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We describe and discuss the low-temperature resistivity (and the temperature-dependent inelastic scattering
rate) of several different doped two-dimensional semiconductor systems from the perspective of the Planckian
hypothesis asserting that h̄/τ = kBT provides a scattering bound, where τ is the appropriate relaxation time.
The regime of transport considered here is well below the Bloch-Grüneisen regime so that phonon scattering
is negligible. The temperature-dependent part of the resistivity is almost linear-in-T down to arbitrarily low
temperatures, with the linearity arising from an interplay between screening and disorder, connected with carrier
scattering from impurity-induced Friedel oscillations. The temperature dependence disappears if the Coulomb
interaction between electrons is suppressed. The temperature coefficient of the resistivity is enhanced at lower
densities, enabling a detailed study of the Planckian behavior as a function of both the materials system and the
carrier density. Although the precise Planckian bound never holds, we find somewhat surprisingly that the bound
seems to apply approximately with the scattering rate never exceeding kBT by more than an order of magnitude
either in the experiment or in the theory. In addition, we calculate the temperature-dependent electron-electron
inelastic scattering rate by obtaining the temperature-dependent self-energy arising from Coulomb interaction,
also finding it to obey the Planckian bound within an order of magnitude at all densities and temperatures. We
introduce the concept of a generalized Planckian bound where h̄/τ is bounded by αkBT with α ∼ 10 or so in the
super-Planckian regime with the strict Planckian bound of α = 1 being a nongeneric fine-tuned situation.
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I. INTRODUCTION

An intriguing empirical observation was made by Bruin
et al. [1] in 2013: The transport scattering rate as extracted
from the Drude resistivity formula, ρ = m/(ne2τ ), where m,
n, and τ are the carrier effective mass, carrier density, and the
transport relaxation time, respectively, obeys an approximate
bound, h̄/τ = kBT , for many different metals, particularly
in the regime where ρ(T ) is approximately linear in the
temperature (often, such conductors manifesting a linear-in-
T resistivity are dubbed “strange metals,” particularly if the
linearity persists to rather low temperatures). It is implied that
ρ(T ) should really be the T -dependent part of the resistiv-
ity with the elastic disorder scattering contribution at T = 0
subtracted out through careful extrapolation. The terminol-
ogy “Planckian bound or limit” has stuck to this puzzling
empirical phenomenon for historical reasons [2], with many
experiments [3–12], mostly in 2D strongly correlated systems
such as cuprates, claiming the observation of such Planckian
bounds on the resistive scattering rates. Exceptions to the
Planckian bound on transport have also been pointed out in
a few situations [13,14]. Such exceptions, where the effective
Drude scattering rate is larger than the putative Planckian
thermal bound, are referred to as super-Planckian behavior,
and, by contrast, the situation of the rate being much less than
temperature is called sub-Planckian. Particular significance is
often attached to the Planckian bound being saturated, i.e.,
h̄/τ = kBT (“Planckian metals”), and it is sometimes asserted

that the bound is an intrinsic limit on temperature-dependent
transport except perhaps for trivial temperature-independent
elastic scattering at T = 0.

The Planckian bound obviously cannot apply to the total
resistivity of a metal since all metals have a disorder-induced
“residual resistivity” at low temperatures (ignoring any super-
conducting transition), where the bound must be increasingly
violated with the lowering of temperature. The bound must
therefore be formally defined by writing

ρ = ρ0 + ρ(T ), (1)

where ρ(T ) is the temperature-dependent part of the resis-
tivity, which vanishes at T = 0, and ρ0 is, by definition, the
disorder-induced residual resistivity at T = 0. In discussing
Planckian properties, it is always implicitly assumed that ρ(T )
is being considered in extracting the scattering rate, with ρ0

subtracted out [or equivalently the situation ρ(T ) � ρ0 ap-
plies]. In principle, one should worry about the applicability
of Matthiessen’s rule in separating out different scattering
contributions, particularly in electron systems with low Fermi
temperatures TF as may happen for certain strongly correlated
2D metals (but not for regular 3D normal metals), but as long
as ρ(T ) � ρ0 applies, this is not a problem. We will always
focus on the temperature-dependent part of the resistivity in
discussing Planckian properties in the current work even if it
is not always explicitly stated everywhere.

An important point, not often emphasized in discussing
Planckian transport, but one that was already discussed in
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Ref. [1], is that regular 3D normal metals may violate the
Planckian bound for T > 40 K or so, where the metallic
resistivity is linear-in-T caused by acoustic phonon scatter-
ing in the equipartition regime. For example, Pb manifests
a linear-in-T room-temperature resistivity that, when con-
verted to a transport scattering rate via the Drude formula,
gives h̄/τ ∼ 9kBT , reflecting an empirical super-Planckian
behavior strongly violating the Planckian bound. By con-
trast, Al (and many other metals) obeys the Planckian bound
at all temperatures. Basically, all strong-coupling (in the
electron-phonon interaction sense) metals with the effective
dimensionless electron-phonon coupling strength λ ∼ 1 are
trivially super-Planckian since the corresponding transport
scattering rate in the linear-in-T resistivity regime (T > 40 K)
is given by (h̄/τ )/(kBT ) ∼ 5–10. Therefore, the Planckian
bound may often be violated at higher temperatures in metals
by the trivial electron-phonon interaction in the quasielastic
equipartition scattering regime [15]. It has therefore been
suggested that any serious discussion of the Planckian bound
should also leave out phonon scattering, in addition to leaving
out impurity scattering, since high-temperature phonon scat-
tering is quasielastic, and the bound does not apply to any type
of elastic scattering (although, as a matter of empirical fact,
the bound does apply to phonon scattering limited resistivity
in metals, within a factor of 10). Of course, this makes the
whole Planckian analysis something of a theoretical semantic
exercise since experimentally all one can measure is the elec-
trical resistivity and convert it into a scattering rate (by also
measuring the effective mass and the effective carrier density),
and there is no empirical way of ascertaining whether the
resistive scattering is or is not elastic/quasielastic. Also, the
subtraction of the disorder-induced residual resistivity always
involves some arbitrariness as it requires an extrapolation to
T = 0.

In fact, resistive scattering is associated with momentum
relaxation, and any process, whether elastic or inelastic, leads
to a resistivity if it leads to a relaxation of the net momen-
tum. Nevertheless, the whole Planckian lore has taken on
considerable significance because of its claimed connection
to “strange metals,” where a linear-in-T resistivity arises from
some unknown electron correlation effects, and somehow
persists to low temperatures. In the literature, researchers of-
ten conflate the resistive scattering rate with the imaginary
part of a single-particle self-energy arising from electron-
electron interactions, although it is well-known that the two
quantities generally have nothing to do with each other, as
self-energy (resistivity) is associated with the single-particle
(two-particle) propagator. In addition, the standard electron-
electron scattering rate arising from the imaginary part of
the electron self-energy goes as T 2 in 3D (or T 2 ln T in
2D), and therefore any associated resistive scattering would
manifest a T 2 resistivity at low temperatures (and not a linear-
in-T strange, metallic resistivity). This T 2 versus T issue
is sometimes turned around to argue the following: (i) The
linear-in-T resistivity of the so-called strange metals indeed
arises from electron-electron interaction behaving in some
unknown “strange” manner, and (ii) the physics here must
therefore be strange since electron-electron correlation effects
produce a linear-in-T resistivity instead of a T 2 resistivity. In
our opinion, this is incorrect logic unless one can show that

a reasonable microscopic model leads to correlation-induced
linear-in-T resistivity. Often, such a linear-in-T resistivity is
somewhat vaguely associated with quantum criticality, but to
the best of our knowledge, there is no known physical itin-
erant electron quantum critical point leading to a linear-in-T
resistivity or Planckian scattering. It should be emphasized
that electron-electron scattering can relax momentum only
if umklapp or interband Baber scattering is invoked, and
connecting an electron self-energy directly with a transport
scattering rate is in general incorrect because all momentum
dependence is being ignored uncritically in such considera-
tions. The experimental literature is filled with uncritical (and
often incorrect) claims of a system being a non-Fermi-liquid
simply because it manifests a linear-in-T resistivity at low
temperatures, with the unreasonable assumption being that the
observed linear-in-T resistivity necessarily implies an imagi-
nary part of self-energy going also as linear in T , which would
indeed be inconsistent with a Fermi liquid. Such a non-Fermi-
liquid claim necessitates at the minimum the observation of
the inelastic scattering rate going as O(T ) at arbitrarily low
temperatures, not just the resistive scattering rate.

The purpose of the current work is to consider and analyze
a well-studied [16–19] problem, namely the low-temperature
density- and temperature-dependent resistivity of high-quality
2D semiconductor systems, from the perspective of Planckian
behavior. In a narrow sense, our work has some superficial
similarity with Ref. [1], where the experimental temperature-
dependent resistivity of various metals (both 3D and 2D)
was analyzed from the Planckian perspective, reaching the
purely empirical conclusion that most metals obey the Planck-
ian bound. The big qualitative difference between Ref. [1]
and our work is that, in addition to analyzing the existing
experimental transport data in 2D semiconductors, we also
provide the underlying transport theory, which is in approx-
imate agreement with the experimental data, finding to our
considerable surprise that the Planckian bound appears to be
always obeyed within a factor of 10. Unlike Ref. [1], where
all the 3D metallic linear-in-T resistivity most definitively
arises from acoustic phonon scattering, our work involves no
phonon scattering at all since the experiments (and the asso-
ciated theory) we consider are all restricted to <10 K, where
phonons are thermally suppressed and, therefore, all phonon
scattering contribution to the resistivity is strongly suppressed
(the so-called Bloch-Grüneisen regime). Phonons play no role
in the results we discuss here, although the same systems and
samples do manifest the expected phonon-induced linear-in-T
resistivity at higher temperatures (>10–20 K) [20].

The experimentally observed strong approximate linear-
in-temperature resistivity at low temperatures in many dilute
2D semiconductor systems arises from an interplay between
Coulomb disorder and electron-electron interaction, where the
carriers scatter from the momentum-dependent screened dis-
order, which becomes strongly temperature-dependent around
2kF because of the 2D Fermi surface anomaly [21–23]. Since
at low temperatures the most important resistive scattering is
the 2kF backscattering, the strong metallic temperature de-
pendence of the 2D resistivity arises from the nonanalytic
temperature dependence of the 2D polarizability function
at 2kF—increasing temperature weakens screening, leading
to larger resistivity with increasing temperature, and this
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effect in the leading-order is linear in T/TF, where TF is
the Fermi temperature. Thus, for dilute systems, where TF

is relatively low, the linear-in-T temperature correction to
the residual resistivity at T = 0 could be large, extending to
arbitrarily low temperatures. Such a linear temperature cor-
rection ρ(T ) to ρ0 arising entirely (i.e., no phonons) from
screened disorder scattering violates the textbook Sommer-
feld expansion, which asserts that all thermal corrections in
a Fermi system must go as O((T/TF)2) because of the thermal
broadening of the Fermi distribution. This is an unexpected
and counterintuitive result arising from the fact that 2D sys-
tems have nonanalytic interaction corrections associated with
Fermi surface anomalies. This strong temperature dependence
of the 2D resistivity is thus a combined effect of disorder
and interaction, and it disappears theoretically if one as-
sumes, by ignoring the electron-electron Coulomb interaction,
that the disorder is unscreened short-range (or long-range)
disorder. The temperature dependence is also suppressed if
the disorder is screened by long-wavelength Thomas-Fermi
screening neglecting the momentum dependence because the
2kF-anomaly disappears in the long-wavelength approxima-
tion. We note that disorder breaks translational invariance
allowing interaction to affect momentum relaxation indirectly
through the screening of disorder. The interacting 2D sys-
tem is still a Fermi liquid with well-defined quasiparticles,
but subtle nonanalytic corrections associated with electron-
electron interactions give rise to Fermi surface anomalies
leading to thermal corrections to all quasiparticle properties
violating the T 2 law of Sommerfeld expansion [24]. For
the temperature-dependent resistivity, the physically appeal-
ing way of thinking about the linear-in-T correction to the
residual resistivity is that the effective momentum-dependent
disorder, including interaction effects (i.e., screened disor-
der), is strongly temperature-dependent, although the bare
disorder arising from quenched impurities obviously is not.
An equivalent statement would be that the electrons resis-
tively scatter from the strongly temperature-dependent Friedel
oscillations associated with the renormalized impurity po-
tential. Note that Friedel oscillations are characteristics of
finite momentum screening at 2kF, and they vanish in the
long-wavelength Thomas-Fermi screening approximation of-
ten used theoretically. Thus, the low-temperature linear-in-T
resistivity behavior in 2D semiconductor systems is a com-
bined effect of disorder and interaction, extending all the
way to T = 0, but it implies no violation of the Fermi liquid
theory. Perhaps this example should be instructive for other
systems where an observed linear-in-T resistivity at lower
temperatures is automatically claimed to imply a non-Fermi-
liquid ground state. Linear-in-T resistivity can indeed arise
from indirect effects of electron-electron interactions without
affecting the Fermi liquid nature of an electronic system. The
effect disappears if the electron-electron interaction is set to
zero.

The second part of our work presented here is independent
of the resistivity issue, focusing on the calculation of the
electron-electron interaction-induced inelastic scattering rate,
to be compared with the Planckian hypothesis. As emphasized
above, carrier resistivity is associated with momentum relax-
ation, and not with any imaginary self-energy arising from
interaction-induced electron-electron scattering, although the

two are often conflated uncritically in the discussion on
strange metals and Planckian properties. In some theories,
where the momentum dependence is ignored and all scat-
tering is by assumption umklapp scattering, the resistivity is
given by the momentum-independent self-energy, but such
theories are typically uncontrolled in any parameter regime.
For the 2D doped semiconductors, however, the interacting
self-energy calculation we carry out in this work within a
many-body theory for the continuum electron liquid is exact
in the high-density or small rs limit, where rs is the dimen-
sionless Wigner-Seitz radius going as the inverse square-root
of the 2D carrier density, since the many-body perturbation
expansion is exact in the small-rs limit for Coulomb interac-
tion. We obtain the imaginary part of the electron self-energy
in the leading-order infinite ring diagram approximation to
calculate the interaction-induced temperature-dependent in-
elastic scattering rate as a function of temperature, finding
that the Planckian bound is approximately (within one or-
der of magnitude) valid over the whole temperature regime
ranging from T � TF to T � TF and in between. This is
again a surprising and potentially important result establishing
explicitly that the Planckian bound indeed applies (at least
approximately and empirically) to the imaginary part of the
dynamical self-energy at all temperatures, i.e., to the inelastic
single-particle scattering rate arising from electron-electron
Coulomb coupling.

This paper thus presents a study of three independent
properties of 2D doped semiconductors interconnected only
by their relevance to the Planckian hypothesis. The first part
(Sec. II) is purely empirical, following the spirit of Bruin et al.
[1], where we analyze the published low-temperature metallic
(<10 K) experimental resistivity in the context of Planckian.
The other two parts (Secs. III and IV) are theoretical, with
the second part (Sec. III) providing the transport theory for
2D transport, which effectively (and approximately) describes
the metallic T -dependent resistivity discussed in the first part
(Sec. II) using the model of carrier scattering from screened
Coulomb disorder, both analytically and numerically, through
the Boltzmann-RPA effective theories. The third part (Sec. IV)
describes the theory for the finite-temperature imaginary
part of the 2D electron self-energy, studying the inelastic
electron-electron scattering rate in the Planckian context. We
emphasize that this third part (i.e., the imaginary 2D self-
energy) in our systems has nothing to do with the transport
properties discussed in the first two parts since Galilean invari-
ance in our continuum effective-mass system ensures that the
electron-electron scattering is strictly momentum-conserving
(e.g., no umklapp) and does not contribute to the resistivity.
Electron interactions enter into transport indirectly through
screening in the first two parts of our work since the pres-
ence of disorder breaks the translational invariance allowing
interaction effects to affect transport indirectly by dressing
or renormalizing (i.e., screening in our case) the effective
disorder scattering. A well-known related effect of electron-
electron interactions affecting transport is the logarithmic
correction to the 2D conductivity in the diffusive limit (the
so-called Altshuler-Aronov effect) [25], and the physics we
discuss in Sec. III is basically the ballistic counterpart of
this “interaction effect” coming specifically through the 2kF-
screening of Coulomb disorder.
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The rest of this paper is organized as follows. In Sec. II, we
provide a Planckian transport analysis for several different 2D
semiconductor systems by comparing the extracted scattering
rate from the measured resistivity (taken from the existing
published experimental literature) to the temperature over a
large temperature and density range. In Sec. III, we provide
the transport theory in approximate agreement with the results
in Sec. II by considering carrier scattering from temperature-
dependent screened effective disorder arising from random
charged impurities, again comparing the theoretical transport
scattering rate with temperature in order to test the Planckian
hypothesis. In Sec. IV, we calculate the finite-temperature in-
elastic scattering rate arising from electron-electron Coulomb
interaction by obtaining the finite-temperature electron self-
energy at arbitrary temperature and density, comparing the
inelastic scattering rate with temperature from the Planckian
hypothesis. In Sec. V, we provide some intuitively appealing
heuristic dimensional arguments supporting the approximate
existence of a Planckian dissipation bound. We conclude in
Sec. VI by discussing the implications of our findings in the
context of the extensive current debate in the literature on the
relevance of the Planckian bound in strange metals.

II. PLANCKIAN ANALYSIS OF EXPERIMENTAL
RESISTIVITY

Transport properties of doped 2D semiconductor systems
are among the most studied [26–28] electronic phenomena in
all of physics, going back to 1966 when the two-dimensional
nature of interface-confined electrons in Si-SiO2 inversion
layers in Si MOSFETs was first demonstrated [29]. Many
of the seminal experimental discoveries in condensed-matter
physics over the past 50 years were first reported in various 2D
semiconductor systems, including IQHE [30], FQHE [31,32],
even denominator FQHE [33], strong localization [34], 2D
plasmons [35], weak localization [36], 2D Wigner crys-
tals [31,37], excitonic superfluidity [38], 2D metal-insulator
crossover [16,39], and many more. There is a huge amount
of published experimental resistivity data available in the lit-
erature for various 2D semiconductors, both for electrons (n)
and holes (p) as a function of carrier density and temperature.
We focus on six typical experimental data sets covering three
different 2D materials systems (n-GaAs, p-GaAs, n-Si), ex-
tracting the transport scattering rate from the Drude formula,
subtracting out the T = 0 extrapolated residual resistivity to
focus on the purely T -dependent part, ρ(T ), of the measured
resistivity:

ρ(T ) = m

ne2τ (T )
. (2)

Note that experimentally one measures the full ρ of Eq. (1),
and ρ(T ) = ρ − ρ0, with ρ0 obtained by an extrapolation
to T = 0 as described below. As explained in the Introduc-
tion (Sec. I), this subtraction takes out the strictly elastic
temperature-independent contribution to the resistivity, which
is obviously outside the scope of any Planckian consideration.
Once ρ(T ) is extracted from the data extrapolation and sub-
traction, we can obtain the scattering time τ (T ) from Eq. (2)
since n and m are experimentally known in our semiconductor
systems.

FIG. 1. Planckian parameters [defined as �(T )/kBT , where
�(T ) = h̄/τ (T )] as a function of T , calculated using experimental
resistivities of various semiconducting materials [(a) n-GaAs [40];
(b),(c) p-GaAs [41,42]; and (d)–(f) n-Si [43,44]]. Each line with a
different color corresponds to a different carrier density n with num-
bers along the lines representing the corresponding carrier density in
units of 1010 cm−2.

In Fig. 1, we show the extracted (from the experimental
resistivity) dimensionless “Planckian resistivity parameter”
�/(kBT ), with � = h̄/τ as a function of T for six different
2D samples [Figs. 1(a)–1(f)] for different carrier densities in
each case. The six samples correspond to three data sets for
n-Si, two data sets for p-GaAs, and one data set for n-GaAs
2D systems. Since different samples have different disorder
and also somewhat different effective thickness of the 2D
confinement layers, the results for the resistivity differ from
sample to sample even for the same materials (just as the
resistivity of different Al samples would differ from sample
to sample at low temperatures because of the variations in
disorder content).

The important point to note is that in all of these results,
the dimensionless Planckian parameter (even at its maximum
peak value) is always less than 10, and is often less than 2.
There is considerable noise in the results of Fig. 1 because of
the subtraction of ρ0 through T = 0 extrapolation and because
the original experimental resistivity already has quite a bit of
noise in it (and is typically plotted on a log scale, making
the extraction of τ from the published results subject to some
inherent errors).

We emphasize a particularly salient feature of the results
in Fig. 1 with significant relevance to the Planckian debate.
As is obvious from Fig. 1, there is nothing special about the
precise Planckian bound with � = kBT , and the experimental
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�/(kBT ) rises above the Planckian bound and then drops
below it smoothly as a function of temperature at all densities
in all samples with nothing special happening at the Planckian
point of h̄/τ = kBT . By fine-tuning and postselection, one
could choose a set of results [see, e.g., the 0.9 density curve
in Fig. 1(c) and the 34.6 density curve in Fig. 1(e)] where
the Planckian bound h̄/τ = kBT holds approximately over
a finite T -range, but this would reflect purely nongeneric
confirmation bias since the whole set of results presented in
Fig. 1 for many samples over large ranges of temperature
and carrier density clearly establish empirically that there
is nothing special about the precise Planckian bound, with
�/(kBT ) varying above or below unity smoothly—in fact,
in Figs. 1(a) and 1(d), the ratio remains always below and
above unity, respectively. The important point is that the
dimensionless Planckian parameter never exceeds 10, thus
there indeed seems to be an approximate empirical thermal
bound on the temperature-dependent transport scattering rate.
Although we cannot comment definitely on the Planckian
transport analysis of other systems published in the literature,
the real possibility of a confirmation bias cannot be ruled
out, particularly since the actual precise values of m/n in
Eq. (2) are never quite known in strongly correlated mate-
rials with complicated Fermi surfaces (in our systems, the
Fermi surface is always a circle and the relevant parameters
are well-known) and, additionally, the subtraction of residual
resistivity is always fraught with some errors. We find that
the important physics here is not that there are fine-tuned
situations where h̄/τ = kBT Planckian condition may appear
to be satisfied, but the surprising fact that the super-Planckian
behavior with h̄/τ > kBT seems to be bounded within a fac-
tor of 5 above the Planckian bound, but the sub-Planckian
behavior with h̄/τ < kBT persists to arbitrarily low values of
the dimensionless Planckian parameter �/kBT . The Planckian
bound empirically applying within a factor of 10 in all the
semiconductor transport data we analyzed comes as a real
surprise to us.

For the sake of completeness, we present in Fig. 2 the
original experimental density- and temperature-dependent re-
sistivity for each sample corresponding to the Planckian
results presented in Fig. 1, showing also the extrapolation to
ρ0 used in our analysis. We emphasize that all our Planckian
analysis of the experimental data (Fig. 1) is based entirely
on the measurements and extrapolations shown in Fig. 2.
There are numerous other 2D transport results (mostly on
Si- and GaAs-based doped 2D semiconductor systems) in
the published literature during 1995–2015, showing very
similar results at low temperatures, manifesting strongly T -
dependent ρ(T ) at low temperatures (<10 K) without any
direct electron-phonon scattering seemingly contributing to
the metallic resistivity. All of these 2D systems are rela-
tively dilute, i.e., low-density systems with rather low Fermi
temperatures (5–50 K), and they are high-quality, i.e., ρ0 in
the metallic regime is typically well below h/2e2 ∼ 104 �.
The systems undergo a relatively sharp density-induced effec-
tive metal-insulator crossover at a strongly system-dependent
“critical” density, but our interest is entirely focused on the
effective low-temperature metallic phase at densities above
this critical density, and we have nothing to say in the cur-
rent work about the 2D metal-insulator transition itself or the

FIG. 2. The experimental resistivity data (open circle curves)
corresponding to the Planckian results in Fig. 1 plotted along with the
best-fitted linear curves (dashed curves) at low temperatures. Each
curve corresponds to a different carrier density in the same way as in
Fig. 1.

insulating phase for densities below the critical density.
Planckian physics applies only to the metallic situation.

In discussing Figs. 1 and 2, we start by describing the
generic features of the measured resistivity shown in Fig. 2:
(i) ρ first increases with T , rising rather rapidly and approx-
imately linearly at low temperatures, reaching a peak value,
which, depending on the system and the carrier density, could
be 10–100 % larger than ρ0 at T = 0 within a small overall
temperature increase of a few Kelvins; (ii) the relative value
of the temperature dependence ρ/ρ0 or ρ(T )/ρ0 depends
strongly on the carrier density in the same sample, with the
temperature dependence increasing with decreasing density;
(iii) at high density, the temperature dependence, while being
linear, is very weak; (iv) ρ(T ) decreases with increasing T
beyond the density- and sample-dependent peak, but at higher
densities, where the overall T -dependence is generally weak,
no such peak in ρ appears; (v) the slow decrease of the high-
temperature resistivity with increasing T at lower densities
apparent in some of the results of Fig. 2 is neither a “resistivity
saturation” nor “an insulating phase”—it is simply the tem-
perature dependence of a classical metallic resistivity, where
increasing T beyond the quantum-classical crossover (occur-
ring at low temperatures for low carrier densities) leads to a
slowly decreasing ρ(T ) with increasing T [18]. We note that
the temperature scale for the T -dependent resistivity in Fig. 2
is determined by T/TF with the Fermi temperature TF being
proportional to the carrier density, and thus the temperature
dependence weakens at higher densities. We emphasize that
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at lower carrier densities, manifesting the quantum-classical
crossover, the typical Fermi temperature in these samples is
of O(10 K).

The consequences are that the dimensionless Planckian
parameter �/(kBT ) plotted in Fig. 1 as a function of T
for various densities typically shows a maxima between 0.1
and 5 K depending on the sample and the carrier density,
but the largest peak value [Fig. 1(d)] is only ∼6 whereas
most of the peak values are around unity (or below). Thus,
one inevitable empirical conclusion based on Fig. 1 is that
the extracted scattering rate is bounded from above by kBT
within a factor of 2–6. The largest value of the dimensionless
Planckian happens mostly at some intermediate temperatures
of O(1K ) for Si-based samples [Figs. 1(d)–1(f)], whereas for
GaAs samples [Figs. 1(a)–1(c)] the peak is around O(0.1 K).
At higher T values, the dimensionless Planckian invariably
decreases to strongly sub-Planckian behavior, becoming much
less than unity. We emphasize that the same sample may man-
ifest super-Planckian (� > kBT ), Planckian (� ∼ kBT ), and
sub-Planckian (� < kBT ) behavior at different densities and
temperatures, clearly establishing that the idea of a strange
Planckian metallicity with � ∼ kBT is not a precise well-
defined parameter-independent concept.

What we find to be the most interesting empirical find-
ing in Fig. 1 is that the dimensionless Planckian parameter
in doped 2D semiconductors manifests sub-Planckian (<1)
or Planckian (∼1) or super-Planckian (>1) behavior in the
same sample as the carrier density and temperature are varied.
The highest value of the dimensionless Planckian parameter
is mostly achieved at the lowest carrier density (where also
the T -dependence of the measured resistivity in Fig. 2 is the
strongest), and even this highest value typically is of the order
of only 2–6, never exceeding the Planckian limit of unity by
more than an order of magnitude.

In the next section, we discuss a Boltzmann transport
theory for the empirical results presented in the current sec-
tion, based on the carriers being resistively scattered by
temperature- and momentum-dependent screened Coulomb
disorder (i.e., T -dependent Friedel oscillations).

III. TRANSPORT THEORY

We consider resistive scattering of 2D carriers with a
standard parabolic energy dispersion, with a 2D density of
n, described by an effective mass m and a background lat-
tice dielectric constant κ , from random quenched charged
impurities of effective 2D concentration ni. The Coulomb
coupling between the carriers and the impurities is screened
by the momentum-dependent dielectric screening function of
the carriers themselves, ε(q), where the density (n) and the
temperature (T ) dependence of the screening function are
suppressed for notational convenience. We treat the finite-
temperature and finite-momentum screening in the mean-
field random-phase approximation (RPA), which expresses
the dielectric screening in terms of the electron-electron
long-range Coulomb interaction and the 2D noninteracting
finite-momentum and finite-temperature polarizability func-
tion, 
(q). (This RPA screening theory is essentially the
leading-order theory in 1/N expansion assuming N fermionic
flavors, as used extensively in quantum field theories.) Given

FIG. 3. Feynman diagrams for (a) the screened electron-impurity
interaction (ui), (b) the single-particle impurity Green’s function (G),
and (c) the impurity self-energy (�) within the leading-order Born
approximation. ni, G0, vc, and 
 represent the impurity density, the
bare Green’s function, the bare Coulomb interaction, and the bare
polarizability, respectively. Here we suppress the momentum label
for visual clarity.

the screened electron-impurity interaction, we calculate the
resistivity using the leading-order Boltzmann transport the-
ory treating the screened disorder scattering in the Born
approximation. Figure 3 provides the schematic Feynman di-
agrams for the equivalent screened disorder approximation
for the single-particle Green’s function, but of course we
obtain the full transport coefficient including the appropriate
vertex correction, which is automatically guaranteed by the
Boltzmann transport theory. Since the interaction between
the carriers and the random impurities is finite-ranged here
(“screened Coulomb disorder”), the vertex corrections are
quantitatively important for doped semiconductors, unlike in
normal 3D metals where the electron-impurity scattering is
always s-wave with vertex corrections being unimportant for
the resistivity.

The basic quantity entering the Boltzmann resistivity for-
mula is the thermally averaged scattering rate τ entering
Eq. (1). The main calculation is obtaining the scattering rate,
1/τ , at finite temperatures as a function of carrier density and
temperature (in the leading-order theory the scattering rate
is proportional to the impurity density ni, simply providing
an overall resistivity scale). All the equations going into our
transport theory are shown below. The thermal average of the
scattering time is given by

τ =
∫

dεkτ (εk)εk
(− ∂ f (εk )

∂εk

)
∫

dεkεk
(− ∂ f (εk )

∂εk

) , (3)

where εk = h̄2k2/2m is the energy dispersion with m denot-
ing the effective mass, f (ε) = 1/[1 + exp (ε − μ(T ))/kBT ]
is the Fermi-Dirac distribution function, μ(T ) is the chem-
ical potential with the Fermi energy EF = μ(T = 0), and
τ (εk) is the zero-temperature scattering time, which, in the
leading-order Boltzmann transport theory (Fig. 3), is
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given by

1

τ (εk)
= 2πni

h̄

∑
k′

|ui(k − k′)|2(1 − cos θ )δ(εk − εk′ ). (4)

Here ui(q) = vi(q)/ε(q, T ) is the screened electron-impurity
Coulomb interaction with vi(q) = 2πe2/κq, and ε(q, T ) =
1 − vc(q)
(q, T ) is the RPA screening function, where
vc(q) = 2πe2/κq is the electron-electron Coulomb interac-
tion and 
(q, T ) is the finite temperature 2D polarizability,
which can be obtained by using the zero-temperature polariz-
ability:


(q, T ) =
∫ ∞

0
dε


(q)|εF=ε

4kBT cosh2 ε−μ(T )
2kBT

, (5)

where


(q) = gm

2π h̄2

⎡
⎣1 − �(q − 2kF)

√
q2 − 4k2

F

q

⎤
⎦ (6)

is the zero-temperature static 2D polarizability. Here EF(kF)
is the Fermi energy (wave vector), g denotes the valley and
spin degeneracy, and �(x) is the Heaviside step function.
Finite temperature smoothes the q = 2kF kink in the 2D po-
larizability algebraically even for T � TF, thus contributing
a linear-in-T nonanalytic correction to the resistivity since
2kF backscattering is the dominant scattering contributing to
the resistivity—this 2D-specific thermal effect disappears if
the momentum-independent long-wavelength Thomas-Fermi
approximation is used. This linear-in-T term is not present
in the Sommerfeld expansion or in 3D electrons scattering
from screened disorder—the effect is intrinsic to 2D screening
properties.

This is illustrated in our Fig. 4, where we plot the calcu-
lated finite-temperature 2D polarizability (i.e., the “bubble”
in Fig. 3) as a function of momentum for different val-
ues of T/TF, clearly showing that the thermal smearing of
the 2kF-kink is O(T 1/2) whereas at long wavelength (i.e.,
zero momentum), defining the Thomas-Fermi screening, the
thermal smearing is exponentially weak, clearly showing
that a long-wavelength screening approximation, the standard
approximation in semiconductor physics, would completely
miss the strong temperature dependence observed experimen-
tally. We also show the 2D polarizability in the real space,
bringing out the strong temperature dependence of the Friedel
oscillations in screening associated with the strong thermal
smearing of the 2kF-kink in the momentum space. These
strongly temperature-dependent Friedel oscillations scatter
carriers, leading to the strong temperature dependence of the
resistivity arising from the strong temperature dependence of
the effective screened disorder. The effect is completely lost
in any long-wavelength screening approximation, but 2kF-
scattering is the most important resistive scattering process,
and hence the temperature dependence of 2kF screening is
crucial.

It turns out that the above equations allow for low-
temperature (T � TF) and high-temperature (T � TF) an-
alytical expressions for the 2D resistivity by appropriately
expanding the finite-temperature screening function. Note that
the analytical expansion is much more sophisticated than

FIG. 4. (a) Finite-temperature 2D polarizability as a function of
(a) wave vector for various temperatures T/TF = 0.0, 0.1, 0.2, 0.5,
1.0, and as a function of (b),(c) temperature at a fixed wave vector
of (b) q/kF = 0.0 and (c) q/kF = 2.0. The insets in (b) and (c) show
the zoom-in of the low-temperature region, comparing the numerical
results (black solid lines) with the known analytical asymptotic forms
(red dashed lines) given by 
(q = 0, T )/D0 = 1 − exp(−TF/T )
and 
(q = 2kF, T )/D0 = 1 − √

π/4(1 − √
2)ζ (1/2)

√
T/TF. (d)–

(f) Finite-temperature 2D polarizability in real space as a function
of (d) distance r for various temperatures T/TF = 0.0, 0.1, 0.2, 0.5,
1.0, and as a function of (e),(f) temperature at a fixed distance of
(e) kFr = 5/4π and (f) kFr = 7/4π , showing a strong temperature
dependence in the low-temperature regime.

the simple Sommerfeld expansion, which would always give
O(T 2) correction at low temperatures arising from the expan-
sion of the Fermi functions. The thermal expansion involves
careful consideration of the nonanalyticity in the 2D polariz-
ability function at q = 2kF, because of the strong 2kF kink as
a function of momentum in the 2D polarizability arising from
the Heaviside step function in Eq. (6). The analytical results
are

ρ(T � TF) ≈ ρ0

[
2x

1 + x

( T

TF

)
+ 2.646x

(1 + x)2

( T

TF

)3/2]
,

ρ(T � TF) ≈ ρ1

(TF

T

)[
1 − 3

√
x

4

(TF

T

)3/2]
, (7)

where ρ0 = ρ(T = 0), ρ1 = (h/e2)(ni/n)(2πx2/g2), and x =
qTF/2kF, with qTF = 2me2/κ h̄2 as the 2D Thomas-Fermi
screening wave number. The key dimensionless parameters
controlling the temperature dependence of resistivity are x =
qTF/2kF and T/TF—for low (high) density, both are large
(small) since TF and kF are proportional to n and n1/2,
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respectively (and qTF is independent of density in 2D), leading
to strong (weak) temperature dependence.

Before presenting our full numerical transport results for
various 2D semiconductor systems (without any expansion in
T/TF), we first provide an analytical Planckian analysis of the
low-temperature results establishing that the analytical result,
rather amazingly, is consistent, within a factor of 4, with the
Planckian bound conjecture. Using Eq. (1) and the leading
linear-order term of Eq. (7), we write

ρ(T ) = ρ–ρ0 = ρ0
2x

1 + x

T

TF
. (8)

We note that ρ(T ) is proportional to ρ0, thus increasing
linearly with disorder ni since ρ0 is proportional to ni in
the leading-order transport theory. Since we are interested in
the metallic transport property and in the maximum possible
value of metallic ρ(T ) in order to test the Planckian conjec-
ture, we use the Ioffe-Regel-Mott (IRM) criterion choosing
the maximum possible metallic value of ρ0 to be the 2D IRM
limit of h/e2 when the mean free path equals 1/kF. Putting
ρ0 = h/e2, we automatically obtain the highest possible value
of the dimensionless Planckian parameter (h̄/τ )/(kBT ) since
the highest ρ0 implies the highest ρ(T ), which, by turn, then
implies the highest h̄/τ . Setting ρ0 = h/e2 and denoting the
corresponding finite-temperature scattering time as τmin (im-
plying that this is the maximum allowed scattering rate 1/τmin,
which is consistent with a 2D metal) and doing simple algebra,
we obtain

h̄/τmin = 4kBT . (9)

Thus, the maximum possible scattering rate in our theory
is limited from above by 4kBT , indicating that the dimension-
less Planckian cannot be much larger than kBT . If we take
into account the fact that our leading-order Boltzmann theory
itself most likely breaks down substantially below the strong
scattering IRM limit, we conclude that

h̄/τ (T ) < 4kBT, (10)

which may be construed as the modified Planckian hypoth-
esis for the transport problem under consideration here, i.e.,
the temperature-dependent 2D resistivity limited by screened
Coulomb disorder scattering. We emphasize that although we
use the IRM criterion on τ0 to obtain the basic inequality on
the scattering rate, the limit imposed on the corresponding
T = 0 scattering rate is simply that the Fermi surface is well-
defined even in the presence of disorder scattering. Using the
IRM limit on ρ0 itself, we get the following inequality for the
T = 0 scattering rate τ0:

h̄/2τ0 < EF, (11)

which is nothing other than the IRM criterion defining co-
herent quasiparticles, i.e., with disorder-induced T = 0 level
broadening (h̄/2τ0) being less than the Fermi energy. Thus,
the generic assumption of coherent quasiparticle transport
logically leads to a Planckian bound (within a factor of 4)
on our theoretical transport scattering rate. This shows that
the often-claimed uncritical assertion that the saturation of
the Planckian bound implies incoherent nonquasiparticle and
non-Fermi-liquid transport cannot be generically correct since
it fails for our system where the bound is violated by a factor

of 4 at the limit of coherent transport. Of course, one could
argue that a factor of 4 is not significant for IRM-type dimen-
sional arguments [1].

We mention that the correction to the Planckian inequal-
ity of Eq. (10) arising from the next-to-leading-order term
of O((T/TF)3/2) in Eq. (7) is rather small for T < TF since
it is bounded by 1.323/(1 + x), and x � 1 for any strong
T -dependence to manifest itself anyway. This provides an
analytical explanation for why the Planckian bound applies
to our numerical results within a factor 5 agreeing with the
corresponding experimental results in Fig. 1 where the bound
is always satisfied within a factor of 6. These theoretical
arguments obviously apply only to the 2D doped semicon-
ductor Planckian behavior because it is not known if similar
consideration would apply to other Planckian metals studied
in the literature.

We find this analytical derivation of an effective Planck-
ian conjecture for our transport phenomenon to be a rather
unexpected result since the IRM criterion is a T = 0 con-
straint for metallic transport, which has nothing to do with
temperature, but nevertheless the finite-temperature scattering
rate is absolutely constrained from above by 4kBT based on
the IRM constraint imposed on the T = 0 resistivity. One
may be concerned that this upper bound argument is based
on the low-temperature analytic result [Eq. (8)], and thus it
cannot be ruled out that the constraint is not valid at higher
temperatures with h̄/τ > 4kBT at T > TF. In the subsequent
discussions below, however, we show numerically (without
assuming T � TF) that at all temperatures the Planckian pa-
rameter is of the order of only 2–4 in agreement with our
modified Planckian hypothesis discussed above by carefully
analyzing the high-temperature analytical results and present-
ing the full numerical results.

We mention one other aspect [see the second part of Eq. (7)
for T � TF] of our analytical results in approximate agree-
ment with experiments on the high-temperature side, where
ρ(T ) decreases with increasing T in an approximately 1/T
manner in accordance with the experimental finding presented
in Sec. II. The fact that ρ(T ) increases linearly in T for
T � TF and decreases linearly for T � TF means that there
is a quantum-to-classical crossover in the 2D transport around
T ∼ TF, where ρ(T ) should have a local maxima. This max-
imum value of ρ(T ) is the most important regime for the
validity or not of the Planckian hypothesis. Actual numerics
shows that this resistivity maximum occurs roughly around
TF/3 with ρ(T ) increasing (decreasing) with T below (above).

In Fig. 5(a)–5(f), we present [by solving Eqs. (3)–(6)]
the full numerically calculated dimensionless Planckian pa-
rameter as a function of temperature (T ) and density (n)
corresponding to the systems shown in Figs. 1 and 2 [i.e.,
using the theoretical materials parameters corresponding to
the experimental systems in Figs. 1(a)–1(f) and 2(a)–2(f)]. We
also show in each panel of Fig. 5 the results corresponding to
the asymptotic low-T (high-T ) analytical theory, which agree
with the full numerical results, deviating from the analytical
theory at higher (lower) T (n). Our theory includes the realistic
(but nonessential) details of each experimental sample, such
as the appropriate valley degeneracy and the quasi-2D width
of each 2D system (which typically suppresses the effective
interaction through a form factor arising from the confinement
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FIG. 5. Planckian parameter numerically calculated as a function
of T using the Boltzmann transport theory and the material param-
eters corresponding to the experimental systems in Figs. 1(a)–1(f)
and 2(a)–2(f). The dashed curves represent the low- and high-T
asymptotic results [Eq. (7)], which agree well with the full numerical
results (solid curves). Each curve corresponds to a different carrier
density in the same way as in Fig. 1.

wave functions), and we assume, to keep the number of pa-
rameters a minimum, that the charged impurities are randomly
distributed in the 2D layer with an effective 2D density of
ni (relaxing this approximation leads to a better quantitative
agreement with the experiment at the cost of adding more
unknown parameters, which is unnecessary in the context of
the current work). We fix each value of ni (which only defines
the overall scale, not the T - and n-dependence) by obtaining
the best fit with the experiment at the lowest temperature.
Thus the random impurity density, ni, defining the overall
resistivity scale, but not its temperature dependence at all, is
the only unknown parameter of our model.

We summarize the salient features of our theoretical results
presented in Fig. 5: (i) The dimensionless Planckian parame-
ter mostly satisfies the Planckian conjecture, within a factor of
10, being of O(1 − 10) or less quite generally; (ii) when the
parameter exceeds unity, it is only by a factor of 2–4, never by
more than an order of magnitude; (iii) the theoretical results
agree generically qualitatively, and sometimes semiquantita-
tively, with the experimental results of Fig. 1 (this agreement
can be made quantitative by using an impurity distribution
in the quasi-2D confinement direction, thus adding more pa-
rameters to the model in addition to ni); (iv) in general, the
Planckian parameter is the largest at the lowest densities [and
at intermediate temperatures ∼O(TF/3)] for all samples with

FIG. 6. Feynman diagrams for (a) the screened Coulomb
interaction(w), and (b) the RPA self-energy. The notations are the
same as in Fig. 3.

the behavior being sub-Planckian at higher densities and lower
temperatures (again in complete agreement with the exper-
imental data); (v) similar to the experimental findings, the
theoretical ρ(T ) is linear only for T � TF, deviating from
linearity at higher temperatures, but the linearity within the
screening theory persists all the way to T = 0.

We mention in this context that our leading-order Boltz-
mann theory, while being consistent qualitatively with the
experimental results everywhere, becomes less valid at lower
densities since the theory is exact in the n � ni regime and
fails completely for n < ni. The results shown in Fig. 5 obey
the n � ni criterion necessary for the applicability of our
Boltzmann theory, and the fitted values of ni are consistent
with the specific materials considered in each case.

IV. SELF-ENERGY AND INELASTIC
SCATTERING RATE

In this section, we investigate the Planckian conjecture
for the inelastic scattering rate arising from electron-electron
Coulomb interaction. This is unrelated to any transport con-
siderations in our systems, and the motivation is that inelastic
scattering from electron-electron interactions may be a natural
quantity for Planckian considerations [2]. We use the RPA
involving the infinite series of polarization bubble diagrams
(Fig. 6) to evaluate the imaginary part of the self-energy,
which is given by

Im�(k, ω, T ) =
∫

d2q

(2π )2
[nB(h̄ω − ξk+q) + nF(−ξk+q)]

× vc(q)Im

[
1

ε(q, ξk+q − h̄ω, T )

]
, (12)

where ξk = εk − μ(T ), and nF (B) denotes the Fermi (Bose)
distribution function. It should be noted that the Coulomb
interaction is dynamically screened by the screening function
ε(q, ω, T ) = 1 − vc(q)
(q, ω, T ) varying as a function of the
frequency ω, whereas the transport calculation involves only
the static dielectric function with no dependence on ω. Similar
to the static case, we calculate the finite-temperature dynamic
polarizability 
(q, ω, T ) using the zero-temperature dynamic
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FIG. 7. (a) Finite-temperature scattering rates [�(T ) = h̄/τee(T )] arising from electron-electron Coulomb interaction numerically calcu-
lated within the RPA along with the low-T analytical asymptotic results (dashed line) for various values of rs = 0.1, 1.0, 2.0, and 6.0. The inset
shows the zoom-in of the low-temperature region, showing that the numerical and asymptotic results are in good agreement. (b) The power-law
exponent p of the numerically calculated scattering rates in (a), which saturates from 2 to 0.5 with increasing T from 0 to 20TF regardless of
the value of rs. (c) The Planckian parameter obtained using the results in (a). Here we use the bare electron mass with unity dielectric constant
(κ = 1).

polarizability given by [45]


(q, ω) = − m

π
+ m2

πq2

⎡
⎣

√(
ω + q2

2m

)2

− 2EFq2

2m

−
√(

ω − q2

2m

)2

− 2EFq2

2m

⎤
⎦, (13)

and Eq. (5). We note that the self-energy of Eq. (12), as
detailed in Fig. 5, is the leading-order self-energy in the
dynamically screened electron-electron Coulomb interaction,
which is exact in the high-density limit. Within the on-shell
approximation, the inelastic Coulomb scattering rate at the
Fermi surface at finite temperature T is given by

h̄/τee(T ) = 2 Im�(kF, ξkF , T ). (14)

It has recently been shown that at low temperatures, T � TF,
the Coulomb scattering rate asymptotically analytically be-
haves as [46]

h̄/τee(T ) = π

4

T 2

TF
ln

√
2rsTF

T

+ π

12

(
6 + ln 2π3 − 36 ln A

)T 2

TF

− 7ζ (3)√
2π

T 3

rsTF
(15)

exhibiting the well-known h̄/τ (T ) ∼ T 2 ln T behavior in the
T � TF limit [47]. Here, ζ (s) is the Riemann-zeta function,
A = 1.282 43 is Glaisher’s constant, and rs is the dimen-
sionless Coulomb interaction parameter characterizing the
interaction strength defined as rs = κme2/h̄2√πn, with n
being the carrier density. The RPA theory is exact in the
high-density or equivalently low-rs limit.

Figure 7(a) presents the numerically calculated scattering
rate as a function of temperature for various values of rs

along with the low-temperature asymptotic curves [Eq. (15)],

showing good agreement between the full numerical and
asymptotic results. In Fig. 7(b) we plot the power-law expo-
nent of the scattering rate numerically calculated using p =
d ln �/d ln T . Note that p varies from 2 to 0.5 with increasing
T from 0 to 20TF, implying that the Planckian parameter
defined as �/kBT linearly increases as a function of T for
T � TF, and decreases as 1/

√
T for T � TF, resulting in

local maxima in the intermediate temperature regime around
T ∼ TF, as shown in Fig. 7(c) presenting the Planckian param-
eter for various values of rs. It should be noted from Fig. 7(c)
that the maximum of the Planckian parameter is larger for
stronger interaction (i.e., larger rs), but is of the order of only
2–4 approximately obeying the Planckian hypothesis for the
typical range of rs values of usual two-dimensional materials
(rs � 6). For much larger rs, i.e., very strongly interacting
systems with rs � 1, the dimensionless Planckian parame-
ter exceeds unity by an increasingly larger factor, but the
RPA theory becomes increasingly unreliable quantitatively for
large rs, and we are not sure whether any significance should
be attached to our theory for rs � 1. We mention that our RPA
theory is precisely the leading order 1/N theory in quantum
field theories, where N is the number if fermion flavors, which
turns out to be equivalent to the leading-order theory in rs also
for an interacting Fermi liquid.

We point out that just as the asymptotically low-T (� TF)
analytical behavior of the 2D inelastic scattering rate goes
as T 2 ln T [Eq. (15)], it is easy to show that high-T (� TF)
behavior goes as linear in T 1/2, simply because at high tem-
peratures (� TF) the Fermi-Dirac statistics for the electrons
becomes a Maxwell-Boltzmann statistics. Thus, both our low-
T and high-T behaviors of the numerically calculated inelastic
scattering rates agree precisely with theoretical analytical ex-
pectations.

We should add that our use of the mass-shell self-energy
approximation within the RPA diagrams (of Fig. 5) allows us
to neglect the inclusion of any renormalization factor Z in the
calculation of the scattering rate, which, in principle, should
be the energy-width of the quasiparticle spectral function in
the context of Planckian considerations [2]. It turns out that
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FIG. 8. Experimental Planckian parameters obtained using the
experimentally measured Coulomb scattering rates for GaAs present
in Fig. 3 of Refs. [47,52]. Here �(T ) = h̄/τ (T ), where τ (T ) is the
Coulomb lifetime.

the calculation of the self-energy in the leading-order infinite
ring diagram approximation is more consistent with the mass-
shell self-energy along with neglecting the renormalization
factor because this provides an approximate cancellation of
the higher-order diagrams in the theory [48–50]. The full 2D
interacting spectral function has recently been calculated in
depth and the quantitative difference between inclusion or not
of the Z-factor is less than a factor of 2, and therefore for our
Planckian considerations, whether the renormalization factor
is included or not is unimportant [51].

We conclude this section by presenting experimental
Planckian parameters for the Coulomb scattering rate in
Fig. 8, which we obtain using the lifetime of 2D GaAs mea-
sured through inelastic tunneling spectroscopy in Ref. [52].
It is important to note that the Planckian parameter linearly
increases with increasing T obeying the Planckian hypothesis
with h̄/τ � kBT , in agreement with our theoretical Planckian
analysis discussed in this section. These experimental inelas-
tic tunneling scattering rates approximately agree with the
RPA theory used in our work [47].

V. DIMENSIONAL ANALYSIS

Our experimental analyses (Sec. II) as well as theo-
retical analyses involving transport (Sec. III) establish the
approximate validity of generalized (i.e., within an order
of magnitude) Planckian bounds on scattering rates in 2D
semiconductors. We discuss some intuitive dimensional argu-
ments, which are neither rigorous nor complete, but should
serve as a motivation for future thinking on Planckian, which
is currently an empirical finding.

As for the temperature-dependent inelastic scattering rate
due to electron-electron interactions itself, as mentioned al-
ready above, the energy-time uncertainty relation provides
a crude “explanation” since the Fermi surface becomes
“diffuse” by kBT at finite temperatures, and any energy
uncertainty arising from inelastic scattering should be ap-
proximately bounded by kBT , leading to �ee < kBT as found
in Sec. IV above. Obviously such an uncertainty-relation-

induced inequality is only dimensionally applicable, and can
at best be valid within an order of magnitude.

The above uncertainty argument, however, says nothing
about transport, unless the resistive scattering itself arises
from electron-electron interaction induced inelastic scatter-
ing, which is most certainly not the case for the systems of
our interest in the current work (and also not for phonon-
induced generic linear-in-T resistivity in all normal metals).
We believe that transport measurements themselves can only
extract a momentum relaxation rate associated with resistive
scattering, which in general says nothing about any underlying
inelastic scattering. So, we need a different heuristic argument
in order to understand the empirical validity (within an order
of magnitude) of the Planckian bound for the temperature-
dependent transport in doped semiconductors.

One possibility, already alluded to in Sec. III’s analytical
arguments, is that the approximate transport Planckian bound
arises from the combination of two complementary definitions
of a metal: the existence of coherent quasiparticles (Ioffe-
Regel-Mott) criterion, � < EF, where � = h̄/2τ with τ as the
resistive momentum relaxation rate, and the thermal constraint
that temperature kBT should not exceed the Fermi energy by
too large a factor in a quantum metal. EF is given in 2D (for a
circular Fermi surface) by

EF = πnh̄2

m
, (16)

which, combined with Eq. (11) for the resistivity immediately,
gives

ρ <
h̄

e2
. (17)

This is of course the Ioffe-Regel-Mott criterion limiting the
2D resistivity below the resistance quantum h/e2 for the ex-
istence of a metal. Now, we write the scattering rate quite
generally as

h̄/τ = αkBT, (18)

leading immediately to [using Eq. (2)]: ρ =
π h̄2αkBT/(h̄e2EF) < h/e2, which then gives, after
simplifying both sides,

EF >
αkBT

2π
. (19)

If we now demand that a quantum metal is constrained to
EF < kBT , we get

α < 2π, (20)

which is essentially our generalized Planck bound for trans-
port. While we do not claim this line of reasoning to be
anything more than a heuristic dimensional argument, it is
consistent with the finite-temperature transport scattering rate
to be constrained from above by a O(1 − 10) based simply
on the requirement that the electron system preserves a well-
defined Fermi surface (which is the fundamental definition
of a metal) both against momentum decoherence and ther-
mal broadening. This dimensional argument hints that the
empirical validity of the Planckian bound may simply be a
manifestation of the dual facts that the natural scales for the
quasiparticle momentum and energy in a Fermi system are
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Fermi momentum and Fermi energy, and this leads to a natural
scale for the transport scattering rate being of the order of
kBT . It would be meaningful to try to make this dimensional
argument more rigorous, although that may turn out to be a
challenge in strongly coupled disordered interacting systems
with no natural small for any perturbative expansion to work.

VI. CONCLUSIONS

We find that the strong observed temperature dependence
of the low-temperature (<10 K) resistivity in high-quality 2D
doped semiconductors follows, both experimentally (Sec. II)
and theoretically (Sec. III), sub-Planckian (h̄/τ < kBT ),
Planckian (h̄/τ ∼ kBT ), and super-Planckian (h̄/τ > kBT )
behaviors as a function of carrier density, with the super-
Planckian behavior manifesting at lower carrier densities
where the temperature dependence of the resistivity is the
strongest and the resistivity itself is the largest (but still be-
low the Ioffe-Regel-Mott limit to ensure metallicity). Two
noteworthy features of our results are that (i) the violation
of the Planckian bound in the super-Planckian regime is
always rather modest, within a factor of 2–6 (i.e., of the
order of 10 or less), and (ii) the super-Planckian behavior
manifests not only at lower carrier densities, but also at a
rather high effective dimensionless temperature (T/TF ∼ 1/3
or so, a regime totally inaccessible in normal metals). In
fact, for all densities the dimensionless Planckian parame-
ter (h̄/τ )/(kBT ) is at its maximum at a finite temperature
∼T/TF ∼ 1/3, just before the quantum-classical crossover in
the resistivity leading to a decreasing resistivity (∼1/T ) with
increasing temperature. The temperature dependence here
arises not from electron-phonon interactions (which would
be operational in these systems for T > 10–20 K typically)
or from umklapp or Baber electron-electron scattering, but
from a combination of disorder and indirect electron-electron
interactions through the screening of the disorder (or equiva-
lently from the temperature-dependent Friedel oscillations).
We emphasize that the temperature dependence disappears
if the electron-electron interaction is set to zero, thus using
unscreened disorder in the theory.

Our empirical findings based on a detailed quantitative
analysis (Sec. II) of the temperature- and density-dependent
experimental 2D transport data in different materials are
supported by our detailed transport theory (Sec. III) based
on resistive scattering by finite-temperature momentum-
dependent screened Coulomb disorder (or equivalently by
the Friedel oscillations associated with the screened charged
impurity potential). The temperature-dependence in fact goes
away if the theory uses long-wavelength Thomas-Fermi
screening without the 2kF-kink in the T = 0 2D polarizability.

While the scattering rate 1/τ for transport is a momentum
relaxation rate, we also consider (Sec. IV) theoretically the
temperature- and density-dependent inelastic scattering rate
1/τee arising from the many-body electron-electron Coulomb
interaction, which is momentum-conserving in our theory
since a doped semiconductor does not allow umklapp scat-
tering. The inelastic electron-electron interaction scattering
rate is simply given by the imaginary part of the 2D self-
energy, and is conceptually qualitatively different from the
1/τ transport scattering rate defining the resistivity in the

transport theory (Sec. III). We find that 1/τee also obeys the
Planckian bound of being within a factor of 10kBT in general,
with the peak value of the dimensionless Planckian param-
eter, (h̄/τee)/(kBT ), also occurring around T ∼ TF as in the
transport problem. We find it intriguing that both our (energy-
conserving) screened disorder-induced transport scattering
rate and our (momentum-conserving) interaction induced
inelastic scattering rate approximately obey the Planckian
bound, with the super-Planckian behavior being only a modest
factor of 2–6, happening only at lower densities and higher
temperatures, i.e., around T ∼ TF (a lower density implies
a lower TF). We emphasize that this approximate Planckian
behavior we discover in 2D doped semiconductor properties
applies to both theory (Secs. III and IV) and experiment
(Secs. II and IV). Our Planckian analysis of the experimental
data establishes an empirical applicability of the Planckian
hypothesis to 2D semiconductor transport with a modest
super-Planckian behavior at low densities around T ∼ TF, and
our theory, for both the momentum relaxation rate and the in-
elastic scattering rate, indicates that the Planckian hypothesis
applies (within an order of magnitude) theoretically over es-
sentially all densities and temperatures in the metallic regime
for 2D semiconductors. Why? Why is the Planckian conjec-
ture apparently approximately valid in our systems (involving
different 2D semiconductor materials) over all metallic ranges
of density/temperature?

The answer to the question of why the Planckian bound
applies, even approximately, to any experimental (or even
physical) properties is unclear at this point in spite of many
experimental reports of its empirical validity in transport
properties of many materials, starting with the important ob-
servation by Bruin et al. [1]. The reverse is, in fact, true—a
compelling recent theoretical analysis by Lucas [53] shows
that no such bound should exist for the temperature-dependent
resistivity. In particular, temperature defines thermodynamic
equilibrium whereas transport is necessarily a dissipative
kinetic property, where temperature enters as a parameter
defining the distribution functions, so why there should be
a fundamental transport bound defined by kBT is unclear. It
is also an obvious fact that the bound does not apply to the
residual disorder-induced resistivity at T = 0 that all metals
(ignoring any superconductivity) must have. It is therefore
suggested [2] that any Planckian bound must not include any
elastic scattering since at T = 0 only elastic scattering (by
disorder) can contribute to transport. This is, however, in sharp
contrast with the most established empirical Planckian behav-
ior observed routinely in normal metallic resistivity (>40 K),
which was already emphasized in Ref. [1] and has been well-
known since the 1950s [54], where a linear-in-T resistivity
ranging from sub-Planckian (e.g., Al) to super-Planckian (e.g.,
Pb) manifests itself arising from the quasielastic electron-
phonon scattering in the equipartition regime above the
Bloch-Grüneisen temperature [15]. The Planckian behavior of
phonon-induced metallic resistivity follows from the simple
fact that the corresponding scattering time, τep, follows the
simple formula

h̄/τep = 2πλkBT, (21)

in the phonon equipartition regime, with λ being the di-
mensionless electron-phonon Eliashberg-McMillan coupling
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constant. It just so happens that λ in common metals lies typ-
ically between 0.1 and 1.5. But, even for this well-established
phonon scattering induced linear-in-T metallic resistivity, the
Planckian bound seems to apply approximately (within a fac-
tor of 10) for all metals since the metallic electron-phonon
coupling constant seems empirically to never exceed 1.5, thus
ensuring that the Planckian bound is obeyed always within
a factor of 10 or so in all metals. It has been emphasized
that the phonon-induced high-temperature electronic resistiv-
ity could, in principle, be anything as long as the coupling
is large [15] with the transport theory imposing no bound at
all, but empirically this does not seem to happen with the
electron-phonon coupling never being much larger than unity.
Why such a Planckian bound applies for the electron-phonon
coupling remains unclear, although the fact that this happens
is empirically well-established. It has recently been specu-
lated that the observed empirical limit on the electron-phonon
coupling (i.e., λ < 1.5) may be related to a materials stability
bound [55]. This speculated lattice stability bound, however,
has no relevance to our findings in the current work where
phonons do not play any role.

The strongly temperature-dependent resistive scattering
in doped 2D semiconductors considered in our work arises
from a temperature-dependent effective disorder, although
the bare disorder, arising from random quenched charged
impurities, is temperature-independent, with the temperature
dependence in the effective disorder arising from the anoma-
lously strongly temperature-dependent finite-momentum 2D
polarizability function controlling the screening of the bare
disorder. The scattering in our case is an energy-conserving
elastic scattering, as appropriate for quenched disorder, caus-
ing a momentum relaxation in spite of the strong temperature
dependence. We emphasize that the temperature dependence
disappears in our theory if we suppress the electron-electron
interaction or the electronic polarizability so that the disorder
is unscreened, and thus the temperature dependence arises
entirely from the indirect effects of interaction. The signif-
icant point is that the temperature dependence of resistivity
here, in spite of arising from elastic scattering, is strong and
asymptotically linear down to arbitrarily low temperatures,
with nothing strange or non-Fermi-liquid about it except in
the sense of a trivial non-Fermi-liquid as defined in [24]. This
should serve as a cautionary note to numerous experimental
claims in the literature that a linear-in-T resistivity extending
to low temperatures necessarily implies a non-Fermi-liquid
strange metal. The high-quality low-density doped 2D semi-
conductors are a manifest counterexample to such strange
metal assertions.

The Planckian properties of our systems have some simi-
larities and some differences with phonon-induced Planckian
behavior of normal metals: (i) The resistive scattering of
both is energy-conserving and quasielastic; (ii) both mani-
fest a strong temperature dependence; (iii) both our systems
and metals manifest sub-Planckian, Planckian, and super-
Planckian behaviors, depending on the metal (i.e., the
λ-dependence), and depending on the materials system and
carrier density of the 2D semiconductor (i.e., the qTF/2kF-
dependence); (iv) the T -dependence in our case is induced
by 2D screened disorder, in contrast to normal metals where
the T -dependence is induced by phonon scattering in the

equipartition regime; (v) our T -dependence is a low-T phe-
nomenon set by the Fermi temperature (T < TF), whereas
the T -dependence in normal metals is a high-T (> TBG)
phenomenon set by the Bloch-Grüneisen (TBG) or Debye
temperature; and (vi) the phonon-induced T -dependent resis-
tivity is essentially linear in the equipartition regime T > TBG,
whereas our 2D resistivity is linear only for low temperatures,
T � TF.

We mention that the Planckian bound, to the extent it ap-
plies, should not be constrained to metals manifesting just an
approximate T -linear resistivity, since such a linear constraint
is meaningless in solid-state physics as no resistivity can re-
ally be precisely linear (the power law may be very close to
unity over a limited range of T , but never precisely unity).
In fact, careful recent resistivity measurements in graphene
layers show that the strange Planckian behavior persists for
temperature power laws different from unity [56]. Although
the Planckian bound is often discussed in the context of
“strange metals” manifesting a large linear-in-T resistivity
over a range of temperature, the two concepts are distinct
and have nothing to do with each other (except perhaps in
a negative sense in that the most established generic example
of a Planckian behavior is found in the linear-in-T resistivity
of normal metals, a most nonstrange situation, arising from
phonon scattering in the equipartition regime [57]). Thus, we
define the Planckian bound as a constraint on τ (T ), where
h̄/τ (T ) � αkBT , where α is a dimensionless number of order
1–10, independent of whether the scattering time τ is strongly
or weakly dependent on T . In our case (Secs. II and III), the re-
sistivity is indeed linear in the asymptotic low-T regime T �
TF, but in reality the low-density 2D systems have rather low
values of TF, and therefore the temperature-dependent resistiv-
ity often departs from linearity with increasing T (eventually
decreasing with increasing T beyond the quantum-classical
crossover regime). Our theory for the inelastic scattering has
the explicit analytical form that 1/τee goes as T 2 ln T (T 1/2)
for T � (�)TF, but the Planckian hypothesis seems to apply
at all temperatures approximately.

In the recent Planckian literature, a great deal of signifi-
cance is placed on the coefficient α being unity (i.e., defining a
mysterious and mystical entity, the so-called Planckian metal).
We do not agree with this assertion of α = 1 being of deep
significance as our results show that α could vary from being
� 1 to being ∼1–10 in the same sample depending on the
carrier density (which cannot be varied in situ in a single
sample in strongly correlated materials, each sample coming
with its own fixed, and essentially unknown, carrier density).
If we fine-tune and choose some narrow postselected density
and temperature range, we get an effective α ∼ 1, but this is
simply confirmation bias of varying parameters until we find
what is being looked for. In addition, α = 1 as a strict re-
quirement for a Planckian metal defines a set of measure zero
since there is no claim that α is somehow an invariant. So any
measured α would necessarily depart from unity, particularly
since obtaining α from transport measurements necessitates
a precise knowledge of n/m, which is simply unavailable in
strongly correlated materials. Although we do not believe that
much significance can be attached to the recent claims about
α precisely being unity as being special, we are surprised
that our results for 2D semiconductors exhibit the fact that,
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although α can be much less than unity (“sub-Planckian”),
it is never much larger than unity with the super-Planckian
behavior being constrained by α < 10 always. Why?

In this context, we mention that in direct conflict with
recent fine-tuned claims of hole-doped cuprates having α ∼ 1,
and thus being strange Planckian metals, older direct optical
measurements of α give results consistent with our conclu-
sion that generically α could take values in the range of
1–3 in the super-Planckian regime with there being nothing
special about α ∼ 1 except in a fine-tuned sense. These op-
tical measurements give α = 1.57 (LSCO), 2.5 (YBCO), and
1.97 (BSCCO) [58–60]. In addition, recent measurements in
electron-doped cuprates have reported [13] α ∼ 1–3 in the
super-Planckian regime, again showing, consistent with our
finding, that any empirical bound on α is � 10, and not 1.
This is also consistent with normal metals where the largest
value (for Pb) of α is α ∼ 9, although many metals exhibit
sub-Planckian behavior with α < 1. We believe that our work
indicates that the theoretical focus should shift to why α is
not arbitrarily large and remains bounded approximately by
10 rather than focusing on the misleading fine-tuned claims
of α ∼ 1 being a generic strange metal of particular interest
[3–6].

The empirical validity of the generalized Planckian con-
jecture (with the super-Planckian violation of the bound being
always less than 10) in the transport properties of our systems
(Secs. II and III) as well as in other systems [2] remains a
mystery, and the possibility that it is a coincidence cannot
be ruled out. (We have ruled out the bound being unity, i.e.,
α = 1, as a fine-tuned confirmation bias since α > 1, but <10,
appears to be the generic super-Planckian behavior in many
systems, including the ones studied in the current work—of
course, the sub-Planckian α < 1 situation is the most generic
situation.) One theoretical bound, which has attracted consid-
erable attention, is associated with quantum chaos and relates
a Lyapunov exponent, 1/τL, for the rate of growth of chaos in
thermal quantum systems with a large number of degrees of
freedom [61]:

h̄/τL � kBT . (22)

This bound is connected with the fact that chaos can be diag-
nosed using an out-of-time-order correlation (OTOC) function
closely related to the commutator of operators separated in
time [62]. But OTOC and the corresponding Lyapunov expo-
nent 1/τL do not have any established (or even speculated)
relationship with the transport scattering rate, and therefore
the implication of this conjectured OTOC bound to Planckian
transport bound considerations is unclear [63]. Thus, the em-
pirical validity of the (approximate or generalized) Planckian
transport bound is not explicable by quantum chaos consider-
ations. There are speculations, none of which are convincing
at all, that the Planckian conjecture may be related to the
holographic viscosity bound in quantum field theories, but the
applicability of such holographic duality to concrete experi-
mental condensed-matter problems is purely speculative and
unconvincing [64].

One can construct artificial theoretical models that lead to
linear-in-T strange metal Planckian behaviors simply by em-
bedding this physics intrinsically into the model without any
microscopic rationale. The most well-known of these model is

the so-called “marginal” Fermi liquid model [65], where one
just assumes ad hoc that the imaginary part of the electron
self-energy goes as linear in T , and all scattering is umklapp,
breaking momentum conservation, so that the scattering rate
goes precisely as kBT , and the system is marginally not a
Fermi liquid. This is, however, assuming the result we want,
and in spite of more than 30 years of efforts since the original
introduction of this marginal Fermi liquid model in the context
of the hole-doped cuprates, no microscopic theoretical justifi-
cation exists for how such a singular self-energy, in contrast
to the well-known T 2 ln T behavior, could arise in 2D and
why the corresponding resistivity should be given precisely
by this imaginary part of the single-particle self-energy ig-
noring all momentum dependence in the problem. Without
any microscopic justification, such a marginal Fermi liquid
model is simply an assertion, and not a theory, and cannot be
taken seriously in the context of experimental findings. There
was important theoretical work establishing non-Fermi-liquid
behaviors of 2D fermions coupled to charged black holes [66]
using AdS/CFT correspondence [67] as well as 2D fermions
coupled with U(1) gauge fields [68]. While these works are
important proofs of principle for the theoretical existence
of 2D non-Fermi-liquid behavior, their connections to any
physical 2D materials systems in condensed-matter physics
have remained completely elusive in spite of many efforts.
There is impressive recent theoretical work [69] establishing
that special classes of theoretical quantum critical 2D metals
with completely spatially random fluctuations in the fermion-
scalar Yukawa couplings may lead to linear-in-T resistivity
by construction, but these results do not manifest any generic
Planckian behavior with the resulting α � 1 in general (with-
out fine-tuning). Of course, linear-in-T resistivity with α < 1
arises generically in metals with weak electron-phonon cou-
pling and in our screened disorder coupling theory of Sec. II
for high carrier density and low temperature. Finally, the min-
imal Hubbard model at very high temperatures (much larger
than the bandwidth) also leads to a linear-in-T resistivity if
one assumes complete momentum-independent umklapp scat-
tering with local interactions, where each electron-electron
scattering event contributes to the resistivity. But this is a
highly fine-tuned trivial result appearing simply from the
leading-order high-T expansion of the thermal averaging, and
it cannot have any practical significance to real electronic
materials. Thus, no generic theoretical arguments exist for a
Planckian dissipative resistivity in electronic materials.

It is speculated [2] that the Planckian bound may ap-
ply to inelastic scattering rates arising from electron-electron
interactions. This distinction between elastic and inelastic
scattering has little significance for transport properties be-
cause transport only probes resistive scattering, which is
associated with momentum relaxation, without distinguishing
between elastic and inelastic scattering. In fact, as is well-
known, electron-electron interaction by itself cannot relax
momentum in a translationally invariant system and does not
contribute to resistive scattering unless an explicit momentum
conservation breaking mechanism (e.g., umklapp scattering,
Baber scattering) is invoked [13]. Electron-electron interac-
tion, however, leads to a real quasiparticle damping and finite
lifetime, τee, through the imaginary part of the self-energy, as
described in Sec. IV, which may be studied experimentally by
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measuring the quasiparticle spectral function using inelastic
tunneling spectroscopy or ARPES. We emphasize that τee

is generically different from the transport scattering time τ

obtained from the resistivity, and in general, there is no simple
relationship connecting the two.

Focusing entirely on the interaction-induced inelastic
scattering rate (Sec. IV) from the Planckian perspective,
emphasizing again that this is unrelated to the transport
properties discussed in Secs. II and III, we show that the
temperature- and density-dependent inelastic scattering rate
arising from electron-electron interaction also obeys the gen-
eralized Planckian bound approximately (i.e., within a factor
of 10) for all temperature and density with a modest super-
Planckian behavior manifesting around T ∼ TF, where the
scattering rate 1/τee crosses over from the low-temperature
(for T � TF) T 2 behavior to the high-temperature (T � TF)
T 1/2 behavior. Thus, we find that for doped 2D semiconduc-
tor systems, both the temperature-dependent elastic scattering
rate (arising from screened disorder) and the temperature-
dependent inelastic scattering rate (from electron-electron
interaction) empirically obey the generalized Planckian bound
approximately (i.e., it is bounded, within an order of magni-
tude, by kBT )

An intuitively appealing qualitative dimensional argument
for why the inelastic scattering rate may have an approxi-
mate Planckian bound is the following. At finite temperatures,
the Fermi distribution develops a thermal broadening of kBT
around the Fermi energy, leading to an energy uncertainty
of O(kBT ). Since an inelastic scattering rate of 1/τee leads,
by the uncertainty relation, to an energy uncertainty ∼h̄/τee,
it is possible that h̄/τee should not exceed kBT by a large
number. This uncertainty-relation-based qualitative argument,
which is by no means rigorous, does indicate that the inelastic
scattering rate h̄/τee should be of O(kBT ) or less, as we find
in our detailed calculations presented in Sec. IV.

The qualitative energy uncertainty argument, however, pro-
vides no rationale whatsoever for why the transport scattering
rate extracted from the resistivity, which for our systems is
a temperature-dependent elastic scattering by screened dis-
order, should have anything at all to do with the Planckian
bound of kBT as established empirically for the experimental
data in Sec. II. The only clue for a Planckian bound can be
discerned from our analytical theory in Sec. III where we
explicitly used the Ioffe-Regel-Mott criterion to bound the
T = 0 2D resistivity by a maximum possible metallic resis-
tivity of h/e2, which then leads to the following constraint for
our temperature-dependent transport scattering rate 1/τ (with
the T = 0 contribution subtracted out):

h̄/τ < 4kBT . (23)

Our direct numerical results for the calculated 2D metallic re-
sistivity are consistent with this analytical effective Planckian
bound. Thus, at least for our problem, the Planckian transport
properties appear to have an underlying deep (if somewhat
indirect) connection to the Ioffe-Regel-Mott criterion for the
existence of a T = 0 metal. Since a metal with coherent
quasiparticles cannot have an arbitrarily large resistivity, by
definition, the temperature-dependent scattering rate cannot
be arbitrarily large either, and the natural bound at finite
temperature on a purely dimensional ground can only be kBT .

Thus, the Planckian transport bound may ultimately be arising
from the fact that the mean free path in a metal at finite tem-
peratures cannot be arbitrarily short. In our analytical theory,
this connection between the Planckian bound on the finite-
temperature scattering rate and the Ioffe-Mott-Reel criterion
is explicit, but whether the same happens for all Planckian sys-
tems (many of which are also effectively 2D) is unknown, and
should be investigated in future works. For our problem, we
establish theoretically (Sec. III) that the Planckian conjecture
holds approximately, h̄/τ < 4kBT , because of the requisite
consistency with the Ioffe-Regel-Mott criterion. This is true at
low temperatures, T � TF, where ρ(T ) is linear in T , but the
approximate Planckian bound continues holding all the way
to T ∼ TF because the next-to-the-leading-order correction
arising from the (T/TF)3/2 term remains small. Whether such
a direct connection to the Ioffe-Regel-Mott metallicity condi-
tion applies to other strange Planckian metals is not unknown
at this point.

We provide two additional circumstantial arguments some-
what in line with the our discussion above where the Planckian
bound may be connected to the very definition of a metal:
(i) First, the suggestion [55] that the electron-phonon cou-
pling may be bounded from above (which is the reason
why phonon-induced resistivity of metals obeys the Planck-
ian conjecture) is because a much larger electron-phonon
coupling would lead to a lattice instability causing a metal-to-
insulator transition (which is consistent with our finding that
the Planckian bound may ultimately be arising from the defini-
tion of metallicity itself); (ii) second, the fact that all strongly
correlated 2D systems saturating the Planckian bound (or
manifesting super-Planckian behavior) typically always have
very large resistivity (this again reinforcing that the bound
may arise simply to preserve metallicity). Much more work is
needed to convert these qualitative ideas into a general theory
that applies to all systems, but for our systems, we establish
these ideas in Sec. III through a detailed theory.

We conclude by mentioning that we have also investigated
the experimentally reported finite-temperature transport prop-
erties of 2D graphene related systems [5,56,57,70–75] and
3D doped semiconductors [76] (at high temperatures, so that
elastic scattering effects from the impurities are not partic-
ularly quantitatively important), finding to our surprise that
the Planckian hypothesis is always approximately empirically
valid. This is true for 3D semiconductors even at very high
temperatures (∼1000 K) where the resistive scattering arises
entirely from inelastic optical phonon scattering, and the re-
sistivity is essentially exponential in temperature. We show
these results in Fig. 9 where the dimensionless Planckian pa-
rameter is plotted against temperature for many materials with
the Planckian conjecture being always approximately valid.
Why the Planckian conjecture seems to apply for quasielas-
tic acoustic phonon scattering [1], inelastic optical phonon
scattering, temperature-dependent screened disorder scatter-
ing (Secs. II and III), inelastic electron-electron scattering
(Sec. IV), and perhaps in many other situations still remains
a mystery except perhaps for its qualitative connections to the
energy uncertainty relation and the stability of the metallic
phase itself.

In conclusion, we find (Secs. II and III), rather unexpect-
edly, that the temperature-dependent part of the resistivity in
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FIG. 9. Planckian parameters from the experimental literature
plotted against temperature for many materials, showing that the
Planckian conjecture is always approximately valid.

2D doped semiconductors, arising from resistive scattering by
temperature-dependent screened Coulomb disorder, approx-
imately obeys the generalized Planckian hypothesis (in the
sense α < 10). In addition, we find (Fig. 9) the very sur-
prising result that doped semiconductors approximately obey
the Planckian hypothesis at very high temperatures where
the resistive scattering arises entirely from optical phonon
scattering. We also establish (Sec. IV) that the inelastic
scattering induced by electron-electron Coulomb interactions
obeys the generalized Planckian hypothesis at all temperatures
and densities. Our work considerably expands the scope of the
Planckian conjecture by establishing its surprising empirical
validity to doped semiconductors, which are not considered
to be either “strongly correlated” or “quantum critical”—in
fact, doped semiconductors are basically interacting electron
liquids in a jellium background with the lattice or narrowband
Mott-Hubbard physics playing no role in its transport. The
fact that a generalized Planckian hypothesis may apply even
to a temperature-dependent resistivity arising from disorder
scattering (with the temperature dependence itself happening
because of anomalous screening) is particularly perplexing
since there can be no Planckian constraint at T = 0 for the
residual resistivity arising from the same disorder scatter-
ing. Our finding that the generalized Planckian hypothesis
does apply to the inelastic electron-electron scattering seems
more plausible, but we emphasize that there is no theory
predicting it and our results simply agree empirically with
the Planckian bound after the fact. None of the various the-
oretical attempts [2,53,61,63,77–86] to connect the Planckian
constraint to holography, hydrodynamics, quantum criticality,
quantum chaos, scrambling, and other generic concepts can

actually explain the unreasonable empirical validity of the
generalized Planckian bound ranging from high-temperature
resistivity in normal metals (i.e., acoustic phonon scatter-
ing) and semiconductors (i.e., optical phonon scattering) all
the way to strongly correlated materials (i.e., some “un-
known” mechanism) through the low-temperature transport
in 2D doped semiconductors (i.e., screened disorder scatter-
ing). The Planckian hypothesis has a remarkable qualitative
correspondence with the Ioffe-Regel-Mott criterion defining
metallicity to be constrained by h̄/τ < EF = kBTF, which
loosely describes the crossover from coherent metallic trans-
port to disorder-induced strong localization (at T = 0) or to
incoherent transport (at finite T ), but making this qualitative
connection formally precise is a challenge. This is particu-
larly so because the Ioffe-Regel-Mott criterion is not really a
sharply defined transition, rather it is an intuitively appealing
crossover criterion defining a metal as a system with coherent
quasiparticles carrying current with momentum as a reason-
able quantum number except for resistive scattering events
changing momenta. It is therefore appealing that the Planckian
hypothesis is in some sense the energy-time version of the
Ioffe-Regel-Mott criterion (which is a position-momentum
uncertainty argument), with h̄/τ < kBT , with the philosophy
being that at finite temperature kBT is the only dissipative
energy scale. Even after accepting this somewhat ill-defined
uncertainty argument, it is unclear why the dimensionless
coupling constant α, which should be sitting in front of kBT
in such dimensional reasoning, should be of order unity since
no theory constrains it, and in principle it could be anything.
But the two theoretical examples where detailed transport
calculations are possible, namely the well-understood linear-
in-T metallic resistivity due to acoustic phonon scattering
[15,54,57,70] and low-temperature approximately linear-in-T
resistivity in 2D doped semiconductors (as well as the in-
elastic scattering in an electron liquid) in the current work,
seem to obey the Planckian hypothesis unreasonably well
(within a factor of 10, α < 10), indicating that the effective
coupling constant α entering the Planckian bound multiplying
the temperature (in a strictly qualitative dimensional analysis)
is indeed of order unity. Why it is so remains a mystery, and
the possibility that this is merely a coincidence and that future
experiments will discover strong violations of the Planckian
hypothesis should not be ruled out. Our work suggests that
looking for strong violations of the Planckian bound in any
materials, by much more than an order of magnitude, should
be a serious goal of future experiments so that we know
for sure whether the generalized bound within an order of
magnitude is generically valid or not.
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