) is a three-sublattice phase with

√
3 × √

3 unit
cells (↑↑↓ state), which is the most robust crystal state in the
phase diagram [Fig. 3(b)] in the main text. The other robust
crystal state (↑↑↑↓) is shown in Fig. 6(c), while the two-
sublattice state at small displacement field in Fig. 6(a) consists
of alternating stripes with opposite layer polarizations.

Note that these crystal states are obtained in
√

3 × √
3 and

2 × 2 supercells. There certainly exist more crystal states with
the same total layer polarization but longer periodicity which
are not captured in our calculations.

APPENDIX D: MODIFIED XXZ MODEL WITH LATERAL
DISPLACEMENT

In this Appendix we derive the effective spin model that
describes the double-moiré system with a lateral displace-
ment. As long as the displacement is small compared to the
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FIG. 5. The spatial distribution of layer pseudospins for several dipole crystal states on double AA-stacked WS2 homobilayer moirés. Each
moiré has twist angle θ = 2.5 ◦. The blue and red regions are holes in the top (↑) and bottom (↓) layers, respectively. The layer polarization
P = (n↑ − n↓)/(n↑ + n↓) for the three plots are (a) P = 1/2, (b) P = 2/3, and (c) P = 3/4.

moiré period such that the onsite repulsion U↑↓(0) is much
larger than the other relevant energy scales, it remains a good
approximation to project the Hamiltonian onto the low-energy
subspace with one hole per site and expand in powers of t2/U .
The derivation of the t2/U expansion is standard and leads to
the same result as in the perfectly aligned double moirés, so
in the following we focus on the modification of the Coulomb
contributions to the pseudospin coupling parameters.

Assume the top moiré is shifted by an in-plane vector s
relative to the bottom moiré. Consider two sites i and j. While
the states |↑i↑ j〉 and |↓i↓ j〉 remain degenerate (Ui j,↑↑ =
Ui j,↓↓), the degeneracy between states |↑i↓ j〉 and |↓i↑ j〉 is
broken (Ui j,↑↓ �= Ui j,↓↑). This results in an extra term in the
XXZ Hamiltonian (8):

�HXXZ =
∑
i< j

Ui j,↑↓ − Ui j,↓↑
4

(
τ z

i − τ z
j

) =
∑

i

Bz
i

2
τ z

i . (D1)

The final form of the above equation shows that the lateral
displacement produces an effective magnetic field Bz

i for the
pseudospin at site i. Since τ z

i and −τ z
j always come in pairs

in the summands, the average of Bz
i over all lattice sites must

be zero. For triangular-lattice systems, since all lattice sites
are equivalent, Bz

i = 0 identically for all i. For honeycomb-
lattice systems, in contrast, Bz

i can take nonzero and opposite
values on the two sublattices and act as a staggered field. The
Coulomb part of the pseudospin coupling parameter is also
changed by the lateral displacement and takes the form

Jz
i j

∣∣
Coul = (2Ui j,↑↑ − Ui j,↑↓ − Ui j,↓↑)/4. (D2)

To get explicit expressions we approximate the repulsion
energy by the simple Coulomb forms

Ui j,↑↑ = Ui j,↓↓ ≈ e2/εRi j, (D3)

Ui j,↑↓ ≈ e2/ε

√
(Ri j + s)2 + d2, (D4)

Ui j,↓↑ ≈ e2/ε

√
(Ri j − s)2 + d2, (D5)

where Ri j = Ri − R j . We then expand Ui j,↑↓ and Ui j,↓↑ in
powers of s:

Ui j,↑↓ ≈ e2

ε
√

R2
i j + d2

[
1 − 2Ri j · s + s2

2
(
R2

i j + d2
) + 3

2

(Ri j · s)2 + (Ri j · s)s2(
R2

i j + d2
)2 − 5

2

(Ri j · s)3(
R2

i j + d2
)3 + O(s4)

]
, (D6)

Ui j,↓↑ ≈ e2

ε
√

R2
i j + d2

[
1 + 2Ri j · s − s2

2
(
R2

i j + d2
) + 3

2

(Ri j · s)2 − (Ri j · s)s2(
R2

i j + d2
)2 + 5

2

(Ri j · s)3(
R2

i j + d2
)3 + O(s4)

]
. (D7)

Plugging into Eq. (D2), we get the correction to the pseu-
dospin coupling parameter,

�Jz
i j ≈ e2

4ε
(
R2

i j + d2
)3/2

[
s2 − 3(Ri j · s)2

R2
i j + d2

+ O(s4)

]
, (D8)

compared to the perfectly aligned double moirés. Notice that
the second term in the square bracket produces an anisotropic
contribution to Jz

i j . From Eq. (D1) we get the effective mag-

netic field

Bz
i =

∑
j �=i

Ui j,↑↓ − Ui j,↓↑
2

≈ −5

2

∑
j �=i

e2

ε
(
R2

i j + d2
)7/2 (Ri j · s)3 + O(s5). (D9)

In getting the final form we have made use of the identity∑
j �=i f (Ri j )Ri j = 0, which holds for any function f for both
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FIG. 6. The spatial distribution of layer pseudospins for several dipole crystal states on double heterobilayer moirés. Each moiré has twist
angle θ = 2.5 ◦. The layer polarization (a) P = 0, (b) P = 1/3, and (c) P = 1/2.

triangular and honeycomb lattices. It is straightforward to
show that Eq. (D9) vanishes to all orders in s for triangular-
lattice systems but produces a staggered field on the two
sublattices in honeycomb lattices. However, since all correc-
tions only start at second order, we expect that a small shift s
does not make qualitative differences to our results.

APPENDIX E: AN EXAMPLE OF LARGELY MISALIGNED
DOUBLE MOIRÉS

When the lateral shift s is comparable with the moiré
lattice constant aM , our XXZ model analysis is no longer
applicable and the results become very different. As an ex-
ample, Fig. 7 shows the phase diagram of a triangular-lattice
system with lateral shift s = (

√
3/4, 0)aM [we choose our

coordinate system such that the moiré lattice vectors point
along (

√
3/2,±1/2)]. We find that at large twist angles the

phase diagram is similar to that of the perfectly aligned double
moirés (Fig. 3), indicating that moiré misalignment is less
important in the weak modulation limit. However, the large
lateral shift s does make some notable differences in part of
the phase diagram.

First, a lateral shift reduces the threshold displacement field
for the layer-polarized state. This can be understood from
electrostatic considerations. Distributing charges into both
layers minimizes Coulomb repulsion for perfectly aligned
systems, but when s is large such configurations would in-
crease Coulomb repulsion due to the inhomogeneous in-plane
charge distribution. Therefore the layer-polarized state is more
favorable at large s/d .

Second, the layer-coherent states disappear for large aM

(small θ ) in Fig. 7. Note that this result does not contradict our
previous arguments for the existence of layer-coherent states
near the layer-polarized state in the perfect alignment case,
which rely on the hard-core boson Hubbard model analogy.
This analogy breaks down in the presence of a large lateral
shift due to the existence of two or three types of near-
degenerate electron-hole excitations (with different in-plane
dipole moments) whose interactions can be either repulsive
or attractive. In such a system electron-hole excitations prefer
to form collectively, and the layer polarization has a sudden

jump at the boundary of the layer-polarized state, as shown in
the phase diagram for θ < 2.5 ◦.

Third, we find that stripe states become more favorable
compared to dipole crystal states. At θ � 2.6 ◦, the dipole
crystals completely disappear. A lateral shift between two

FIG. 7. The phase diagram of triangular-lattice double moirés at
filling factor ν = 1 in the plane of displacement field Vz and twist
angle θ . Two moirés are laterally shifted by s = (

√
3/4, 0)aM and

vertically separated by d = 2 nm. The solid filled regions represent
states with no interlayer coherence, and different colors represent
different layer polarizations P = (n↑ − n↓)/(n↑ + n↓). The hatched
regions represent supersolid states that break both layer-U (1) and
translational symmetries. At large twist angles with small s/d , the
phase diagram maintains all phases of the perfectly aligned double
moirés, except that the layer-coherent supersolid state between layer-
incoherent P = 1/3 crystal and P = 0 stripe states is now replaced
by a layer-coherent stripe state in the hatched green region. How-
ever, at small twist angles with large s/d , the P = 1/3 stripe state
has lower energy than the

√
3 × √

3 crystal state. These two layer-
incoherent states, both with P = 1/3, are separated by a vertical solid
black line.
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moirés generically breaks the C3 rotation symmetry about the
z axis and suppresses the C3-symmetric dipole crystal states
in Figs. 6(b) and 6(c). In contrast, stripe states are not C3

symmetric and are less susceptible to the rotation symmetry

breaking induced by the lateral shift. Since dipole crystals be-
come energetically less favorable, their critical temperatures
are expected to decrease with the lateral shift between two
moirés.
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