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Transition metal monosilicides CoSi, CoGe, RhSi, and RhGe in the chiral cubic B20 structure (the CoSi
family) have recently been found to host unconventional chiral fermions beyond spin-1/2 Weyl fermions, and
also to exhibit exotic physical phenomena such as long Fermi arc surface states, gyrotropic magnetic effect, and
quantized circular photogalvanic effect. Thus, exploring novel spin-related transports in these unconventional
chiral fermion semimetals may open a new door for spintronics and spin caloritronics. In this paper, we
study the intrinsic spin Hall effect (SHE) and spin Nernst effect (SNE) in the CoSi family based on ab initio
relativistic band structure calculations. First, we find that unlike nonchiral cubic metals, the CoSi family have
two independent nonzero spin Hall (Nernst) conductivity tensor elements, namely, σ z

xy and σ y
xz (αz

xy and αy
xz)

instead of one element. Furthermore, the SHC (σ z
xy and σ y

xz) and helicity of the chiral structure are found to
be correlated, thus enabling SHE detection of structural helicity and also chiral fermion chirality. Second, the
intrinsic SHE and SNE in some of the CoSi family are large. In particular, the calculated spin Hall conductivity
(SHC) of RhGe is as large as −140 (h̄/e)(S/cm). The calculated spin Nernst conductivity (SNC) of CoGe is
also large, being −1.3 (h̄/e)(A/m K) at room temperature. Due to their semimetallic nature with low electrical
conductivity, these topological semimetals may have large spin Hall and spin Nernst angles, being comparable to
that of platinum metal. The SHC and SNC of these compounds can also be increased by raising or lowering the
chemical potential to, e.g., the topological nodes, via either chemical doping or electrical gating. Our findings
thus indicate that transition metal monosilicides of the CoSi family not only would provide a material platform
for exploring novel spin transports and exotic phenomena in unconventional chiral fermion semimetals, but also
could be promising materials for developing better spintronic and spin caloritronic devices.

DOI: 10.1103/PhysRevB.106.165102

I. INTRODUCTION

Spin current generation and manipulation are key issues in
spintronics. The spin Hall effect (SHE) [1–14], i.e., generation
of pure transverse spin current in a nonmagnetic material
with relativistic electron interaction (spin-orbit coupling) by
an electric field, was first proposed by Dyakonov and Perel
in 1971 [1]. It requires neither an applied magnetic field nor
a magnetic material to produce a pure spin current [2–11],
thus offering an important advantage for the fabrication of
low-power-consumption spintronic devices [13,14] such as
spin-orbit torque switching-based nanodevices [12]. Large in-
trinsic SHE has been predicted and also observed in several
5d transition metals such as platinum because of their strong
spin-orbit coupling (SOC) [9–14]. More recently, it was pre-
dicted that transverse spin current could also be generated in
a nonmagnetic material by applying a temperature gradient
(∇T ) instead of an electric field E [15]. This thermoelectric
analog of SHE is known as the spin Nernst effect (SNE)
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and would make spintronic devices powered by heat possible,
leading to a new field called spin caloritronics [16]. Large
SNE was recently observed in platinum and tungsten metals
[17,18].

In the past few years, the study of SHE [19–28] and
SNE [22,26] in so-called topological semimetals has attracted
considerable attention. In high-energy physics, the standard
model predicts three kinds of fermionic particles in the Uni-
verse, namely, Dirac, Weyl, and Majorana fermions, on the
basis of the Poincaré group. However, only Dirac fermions
have been captured so far. Interestingly, in condensed matter
physics, a variety of fermionic quasiparticles have been re-
alized in topological semimetals which are not constrained
by the Poincaré symmetry [29–32]. In a Dirac semimetal,
which is usually a nonmagnetic centrosymmetric crystal, the
bulk band structure hosts fourfold degenerate band crossing
points (called Dirac points) with linearly dispersed excitations
described by the 4 × 4 Dirac Hamiltonian [29]. When the
spatial inversion symmetry is broken, as in a Weyl semimetal
(WSM), a Dirac point is split and produces a pair of twofold
stable band crossing points (called Weyl points) with linearly
dispersed excitations described by the 2 × 2 Weyl Hamil-
tonian [29]. A pair of Weyl points behaves as a pair of
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FIG. 1. Cubic B20 chiral crystal structure of the CoSi family.
(a) Cubic primitive unit cell. (b) Top view along the [111] direc-
tion [the dashed gray line in (a)] of the crystal structure (2×2×2
supercell). Here the transparency of the atoms denotes the depth of
the atomic positions from top to bottom. The red and blue arrows
indicate the right-handed and left-handed helicity (chirality) of the
Co/Rh and Si/Ge atoms, respectively. In this paper, the helicity of
the Co/Rh atoms is used to define the chirality of the crystal because
the energy bands near the Fermi level are dominated by Co/Rh d
orbitals. (c) The corresponding cubic Brillouin zone.

monopoles of Berry curvature in momentum space and carries
opposite chiral charges (Chern numbers) of ±1 [29]. Since
the SHE could be considered as derived from the interplay
of the spin-momentum locking and large Berry curvature of
the electronic bands near the Weyl points [14,33], one could
expect large intrinsic SHE in Weyl semimetals (WSMs) [20].
Indeed, the TaAs family of Weyl semimetals (WSMs) was
predicted to exhibit large SHE [20]. More recently, large SHE
was observed in WSM WTe2 [23–25].

Transition metal monosilicides CoSi, CoGe, RhSi, and
RhGe (known as the CoSi family) crystallize in a chiral
cubic lattice [34–38] (see Fig. 1). Interestingly, new types
of chiral fermions beyond spin-1/2 Weyl fermions, such
as spin-3/2 and spin-1 chiral fermions, have recently been
discovered in structurally chiral crystals including the CoSi
family considered here [30–32,39]. Unlike spin-1/2 Weyl
fermions, spin-3/2 and spin-1 fermionic quasiparticles have
no counterpart in high-energy physics, and thus are called
unconventional (or multifold) chiral fermions. Unlike Weyl
points, multifold chiral fermion nodes sit on high-symmetry
points and lines in the Brillouin zone with their chiral charges
being larger than ±1. Furthermore, two partners of a pair
of nodal points can be located at two different energy lev-
els [30–32,39]. As a result, unconventional chiral fermion
semimetals were predicted to exhibit exotic physical phe-
nomena such as long Fermi arc surface states [31,32,40],
gyrotropic magnetic effect [41], and quantized circular pho-
togalvanic effect [42].

Therefore, we may expect that the CoSi family would
exhibit novel spin transport phenomena and thus become use-
ful materials for spintronic and spin caloritronic devices. In
nonchiral cubic crystals such as platinum and tungsten metals,
the spin Hall conductivity (SHC) tensor has only one indepen-
dent nonzero element (σ z

xy), and σ z
yx = −σ z

xy [10]. In contrast,
because of the absence of the chiral symmetry, the SHC tensor
of the CoSi family has two independent nonzero elements and,

in general, σ z
yx = σ

y
xz �= −σ z

xy, as reported below in Sec. III B.
Among the CoSi family, only the SHE in CoSi was recently
studied by combining experiments and first-principles calcu-
lations, and the SHC (σ z

xy) was found to be quite large [28].
However, the other SHC element σ

y
xz was not considered in

Ref. [28]. As reported below in Sec. III B, the knowledge of
both independent nonzero SHC tensor elements would allow
us to determine the helicity of the chiral fermions in the
CoSi family and also to identify their structural chirality. Note
that detection of the relationship between chirality of chiral
fermions and structural chiral crystals has currently attracted
considerable interest [43–46].

No study of the SNE in the CoSi family has been reported.
We notice that members of the CoSi family are semimetals
with large Seebeck coefficient and thermopower and thus have
been extensively studied as thermoelectric materials for many
years [47–50]. For example, CoSi and CoGe have a large neg-
ative Seebeck coefficient of about −80 μV/K [49,50]. Thus,
one could expect the CoSi family to be exploited for thermal
spin current generation via SNE. Furthermore, recent first-
principles calculations [28] showed that the energy derivative
of the SHC σ z

xy(EF )′ at the Fermi level (EF ) in CoSi is very
large. This further suggests that large SNE could occur in the
CoSi family because the Mott relation [see Eq. (4)] says that
the spin Nernst conductivity (SNC) is proportional to σ z

xy(EF )′
[22,33].

In this article, therefore, we present a systematic study of
the SHE and SNE as well as topological aspects of the band
structure of these unconventional chiral fermion compounds
CoSi, CoGe, RhSi, and RhGe by performing ab initio density
functional theory (DFT) calculations. The rest of this article is
organized as follows. In Sec. II, we introduce the crystal struc-
ture of the CoSi family, followed by a brief description of the
(spin) Berry phase formalism for calculating the intrinsic SHC
and SNC along with the computational details. The main re-
sults are presented in Sec. III, which consists of four sections.
In Sec. III A, we first analyze the topological properties of the
calculated relativistic band structures and density of states of
the CoSi family. Calculated SHC and SNC for the CoSi family
are presented in Secs. III B and III C, respectively, where we
also compare our results with that in other known materials.
Finally, an analysis of the k-resolved spin Berry curvature is
presented in Sec. III D in order to understand the origins of
the calculated intrinsic SHC and SNC of the CoSi family.
Finally, we summarize the conclusions drawn from this work
in Sec. IV.

II. THEORY AND COMPUTATIONAL DETAILS

The CoSi family crystalizes in the simple cubic B20-type
structure with space group P213 (see Fig. 1) [34,35]. As men-
tioned before, this structure is structurally chiral, and when
viewed along the [111] axis, it can be either a right-handed
crystal (RHC) or a left-handed crystal (LHC) [see Fig. 1(b)].
Nevertheless, the structural chirality of a grown crystal could
not be prespecified and it would depend perhaps on the spe-
cific growth process. Interestingly, based on our calculated
SHCs, presented in the next section, we find that the crystal
structures of CoSi reported, respectively, in Refs. [34] and
[35] have the opposite chiralities. Nevertheless, both RHC and
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LHC structures have the same band dispersions. Furthermore,
as reported in Sec. III, their SHC and SNC tensors are related
although they are different. Therefore, in this study, we focus
on the right-handed crystals [34] unless stated otherwise. In
the present ab initio calculations, we use the experimental
lattice constants as well as measured atomic positions for all
four considered compounds [34,36–38].

Our self-consistent electronic structure calculations are
based on the density functional theory (DFT) with the gen-
eralized gradient approximation (GGA) [51]. The accurate
projector augmented-wave method [52], as implemented in
the Vienna Ab Initio Simulation Package (VASP) [53,54], is
used. The valence electronic configurations of Co, Rh, Si,
and Ge taken into account in the present ab initio study are
3d84s1, 4d85s1, 3s23p2, and 3d104s24p2, respectively. A large
plane-wave energy cutoff of 400 eV is used throughout. In the
self-consistent electronic structure calculations, a �-centered
k-point mesh of 16 × 16 × 16 is used in the Brillouin zone
(BZ) integration by the tetrahedron method [55,56]. However,
for the density of states (DOS) calculations, a denser k-point
grid of 24 × 24 × 24 is adopted.

The intrinsic SHC is calculated via the Kubo formula in the
clean limit (ω = 0) within the elegant Berry-phase formalism
[10,33,57]. Within this formalism, the SHC (σ s

i j = Js
i /Ej) is

given by the BZ integration of the spin Berry curvature for all
the occupied bands below the Fermi level EF [10],

σ s
i j = e

∑
n

∫
BZ

dk
(2π )3

fkn�
n,s
i j (k), (1)

�n,s
i j (k) =

∑
n′ �=n

2Im[〈kn|{τs, vi}/4|kn′〉〈kn′|v j |kn〉]
(εkn − εkn′ )2 + (η)2

, (2)

where fkn is the Fermi distribution function, and �n,s
i j (k) is the

spin Berry curvature for the nth band at k with i, j ∈ (x, y, z)
and i �= j. Also, τs, vi (v j), and η denote the Pauli matrix,
velocity operator, and fixed smearing parameter, respectively.
Js

i is the ith component of the spin current density Js, Ej is
the jth component of the electric field E , and s is the spin
direction, respectively. Once the SHC is calculated, the SNC
(αs

i j = −Js
i /∇ jT ) is obtained by an energy integration of the

calculated SHC [33],

αs
i j = 1

e

∫ ∞

−∞
dε

∂ f

∂ε
σ s

i j (ε)
ε − μ

T
, (3)

where μ is the chemical potential.
Since a large number of k points are required to get ac-

curate SHC and SNC, we use the efficient Wannier function
interpolation scheme [58,59] based on the maximally local-
ized Wannier functions (MLWFs) [60] as implemented in the
WANNIER90 package [61]. Since the energy bands around the
Fermi level are mainly dominated by transition metal dxy or-
bitals, eight dxy orbital MLWFs per unit cell of the CoSi family
are constructed by fitting to the ab initio relativistic band
structure in the energy window from −0.5 to 0.5 eV around
EF . The band structure obtained by the Wannier interpolation
for the CoSi family agrees well with that from the ab initio
calculation, as can be seen in Fig. S1 in the Supplemental
Material (SM) [62]. The SHC for all four compounds of the
CoSi family is then evaluated by taking a very dense k mesh
of 200 × 200 × 200, with a 5 × 5 × 5 adaptive refinement
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FIG. 2. Relativistic band structures of (a) CoSi, (b) CoGe,
(c) RhSi, and (d) RhGe. Here, the Fermi level is at zero energy. In
(a), the topological nodes at the � and R points are labeled in red
together with their Chern numbers (chiral charges).

scheme. Test calculations using several different sets of k
meshes show that the calculated SHC and SNC for all four
considered compounds of the CoSi family converge within a
few percent.

III. RESULTS AND DISCUSSION

A. Electronic structure

We find that all four considered compounds of the CoSi
family possess a nonmagnetic ground state. The calculated
relativistic band structures and density of states (DOS) of
the CoSi family are shown in Figs. 2 and 3, respectively.
We also calculate the scalar-relativistic band structures of the
CoSi family (i.e., without including the SOC), as shown in
Fig. S2 in the SM [62]. Compared with scalar-relativistic
bands (Fig. S2 in the SM [62]), relativistic bands (Fig. 2)
are split along the high-symmetry points and lines in the BZ.
In particular, at the � point, the sixfold band crossing near
EF in the scalar-relativistic band structures (Fig. S2 in the
SM [62]) is split and becomes two band crossing points at
two different energy levels with fourfold and twofold degen-
eracy in the vicinity of the Fermi level when the SOC is
included (see Fig. 2 and also Figs. S3–S6 in the SM [62]). The
calculated Chern numbers of the fourfold (W1) and twofold
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FIG. 3. Total and atom-decomposed density of states (DOS) of
(a) CoSi, (b) CoGe, (c) RhSi, and (d) RhGe. Here, the Fermi level is
at zero energy.

(W3) degenerate band crossing points are +4 and +1 [see
Fig. 2(a)], respectively. Therefore, nodal points W1 and W3

are right-handed chiral fermion nodes with chiral charges of
+4 and +1, respectively. At the R point, the eightfold band
crossing below EF in the scalar-relativistic band structures
(Fig. S2 in the SM [62]) also splits. This results in two band
crossing points, i.e., one band crossing (W2) with sixfold
degeneracy having a Chern number of −4 (i.e., left-handed
chiral fermion node) and the other band crossing below W2

in the relativistic case (see Fig. 2). While the twofold band
crossing W3 with Chern number of +1 is the conventional
Weyl fermion node, the fourfold band crossing W1 at the �

and sixfold band crossing W2 at the R point are known as
spin-3/2 Rarita-Schwinger-Weyl (RSW) fermion and spin-
1 double Weyl fermion nodes, respectively [30–32]. Unlike
Weyl fermions, the spin-3/2 RSW fermions and spin-1 double
Weyl fermions have no counterpart in high-energy physics.
Therefore, they are often called unconventional (i.e., beyond
the standard model) chiral fermions [30–32,40]. Interestingly,
the nodes at the � point are at close vicinity to EF (see
Table S1 in the SM [62] for detailed values), and thus may
significantly affect the spin transport properties such as SHC

and SNC. The nodes at the R point, however, lie further below
EF for the investigated compounds, and thus their impact can
be expected to be much smaller. The origin of unconventional
chiral fermions in the studied compounds can be understood
by symmetry analysis as described in Refs. [31] and [32].

Figure 3 shows the total and atom-decomposed density
of states (DOS) as a function of energy (E ) of the CoSi
family. Total and atomic orbital-decomposed DOS spectra are
also shown in Fig. S7 in the SM [62]. All four investigated
compounds have a pseudogap at the Fermi level and thus
have a low DOS value at EF (Fig. 3 and Fig. S7 in the SM
[62]), as can be expected from a semimetal. Interestingly, in
CoSi and CoGe, the DOS increases sharply as E is lowered
below EF , but increases much less dramatically if E is raised
above EF . This strong electron-hole asymmetry in the DOS in
the vicinity of EF was attributed to cause the large negative
Seebeck coefficient of about −80 μV/K in CoSi and CoGe
[50]. From Fig. 3 (as well as Fig. S7 in the SM [62]), it is
clear that Co (Rh) d orbitals give the main contribution to
the DOS across a wide energy range around EF with a minor
contribution from Co (Rh) p orbitals and Si (Ge) p orbitals.
However, Si (Ge) s orbitals are dominant for the lower-energy
bands below −7.4 eV (see Fig. 3 and Fig. S7 in the SM [62]).

B. Spin Hall effect

From Eq. (1), it is clear that the SHC of a material is a
third-rank tensor (σ s

i j ; s, i, j = x, y, z), and thus has 27 tensor
elements in total. Nevertheless, due to the constraint of the
crystalline symmetry of the material, many of these tensor
elements become zero [64]. Indeed, due to the high symmetry
of the cubic B20-type structure, the CoSi family has only
two independent nonzero tensor elements, namely, σ z

xy and σ z
yx

[64]. Other nonzero elements are related to these two elements
by σ x

yz = σ
y
zx = σ z

xy and σ
y
xz = σ x

zy = σ z
yx (see Table I). Note

that for nonchiral cubic materials such as Pt metal [10], there
is only one independent nonzero element, i.e., σ z

xy, and σ z
yx =

−σ z
xy. The CoSi family has two independent nonzero tensor

elements because their structural chiral symmetry is broken,
as mentioned above in Sec. II. Therefore, the magnitude of
(σ z

xy + σ z
yx) is a measure of the structural chirality of the CoSi

family. Following the convention [64], we will focus on σ z
xy

and σ
y
xz instead of σ z

xy and σ z
yx below. In Table II, we list the

calculated independent nonzero elements of the SHC tensor
for the CoSi family. The σ z

xy and σ
y
xz of recently studied Weyl

semimetal TaAs [20] and Dirac line-node semimetal ZrSiS
[22], as well as the σ z

xy of platinum metal [10,17], are also
listed in Table II for comparison.

It is well known that the handedness of a chiral crystal can
be transformed simply by a spatial inversion (parity) opera-
tion (P), e.g., from the RHC to LHC. Interestingly, here we
discover that there are many other operations which can also
change the handedness of the chiral crystal from the RHC to
LHC, or vice versa. For example, for the CoSi family, we find
that there are nine nonsymmorphic glide operations, each con-
sisting of a mirror reflection and a fractional lattice translation
[e.g., (M11̄0| 3

4
3
4

3
4 )], which would transform the handedness

from the RHC to LHC, as listed in Table S2 in the SM [62].
For clarity, let us label the LHC obtained from the RHC
through a parity operation LHC-P , and the LHC resulted
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TABLE I. P213 symmetry-imposed shape of the SHC tensor for the CoSi family in the right-handed crystal (RHC) (left column) and
left-handed crystal (LHC-M) (right column). Here, the LHC-M is obtained from the RHC via a nonsymmorphic operation involving mirror
reflection M, e.g., (M11̄0| 3

4
3
4

3
4 ) (see Table S2 in the SM [62]). Clearly, σ z

xy(LHC-M) = −σ y
xz(RHC) and σ y

xz(LHC-M) = −σ z
xy(RHC). In contrast,

for the LHC obtained from the RHC through a parity operation P (i.e., LHC-P), the nonzero elements of the SHC tensor are the same as that
of the RHC (see the main text). Note that there are only two inequivalent nonzero elements (i.e., σ z

xy and σ y
xz) and that the shape of the SNC

tensor is the same as that of the SHC.

SHC (RHC) SHC (LHC-M)
σ x σ y σ z σ x σ y σ z

⎛
⎝0 0 0

0 0 σ z
xy

0 σ y
xz 0

⎞
⎠

⎛
⎝ 0 0 σ y

xz

0 0 0
σ z

xy 0 0

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ y

xz 0 0
0 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −σ y
xz

0 −σ z
xy 0

⎞
⎠

⎛
⎝ 0 0 −σ z

xy

0 0 0
−σ y

xz 0 0

⎞
⎠

⎛
⎝ 0 −σ y

xz 0
−σ z

xy 0 0
0 0 0

⎞
⎠

from the RHC via a nonsymmorphic operation involving a
mirror reflection LHC-M. Furthermore, we find that the SHC
tensor elements for the RHC and LHC-P crystals are the
same. This can be seen as follows. Equation (1) shows that
the SHC is given by the sum of spin Berry curvature over the
BZ. For a system where the spin is a good quantum number,
�n,k

i j = sk�i j [20]. Thus, the spin Berry curvatures and hence
the SHC would remain unchanged under parity because both
the Berry curvatures (�xy and �xz) and spin operators (Sz

and Sy) are pseudovectors and thus even under parity. To
verify this conclusion, we perform explicit calculations of the
SHC for both RHC and LHC-P of CoSi, and indeed find that
the calculated σ z

xy and σ
y
xz values for these two structures are

identical (within the numerical uncertainties).
Surprisingly, we find that the SHC tensor elements for

the RHC and LHC-M structures are different. Neverthe-
less, they are connected via simple relations σ

y
xz(LHC-M)

= −σ z
xy(RHC) and σ z

xy(LHC-M) = −σ
y
xz(RHC) (see Table I).

To understand the origin of these SHC relations, let us take
the nonsymmorphic operation (M11̄0| 3

4
3
4

3
4 ) as an example. As

the mirror reflection (M11̄0) changes the Berry curvature �xz

to �yz and spin operator Sy to −Sx, we get relation �
y
xz(RHC)

= −�x
yz(LHC-M) for the spin Berry curvature. This results in

σ
y
xz(RHC) = −σ x

yz(LHC-M) = −σ z
xy(LHC-M), i.e., σ z

xy(LHC-
M ) = −σ

y
xz(RHC), as mentioned earlier. We notice that the

crystal structures of CoSi reported in Refs. [34] and [35] have
the opposite chiralities. Furthermore, the structure reported by
Demchenko et al. [35] is nearly the same as the LHC-M of
the crystal structure reported by Kavich et al. [34] (with a
measure of similarity,  = 0.005 [67]) (see, also, Table S3
in the SM [62]). Therefore, to verify these relations, we again
perform explicit calculations of the SHC for these structures
reported by [34] (RHC) and [35] (LHC-M), and the results are
shown in Fig. S10 in the SM [62]. Figure S10 in the SM [62]
shows that indeed σ z

xy(LHC-M) ≈ -σ y
xz(RHC) and σ

y
xz(LHC-

M) ≈ -σ z
xy(RHC). The small discrepancies are due to the slight

TABLE II. Calculated spin Hall conductivity (σ z
xy and σ y

xz), and spin Nernst conductivity (αz
xy and αy

xz) at temperature T = 300 K of the
CoSi family. Previous results for Weyl semimetal TaAs, Dirac line-node semimetal ZrSiS, and heavy Pt metal are also listed for comparison.
To estimate the spin Hall (Nernst) angle �sH = 2σ s/σ c

xx [�sN = 2αs/αxx = 2αs/(Sxxσ
c
xx )], we also list experimental electrical conductivity σ c

xx

and Seebeck coefficient Sxx values as well as the estimated �sH and �sN here.

System σ c
xx Sxx σ z

xy �z
sH σ y

xz �
y
sH αz

xy �z
sN αy

xz �
y
sN

(S/cm) (μV/K) (h̄/e)(S/cm) (%) (h̄/e)(S/cm) (%) (h̄/e)(A/m-K) (%) (h̄/e)(A/m-K) (%)

CoSi 5200c -81c -63, 52j -2.4 -66 -2.5 0.42 -2.0 -1.00 4.7
CoGe 4589d -82d -131 -5.7 -21 -0.9 0.06 -0.3 -1.25 6.6
RhSi 3571e -25h -122 -6.8 11 0.6 0.14 -3.1 -0.65 14.6
RhGe 4130f -25f -139 -6.7 103 5.0 -0.64 12.4 -0.19 3.7
TaAsa -781 357
ZrSiSb 79 -280 0.60 0.52
Pt 20833g -3.7i 2139k 10g -1.09l,-1.57i -20i

aAb initio calculation [20];
bAb initio calculation [22];
cTransport experiment [49];
dTransport experiment [50];
eTransport experiment [65];
fTransport experiment [47];
gTransport experiment [66];
hAssumed the same value as RhGe from [47];
iExperiment at 255 K [17];
jAb initio calculation [28];
kAb initio calculation [10];
lAb initio calculation [57].
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differences in the atomic positions in these crystalline struc-
tures [34,35] (see, also, Table S3 in the SM [62]). This shows
that the SHC can be used to identify the handedness (chirality)
for the crystal structure of the CoSi family as well as other chi-
ral materials. Here we mention two cases to demonstrate how
measuring the SHC tensor elements can help determine the
handedness (chirality) of a structurally chiral crystal. First, let
us assume that both the SHC tensor elements (σ z

xy and σ
y
xz) are

of the same sign, e.g., negative as in the case of RHC CoSi and
CoGe at the Fermi level (see Table II). Now if one observes
a positive sign for these two elements for the same crystal
with unknown handedness, using our relations as shown in
Table I for the RHC and LHC-M, one can conclude that the
unknown handedness crystal is LHC-M. Second, when both
the SHC tensor elements (σ z

xy and σ
y
xz) are of the opposite

sign [as in the case of RhSi and RhGe at the Fermi level (see
Table II); RHC], one needs to consider the magnitude of both
SHC tensor elements as well to determine the handedness
of the same crystal. Note that the two SHC tensor elements
of RhSi and RhGe differ quite a lot in terms of magnitude
and can be used to determine the handedness. Furthermore,
since the chirality [or the sign of the Chern number (chiral
charge)] of a chiral fermion node is determined by the struc-
tural chirality (see Table S1 in the SM [62]), the calculated
SHC can also be used to identify the helicity (chirality) of
the chiral fermions in the CoSi family and also in other chiral
lattices. Note that detection of the relationship between the
chirality of chiral fermions and structurally chiral crystals is
a topic of considerable current interest [43–46]. Nevertheless,
as mentioned above, we will focus on the CoSi family in the
RHC structure in the following.

The calculated SHC values for the four investigated com-
pounds are listed in increasing order of their SOC strength
in Table II. The calculated σ z

xy for CoSi is the smallest and
that of RhGe is the largest, a trend which apparently follows
the increasing order of the SOC in the CoSi family. Nev-
ertheless, an even more pronounced trend is present in the
calculated σ

y
xz values. Furthermore, the sign of σ

y
xz for RhSi

and RhGe is opposite to that for CoSi and CoGe. RhGe has
the largest σ z

xy of −139 (h̄/e)(S/cm), being larger than that
[79 (h̄/e)(S/cm)] of Dirac line-node semimetal ZrSiS [22],
but significantly smaller than that [−781 (h̄/e)(S/cm)] of
archetypal Weyl semimetal TaAs [20]. Nevertheless, the σ z

xy
of RhGe is about 20 times larger than the σ z

xy [7 (h̄/e)(S/cm)]
of Weyl semimetal NbP [20]. Finally, the σ z

xy value of RhGe
is about 15 times smaller than that of platinum metal, which
possesses the largest SHC among the transition metals.

Table II also shows a strong anisotropy of the SHC in the
CoSi family. By interchanging the applied electric field and
spin polarization directions simultaneously from (z, y) to (y,
z), one can obtain the multifold enhancement of the SHC.
Here, the first and second index in parentheses corresponds
to the applied electric field and spin polarization directions,
respectively. For example, the σ z

xy of CoGe and RhSi is about
6 times and 11 times larger than the corresponding σ

y
xz, respec-

tively. Furthermore, the signs of the SHC σ z
xy and σ

y
xz for RhSi

and RhGe also differ.
Since chiral fermion nodes W1 at the � point and W2 at the

R point do not lie exactly at EF (see Fig. 2 and Table S1 in the
SM [62]), we also calculate the SHC as a function of chemi-
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FIG. 4. (a), (d), (g) Relativistic band structure, (b), (e), (h) spin
Hall conductivity (σ z

xy and σ y
xz) as a function of chemical potential

(μ), and (c), (f), (i) spin Nernst conductivity (αz
xy and αy

xz) at T =
300 K as a function of μ for (a)–(c) CoSi, (d)–(f) CoGe, and (g)–(i)
RhSi. Here, W1 and W2 denote the spin-3/2 chiral fermion node at
� and spin-1 double Weyl node at R, respectively. The Fermi level
is at zero energy, and the unit of the SHC [SNC] is (h̄/e)(S/cm)
[(h̄/e)(A/m K)].

cal potential (μ) within the rigid-band approximation. In the
rigid-band approximation, we vary only the μ while keeping
the band structure fixed. The calculated SHC spectra are dis-
played in Figs. 4(b), 4(e), 4(h), and 5(b) for CoSi, CoGe, RhSi,
and RhGe, respectively. In Table S1 of the SM [62], we also
tabulate the SHC values when the chemical potential is shifted
to either node W1 at � or node W2 at R. It is clear that the
SHC spectra for the CoSi family show a strong dependence
on μ. In particular, Fig. 4(b) shows that the magnitude of σ

y
xz

of CoSi decreases steeply and then changes sign as μ is raised
from EF to 0.015 eV. The positive σ

y
xz then increases steeply

as μ further increases until μ is above node W1. As suggested
earlier in Ref. [28], this rapid change of the magnitude and
also the sign of σ

y
xz could be a characteristic behavior of the

SHC in the vicinity of a spin-3/2 chiral fermion node. Indeed,
this pronounced behavior also shows up in the σ

y
xz spectrum

of CoGe around the spin-3/2 chiral fermion node W1 at � [see
Fig. 4(e)]. This rapid change of σ

y
xz in CoSi and CoGe can

also be seen near spin-1 double Weyl fermion node W2 at R,
except the sign change occurs well below W2 (about 0.25 eV
lower). Nevertheless, the σ

y
xz spectrum of RhGe is rather flat in
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FIG. 5. RhGe. (a) Relativistic band structure; (b) spin Hall con-
ductivity (σ z

xy and σ y
xz) as a function of chemical potential (μ); (c) spin

Nernst conductivity (αz
xy and αy

xz) at T = 300 K as a function of μ;
(d), (f), and (h) spin Berry curvature (SBC) �z

xy; as well as (e), (g),
and (i) SBC �y

xz for μ = EF , μ = W1, and μ = W2, respectively,
along the high-symmetry lines in the Brillouin zone. Here, W1 and
W2 denote the spin-3/2 chiral fermion node at � and spin-1 double
Weyl node at R, respectively. In (a)–(c), the Fermi level is at zero
energy, and the unit of the SHC [SNC] is (h̄/e)(S/cm) [(h̄/e)(A/m
K)]. In (d)–(i), the unit of SBC is Å2.

the vicinity of W1 at � [see Fig. 5(b)]. Furthermore, this steep
slope and sign change of σ

y
xz around W1 is absent in the σ z

xy
spectrum of the CoSi family. Consequently, this indicates that
the pronounced feature of σ

y
xz found near node W1 in CoSi and

CoGe may not be universal for all spin-3/2 chiral fermions.
Other prominent changes due to the variation of the μ are

as follows. The σ
y
xz of RhSi can be increased by a factor of

about 10 by slightly increasing the μ from EF to node W1 at
0.06 eV (see Fig. 4(h) and Table S1 in the SM [62]). This can
be easily realized via electron doping of merely 0.02 e/f.u.
Also, σ

y
xz of CoGe could be enhanced from −21 (h̄/e)(S/cm)

to −98 (h̄/e)(S/cm) by lowering the μ to nodal point W2 at
−0.15 eV (see Fig. 4(e) and also Table S1 in the SM [62]).
This can be achieved via hole doping of 0.27 e/f.u. Further-
more, σ z

xy of CoGe and RhGe could reach a very large value
of −260 (h̄/e)(S/cm) and −202 (h̄/e)(S/cm) by lowering the
chemical potential to −0.19 and −0.07 eV via hole doping of
0.38 and 0.04 e/f.u., respectively [see Figs. 4(e) and 5(b)]. The
above discussion clearly suggests that the SHC of the CoSi
family could be tuned in both magnitude and sign by shifting
the chemical potential to either the topological nodal points or

other energy levels, and this could be accomplished via either
chemical doping or electrical gating.

Among the members of the CoSi family, only the
SHE in CoSi was recently studied experimentally using
CoSi/CoFeB/MgO heterostructures by Tang et al. [28]. The
measured values of the so-called dampinglike (σDL) and field-
like (σFL) SHC for film thickness tCoSi = 7.2 nm are σDL = 45
(h̄/e)(S/cm) and σFL = 95 (h̄/e)(S/cm), being in quite good
agreement with our theoretical σ z

xy and σ
y
xz values listed in

Table II. Tang et al. also performed DFT calculations for SHC
σ z

xy of CoSi and their calculated σ z
xy at EF is 52 (h̄/e)(S/cm),

which agrees very well with our σ z
xy and σ

y
xz values (Table II).

Interestingly, their calculated σ z
xy spectrum in the vicinity of

EF (see Fig. 5(c) in [28]) looks rather similar to our σ
y
xz

spectrum [see Fig. 4(b)], except that the two have opposite
signs. In other words, σ z

xy [28] ≈ −σ
y
xz (this work), indicating

that the crystalline structure of the samples used in [28] is
LHC rather than RHC considered here. Nevertheless, the σ z

xy
spectrum in [28] near Weyl point W2 differs significantly from
our σ

y
xz spectrum. These discrepancies could reflect the dif-

ferent computational methods and structural parameters used
in the previous [28] and present studies. We note that the
independent nonzero SHC element σ

y
xz was not studied in

Ref. [28].
Finally, we notice that for the application of SHE in

spintronics such as spin-orbit torque switching-based nanode-
vices, the crucial quantity is the so-called spin Hall angle �sH

which characterizes the charge-to-spin conversion efficiency
and is given by �sH = (2e/h̄)Js/Jc = 2σ s/σ c, where Jc and
σ c are the longitudinal charge current density and conductiv-
ity, respectively (see, e.g., Refs. [68] and [66]). Therefore,
although the calculated SHC values of the CoSi family are
much smaller than that of 5d transition metals such as Pt
(Table II), their spin Hall angles could be comparable to that
of 5d transition metals [66] because topological semimetals
by nature have a much smaller conductivity compared with
5d transition metals (Table II). For example, the spin Hall
angle �z

sH for σ z
xy of RhSi and RhGe is about −7%, which

is comparable to that (10%) of Pt (Table II). Therefore, we
believe that this interesting finding of large spin Hall angles
of the CoSi family would spur further experiments on SHE in
the members of the CoSi family other than CoSi [28].

C. Spin Nernst effect

The SNC (αs
i j ; s, i, j = x, y, z) of a material is also a third-

rank tensor, thus having 27 tensor elements altogether. As for
the SHC, owing to the high symmetry of the cubic lattice for
the CoSi family, it has only two independent nonzero tensor
elements, namely, αz

xy and α
y
xz [64] (see, also, Table I). The cal-

culated values of these nonzero SNC elements at T = 300 K
are listed in Table II. Remarkably, Table II indicates that the
calculated value of SNC α

y
xz of CoGe is comparable or even

larger than that (αz
xy) of platinum metal (Table II). Also, αy

xz of
CoGe is about 2.5 times larger than α

y
xz of Dirac line-node

semimetal ZrSiS [22] (Table II). This shows that the SNC
values for the CoSi family are prominent and the CoSi family
would be potential materials for spin caloritronics.

Table II indicates that the SNC of the CoSi family is
strongly anisotropic, similar to their SHC. For example, the
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αz
xy of CoGe is about 21 times larger than α

y
xz (see Table II),

i.e., the SNC of CoGe would be enhanced by a factor of
about 21 when the applied electric field and spin polarization
directions are interchanged from (y, z) to (z, y). Here the
indices in the parentheses indicate the directions of the applied
electric field and spin polarization, respectively. Also, the αz

xy

of RhGe is approximately 3.4 times larger than α
y
xz (Table II).

A sign change in the SNC is found for CoSi, CoGe, and RhSi
(Table II) when the spin polarization direction is rotated from
the z axis to the y axis.

We also calculate the chemical potential (μ) dependence
of the SNC at T = 300 K for CoSi, CoGe, RhSi, and RhGe
as shown in Figs. 4(c), 4(f), 4(i), and 5(c), respectively. As
for the SHC, the SNC spectra of the CoSi family also depend
strongly on μ. For example, αz

xy of CoGe becomes 19 times
larger and also changes sign when the chemical potential is
lowered to the spin-1 double Weyl fermion node at R (i.e.,
W2 at −0.15 eV) (see Fig. 4(f), Table II and Table S1 in the
SM [62]). This suggests that the presence of unconventional
chiral fermion nodes may considerably enhance the SNE. We
note that this chemical potential lowering can be realized by
hole doping of 0.27 e/f.u. Also, Fig. 4(c) indicates that the αz

xy
of CoSi can be increased from 0.42 to −1.35 (h̄/e)(A/m K)
when μ is shifted to node W2 (−0.18 eV) (see, also, Table S1
in the SM [62]). This can be achieved via hole doping of 0.25
e/f.u. Furthermore, the SNC (αy

xz) of RhGe is enhanced by a
factor of about 1.5 when μ drops to the level of the spin-3/2
fermion node W1 at � (see Table II and Table S1 in the SM
[62]), which can be achieved via hole doping of merely 0.06
e/f.u. Nevertheless, we also notice that this enhancement in
SNC is absent in the αz

xy of CoSi, CoGe, and RhSi at W1 (see
Fig. 4, Table II, and, also, Table S1 in the SM [62]). Also,
Fig. 5(c) shows that there is no local maximum in the αz

xy near
W1 in RhGe. Overall, the μ dependences of the αz

xy and α
y
xz

of CoSi, CoGe, and RhSi are rather similar (see Fig. 4). For
CoSi, the αz

xy decreases steadily as μ decreases and changes
sign at −0.10 eV, and then reaches a negative local maximum
of −1.37 (h̄/e)(A/m K) at −0.19 eV [see Fig. 4(c)]. On
the contrary, αz

xy of RhGe increases rapidly as μ decreases,
changes sign at −0.08 eV and then rises to a positive local
maximum of 0.67 (h̄/e)(A/m K) at −0.16 eV [Fig. 5(c)].
These remarkable tunabilities in the SNC could be observed
in the CoSi family by either chemical substitution or electrical
gating.

We note that Eq. (3) would be reduced to the Mott relation
at the low-T limit,

αz
xy(EF ) = −π2

3

k2
BT

e
σ z

xy(EF )′, (4)

which simply means that the SNC is proportional to the en-
ergy derivative of the SHC at EF . This would allow us to
understand the origins of the prominent features in the μ-
dependent SNC spectra. For example, the large negative peak
in the α

y
xz spectrum of CoSi in the vicinity of node W1 is due to

the positive steep slope of σ
y
xz near W1 [see Figs. 4(b) and 4(c)].

This large SNC (αy
xz) of −1.07 (h̄/e)(A/m K) at T = 300 K is

located at 0.02 eV, being slightly above EF , and thus could be
achieved easily via electron doping of 0.01 e/f.u. Similarly, in
Figs. 4(b) and 4(c), αz

xy of CoSi also has a peak value of −1.37
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FIG. 6. Spin Nernst conductivity (a) αz
xy and (b) αy

xz of the CoSi
family as a function of temperature T .

(h̄/e)(A/m K) at T = 300 K at spin-1 double Weyl fermion
node W2 (μ = −0.19 eV) at R [Fig. 4(c)] and again this is due
to the steep positive slope of σ z

xy near W2. In order to reach
this energy level, however, a larger hole doping of 0.27 e/f.u.
would be required. In contrast, Fig. 4(f) shows that for CoGe,
αz

xy is negligibly small above EF because σ z
xy is very flat in

this energy range [Fig. 4(e)]. Unlike CoSi, CoGe, and RhSi,
both αz

xy and α
y
xz of RhGe are negative and α

y
xz of RhGe has

a broad plateau of about −0.18 (h̄/e)(A/m K) at T = 300 K
from −0.05 to 0.10 eV around EF [see Fig. 5(c)], where σ

y
xz

increases rather slowly with μ [see Fig. 5(b)].
The temperature (T ) dependence of the SNC (αz

xy and α
y
xz)

of the CoSi family is also calculated, as shown in Fig. 6. In
Figs. S11 and S12 in the SM [62], we also display the T
dependences of αz

xy, and α
y
xz when μ is displaced to nodes

W1 and W2, respectively. Figure 6(a) shows that the αz
xy spec-

tra of CoSi and RhSi have a positive value for almost the
entire considered T range, which increases steadily with T
and reaches 0.48 and 0.20 (h̄/e)(A/m K), respectively, at
T = 400 K. For CoGe, αz

xy has a negative value of −0.30
(h̄/e)(A/m K) at T = 60 K. As T increases, αz

xy increases and
changes sign at T = 240 K and then rises to a value of 0.09
(h̄/e)(A/m K) at T = 400 K [see Fig. 6(a)]. However, αz

xy
of RhGe has a negative value in the whole T range consid-
ered here. Its magnitude increases monotonically and hits the
negative maximum value of −0.64 (h̄/e)(A/m K) at T =
320 K. It then starts to decrease as T further increases and
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finally reduces to −0.62 (h̄/e)(A/m K) at T = 400 K [see
Fig. 6(a)]. In Fig. 6(b), unlike the αz

xy, α
y
xz has a negative value

for all four investigated compounds of the CoSi family in al-
most the entire considered temperature range. For CoSi, RhSi,
and CoGe, the magnitude of α

y
xz increases monotonically as T

increases from 50 K, and reaches the negative value of −1.12,
−0.73, and −1.30 (h̄/e)(A/m K), respectively, at T = 400 K
[see Fig. 6(b)]. α

y
xz of RhGe shows a robust behavior with T

and decreases slightly to −0.24 (h̄/e)(A/m K) at T = 400 K,
as can be seen easily in Fig. 6(b). Interestingly, for RhGe,
αz

xy changes sign with T when μ is shifted to node W1 (see
Fig. 6(a) and Fig. S11(a) in the SM [62]). Also, for the CoSi
family, the αz

xy is negative, whereas α
y
xz is positive for the

entire considered T range when μ is lowered to node W2 (see
Fig. S12 in the SM [62]).

Finally, from the viewpoint of the application of SNE in
spin caloritronics, the key quantity is the spin Nernst angle
�sN which measures the heat-to-spin conversion efficiency
and is defined as �sN = (2e/h̄)Js/Jh = 2αs/αL, where Jh

and αL are the longitudinal heat current density and Nernst
coefficient, respectively [17]. Here, αL = Sxxσxx, where Sxx

is the Seebeck coefficient. Using the measured σxx and Sxx

of the CoSi family, we estimate the �sN values using the
calculated αs, as listed in Table II. Interestingly, we obtain
the large �sN values of 15% and 12%, respectively, for RhSi
and RhGe (Table II), which are comparable to that (−20%)
of Pt metal [17]. So far, no experimental or theoretical studies
on the SNE in the CoSi family have been reported. We hope
that this interesting finding of large spin Hall (Nernst) angles
in the CoSi family, especially RhSi and RhGe, will stimulate
experiments of this kind in the near future.

D. Spin Berry curvature analysis

We can see from Eq. (1) that the SHC is simply given by
the summation of spin Berry curvature (SBC) of the occupied
bands on all the k points in the BZ. As a result, analyzing
the k-resolved SBC would help us understand the origins of
the large SHC as well as SNC of the CoSi family. Table II
indicates that RhGe has the largest SHC among the four con-
sidered compounds. Therefore, taking RhGe as an example,
we display its calculated SBC �z

xy in Figs. 5(d), 5(f), and
5(h), as well as �

y
xz in Figs. 5(e), 5(g), and 5(i), along the

high-symmetry lines in the BZ for chemical potential μ =
EF , μ = W1, and μ = W2, respectively. In order to get a
clearer picture of the SBC distribution in the BZ, we also
show on the kx-ky plane with kz = 0 the contour plots of �z

xy

in Figs. 7(a)–7(c) and also of �
y
xz in Figs. 8(a)–8(c) for μ =

EF , μ = W1, and μ = W2, respectively. Contour plots of �z
xy

and �
y
xz on the kx-kz plane with ky = 0.5 for μ = W2 are also

presented in Figs. 7(d) and 8(d), respectively.
For μ = EF , a sharp negative (positive) peak near the �

point on the X -� line is found for �z
xy (�y

xz) [see Figs. 5(d)
and 5(e)]. A comparison of Fig. 5(a) with Fig. S1(d) (SM [62])
indicates that the bands near EF around this k point are slightly
split when the SOC is included. As pointed out before [10],
when two degenerate bands become slightly gapped by the
SOC, a pair of large peaks of SBC with opposite signs would
occur in the vicinity of this k point. When both bands are
occupied, the contributions from these two peaks to the SHC

FIG. 7. k-resolved spin Berry curvature �z
xy(k) of RhGe on the

kx-ky plane with (a)–(c) kz = 0 and also on the kx-kz plane with (d)
ky = 0.5 in the Brillouin zone. The color bar is in units of Å2. In
(a), chemical potential μ = EF ; in (b), μ = W1 (spin-3/2 fermion
node at �); in (c) and (d), μ = W2 (spin-1 double Weyl fermion node
at R).

would cancel each other. However, when EF falls within the
gap, only one peak of SBC would contribute to the SHC, thus
resulting in a pronounced contribution to the SHC. Therefore,
we can see that the large negative (positive) peak of �z

xy (�y
xz)

makes a crucial contribution to the SHC, leading to the large
negative σ z

xy (positive σ
y
xz) value at EF . These large negative

�z
xy and positive �

y
xz peaks near � can be seen more clearly

in Figs. 7(a) and 8(a), respectively. Figure 5(d) also shows

FIG. 8. k-resolved spin Berry curvature �y
xz(k) of RhGe on the

kx-ky plane with (a)–(c) kz = 0 and also on the kx-kz plane with (d)
ky = 0.5 in the Brillouin zone. The color bar is in units of Å2. In
(a), chemical potential μ = EF ; in (b), μ = W1 (spin-3/2 fermion
node at �); in (c) and (d), μ = W2 (spin-1 double Weyl fermion node
at R).
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that there are less prominent negative peaks of �z
xy along the

M-� [see, also, Fig. 7(a)] and �-R lines, which should also
contribute significantly to the large negative σ z

xy value. Again,
these large �z

xy values originate from the small SOC-induced
band splitting near EF [see Fig. 5(a)]. Similarly, one can find
rather pronounced positive �

y
xz peaks along the �-R line.

When the chemical potential is lowered to the spin-3/2
fermion node (μ = W1) at �, a large asymmetric oscillatorlike
curve occurs for �z

xy near � on the X -�-R line [see Fig. 5(f)],
perhaps a unique feature of SBC near a chiral fermion node.
Nevertheless, the negative peak near � on the �-R side is
gigantic, which overcomes the less pronounced positive peak
on the �-X side [Fig. 5(f)], thus resulting in the large negative
σ z

xy value (Table II). Of course, other pronounced negative
peaks in �z

xy such as that along the R-M-� line may also
contribute significantly to �z

xy. Similarly, we can also see
large oscillatorlike features in �

y
xz near � along the X -�-R

and M-�-Y lines [see Fig. 5(g)]. However, clearly, the large
positive peaks on the �-R and �-M sides would overcome
the smaller negative peaks of �

y
xz on the �-X and �-Y sides,

thus leading to the large positive σ
y
xz value. When the chemical

potential is further lowered to the spin-1 double Weyl fermion
node (μ = W2) at R, similar oscillatory features in both �z

xy

and �
y
xz appear [see Figs. 5(h) and 5(i)]. The gigantic negative

peaks of �z
xy and �

y
xz on the R-M side [see Figs. 7(d) and 8(d)]

would overwhelm the much smaller positive peaks on the R-�
side, thereby resulting in the negative σ z

xy and σ
y
xz values [see

Fig. 5(b)]. Of course, there is also a broad negative peak of �
y
xz

on the X -� line, which is clearly due to the large SOC-split
bands [see Fig. 5(a)], and this negative peak shows up clearly
as a small part of a complex negative feature in the contour
plot on the kx-ky plane with kz = 0 [see Fig. 8(c)].

IV. CONCLUSIONS

In summary, we have systematically studied the band
structure topology, SHE, and SNE in the CoSi family with
the chiral cubic B20 structure by performing ab initio rela-
tivistic band structure calculations. First, all four considered
monosilicides (CoSi, CoGe, RhSi, and RhGe) are found to be

nonmagnetic semimetals with unconventional chiral fermion
nodes. Second, unlike nonchiral cubic metals, these monosili-
cides have two independent nonzero spin Hall (Nernst)
conductivity tensor elements, namely, σ z

xy and σ
y
xz (αz

xy and
α

y
xz) instead of one element. Furthermore, the SHC (σ z

xy and
σ

y
xz) and helicity of the chiral cubic structure are revealed

to be correlated, thus suggesting SHE detection of structural
helicity and also chiral fermion chirality. Third, the intrinsic
SHE and SNE in some of the CoSi family are large. For
example, the calculated SHC of RhGe is as large as −139
(h̄/e)(S/cm). The calculated SNC of CoGe at room tempera-
ture is also large, being −1.25 (h̄/e)(A/m K). Because of their
semimetallic nature with low electrical conductivity, these
topological semimetals may have large spin Hall and spin
Nernst angles up to 7% and 15%, respectively, being compara-
ble to that of platinum metal which has the largest SHC among
transition metals. The SHC and SNC of these compounds can
also be significantly enhanced by raising or lowering chemical
potential to, e.g., a spin-3/2 chiral fermion or spin-1 double
Weyl node, via either chemical doping or electrical gating.
Finally, an analysis of the calculated k-resolved spin Berry
curvature unveils the mechanism underlying the largeness and
tunability of SHE and SNE in these materials. These interest-
ing results thus show that transition metal monosilicides of
the CoSi family not only would provide a material platform
for exploring novel spin transports and exotic phenomena in
unconventional chiral fermion semimetals, but also could be
promising materials for developing better spintronic and spin
caloritronic devices. We are sure that this work would stim-
ulate new experiments on SHE and SNE in these fascinating
topological semimetals.
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