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Ballistic graphene samples in a multimode regime show the sub-Sharvin charge transport, characterized
by the conductance reduced by a factor of π/4 compared to standard Sharvin contacts in two-dimensional
electron gas, and the shot-noise power enhanced up to F ≈ 1/8 (with F the Fano factor) [Phys. Rev. B
104, 165413 (2021)]. Here we consider the disk-shaped (Corbino) setup in graphene, with inner radius r1

and outer radius r2, finding that the multimode conductance is slightly enhanced for any r1 < r2, reaching
(4−π ) ≈ 0.8684 of the Sharvin value for r1 � r2. At the same limit, the Fano factor is reduced, approaching
(9π − 28)/(12 − 3π ) ≈ 0.1065 < 1/8. Closed-form approximating expressions for any r1/r2 ratio are derived,
supposing incoherent scattering of Dirac fermions on an asymmetric double barrier and compared with exact
numerical results following from the mode-matching method. Sub-Sharvin values are restored in the narrow-disk
limit r1/r2 → 1. For experimentally accessible radii ratios 0.5 � r1/r2 � 0.8, both the conductance and the Fano
factor are noticeably closer to the values predicted for the r1 � r2 limit, yet still differ from standard Sharvin
transport characteristics. The system behavior upon tuning the electrostatic potential barrier from a rectangular
to parabolic shape is studied numerically and the crossover from the sub-Sharvin to standard Sharvin transport
regime is demonstrated. Implications for a finite section of the disk are also discussed.

DOI: 10.1103/PhysRevB.106.155428

I. INTRODUCTION

Several unique properties of graphene can be attributed to
the fact that material characteristics of this form of carbon are
determined by unusual properties of massless Dirac fermions
in two dimensions [1–18]. In particular, the chiral nature
of effective quasiparticles and conical dispersion [1,2] lead
to a half-integer sequence of quantum-Hall states [3–5] and
quantized light absorption [6,7]. The phenomenon of Klein
tunneling [8] and transport via evanescent waves result in uni-
versal dc conductivity (σ0 = 4e2/πh, with the electron charge
−e and Planck’s constant h) and pseudodiffusive shot noise
power (quantified by the Fano factor F = 1/3) [9–12] in sam-
ples close to the charge-neutrality point. Even though thermal
conductivity of graphene is dominated by phonons [13],
and therefore only partly related to the properties of Dirac
electrons, some excess thermal conductance from these elec-
trons [14], violating the Wiedemann-Franz law obeyed by the
Schrödinger electrons, was detected [15]. Also, the presence
of the valley degree of freedom affects several hallmarks of
mesoscopic physics, including the conductance and spectral
fluctuations [16–18].

Recently, it was shown using slightly different theoreti-
cal approaches [19–21] that the electrical conductance of a
rectangular graphene sample away from the charge-neutrality
point is reduced, while the Fano factor in amplified comparing
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to standard ballistic systems [22], namely,

G = π

4
GSharvin, F = 1

8
, (1)

with the Sharvin conductance GSharvin = g0kFW/π being the
upper bound for the conductance of ballistic nanostruc-
tures [23,24]. The conductance quantum is g0 = 4e2/h due
to the spin and valley degeneracies; the Fermi momentum kF

is tuned using the gate electrode such that k−1
F � min(W, L),

with W the sample width and L the sample length. Al-
though the sample conductance is rather difficult to determine
experimentally due to the resistances of contacts, existing
experiments report the Fano factor approaching F ≈ 0.10 ÷
0.15 [11,12] away from the charge-neutrality point, being sig-
nificantly greater than F ≈ 0 expected for ballistic systems.

It is further found in Ref. [21] that the ballistic values of
G ≈ GSharvin and F ≈ 0 are gradually restored when the lon-
gitudinal potential barrier evolves from a rectangular toward a
parabolic shape.

In the so-called sub-Sharvin transport regime, when kF is
approximately constant in the whole sample area (in other
words, each potential jump in a contact region occurs on
a length scale �x � λF /2, with λF being a typical Fermi
wavelength in the sample area), transmission probability can
be approximated by [21]

T ≈ cos θ =
√

1 − (ky/kF )2, (2)

where θ denotes the direction of propagation in the central
area (with respect to the longitudinal axis) and ky is the
transverse momentum component. Summing over possible
values of |ky| � kF in accordance with the Landauer-Büttiker
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FIG. 1. Outline of the results presented in the paper. For the Corbino disk, i.e., weakly doped graphene annulus (white) attached to circular
heavily doped leads (dark), with inner radius r1 and outer radius r2, the conductance (G) and Fano factor (F ) approaches, in the multimode
regime (with the Fermi wavenumber satisfying kF r1 � 1), the limiting values derived for different physical situations: (a) For a wide disk,
r2 � r1, the values for incoherent scattering of Dirac fermions on a double barrier with perfect transmission on the outer potential step at the
distance r = r2 from the disk center, apply. (b) For a thin disk, r1 ≈ r2, the values for incoherent scattering on a symmetric double barrier are
restored. (c) If the rectangular potential barrier is replaced with a smooth one, with effective depth of a potential step �r, the standard Sharvin
transport characteristics show up for kF �r � π .

formula [25,26], one immediately obtains the values given in
Eqs. (1) provided that kFW � 1 and kF L � 1 [27].

Remarkably, the above-mentioned result is insensitive to
the system aspect ratio (W/L) suggesting it may also be in-
dependent of the sample geometry. However, the idealized
boundary conditions used in theoretical considerations usually
lead to results which become comparable with the experiment
starting from W/L � 20, see Refs. [9,11]. (For W < L, the
conductance is suppressed, mainly due to the presence of edge
disorder [28–31].) For these reasons, we consider here the
edge-free Corbino geometry, for which the existing experi-
mental [4,5,32] and theoretical [33–36] background allows
to revisit the sub-Sharvin charge-transfer characteristics in
search of the geometry- (in particular, the radii-ratio-) related
effects which may be confirmed using existing devices. Main
findings of the present work are summarized in Fig. 1.

The remaining parts of the paper are organized as follows.
In Sec. II, we derive an approximation for the transmission
through a doped Corbino disk in graphene and subsequent for-
mulas for charge-transfer characteristics: the conductance and
the Fano factor. Comparison with the exact numerical results
from the mode-matching analysis is given in Sec. III. Next, in
Sec. IV, we discuss the effects of tuning the potential barrier
from a rectangular to a parabolic shape. The role of sample
edges, modeled via the infinite-mass boundary conditions, is
studied in Sec. V. The conclusions are given in Sec. VI.

II. APPROXIMATE CONDUCTANCE AND FANO FACTOR
FOR GRAPHENE DISK

A. Scattering on straight interfaces

The reflection and transmission probabilities for the
straight interface separating weakly and heavily doped regions
in graphene [see Fig. 2(a)] can be written, in the limit of an
infinite doping on one side, as functions of the incident angle
θ on the other (i.e., weakly doped) side [10,34], namely,

R1 = 1 − cos θ

1 + cos θ
, T1 = 2 cos θ

1 + cos θ
, (3)

where cos θ is related to the momentum component parallel
to the interface (ky) via the second equality in Eq. (2). In

particular,

T1 = 2
√

1 − (ky/kF )2

1 + √
1 − (ky/kF )2

. (4)

For two interfaces in a series, one can employ the double-
contact formula [37] for the transmission

T = T1T2

1 + R1R2 − 2
√

R1R2 cos φ
, (5)

where T2 and R2 = 1 − T2 are transmission and reflection
probabilities for the second interface, and φ denotes the phase
shift acquired during a single round-trip between the scatter-
ers. Substituting T2 = T1 as given by Eq. (4) and φ = 2kxL =
2
√

k2
F − k2

y L for interfaces at a distance L, we obtain

T = 1

1 + (ky/kx )2 sin2(kxL)
. (6)

The above holds true for propagating modes (ky � kF ). For
evanescent modes (ky > kF ), one can obtain the analytic con-

tinuation by setting kx = i
√

k2
y − k2

F .

θ

θ
θ1

θ2

(a) (b)

(1) (2)

(1)

(2)

FIG. 2. Propagation between scattering on interfaces Eqs. (1)
and (2) separating weakly doped (white area) and heavily doped
[shadow area; omitted for interface Eq. (2) for clarity] regions in
graphene (schematic). (a) The rectangular geometry. (b) The Corbino
disk. Angular momentum conservation implies that incident angles
for a particle satisfy θ2 < θ1 (if θ1 > 0) for the disk case. [Notice that
thin solid lines behind the interface Eq. (2), visually elongating the
trajectory mark with thick lines, are guides for the eye only; same
applies to dash-dotted lines marking the normal to an interface.]
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B. Landauer-Büttiker formalism

For a confined geometry, the quantization of ky appears.
For instance, if the infinite-mass confinement is assumed [38],
we have ky = k(n)

y ≡ π (n + 1
2 )/W , with n = 0, 1, 2, . . . [39].

Substituting k(n)
y to Eq. (6), we obtain the transmission proba-

bility for the nth normal mode Tn. Next, the conductance and
the Fano factor follow by summing over the modes

G = g0

N−1∑
n=0

Tn, F =
∑N−1

n=0 Tn(1 − Tn)∑N−1
n=0 Tn

, (7)

where N = �W K/π	 is the number of propagating modes in
the leads for a finite doping (K denotes the Fermi momentum
in the leads) considered further in this paper. The limit of
infinite doping corresponds to N → ∞ in Eqs. (7).

Earlier, in Ref. [21], we have argued that for high doping
in the sample area, kF � W −1 and kF � L−1, the argument of
sine in Eq. (6), i.e., kxL = φ/2, can be regarded as a random
phase when summing contributions for consecutive n-s in
Eqs. (7). Also, the role of evanescent modes is negligible in
such a range. In turn, Tn can be approximated by substituting
ky = k(n)

y to the rightmost formula in Eq. (2) for k(n)
y � kF

or by 0 for k(n)
y > kF . The corresponding formula for (Tn)2

can be derived by averaging a square of Eq. (6) over φ, and
reads

(Tn)2 ≈
√

1 −
(

k(n)
y

kF

)2[
1 − 1

2

(
k(n)

y

kF

)2]
. (8)

Additionally, since kF � �ky = π/W is the transverse mo-
mentum quantum, the sums appearing in Eqs. (7) can be
replaced by integrals over 0 � ky < kF , leading to the expres-
sions for G and F given in Eqs. (1).

Here, we point out that the above-mentioned results can
also be obtained using the double-contact formula for inco-
herent transmission [37,40], namely,

{T }incoh = 1

2π

∫ π

−π

dφ
T1T2

1 + R1R2 − 2
√

R1R2 cos φ

= T1T2

1 − R1R2
= T1T2

T1 + T2 − T1T2
. (9)

Substituting T2 = T1 given by Eq. (4), we immediately obtain
relevant formulas in Eqs. (1) and (2). Similarly, calculating

{T 2}incoh = 1

2π

∫ π

−π

dφ

(
T1T2

1 + R1R2 − 2
√

R1R2 cos φ

)2

= (T1T2)2(1 + R1R2)

(1 − R1R2)3
(10)

brought us [for T2 = T1 given by Eq. (4), R1(2) = 1 − T1(2),
again] to Eq. (8) and the value of F given in Eqs. (1). [Notice
that evaluating incoherent square of the transmission probabil-
ity in Eq. (10), later used to determine the shot-noise power,
one needs to calculate squared coherent probability first, and
then average the result over a random phase.]

C. Implications for the Corbino disk

Although the double-contact formula cannot be directly
applied to the Corbino disk [see Fig. 2(b)], Eqs. (9) and (10)
give us a useful tool to generate approximate formulas for
charge-transfer characteristics also in this case. Now, the an-
gular momentum (h̄ j) is a conserved quantity for a particle
traveling through the disk area. In turn, ky in Eq. (4) needs
to be replaced by j/r1, while an analogous expression for T2

can be generated by substituting j/r2 instead of ky in Eq. (4).
Using the last formula in Eq. (9), we obtain

{T }incoh = 2c1c2

c1 + c2
, with c1(2) =

√
1 −

(
j

r1(2)kF

)2

, (11)

being related to incident angles in Fig. 2(b) via c1(2) =
cos θ1(2). Similarly, from Eq. (10) we get

{T 2}incoh = 4
c2

1c2
2(1 + c1c2)

(c1 + c2)3
. (12)

To calculate measurable quantities, we employ Eqs. (7)
approximating (for kF � 1/r1) sums by integrals over a di-
mensionless u = j/(r1kF ), in the interval −1 � u � 1. For
the conductance, we get

G = 2g0r1kF

∫ 1

0
du {T }incoh = GSharvin

(
2a + 1

a

)
arcsin a + 3

√
1 − a2 − π

2 (a2 + 2)

1 − a2
, (13)

where we have used parity of Eq. (11) upon j ↔ − j to shrink the integration range to 0 � u � 1, introduced GSharvin =
2g0r1kF being the Sharvin conductance for a disk, and defined the inverse radii ratio a = r1/r2 < 1. The Fano factor now
reads

F = 1 −
∫ 1

0
du {T 2}incoh

/(∫ 1

0
du {T }incoh

)

= 2a
√

1 − a2(53 + 279a2 + 88a4) − 3πa(12 + 82a2 + 45a4 + a6) + 6(1 + 45a2 + 82a4 + 12a6) arcsin a

6(1 − a2)2[πa(a2 + 2) − 6a
√

1 − a2 − 2(2a2 + 1) arcsin a]
. (14)

Asymptotic forms of Eqs. (13) and (14) are the following:

G � π

4
GSharvin, F � 1

8
, for a → 1, (15)

and

G � (4−π ) GSharvin, F � 9π−28

12−3π
, for a → 0. (16)
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Formulas in Eqs. (15) refer to the thin-disk limit (r1 ≈ r2) and
can be easily obtained by setting c2 ≈ c1 in Eqs. (11) and (12)
and repeating the subsequent steps. Similarly, Eqs. (16) de-
scribe the wide-disk limit (r2 � r1), and can be obtained after
setting c2 ≈ 1 (being equivalent to T2 ≈ 1 describing a perfect
transmission for normal incidence) in Eqs. (11) and (12).
Therefore, in the r2 � r2 limit the role of the outer interface
(at r = r2) is suppressed, and transport properties of the sys-
tem are governed by scattering of Dirac fermions on a single
potential step at the inner disk edge, at r = r1.

III. EXACT SOLUTION FOR THE DISK

A. Mode-matching for the Dirac equation

The analysis starts from the Dirac equation for a single
valley (K), which can be written as

[vF p · σ + V (r)]� = E�, (17)

where vF = √
3 t0a/(2h̄) ≈ 106 m/s is the energy-

independent Fermi velocity in graphene (with t0 = 2.7 eV
the nearest-neighbor hopping integral and a = 0.246 the
lattice parameter), p = (px, py ) is the in-plane momentum
operator with p j = −ih̄∂ j , and σ = (σx, σy) with σ j being
the Pauli matrices. Taking the wave function in polar
coordinates in a form � j (r, ϕ) = ei( j−1/2)ϕ (χa, χbeiϕ )T , with
j = ±1/2,±3/2, . . . the total angular-momentum quantum
number, brought us to the system of ordinary differential
equations for the spinor components

χ ′
a = j − 1/2

r
χa + i

E − V (r)

h̄vF
χb, (18)

χ ′
b = i

E − V (r)

h̄vF
χa − j + 1/2

r
χb. (19)

In this section, our discussion is limited to a piecewise-
constant potential energy V (r), earlier considered in Ref. [34].
For the electron-doping case, E > V (r), solutions for the
incoming (i.e., propagating from r = 0) and outgoing (propa-
gating from r = ∞) waves are given, up to the normalization,
by

χ in
j =

(
H (2)

j−1/2(kr)
iH (2)

j+1/2(kr)

)
, χout

j =
(

H (1)
j−1/2(kr)

iH (1)
j+1/2(kr)

)
, (20)

where H (1)
ν (ρ) [H (2)

ν (ρ)] is the Hankel function of the first
[second] kind, and k = |E − V (r)|/(h̄vF ). For the disk area,
we have V (r) = 0, and the solution can be represented as

χ
(d )
j = Ajχ

in
j (kF r) + Bjχ

out
j (kF r), r1 <r <r2, (21)

where Aj and Bj are arbitrary constants, and the Fermi wave
number kF = |E |/(h̄vF ). For the hole doping case, E < U (r),
the wave functions are replaced by χ̃

in(out)
j = [χ in(out)

j ]�, using

the relation H (2)
ν = [H (1)

ν ]
�
.

Heavily doped graphene leads are usually modeled by tak-
ing the limit of V (r) = V0 → ± ∞ for r < r1 or r > r2. The
corresponding wave functions simplify to

χ
(1)
j = e±iKr

√
r

(
1
1

)
+ r j

e∓iKr

√
r

(
1

−1

)
, r < r1, (22)

χ
(2)
j = t j

e±iKr

√
r

(
1
1

)
, r > r2, (23)

with the reflection (and transmission) amplitudes r j (and t j)
and K = |E − V0|/(h̄vF ) → ∞.

Solving the mode-matching conditions, χ
(1)
j (r1) =

χ
(d )
j (r1) and χ

(d )
j (r2) = χ

(2)
j (r2), we find the transmission

probability for the jth mode:

Tj = |t j |2 = 16

π2k2r1r2

1[
D

(+)
j

]2 + [
D

(−)
j

]2 , (24)

with

D
(±)
j = Im

[
H (1)

j−1/2(kr1)H (2)
j∓1/2(kr2)

± H (1)
j+1/2(kr1)H (2)

j±1/2(kr2)
]
. (25)

The result given by Eqs. (24) and (25) corresponds to rectan-
gular shape and infinite height of the potential barrier V (r).
Other potential barriers are considered in Sec. IV.

B. Conductance and Fano factor

Numerical values of the conductance and the Fano factor,
obtained for the two systems for which exact expressions
for transmission probabilities Tn (or Tj) are available, are
presented in Figs. 3 and 4 [41]. For rectangular samples
with infinite-mass confinement, we simply took the limit of
N → ∞ in Eqs. (7) numerically. For disks, Tn-s in Eqs. (7)
are replaced with Tj-s, given by Eqs. (24) and (25), and the
summations are performed for −∞ < j < ∞, with j being
half-odd integer.

In Fig. 3(a), the conductance spectra for selected systems
are compared with the asymptotic formulas given in Eqs. (15)
and (16). Since the limit of an infinite rectangular barrier
is considered, there are only two dimensionless parameters
relevant: the radii (or aspect) ratio r1/r2 (or W/L) and the
expected (dimensionless) Sharvin conductance GSharvin/g0 =
2kF r1 (or = kFW/π ). To compare the results for different
geometries, we further adjust the aspect ratio for rectangles
such that the zero-energy conductance G = (4/π )g0W/L is
the same as for a given disk, namely, W/L = 2π/ log(r2/r1),
with r2/r1 = 2 and 1.25. The last relation can be easily de-
rived by taking the zero-energy limit in Eq. (24), Tj (k → 0) =
4/[(r2/r1) j + (r1/r2) j]2, and approximating the sum over j
by an integral [42].

It is easy to see that the conductance spectra for rectan-
gular samples [see thick solid lines in Figs. 3(a) and 3(b)]
closely follow the sub-Sharvin formula (π/4) GSharvin soon af-
ter the condition kF � L−1 (i.e., the ballistic transport prevails
over the pseudodiffusive transport) is satisfied. In contrast,
the conductance spectra for disks [see thick dashed lines
in Figs. 3(a) and 3(b)] slowly approach the upper limit of
(4 − π ) GSharvin corresponding to r2 � r1. In fact, for the
range of 2r1kF � 100 used in Figs. 3(a) and 3(b), the values
of G < (4 − π ) GSharvin can be noticed only for the case of
r1/r2 = 0.8.

Results for higher values of 2r1kF are displayed, versus
the radii ratio, in Fig. 3(c). It becomes clear now that the
values following from approximating Eq. (13) for incoherent
transmission (see black dash-dotted line) are approached by
exact numerical results (solid lines) for any r1/r2. However,
the convergence is noticeably slower than for rectangular sam-
ples, see Fig. 3(d). In physical units, the inner disk diameter
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FIG. 3. (a) Conductance as a function of the Fermi momen-
tum for Corbino disks with the radii ratios r1/r2 = 0.5 and 0.8
(thick dashed lines) and for rectangular graphene samples (thick
solid lines) with width-to-length ratios adjusted to match the zero-
energy conductance, i.e., W/L = 2π/ log(r2/r1), and specified for
each line. Both types of systems are shown schematically. (b) The
excess conductance above the sub-Sharvin value (π/4) GSharvin, with
GSharvin = g0kFW/π (for the disks, we set W = 2πr1). The conduc-
tance quantum is g0 = 4e2/h. (c) The conductance reduction as a
function of the radii ratio for disks at fixed values of GSharvin/g0 =
2r1kF = 100, 200, and 400 (specified for each solid line). Dash-
dotted line marks the approximating formula given by Eq. (13); the
numerical values for r1/r2 = 0.5 and 0.8 are indicated with open
symbols and specified up to four decimal places. (d) The conductance
reduction as a function of the aspect ratio for rectangles with same
values of GSharvin/g0 = kFW/π as in (c). Thin dashed lines in (a)–
(d) mark the sub-Sharvin value (π/4) GSharvin. Thin solid lines in (a),
(b) depict the asymptotic conductance for r1/r2 → 0, being equal to
(4 − π ) GSharvin.

of 2r1 = 1000 nm and the maximal Fermi energy of |E | =
0.3 eV (already reported for some graphene-hBN heterostruc-
tures, see Ref. [43]) correspond to 2r1kF ≈ 522, allowing
us to expect that the values of (4 − π ) > G/GSharvin > π/4
should be observable in graphene disks with moderate radii
ratios 0.5 � r1/r2 � 0.8.

Values of the shot-noise power for the same systems are
presented in Fig. 4. This time, we display the Fano factor
as a function of kF L (with L = r2 − r1 for disks) to visual-
ize quasiperiodic oscillations of the Fabry-Pérot type, which
are well-pronounced for both rectangular and disk-shaped
samples with different aspect (or radii) ratios, see Figs. 4(a)
and 4(b). Similarly as for the conductance, the Fano factor for
rectangular samples (solid lines) shows fast convergence, with
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FIG. 4. (a), (b) Fano factor as a function of the Fermi momentum
for the same systems as in Figs. 3(a) and 3(b). The radii ratio (or
aspect ratio) is specified for each line. The sample length for disks is
defined as L = r2 − r1. (c) Fano factor as a function of the radii ratio
for disks and (d) as a function of the radii ratio for rectangles with
same values of GSharvin/g0 as used in Figs. 3(c) and 3(d). Dash-dotted
line in (c) marks the approximating formula given by Eq. (14); the
limiting value for r1/r2 → 0 is specified up to four decimal places.
Thin dashed lines in (a)–(d) mark the sub-Sharvin value of F = 1/8.

growing kF , to the sub-Sharvin value of F = 1/8. For disks,
the convergence is slower, and the limiting value for large kF

is significantly lower than 1/8 [dashed lines].
Again, plotting the Fano factor for several fixed 2r1kF and

varying r1/r2 [see Fig. 4(c)], allows us to notice an apparent
convergence of exact numerical results [solid lines] to pre-
dictions following from Eq. (14) (dash-dotted line). Also, the
above-mentioned convergence is noticeably slower for disks
that for rectangular samples [see Fig. 4(d)].

For better understanding of the effects described in this
section we plot, in Fig. 5, transmission probabilities given by
Eq. (6) for rectangles, or by Eqs. (24) and (25) for disks, as
functions of ky/kF or j/(r1kF ) (respectively) at a fixed kF . It’s
worth pointing out that Eqs. (24) and (25) are valid for any
fractional value of j; physically, other than half-odd integer
j-s may appear in the presence of magnetic flux piercing the
inner electrode, see Ref. [44].

Remarkably, transmission probability for evanescent
modes, with j/r1 > kF , decays (with growing j) significantly
slower for disks [see Figs. 5(c) and 5(d)] than for rectangu-
lar samples, for which we immediately have T ≈ 0 if ky >
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FIG. 5. Transmission probability as a function of the transverse
momentum for rectangular samples (a), (b) or the total angular
momentum for disks (c), (d). The Fermi momentum is fixed such
that kF L = r1kF = 100 (a), (c) or kF L = (r2−r1)kF = 25 (b), (d).
Remaining system parameters (specified at each panel) are same as
in Figs. 4(a) and 4(b). Thin dashed lines in (a) and (b) mark Eq. (2);
solid lines in (c) and (d) mark Eq. (11).

kF [see Figs. 5(a) and 5(b)]. This is the reason, for which
charge-transfer characteristics obtained via Eqs. (7), for disks
generically show slower convergence (with growing kF ) to the
predictions for incoherent transmission presented in Sec. II
than can be observed in corresponding data for rectangles.

IV. SMOOTH POTENTIAL BARRIERS

A. Mode matching for smooth potentials

For the sake of completeness, we also revisit, in this
section, the effects of smooth potential barriers, earlier con-
sidered for rectangular geometry [21]. For the Corbino disk,
key steps of the reasoning remain similar, as presented in
Sec. III A. However, the electrostatic potential energy in
Eqs. (18) and (19) is now replaced by

V (r) = −V0 ×
{ |(r − rc)/r0|m if |r − rc| � r0

1 if |r − rc| > r0,
(26)

where rc = (r1 + r2)/2 and r0 = (r2 − r1)/2. Changing the
value of m tunes the potential from parabolic shape (m = 2)
to rectangular shape (m → ∞), see Fig. 6.

Since V (r) = −V0 for r < r1 and r > r2, solutions for
the leads given by Eq. (20) remain unchanged. This time,
we do not take the limit of V0 → ∞; instead, V0 = t0/2 =
1.35 eV (being close to the values appearing in first-principles
calculations [45,46]) is considered in subsequent numerical
examples. In turn, wave functions in the leads can now be
written as follows:

χ
(1)
j = χ in

j + r jχ
out
j , r < r1, (27)

χ
(2)
j = t jχ

in
j , r > r2, (28)

r2

r1

rc

E > 0

r

E < 0

V (r)

−V0

m= ∞

m
=

2

2r
0

FIG. 6. Electrostatic potential profiles given by Eq. (26) with
m = 2, 8 and m = ∞ (i.e., the rectangular barrier). The Fermi energy
E is defined with respect to the top of a barrier. E > 0 corresponds
to unipolar n-n-n doping in the device; for E < 0, circular n-p-n
structure is formed. Arcs with the radii r1 and r2 (dashed lines) mark
the interfaces between the disk area [r1 < r < r2; white area] and
contact regions [r < r1 or r > r2; shaded areas].

where χ in
j , χout

j are given by Eq. (20) with k ≡ k0 = |E +
V0|/(h̄vF ) [47] and r j (t j) denotes the reflection (transmission)
amplitudes.

In the disk area, r1 < r < r2, V (r) given by Eq. (26) is
no longer piecewise-constant, and Eqs. (18) and (19) need
to be integrated numerically for j = ± 1

2 ,± 3
2 , . . . [48]. The

resulting wave function takes a form

χ
(d )
j = Aχ I

j + Bχ II
j , (29)

where χ I
j , χ II

j denote the two linearly independent solutions,
which we obtained numerically by solving the relevant equa-
tions assuming two different initial conditions χ I,II

j |r=r1 =
(1,±1)T , and A, B are arbitrary complex coefficients.

The matching conditions for r = r1 and r = r2 brought us
to the linear system of equations for A, B, r j , and t j ,⎡

⎢⎢⎢⎢⎣
χout

j,a (r1) −χ I
j,a(r1) −χ II

j,a(r1) 0

χout
j,b (r1) −χ I

j,b(r1) −χ II
j,b(r1) 0

0 −χ I
a(r2) −χ II

j,a(r2) χ in
j,a(r2)

0 −χ I
b(r2) −χ II

j,b(r2) χ in
j,b(r2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

r j

A
B
t j

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

−χ in
j,a(r1)

−χ in
j,b(r1)
0
0

⎤
⎥⎥⎦, (30)

where we have explicitly written the spinor components of
relevant wave functions appearing on right-hand sides of
Eqs. (27)–(29). Since linear systems of the form given by
Eq. (30) for different j-s are decoupled, numerous software
packages can be employ find their solutions up to machine
precision [49].
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B. Sharvin conductance

Before presenting the numerical results obtained by finding
the transmission probabilities Tj = |t j |2 from Eq. (30), we
first comment how to define the Sharvin conductance for
a disk-shaped system subjected to the electrostatic potential
V (r) given by Eq. (26). In such a case, we simply look for
the minimal number of propagating modes in the disk area,
writing

G(m)
Sharvin = 2g0 min

r1�r�r2

[ rkF (r) ], (31)

where

kF (r) = |E − V (r)|
h̄vF

, (32)

and the index m in Eq. (31) is the exponent defining V (r).
The Fermi wave-number kF (r) is now position dependent;
hereinafter, using a simplified symbol (kF ) we always refer
to kF (rc) = |E |/(h̄vF ).

For general values of r1, r2, and m, the minimum in Eq. (31)
needs to be determined numerically. In the limit of m → ∞,
the minimum corresponds to rmin = r1 and we get

G(∞)
Sharvin = 2g0r1kF , (33)

restoring the formula for a rectangular barrier introduced in
Eq. (13). For m = 2 (parabolic barrier) and 0 � E � V0, one
can easily find that rmin ≈ rc [50], and that the following
approximation:

G(2)
Sharvin ≈ 2g0rckF = (rc/r1) G(∞)

Sharvin (34)

should be sufficient for typical, experimentally accessible,
values of r1/r2 and E .

C. Numerical results

In Fig. 7, we display transmission probabilities for systems
with r1 = 800 nm and two different values of r2 = 1600 nm
and 1000 nm, corresponding to r1/r2 = 0.5 and 0.8, as func-
tions of j. (Fractional, i.e., other than half-odd integer values
of j in Eq. (30) have no physical meaning here and are
considered for plotting purposes only.) The parabolic barrier
(m = 2) is considered in all cases. The Fermi energy is fixed
at E = 100 h̄vF /r1 or at E = −100 h̄vF /r1, corresponding to
E ≈ ±72 meV in the physical units.

For E > 0 [see Figs. 7(a) and 7(b)], transmission essen-
tially shows a familiar switching behavior [51], with T ≈ 1
for j/rc < kF and T ≈ 0 for j/rc > kF . Notice that, compar-
ing to the case of a rectangular barrier discussed in Sec. III B
[see Figs. 5(c) and 5(d)], rc now plays a role similar to r1,
coinciding with a prediction given in Eq. (34). For E < 0, see
Figs. 7(c) and 7(d), the presence of two circular p-n junctions
[positioned at r = r� such that V (r�) = E , see Fig. 6] signifi-
cantly reduces the transmission for almost any j.

Numerical results for the conductance and Fano factor,
obtained by summing over the modes [see Eqs. (7)] with half-
odd integer j, are presented in Figs. 8 and 9. We consider the
radii ratio of r1/r2 = 0.8 now to find out whether (or not) the
modifications to sub-Sharvin charge-transfer characteristics,
described in Secs. II and III, are still significant in such a
relatively thin disk subjected to smooth potential barrier of
a finite height.

r1

r2
= 0.8

r1

r2
= 0.8

r1

r2
= 0.5r1/r2 = 0.5

r c
/
r 1

r c
/r

1

E = −100 vF /r1E = 100 vF /r1

j/(r1kF )j/(r1kF )

0

0.4

0.8

1.2

 0  0.5  1  1.5
0

0.4

0.8

1.2

 0  0.5  1  1.5

0

0.4

0.8

1.2

 0  0.5  1  1.5
0

0.4

0.8

1.2

 0  0.5  1  1.5

T
T

(a) (c)

(b) (d)

FIG. 7. Transmission probability versus angular momentum for
disks with parabolic potential barrier given by Eq. (26) with m = 2.
The scattering energy is fixed at E = 100 h̄vF /r1 (a), (b) or E =
−100 h̄vF /r1 (c), (d). The radii ratio is specified at each panel. The
remaining parameters are r1 = 800 nm and V0 = 1.35 eV. Dashed
lines depict the step functions Tj = �(kF − | j|/r1), with kF ≡
kF (rc ) = |E |/(h̄vF ) [see Eq. (32)]. Vertical lines in (a), (b) shows
the ratio rc/r1 = 1.5 (a) or 1.125 (b).

Substituting a = r1/r2 = 0.8 into Eqs. (13) and (14) we
obtain, respectively,

G/G(∞)
Sharvin ≈ 0.8219 and F ≈ 0.1186. (35)

(r
c
/r

1
)G

(∞
)

S
h
ar

v
in

0.8219

0.8
21

9G
(∞

)
Sh

ar
vi
n
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-0.2 0 0.2 0.4
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G
/g

0
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L
(m)
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G
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)

S
h
a
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in

π/4

m=2

m=8

m=32

m=128

m
=∞

(π
/4

)G
(∞

)
Sh

ar
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n

FIG. 8. Main: Conductance as a function of the Fermi energy for
the arrangement depicted in Fig. 6. The disk radii are r1 = 800 nm
and r2 = 1000 nm, the barrier height is V0 = t0/2 = 1.35 eV. The
exponent m in Eq. (26) is specified for each data set (solid lines).
Dashed lines depict the approximating Eq. (34) for m = 2 with
G(∞)

Sharvin = 2g0r1|E |/(h̄vF ), the asymptotic formula in Eq. (15) for
r1/r2 → 1 (thin dashed lines), and the expression following from
Eq. (13) for r1/r2 = 0.8 (thick dashed line). Inset: Conductance
at E = 100 h̄vF /r1 ≈ 72 meV as a function of L(m)

diff /L, with L ≡
r2 − r1, see Eq. (37). Grey solid line depicts GSharvin obtained from
Eq. (31) by numerical minimization. Vertical line marks a bound on
the right-hand side of Eq. (38).
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(m)
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F
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FIG. 9. Fano factor as a function of the Fermi energy for the
same system parameters as in Fig. 8 (solid lines). The exponent m in
Eq. (26) is varied between the panels. Thin dashed line at each panel
depicts the sub-Sharvin value of F = 1/8, see Eq. (15). Thick dashed
line in the bottom panel marks the value obtained from Eq. (14) for
r1/r2 = 0.8. Inset: Fano factor at E = 100 h̄vF /r1 ≈ 72 meV as a
function of L(m)

diff , see Eq. (37). Vertical line marks a bound on the
right-hand side of Eq. (38).

Both predictions differ by about 5% from the asymptotic val-
ues given in Eq. (15) and corresponding to V0 → ∞, m → ∞,
and r1/r2 → 1; the conductance is expected to be elevated,
whereas noise is expected to be suppressed for r1/r2 < 1.
Although Eqs. (13) and (14) are proposed, still as approxima-
tions, for a perfectly rectangular barrier of an infinite height,
numerical results for a finite V0 = 1.35 eV, and m = ∞ (see
blue solid lines in Figs. 8 and 9), are relatively close to the
predictions given in Eq. (35). This observation applies partic-
ularly for E ∼ 0.1 eV, i.e., for Ediff � E � V0, where

Ediff = h̄vF

L
≈ 3 meV for L ≡ r2−r1 = 200 nm (36)

denotes the energy above which Sharvin conductance over-
rules the pseudodiffusive conductance, see Ref. [21]. Remark-
ably, the conductance in such a range is definitely closer to the
value given in Eq. (35) than to Eq. (15).

For the Fano factor (see Fig. 9), the situation is less clear
due to oscillations of the Fabry-Pérrot type with an ampli-
tude (albeit being reduced in comparison to the rectangular
geometry, see Ref. [21]) exceeding the distance between the
predictions given in Eqs. (15) and (35). Therefore, when look-
ing for finite radii-ratio effects on the shot-noise power, one
should rather focus on the r2 � r1 range, where the predicted
suppression of F , comparing Eqs. (15) and (16), is close to
15%.

A striking feature of the data presented in Figs. 8 and 9
is a systematic evolution, for E � Ediff , toward the values
of G given by Eq. (31) and F ≈ 0, when decreasing the
value of m, i.e., tuning the potential barrier from rectangular

(m = ∞) toward parabolic (m = 2) shape. (Notice that the red
solid line in Fig. 8, representing the results of our numerical
mode-matching for m = 2, precisely covers dashed line mark-
ing the approximating Eq. (34) for almost the entire range of
E > 0 presented in the plot.)

For E < 0, two circular p-n junctions reduce the transmis-
sion for any finite m, resulting in the suppressed conductance
(see Fig. 8) and the enhanced Fano factor (see Fig. 9), with
strong oscillations due to quasibound states [52].

Since the Sharvin conductance for a disk setup (G(m)
Sharvin)

is m dependent, see Eqs. (31) and (32), it is worth introduc-
ing the effective sample length evolving with m, such that
Ldiff = r2 − r1 for m = ∞ (rectangular barrier) and Ldiff �
r2 − r1 for m = 2 (parabolic barrier). [In the latter case, a
narrow weakly doped ring is placed near the distance of r = rc

from the disk center, allowing one to understand why the
approximation given in Eq. (34) works well for E � Ediff .]
The effective length can be defined via Ediff (36) by imposing
V (±Ldiff/2) = −Ediff , leading to

L(m)
diff = 2r0

(
h̄vF

2r0V0

)1/m

. (37)

One easily finds that the above reduces to L(∞)
diff = 2r0 =

r2 − r1 ≡ L for a rectangular barrier; also, we have L(2)
diff =

L
√

Ediff/V0 � L. Subsequently, a characteristic length scale
of a potential jump �r = (L − Ldiff )/2, can be compared with
the Fermi wavelength λF = 2π/kF (rc) = hvF /|E |, allowing
us to expect that for λF /2 � �r the barrier cannot longer be
regarded as rectangular. The last condition can be rewritten as

Ldiff

L
� 1 − π h̄vF

r0|E | , (38)

giving Ldiff/L � 0.7487 for E = 100 h̄vF /r1 and the remain-
ing parameters as used in Figs. 8 and 9.

The inset in Fig. 8, where we display the conductance
for the Fermi energy fixed at E = 100 h̄vF /r1 (such that
G(∞)

Sharvin = 200 g0) as a function of Ldiff , unveils a clear switch-
ing behavior ruled by the inequality in Eq. (38): For Ldiff

below the upper bound, the data points (representing the re-
sults of numerical mode-matching for selected integer m-s)
closely follow GSharvin obtained by performing the minimiza-
tion in Eq. (31) (grey solid line). For Ldiff exceeding the
bound, G shows a fast convergence to the value expected for a
rectangular barrier (m = ∞) and given explicitly in Eq. (35).

Similarly, the Fano factor for E = 100 h̄vF /r1 (see inset in
Fig. 9) remains close to F ≈ 0 for Ldiff below the bound in
Eq. (38); above the bound, F converges to the limiting value
lying between the prediction in Eq. (35) and F = 1/8 [see
Eq. (15) for r1/r2 → 1]. Elevated values of F for Ldiff/L �
0.1 signal a significant role of the evanescent modes (with 0 <

Tj � 1), which may affect the noise much stronger than the
conductance; see Eqs. (7).

V. A SECTION OF THE DISK WITH INFINITE-MASS
BOUNDARIES

Whole the derivation presented in Sec. II, in particular, the
approximating formulas for the conductance and Fano factor
given in Eqs. (13) and (14), can be easily extended onto a
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θ
r1

r2

FIG. 10. A section of the Corbino disk in graphene (white area)
attached to heavily doped leads (shadow areas) and bounded with
infinite-mass confinement (thick lines). The opening angle θ = π/3
and the radii ratio r1/r2 = 0.5 are set for an illustration.

section of the disk bounded with infinite-mass confinement,
as shown in Fig. 10. Since the absolute value of transverse
momentum |ky| does not change after a collision with the
boundary [38], key results following from the double-contact
formula for incoherent transmission, see Eqs. (9) and (10),
remain unaltered. For the reasons which become clear later in
this section, one only needs to replace the value of Sharvin
conductance in Eq. (13) by

GSharvin = θ

π
g0r1kF , (39)

with the opening angle θ < 2π , the inner radii r1, and the
Fermi momentum kF . (Notice that we limit our consider-
ations to the rectangular potential barrier, leading uniquely
defined kF for the entire sample area). For the Fano fac-
tor, Eq. (14) holds true for a bounded disk section as
well.

Details of the mode-matching for coherent scattering of
Dirac fermions in the system of Fig. 10 are presented in
Ref. [53]. Here we only recall the main formulas allowing one
to determine transmission eigenvalues for a discrete set of θ -s
and arbitrary dimensionless parameters kF r1, r1/r2.

Having in mind the solution for the full disk presented in
Sec. III, we now introduce the sample edges via infinite-mass
boundary conditions. After Berry and Mondragon [38], we
impose that the angular current vanishes at the sample edges,
namely,

( j)n = n̂ · [�†(x̂σx + ŷσy)�] = 0, (40)

where n̂ = (cos α, sin α) is the unit vector normal to the
boundary, the spinor wavefunction � = (�a, �b)T , and the
remaining symbols are same as in Eq. (17). This leads to [54]

�b/�a = i exp (iα), (41)

where α = 0 for one edge (i.e., at ϕ = π/2) or α = π + θ

for the other (at ϕ = θ + π/2). The solutions, being lin-
ear combinations of the form aj� j + b j�− j , with � j =
e j( j−1/2)ϕ (χa, χbeiϕ )T again, can be found for a discrete set
of opening angles θ ≡ θl = π/(2l + 1), with l = 0, 1, 2, . . . .
Explicit formulas for wave functions are rather lengthy and
omitted here (see Appendix A in Ref. [53] for details); in-
stead, we summarize their basic features as follows: (i) Due

π/4π/4
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FIG. 11. (a) Conductance as a function of the Fermi momen-
tum for the system of Fig. 10 with the radii ratio r1/r2 = 0.8 and
the opening angles θ = π (blue solid line) and θ = π/3 (red solid
line). Shaded areas mark the range between sub-Sharvin conduc-
tance (π/4) GSharvin [see Eq. (39)] (thin dashed lines) and the value
of (4 − π ) GSharvin (thin solid lines) relevant for the r1 � r2 limit.
Dashed-dotted lines correspond to G/GSharvin ≈ 0.8219 obtained
from Eq. (13). (b), (c) Solid lines: The conductance reduction as a
function of the radii ratio for θ = π and θ = π/3 for fixed values
of GSharvin/g0 = 100 and 200 (same in both panels). Dashed-dotted
lines mark the approximating formula given by Eq. (13). The value
of G/GSharvin = π/4 is marked with dashed horizontal lines.

to Eq. (41), the values of j contributing to charge-transfer
characteristics are now restricted to

j = π (2n + 1)

2θ
, n = 0, 1, 2, . . . , (42)

justifying the prefactor in Eq. (39). (ii) Assuming the infinite
doping in the leads, transmission probabilities can still be cal-
culated from Eqs. (24) and (25), with the angular-momentum
quantization given by the above.

The conductance and Fano factor obtained by summing
over the modes [see Eqs. (7); the limit of N → ∞ is taken nu-
merically] are displayed in Figs. 11 and 12. The presentation
is limited to the two values of the opening angle, θ = π and
θ = π , as such examples (together with the full disk studied
in Sec. III) are sufficient to grasp the main features introduced
with the boundaries.

In Fig. 11(a), we choose the radii ratio r1/r2 = 0.8, for
which the conductance in a multimode regime (results fol-
lowing from the mode-matching are depicted with thick
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FIG. 12. (a), (b) Fano factor as a function of the Fermi mo-
mentum for same systems as in Fig. 11(a). The opening angle is
varied between the panels. Horizontal lines show the sub-Sharvin
value F = 1/8 (dashed) and the value following from Eq. (14) for
r1/r2 = 0.8 (dashed-dotted). (c), (d) Fano factor as a function of the
radii ratio for same values of GSharvin/g0 as used in Figs. 11(b) and
11(c). Dashed-dotted line depicts the formula given in Eq. (14).

solid lines) lays in a middle of the range bounded by ex-
treme values following from Eq. (13) for r1/r2 → 1 and
r1/r2 → 0 (see thin dashed and solid lines, respectively),
very close to the incoherent value of G ≈ 0.8219 GSharvin

(dashed-dotted line) for kF r1 � 100. The corresponding val-
ues of the Fano factor in Figs. 12(a) and 12(b) are closer
to F = 1/8 [the limit of r1/r2 → 1 in Eq. (14)] even for
noticeably higher dopings, however, a slow decay toward
the value of F ≈ 0.1186 following from Eq. (14) (dashed-
dotted line) is clearly visible. Also, for both the conductance
and the Fano factor displayed as functions of the radii ratio
r1/r2 for fixed values of G/GSharvin = (θ/π ) kF r1, see (re-
spectively) Figs. 11(b) and 11(c) and Figs. 12(c) and 12(d),
we observe a systematic convergence to the results following
from Eqs. (13) and (14), similarly as for the full disk case in
Sec. III.

It is worth noting that a section of the disk, as depicted
in Fig. 10, transforms into a rectangular sample when taking
the limit of θ → 0 and r1/r2 → 1, such that the ratio θ/(1 −
r1/r2) = const ≡ W/L. If additionally the condition for being
in a multimode range, i.e., (θ/π ) kF r1 � 1 is satisfied, one
can expect, on the basis of numerical results presented here,

that G/GSharvin → π/4 and F → 1/8, reproducing the values
reported in Ref. [21].

What is more, the scattering in a disk section bounded
with infinite-mass confinement remain independent for any
j channel, with the quantization given by Eq. (42). There-
fore, the transmission spectra for smooth potentials, including
the examples shown in Fig. 7, will be unaffected and the
crossover from the sub-Sharvin to standard Sharvin transport
regime, demonstrated in Sec. IV for the full disk and in
Ref. [21] for a rectangle, is predicted to appear also for a disk
section.

Although the mathematics required for the mode matching
is a bit more cumbersome in the presence of infinite-mass
boundaries, we see that key features of charge transport re-
main essentially the same as for the full disk. An issue not
addressed yet is how the results may be affected by actual
(e.g., irregular) edges of mesoscopic samples. Large-scale
simulations including possible types of disorder down to an
atomic level are beyond the scope of this paper; one should
expect, in analogy with rectangular samples, the consistency
between theoretical description presented here and experi-
ments to appear for θ/(1 − r1/r2) � 10 rather then θ/(1 −
r1/r2) ∼ 1, i.e., for section of narrow disks with wide opening
angles. Subsequently, the verification of our predictions for
the r1 � r2 range may only be possible using the full disk
(Corbino) setup.

VI. CONCLUSIONS

The effects of sample geometry on selected charge-transfer
characteristics of doped graphene nanosystems have been
investigated by comparing the results for rectangular and
disk-shaped (Corbino) setups with different aspect (or radii)
ratios. Finite sections of the disk are also considered. Values
of the conductance (G) and the Fano factor (F ) obtained from
analytical formulas for transmission probabilities [9,34] are
compared with results following from the proposed approx-
imating formulas, derived by assuming incoherent scattering
of Dirac fermions between two interfaces separating weakly
and heavily doped graphene areas (i.e., electrostatically doped
sample and the leads). Numerical analysis of the scattering on
a family of smooth potential barriers of a finite height, interpo-
lating between the parabolic and the rectangular shapes, have
also been carried out for the disk, supplementing our previous
study for rectangular samples [21].

The results show that for rectangular samples the so-called
sub-Sharvin transport regime, with G being directly propor-
tional to the number of propagating modes (open channels)
and F ≈ 1/8, is entered for any aspect ratio (W/L) provided
that the doping is sufficiently high, such that the Fermi wave-
length (λF ) is much shorter than either the sample width (W )
or length (L). Both exact G and F show oscillations (of the
Fabry-Pérot type) around mean values coinciding with the
sub-Sharvin values (derived by assuming incoherent scatter-
ing), with the amplitude decreasing with increasing W/L or
doping. For disk-shaped samples, as well as for disk sections,
the oscillations are suppressed, since inner and outer inter-
faces are characterized by different curvatures corresponding
to their radii, r1 < r2, and the double-contact analogy no
longer applies. What is more, G and F become weakly
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radii-ratio dependent, with high-doping limits for thin disks
(r1 ≈ r2) approaching the results for rectangular samples; in
the opposite (r1 � r2) range, the disk G is slightly enhanced
(yet still smaller that the Sharvin conductance), whereas F is
slightly suppressed. For smooth potentials, transport proper-
ties of familiar quantum point contacts are restored as soon as
λF becomes comparable with the characteristic length-scale
of a potential jump �r.

These findings illustrate how peculiar transmission depen-
dence on incident angle for weakly doped/heavily doped
graphene interface (leading, e.g., to the Klein tunneling in
case of normal incidence) may affect measurable quantities
of mesoscopic graphene samples. Next to well-known Sharvin
transport occurring in various ballistic structures and pseudod-
iffusive charge transport in undoped graphene samples, one
should also expect non-universal (geometry dependent) reduc-
tion of G, by a factor varying from π/4 to 4 − π , comparing to
the Sharvin value GSharvin), and amplification of the shot-noise
power (with F between (9π − 28)/(12 − 3π ) ≈ 0.1065 and
1/8), depending on whether one or two interfaces govern the
charge transport.

Since existing experimental works on various systems in
graphene report either the Sharvin conductance, in case a con-
striction governing the transport is distant from sample-lead
interfaces [43], or the values of F ≈ 1/8 in case of a rectan-
gular sample with long parallel interfaces [11,12], we think it
would be beneficial to confirm experimentally our predictions
for an intermediate situation, i.e., when the transport is ruled
by one interface and a role of the other is reduced.

Note added. Recently, we become aware of experimental
work on a Corbino disk with radii ratio up to r2/r1 ≈ 4.5 [55].
At low temperatures, conductance suppression of about 10%
(compared to the Sharvin conductance) is observed, being
not far from our prediction for incoherent scattering [see
Eq. (13)].
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