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Trapped-mode excitation in all-dielectric metamaterials with loss and gain
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Non-Hermitian photonics based on combining loss and gain media within a single optical system provides
a number of approaches to control and generate the flow of light. In this paper, we show that by introducing
non-Hermitian perturbation into the system with loss and gain constituents, the high-quality resonances known as
trapped modes can be excited without the need to change the symmetry of the unit cell geometry. To demonstrate
this idea, we consider a widely used all-dielectric planar metamaterial whose unit cell consists of a pair of
rectangular nanoantennae made of ordinal (with loss) and doped (with gain) silicon. Since the quality factor of
the trapped-mode resonance can be controlled by changing both spatial symmetry and non-Hermiticity, varying
loss and gain allows us to compensate for the influence of asymmetry and restore the quality factor of the
localized mode. The results obtained suggest new ways to achieve high-quality resonances in non-Hermitian
metamaterials that are promising for many practical applications in nanophotonics.
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I. INTRODUCTION

One of the key aims of active nanophotonics is to de-
velop advanced nanodevices that provide the most efficient
interaction of light with nanostructured matter for lasing and
optical switching operations [1]. Artificial nanostructures with
superior functionalities compared to natural materials make it
possible to control both the propagation of light and optical
dynamics by changing the sign and profile of complex per-
mittivity, as well as the ratio between its real and imaginary
parts. Active nanophotonics is a platform for implementing
the concepts of non-Hermitian physics and, in particular, the
ideas of PT symmetry and exceptional points [2,3]. There
are a number of applications of these ideas to non-Hermitian
structures consisting of elements with gain and loss [4–10].
Coupling these elements (cavities, waveguides, resonators,
etc.) implies interaction between the modes of the system
[11,12]. The interaction of modes in coupled non-Hermitian
systems can lead to the appearance of exceptional points
where the modes become degenerate or PT symmetry gets
broken [3].

On the other hand, the rapid development of nanotechnolo-
gies [13–15] stimulates the scientific community to introduce
new mechanisms for controlling optical processes associ-
ated with the interaction of light with artificial media called
metamaterials. According to the substances used for their pro-
duction, metamaterials can be divided into two major classes:
metallic and all-dielectric ones. To date, all-dielectric nanos-
tructures have gained great popularity due to the fact that in
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the infrared and visible parts of the spectrum, they demon-
strate significantly lower material losses compared to their
metallic (plasmonic) counterparts. Moreover, they are com-
patible with the well-established complementary metal-oxide
semiconductor technology that is promising for realizing
many nanophotonic devices [16]. Although today the practical
possibilities for constructing metamaterials have expanded
significantly, controlling their response in a dynamic way
may be problematic. It is often necessary to change the ge-
ometry of the system, which is difficult to implement in
practice. Therefore, new mechanisms are needed for control-
ling optical response, for example, by using structures with
active elements containing gain media. The development of
various technologies for incorporating active constituents in
optical metamaterials resulted in the discovery of fundamen-
tally new mechanisms for electromagnetic wave interaction
with them [17–20]. Changing the properties of active elements
is possible due to external manipulations on demand and is
not limited to the specifics of the metastructure production
process [20,21]. Dynamic control over light propagation by
tuning active elements of metamaterials has many practi-
cal applications, such as loss compensation [22–24], lasing
[25–27], nonlinear optical operations [28–30], thermal radia-
tion control [31], interferometry [32], holography [33,34], etc.

Among many configurations of all-dielectric metamateri-
als, we are interested here in two-dimensional flat structures
(metasurfaces) that support the so-called trapped modes
[35–38] (recently, such modes were also referred to as the
phenomenon of bound states in the continuum [39–41]).
In metamaterials, these modes are related to purely real
eigenstates existing in idealized, lossless, infinitely expanded
structures whose translation unit cells possess specific spatial
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symmetry. To excite the corresponding eigenstate by the field
of the incident radiation, a particular perturbation should be
introduced into the unit cells which breaks their symmetry
[42]. The use of specific irradiation conditions (oblique in-
cidence, near-field sources, etc.) is another possible way to
realize excitation of such modes in metamaterials [43–45].

Hereinafter, as a basic example, we study a planar metama-
terial with a unit cell consisting of two dielectric rectangular
bars: coupled dielectric nanoantennae (elements that are much
smaller than the wavelength). This type of metamaterial was
studied earlier as a system supporting high-quality resonances
[35–37,46–48]. In the elementary unit cell (meta-atom) of
such a system, the antiphased oscillations of displacement cur-
rents excited in the nanoantennae by incident light arise from
the trapped mode when particular asymmetry is introduced
into the size or position of the structural elements (bars).
Thus, the degree of asymmetry determines the strength of
interaction of the mode with the external incident field and
hence the quality factor of the corresponding resonance.

When the unit cell of a metamaterial is composed of several
particles, its electromagnetic properties are defined by modes
supported by the unit cell as a whole [4,9,35,36,38]. These
modes arise as a result of the electromagnetic coupling be-
tween the modes of individual particles forming the unit cell.
In particular, for a pair of coupled nanoantennae in the unit
cell, there is a pair of modes supported by each nanoantenna
which coalesce at the exceptional point [9]. On the other
hand, the modes of the unit cell as a whole appear as an
infinite set of separate modes distant from each other in the
spectrum. Among such modes there are those that have purely
real eigenfrequencies for a lossless (idealized) metamaterial.
They belong to the class of trapped modes that are of great
practical interest for metamaterial physics and applications.

In this paper, we study the non-Hermitian effects, such
as PT -symmetry breaking [49], to implement active control
over the trapped mode by utilizing loss and gain. In the
lossless symmetric case (identical elements of the unit cell),
this mode cannot be excited and has an infinite quality factor.
In the presence of asymmetry (unit cell contains elements of
different sizes), it can be observed in the spectrum as a reso-
nant state with a finite quality factor depending on the level
of asymmetry. We show that introducing loss and gain into
the system allows us to control the system’s response in both
symmetric and asymmetric structures. In the symmetric case,
the trapped mode can be excited for elements with almost
equal loss and gain. In the asymmetric case, the detrimental
impact of geometric dissimilarity can be compensated with
the addition of the proper loss and gain to the elements of the
structure, thus restoring the high value of the quality factor.
Our results demonstrate the capabilities of externally con-
trolled gain media to vary the properties of optical resonances,
which is extremely important for applications in sensing, non-
linear optics, and laser physics.

II. GEOMETRY OF AN ALL-DIELECTRIC
METAMATERIAL

In what follows, we consider an all-dielectric planar meta-
material consisting of a double-periodic grating, as shown in
Fig. 1. The unit cell of this metamaterial contains a pair of
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FIG. 1. Fragment of an all-dielectric metamaterial and its ele-
mentary unit cell. Blue and red bars are made of materials with loss
(Si) ε′′

1 > 0 and with gain (doped Si) ε′′
2 < 0, respectively.

optical dielectric nanoantennae made in the form of rectangu-
lar bars with permittivities ε1 = ε′

1 − iε′′
1 and ε2 = ε′

2 − iε′′
2 ,

which are generally complex quantities taking loss and gain
into account [a field factor of the form exp(iωt ) is assumed
throughout]. The form of the unit cell is chosen to be square
(a = ax = ay), and each unit cell is symmetric relative to the
x axis drawn through its center (see Fig. 1). The metamaterial
is placed in an infinite homogeneous medium with real per-
mittivity ε3 ∈ Re. In this study, air is used with ε3 = 1, so that
Re(ε1,2) > ε3. For our system, the values ε′′ > 0 and ε′′ < 0
correspond to media with loss and gain, respectively. It is
assumed that permeability μ = μ0 is the same for the overall
system. In our configuration, the bars have equal thickness,
h = h1 = h2, and the grating is placed on a thin dielectric
substrate with permittivity εs and thickness hs. We assume
that the structure is illuminated by a normally incident plane
wave (k = {0, 0,−kz}) with the electric field polarized along
the bars (E = {0, Ey, 0}, y polarization).

The length of the bars is limited by the size of the unit
cell, which must be less than the wavelength of the incident
field, and the thickness of the bars must be chosen so as to
avoid the appearance of interference resonances. A typical
high-index dielectric material for artificial nanostructures in
the infrared region is silicon [16,50]. It is also necessary to
provide a high contrast between the permittivities of the bars
and substrate; therefore, in the first stage of our study, it is
assumed that the substrate is made of a material with airlike
permittivity, namely, εs = 1. This allows us to neglect the
effects of the substrate for a while and focus on the properties
of the metamaterial itself. Then, in the final paragraphs of
Sec. III of our study, the influence of the substrate used in
practice is taken into account.

A perfect trapped mode has an infinite quality Q factor
and cannot be observed in the metamaterial spectra under
normal irradiation conditions. To excite this mode and observe
it as a finite-Q resonance, the system should be additionally
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FIG. 2. (a) Dependence of the quality factor (Qtot = Qrad = ω′/2ω′′, where ω is the complex eigenfrequency) of the eigenmode plotted on a
logarithmic scale versus the asymmetry parameter �, governing the difference between the lengths of the bars, l2 = l1(1 + �). (b) Distribution
of the electric field magnitude corresponding to the trapped mode, where the red, brown, and yellow arrows represent the electric field strength
flow and orientations of the electric dipole (p1,2) and magnetic dipole (m) vectors, respectively. (c) Transmission coefficient magnitude |T |
versus the frequency f = ω/2π and asymmetry parameter �. In the bottom plane, the positions of the peak and trough of the Fano-shape
resonance are depicted.

modified to make its unit cell asymmetric. Usually, asymme-
try is introduced into the system, e.g., through a change in
the geometry of the bars or their rotation [9,10,35,36,38]. In
this work, as a basic design, we excite the trapped mode by
changing the size of one of the bars. The shape of the cell and
bars is chosen to minimize the interaction between the modes.
In our case, the trapped mode appears at a lower frequency
than the other modes in the system.

We start with the symmetric nondissipative (lossless) sys-
tem with the following parameters: the metamaterial period
a = 2 μm; the bar widths w = w1 = w2 = 0.4 μm, lengths
l1 = l2 = 1 μm, and heights h = 0.3 μm; bars permittivities
ε1 = ε2 = 12 are close to that of silicon; and the distance
between the center of bars is equal to half the cell size d =
1 μm. To introduce asymmetry, we fix the size of both the
unit cell and the first bar l1 and vary the length of the sec-
ond bar l2. Thus, initially, we consider a symmetric unit cell
configuration in which both bars are the same size and then
decrease or increase the length l2 = l1(1 + �) of a particular
bar, where � ∈ [−0.1, 0.1]. For all our subsequent calcu-
lations we use the COMSOL MULTIPHYSICS electromagnetic
solver.

In general, the total quality factor Qtot of the system can
be expressed as the sum of terms related to radiative and
dissipative (material) losses (Q−1

tot = Q−1
rad + Q−1

dis ). Since in
this section we study the metamaterial without dissipative
losses (ε′′

1 = ε′′
2 = 0), the quality factor of the overall system

depends only on the degree of radiative losses (Qtot = Qrad)
arising in the asymmetric unit cells.

The results of our calculations for the chosen parameters
of the metamaterial are shown in Fig. 2. From the eigenmode
analysis one can conclude that the resonant state in which we
are interested has an infinite quality factor for the symmetric
case, whereas it becomes finite as soon as the asymmetry is
introduced into the geometry of the unit cell of the structure
[|�| �= 0; Fig. 2(a)].

The trapped mode under study is a resonance that arises
through the coupling of closely spaced dielectric bars [35]. It
appears from the antiparallel dipolar eigenstate characterized
by a pair of in-plane electric dipole vectors p1 and p2, as
illustrated schematically in Fig. 2(b). For such an eigenstate,
a magnetic dipole moment m appears to be oriented out of
plane. As long as the bars are identically placed and parallel,
the electric dipoles are strictly antiparallel (p1 = −p2), and
the resonance in the spectrum is not observed. Breaking the
unit cell in-plane symmetry allows the mode to couple to the
incident wave, resulting in the resonance arising as shown in
Fig. 2(c).

The corresponding resonance has a Fano profile with a
sharp peak and trough corresponding to transmission and
reflection maxima, respectively, which is typical for the
trapped-mode excitation [38,42]. For the system without dis-
sipative losses, the peak and trough tend to be 0 or 1. The
smaller the asymmetry in the structure geometry is, the lower
the radiative losses are, and the higher the quality factor of the
resonance is. For the Fano resonance, the quality factor can
also be associated with the distance between the frequency
positions of the peak and trough: the large distance means a
decrease in the quality factor of the resonance. An illustration
of this feature can be seen in Fig. 2(c), where the black
dashed and solid lines are the projections of the maximum
and minimum on the plane ( f ,�). Moreover, it is known [51]
that the radiative part of the quality factor for such a resonance
is connected to the asymmetry parameter as Qrad ∼ �−2. One
can see that this is the case for the considered metamaterial as
well [Fig. 2(a)].

Thus, we can strongly manipulate the optical response of
the system by changing its geometry close to the resonant
state. In our case, the asymmetry of the system leads to the
appearance of the resonance, which cannot be excited in the
symmetric case. Further, we give the non-Hermitian general-
ization of this analysis.
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FIG. 3. (a) Total (Qtot), dissipative (Qdis), and radiative (Qrad) quality factors of the eigenmode plotted on a logarithmic scale versus the
parameters δ′′

1 = √
2(ε′′

1 − ε′′
2 )/2 and δ′′

2 = √
2(ε′′

1 + ε′′
2 )/2. In the bottom plane, the position of the infinite values of Qtot (black line) and Qdis

(blue line) are shown. The blue and red regions on the bottom plane correspond to conditions Qdis > 0 and Qdis < 0. (b) The transmission
coefficient magnitude |T | versus frequency f = ω/2π and the imaginary part of the permittivity ε′′

2 .

III. ALL-DIELECTRIC METAMATERIAL WITH LOSS
AND GAIN

Now we consider a metamaterial whose unit cell consists
of a pair of dielectric rectangular bars with loss and gain.
Here permittivities are complex quantities, where one of the
bars (see Fig. 1) is made of a medium with loss (the blue bar
with ε′′

1 > 0) and the second one contains a material with gain
(the red bar with ε′′

2 < 0; we suppose that as a gain material,
erbium-doped silicon [52,53] can be used). The real part of the
permittivity for both bars is the same as before. The geometry
of the system is kept the same as in the previous section so that
the structure supports the trapped mode in the same frequency
range. Without loss of generality, one can shift the operating
frequency by changing the unit cell size: when the cell size
decreases, the operating frequency increases.

In the usual PT -symmetric systems, the loss is compen-
sated by the gain due to the interaction between the modes
associated with each resonator [3,11]. In the system under
consideration, we are dealing with a trapped mode which is
the mode of the entire unit cell of the structure; see the corre-
sponding distribution of electromagnetic fields in Fig. 2(b).
Since it is spectrally separated from the other modes, we
are not able to obtain PT symmetry with the trapping mode
alone. However, as we show here, we can achieve loss com-
pensation in the metamaterial with loss and gain. To do this,
we vary the imaginary parts of the permittivity of each bar. For
better visualization of the results, we rotate the (ε1, ε2) plane
by an angle −π/4 and introduce a new coordinate system:
δ′′

1 = √
2(ε′′

1 − ε′′
2 )/2, δ′′

2 = √
2(ε′′

1 + ε′′
2 )/2. Since ε′′

1 and ε′′
2

have different signs in the loss-gain system, the first coordi-
nate δ′′

1 shows the total level of non-Hermiticity. In contrast,
the second coordinate δ′′

2 is the difference between loss and
gain magnitudes.

As soon as the loss and gain are introduced to the system,
both radiative Qrad and dissipative Qdis contributions to the
quality factor should be accounted for. The contribution of
dissipative losses can be calculated using the formula [54,55]

Q−1
dis =

2∑
i=1

ξi tan δi, (1)

where ξi is the electric energy filling factor of the ith bar and
tan δi = ε′′

i /ε
′
i. The value of ξi can be found as

ξi =

∫∫∫
Vbar,i

ε′
i|E|2d3v

∫∫∫
Vtotal

ε′(v)|E|2d3v
. (2)

We start with the trapped-mode characterization in the
metamaterial with bars with identical geometric parameters.
The total, radiative, and dissipative quality factors and mani-
festation of the mode in the transmitted spectra of the structure
are presented in Fig. 3.

The peak of Qtot [see the black surface in Fig. 3(a)] changes
nonlinearly with the parameters δ′′

1 and δ′′
2 [the projection

of this relationship on the parameter plane at the bottom of
Fig. 3(a) is shown by the black line]. One can see that the
trapped mode has the maximal Qtot for various loss and gain
balances in the bars. When passing through the limit Qtot →
∞, the value of the total quality factor changes sign from plus
to minus. After this threshold, the definition of the quality
factor is no longer applicable since the gain becomes greater
than the losses in the system. The blue surface in Fig. 3(a)
corresponds to the dissipative losses Qdis, which are calculated
using Eq. (1). As the gain in one of the bars increases, the
compensation of dissipative losses appears, where the full
compensation is at Qdis → ∞ [see the blue line on the bottom
plane in Fig. 3(a)]. Compensation of dissipative losses entails
an increase in radiation losses, which is associated with a
decrease in Qrad [see the red surface in Fig. 3(a)]. The resulting
radiation losses can be compensated by a further increase in
the gain in one of the bars up to the values Qtot → ∞ [see the
red area on the bottom plane in Fig. 3(a)].

Therefore, we can control the quality factor of the trapped
mode simply by changing the level of loss and gain: For a
fixed value of loss in one of the bars, we can restore the quality
factor of the mode compensating both radiative and dissipative
losses by adjusting the gain in the other bar. From a practical
point of view, controlling an optical system by tuning its active
(gain) elements is preferable to changing the geometry for
many applications. Due to the great technological progress in
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FIG. 4. (a) Total quality factor (solid curves) and the imaginary part of the eigenfrequency ω′′/2π (dashed lines) for the asymmetric
structure (� = {−0.1, 0, 0.1}) versus the imaginary part of the permittivity ε′′

2 . The asterisk corresponds to the quality factor of an asymmetric
metamaterial (� = 0.1) with only radiative losses (ε′′

1 = ε′′
2 = 0). (b) The transmission coefficient magnitude |T | versus frequency f = ω/2π

and the imaginary part of the permittivity ε′′
2 (gain). Here both the quality factor and transmission coefficient are plotted on a logarithmic scale.

introducing gain elements into optical systems [3,50,56,57],
this possibility is now more accessible and easier to control.

We plot in Fig. 3(b) the transmission coefficient mag-
nitude as a function of frequency for the fixed loss in the
first bar (ε′′

1 = 0.1) and variable gain in the second bar (ε′′
2 ∈

[−0.2, 0.1]). One can see that the trapped-mode excitation
can be controlled by changing the relationship between loss
and gain and that the resonance occurs only close to ε′′

2 =
−0.0995, i.e., for loss and gain close in magnitude. Due to
the fact that our system contains active constituents, the max-
imum transmission coefficient can be greater than unity.

The most important point is that the trapped mode can be
excited in the metamaterial by introducing gain without the
need for breaking geometric symmetry, and the quality factor
of this resonance is completely controlled by the active ele-
ments of the system. However, the experimental realization of
this resonance requires very fine tuning of loss and gain in the
bars, which complicates its practical realization. Therefore,
we further consider an asymmetric structure with dissimilar
bars and show that full loss compensation can be achieved
by controlling the gain. To restore the quality factor of the
perfect trapped mode in an asymmetric structure, both radia-
tive and dissipative losses need to be compensated. First, in
order to estimate the gain required to compensate for radiative
losses, we consider bars of dissimilar lengths (l1 = 1.155 μm,
� = 0.1). There is no dissipation in one of the bars (ε′′

1 = 0),
whereas we introduce either loss or gain into the other bar
(ε′′

2 ∈ [−0.3, 0.1]). The total quality factor and imaginary part
of the eigenfrequency for this case are plotted in Fig. 4(a) by
solid and dashed black lines, respectively. The value of the
quality factor of the corresponding nondissipative structure
(ε′′

1 = ε′′
2 = 0, Qtot = Qrad) accounting for radiative losses is

marked by an asterisk. Next, we introduce dissipation (loss)
to the first bar (ε′′

1 = 0.1) and calculate the same parameters
for three different lengths of the second bar. The results of our
calculations are shown in Fig. 4(a) with colored lines.

As we discussed above, the trapped mode can be easily ex-
cited in the asymmetric system, but the quality factor rapidly
decreases with the growing asymmetry. This decrease can be
compensated in the presence of loss and gain, which can be

tuned so that the quality factor grows again. It is revealed that
for the chosen geometric parameters of asymmetry used in
our calculations, we can fully compensate both radiative and
dissipative losses. In particular, the compensation of radiative
losses for the trapped mode is achieved at the gain value ε′′

2 =
−0.062, whereas the full loss compensation for the rest of
the considered cases is at ε′′

2 = {−0.214,−0.0995,−0.148},
respectively. The values of loss compensation are formed by
the degeneracy of the imaginary part of the eigenfrequency
ω′′. Changing the sign of ω′′ from plus to minus leads to
the system transition from attenuation to amplification due
to the form of the field factor exp(iωt ). This shows that
non-Hermiticity is an additional degree of freedom allowing
control of high-quality resonances in asymmetric metastruc-
tures.

Manifestation of the trapped-mode resonance in the trans-
mitted spectra of the asymmetric metamaterial with a gain is
presented in Fig. 4(b). This characteristic is calculated for the
metamaterial without dissipation (ε′′

1 = 0, � = 0.1). One can
see that as soon as the gain is introduced (ε′′

2 ∈ [−0.1, 0]),
the Fano resonance undergoes a change in shape, realizing
smoothing in the trough and an increase of the peak. The reso-
nance reaches its maximum value at some optimal gain (ε′′

2 =
−0.062) which corresponds to the point on the ε′′

2 scale where
the total quality factor tends to infinity. Thus, by controlling
the asymmetry of the system and the value of introduced gain,
one can control the distance between extremes of the Fano
resonance.

Finally, we reveal how the substrate presence affects the
trapped-mode manifestation. In this study we fix the substrate
thickness to two heights of the bars (hs = 2h = 0.6 μm)
and vary both the real (ε′

s ∈ [1.0, 4.0]) and imaginary (ε′′
s =

{0, 0.005}) parts of its permittivity. The results of our calcula-
tions are summarized in Fig. 5.

In particular, the resonant frequency of the trapped mode
decreases as ε′

s increases [Fig. 5(a)]. An optimal value of
ε′′

2 for loss compensation acquires some shift [Fig. 5(b)],
demonstrating that the losses inherent in the substrate can be
also compensated. The characteristic of the transmission co-
efficient magnitude generally remains unchanged [Fig. 5(c)],
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FIG. 5. (a) Dispersion curve versus the real part of the substrate permittivity εs. (b) Total quality factor (solid curves) and the imaginary
part of the eigenfrequency ω′′/2π (dashed lines) for the metamaterial with substrate (ε′′

s = {0, 0.005}) versus the imaginary part of the
bar permittivity ε′′

2 . (c) The transmission coefficient magnitude |T | versus frequency f = ω/2π (εs = 4). Here both the quality factor and
transmission coefficient are plotted on a logarithmic scale.

although the peak and trough of the Fano resonance may
reverse their positions on the frequency scale. In total, the
substrate’s presence does not perturb the in-plane symmetry of
the structure and thus does not affect the characteristics of this
particular trapped mode. To take into account the influence
of the substrate, just a slight adjustment of the metamaterial
parameters is required.

IV. COUPLED-OSCILLATOR MODEL

In this section, we show that the numerical results de-
scribed above can be directly interpreted with the simple
model of two coupled non-Hermitian oscillators. Each oscil-
lator corresponds to the bar of the metamaterial discussed
in the previous sections. The model is based on a pair of
equations for two electric dipole moments P1 and P2:

P̈1 + γ1Ṗ1 + ω2
1P1 + cP2 = A1E , (3)

P̈2 + γ2Ṗ2 + ω2
2P2 + cP1 = A2E , (4)

where ω1,2 are the resonant frequencies of both oscillators,
γ1,2 are their damping rates taking into account loss or gain,
A1,2 are the parameters governing interaction with the external
electric field E , and c is the coupling strength, which is sup-
posed to be the same for both oscillators due to reciprocity.
Introducing slowly varying amplitudes through Pi = pieiωt

and E = E0eiωt and neglecting the second-order derivatives,
we come to the first-order differential equations, which can be
conveniently written in matrix form:

−i	̇ = Ĥ	 + 
E0, (5)

where 	 = (p1, p2)T , 
 = (α1, α2)T , and Ĥ = (
�1 κ1

κ2 �2
),

with � j = (ω2
j − ω2 + iωγ j )/(2ω − iγ j ), κ j = c/(2ω −

iγ j ), and α j = −Aj/(2ω − iγ j ), j = 1, 2.
In the absence of an external field (E0 = 0), system (5)

takes the form of the Schrödinger equation with the matrix
Ĥ having the meaning of an effective Hamiltonian. It is worth
finding the eigenvalues and eigenvectors of this Hamiltonian,

i.e., solving the equation Ĥ� = λ� assuming 	 = �eiλt . The
result is

λ± = 1
2 [�1 + �2 ±

√
4κ1κ2 + (�1 − �2)2], (6)

�± =
(

1,
λ± − �1

κ1

)T

. (7)

In general, the external field E0 �= 0 will excite both eigen-
modes (7), so we can write the solution of Eq. (5) as their lin-
ear combination, 	(t ) = β+(t )�+eiλ+t + β−(t )�−eiλ−t . The
corresponding differential equations for the coefficients β±(t )
are as follows:

β̇+ = i
α1(�1 − λ−) + α2κ1

λ+ − λ−
e−iλ+t E0, (8)

β̇− = −i
α1(�1 − λ+) + α2κ1

λ+ − λ−
e−iλ−t E0. (9)

Assuming the stationary amplitude E0 = const, we can solve
these equations so that

β+(t ) = α1(λ− − �1) − α2κ1

λ+(λ+ − λ−)
(e−iλ+t − 1)E0, (10)

β−(t ) = α1(�1 − λ+) + α2κ1

λ−(λ+ − λ−)
(e−iλ−t − 1)E0. (11)

These equations show changing contributions of the eigen-
modes to the system’s response. Returning to the dipoles, we
obtain their dynamics:

p1(t ) = β+(t )eiλ+t + β−(t )eiλ−t , (12)

p2(t ) = β+(t )
λ+ − �

κ
eiλ+t + β−(t )

λ− − �

κ
eiλ−t . (13)

To clearly demonstrate the meaning of the modes, first,
we consider the case of identical Hermitian oscillators with
ω1 = ω2 = ω0, A1 = A2 = A0, and γ1 = γ2 = 0. Then, all
the auxiliary parameters are real: � = (ω2

0 − ω2)/(2ω), κ =
c/(2ω), and α = −A0/(2ω). For the eigenvalues and eigen-
vectors, we have λ± = � ± κ and �± = (1,±1)T . The first
of these modes can be interpreted as the symmetric one (the
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FIG. 6. Imaginary part of the eigenvalue λ− versus the gain level
γ2. In calculations, we used ω1/ω = 1, α1/ω

2 = α2/ω
2 = c/ω2 = 1;

the other parameters are shown in the figure.

dipoles oscillate in phase), whereas the second mode can
be called the asymmetric one (the dipoles oscillate out of
phase). Moreover, from Eqs. (10) and (11), we readily obtain
β+(t ) = E0(1 − e−iλ+t )α0/λ+ and β−(t ) ≡ 0. In other words,
only the symmetric mode �+ contributes to the response of
the system. The asymmetric mode �− cannot be excited and
can be considered a trapped (dark) one.

If the oscillators are dissimilar or non-Hermitian, the asym-
metric mode gets less dark and can show itself in the system’s
response. If we change the length of a bar in our metamaterial,
then the resonant frequency of an oscillator and the other
parameters in the model may change, so that the coefficient
in Eq. (11) is not identically zero. The oscillations will then
be governed by the exponential factor, which results in either
attenuation or amplification depending on the imaginary part
of the eigenvalue λ−. We may suppose that the restoration of
the trapped mode corresponds to the complete compensation
of loss and gain when Imλ− = 0. Since the imaginary part
of the eigenfrequency governs the resonance width, this con-
dition corresponds to the maximum quality factor. In Fig. 6,
we show the behavior of Imλ− as a function of γ2 for several
typical cases. The asymmetry is introduced into the model
by changing the oscillator frequencies so that ω2 �= ω1. One
can see that when the first oscillator is Hermitian (γ1 = 0),
the second one should be Hermitian as well in order to avoid
attenuation or amplification of oscillations. If we introduce
loss into the system (γ1/ω = −0.1), we should add some gain

to compensate for it and reach the condition Imλ− = 0. For
the symmetric structure (ω2 = ω1), gain should be equal to
loss for such compensation, γ2/ω = −γ1/ω = 0.1. This is
in accordance with the calculations in Fig. 4 demonstrating
almost equal imaginary parts of the permittivity needed for
the maximum quality factor in the symmetric case. For the
asymmetric structure with ω2 �= ω1, the condition Imλ− = 0
is reached at unequal gain and loss, as shown in Fig. 6 for
ω2/ω = 1.1. This situation corresponds to the dashed lines
obtained numerically for the asymmetric case presented in
Fig. 4.

Although strict quantitative correspondence between the
simple coupled-oscillator model and the numerical calcula-
tions cannot be obtained, we believe that these considerations
are helpful for a qualitative understanding of the results ob-
tained in this paper.

V. CONCLUSION

We have elucidated the role of active (gain) elements in
controlling the optical response of a planar all-dielectric meta-
material (metasurface). In particular, the trapped mode in the
structure with the symmetric elementary cell containing two
identical bars with loss and gain can be controlled to achieve
the Fano resonance in the transmission spectrum. Simultane-
ously, the quality factor can be tuned to its maximum value by
varying loss and gain. In the asymmetric system with unequal
bars, the geometric asymmetry can be compensated by tuning
loss and gain to restore the high value of the quality factor
characteristic of the trapped mode. Our results show how the
quality factor of the resonance can be controlled with both
geometry and non-Hermitian variations, significantly expand-
ing the experimental possibilities for implementation of the
tunable optical systems. In contrast to the structural transfor-
mations used for tuning the properties of metamaterials, the
gain is an external factor that can be dynamically controlled
by changing pump intensity. This is an undoubtedly preferable
method of response tuning from a practical perspective.
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