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We respond to the Comment on our paper [Phys. Rev. B 105, 195412 (2022)]. The authors of the Comment
claim our paper arrived at similar conclusions to their earlier paper [Phys. Rev. D 92, 125005 (2015)]. In this
response to their Comment, we outline why we believe our paper is fundamentally different in nature, we review
its conclusions, and detail how these are different to those of their earlier work.
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We are pleased that others are actively interested in this
topic and definitely appreciate different perspectives on it.
However, we feel that our results [1] and those of Ref. [2] are
different. In their comment [3], the authors claim that in our
paper we “conclude that the curved-space Dirac description of
the low-energy conductivity electrons of monolayer graphene
is incorrect when only strain is present (elastic monolayer
graphene).” We absolutely do not restrict to the case of only
having strain but also treat curvature too, which is, in fact,
where the most interesting physics lies. It is worth noting
that freely suspended monolayer graphene will generally have
both locally varying strain and curvature.

Long ago [4] it was argued that the low-energy contin-
uum description of elastically distorted and bent monolayer
graphene is massless Dirac fermions coupled to a generally
nontrivial geometry (via a frame ei

A and torsion-free spin
connection �i) as well as a “strain” gauge field Ai (a result
reviewed in the Appendix of Ref. [3]). From the point of
view of curved space quantum field theory, the strain gauge
field and spin connection couple very differently to the Dirac
fermion ψ via a covariant derivative (see, for instance, (12) of
Ref. [2])

∇iψ =
(
∂i − iAi + i

2
σ 3�i

)
ψ,

where σ 3 is the usual third Pauli matrix. The different cou-
plings imply different and distinct physics results from the
spin connection and strain gauge field.

We note here that even in this early paper [4] it was pointed
out that in-plane distortions do not introduce intrinsic cur-
vature, and so the physical effect of this strain viewed from
the Dirac description must be felt purely through the strain
gauge field. This is similar to what is discussed in Sec. III A
of Ref. [3] and the latter part of the Comment although they
make this argument in a different way using the curved space
Dirac equation (which is why we cited their work originally
in Ref. [2], writing “Based on these analyses much work has
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assumed a curved space Dirac description exists [16–25].”
where theirs is Ref. [20]).

Our work is focused on the validity of this continuum
Dirac description derived from the microscopic description.
Following Ref. [4] we take this tight-binding model with gen-
eral spatially dependent hopping functions which are slowly
varying and study its continuum limit. For small perturbations
of the hopping functions this can be interpreted as arising from
both strain and curvature of a graphene lattice embedded as a
curved membrane in R3. We find that generically one does
not recover the gauged curved Dirac theory in the low-energy
continuum limit since higher derivative corrections cannot
be neglected. Although naive power counting of derivatives
would suggest we can ignore them, the gauge invariance as-
sociated with the strain gauge field together with the lattice
scale appearing in the strain gauge field, schematically going
as A ∼ u/a (where u is the strain and a is the lattice scale),
cancels the naive suppression of higher covariant derivative
terms. It is worth noting that these higher derivative terms are
not coordinate invariant but carry a memory of the lattice (see
the discussion around Eq. (23) of Ref. [2]). We have shown
that it is possible to fine-tune the tight-binding model hopping
functions so that the emergent strain gauge field is paramet-
rically small, and in this case one can obtain a consistent
curved space Dirac description even for nonlinear curvature.
However, using simple mechanical arguments we have argued
that this fine-tuning looks very unnatural from the perspective
of physical monolayer graphene embedded into R3.

We note that it had been previously observed in Ref. [5]
that the large gauge field meant the spin connection should
be ignored. However, there they argued the perturbation to
the frame should still be kept (leading to “Weitzenbock ge-
ometry”). Our conclusion is different, namely, that both the
frame and the spin connection perturbations are generically on
the same order as the higher derivative corrections due to the
gauge invariance associated with the strain gauge field which
is inherited from the lattice theory.

We note that for perturbative distortions it is consistent to
truncate to Dirac if we ignore corrections to the frame (and,
hence, also spin connection), leaving us with the flat-space
gauged Dirac theory. But to go beyond this approximation and

2469-9950/2022/106(15)/157402(2) 157402-1 ©2022 American Physical Society

https://orcid.org/0000-0002-1170-4674
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.157402&domain=pdf&date_stamp=2022-10-19
https://doi.org/10.1103/PhysRevB.105.195412
https://doi.org/10.1103/PhysRevD.92.125005
https://doi.org/10.1103/PhysRevB.106.157402


COMMENTS PHYSICAL REVIEW B 106, 157402 (2022)

include generic corrections to the frame (even those that are
pure diffeomorphism, i.e., pure strain) one must also include
higher derivative terms. We also believe this consistent trunca-

tion does not apply to nonlinear distortions, even at quadratic
order in the perturbation, and even in the case of pure in-plane
strain, so no curvature.
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