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Quantitative analysis of photoinduced thermal force: Surface and volume responses
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Herein, we provide comprehensive understanding of the photoinduced thermal force between the metal coated
tip and organic sample in the context of surface and volume responses where the photoinduced dipole force
is typically small enough. Surface response is caused by near-field tip-enhanced thermal expansion, whereas
volume response is generated via far-field bulk thermal expansion. In this paper, we quantitatively characterize
the two responses, which are mediated via interatomic tip-sample forces in photoinduced force microscopy. The
major contributors to the surface sensitivity are the field enhancement at the tip end, the small oscillation of
the driving amplitude, and the noncontact/gentle tapping force. Other possible parameters such as the repetition
period, and the pulse width of the light source are also discussed. This paper offers insights into the quantitative
analysis of surface-sensitive and volume-sensitive spectroscopic nanoimaging, which is of great interest to the
scientific community.
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I. INTRODUCTION

Owing to recent developments in energy and semiconduc-
tor devices, a comprehensive tool is required to understand
chemical reactions at the surface and volume of these de-
vices [1,2]. For example, in an electrochemical battery system,
chemical reactions typically occur at the electrode surface
[3]; however, in an intercalation battery, an ionic front prop-
agates from the surface into the electrode interior and the
reactions occur in the bulk of the electrode [4,5]. Therefore,
the monitoring of the chemical reactions in some electrochem-
ical systems requires a spectroscopic tool that can distinguish
between surface and volume responses.

Photoinduced force microscopy (PiFM) is an imaging tech-
nique that combines the high spatial resolution of atomic
force microscopy (AFM) with the spectroscopic sensitiv-
ity provided by the optical excitation of a sample [6,7].
PiFM originally considers the photoinduced dipole interaction
between the polarizable tip and the sample [8–10]. The inter-
action is strongly manifested by the multireflection process in
highly polarizable systems such as electronic transitions [11]
or metal/plasmonic materials (negative permittivity) [12–14].
However, recent studies have claimed that the thermal in-
teraction near the molecular resonance can function as a
spectroscopic force at the tip-sample junction, even in non-
contact regions [15,16]. The light absorption in the sample
increases the temperature of it, which causes thermal expan-
sion. This thermal expansion changes the tip-sample distance
and the interatomic force between the tip and sample. This
force is exhibited by materials with high thermal properties (a
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high absorption coefficient, a high thermal expansion coeffi-
cient, and a low thermal diffusivity).

There are several claims regarding the origin of sur-
face sensitivity in optomechanical spectroscopic nanoimaging
techniques such as the photothermal-induced resonance
(PTIR) technique, which is also known as AFM-IR [17].
Tapping-mode/surface-sensitive PTIR [18], which is very
similar to heterodyne PiFM, implements high-frequency
thermal modulation, which may reduce the total thermal ex-
pansion to the sample surface. Further, the optomechanical
damping effect, which may result from viscoelastic/adhesion
interactions [19] or from tip heating [20] under a high electric
field.

Thermal interactions, which are sensitive to both surface
(near field) and volume (far field) responses, should be quan-
titatively analyzed under dynamic tip motion to address the
cause of surface sensitivity in PiFM. In this paper, we demon-
strate that PiFM can be used to quantitatively characterize
surface-sensitive and volume-sensitive thermal responses and
that the surface sensitivity of PiFM is caused by tip-enhanced
thermal expansion. We identify several key parameters affect-
ing the surface sensitivity by observing the transition from
the surface to the volume responses. A rigorous theoretical
analysis of thermal expansions at the tip-sample junction un-
der dynamic tip motion is presented herein. Comprehensive
experimental findings on polarization, mechanical driving am-
plitude, and force-distance behavior are also presented.

II. THEORY

When light illuminates the tip-sample junction, there can
either (both) exist a photoinduced dipole interaction due to
the charge oscillation driven by the optical field or (and) a
photoinduced thermal expansion due to light absorption [21].
Each interaction is sensitive to the optical and thermal prop-
erties of the material. The photoinduced dipoles in the tip and
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FIG. 1. Schematics of the (a) bulk and (b) tip-enhanced ther-
mal expansions. Vabs, Vheat, d , lp, �Lb and �Lt represent the light
absorption volume, sample heating volume, sample thickness, heat-
diffusion length at the pulse width (tp), bulk thermal expansion, and
tip-enhanced thermal expansion, respectively. z denotes the instan-
taneous tip position, z0 represents the averaged tip-sample distance,
and �zi denotes the coordinates of the first two eigenmodes, homo-
dyne, and heterodyne motions of the probe.

sample manifest a force through the Coulombic interaction.
The typical force range is around a few piconewtons to a few
hundreds of piconewtons [22] in highly polarizable materials,
such as metal/plasmonic materials, which is two orders of
magnitude higher than that in low-polarizable materials, such
as most organic polymers.

Conversely, photoinduced thermal expansion is substan-
tially exhibited by materials that effectively confine heat and
easily expand thermally, such as organic polymers with a low
thermal diffusivity and a high thermal expansion coefficient.
The photoinduced thermal expansion can manifest as a force
through the tip-sample interatomic force by changing their
distance. The photoinduced thermal force (PiTF) for organic
polymers near its vibrational resonances typically ranges from
a few hundreds of piconewtons to a few tens of nanonew-
tons [15], which is approximately two to three orders of
magnitude higher than that for highly polarizable materials.
Therefore, the PiTF for organic polymers usually outweighs
its photoinduced dipole force (PiDF) near molecular vibra-
tional resonances [23]. In the next section, we quantitatively
discuss the thermal expansions and resulting PiTF for organic
polymers with sufficiently small PiDF.

A. Bulk and tip-enhanced thermal expansions

The photoinduced absorption at the pulse width (tp) de-
pends on the tip-sample geometry, which can be considered
involving two cases [15]. The first case is the far-field
absorption-based bulk thermal expansion (�Lb), which is
irrelevant to the tip motion. The other case is the near-
field absorption-based tip-enhanced thermal expansion (�Lt ),
which depends on the tip-sample distance. The schematics of
both processes are presented in Fig. 1. Thus, the total thermal
expansion at tp may be considered as the sum of both cases,
that is, �Ltot = �Lb + �Lt . In this case, the total thermal
expansion can be given as below:

�Ltot(z) ≈ σ lzτth

ρCVheat

∫
aabs

1

2
cε0(|E f |2 + |En(z′)|2)dVabs (1)

≡ �Lb + �Lt (z),

with τrel = 4
π2

ρC
κeff

l2
z and τth = τrel(1 − e−tp/τrel ). τrel is the re-

laxation (cooling) time, and τth is the effective thermalization
time which considers the heating and cooling time. σ, lz, ρ,C,
and aabs are the linear thermal expansion coefficient, heating
length, density, heat capacity, and absorption coefficient of the
sample, respectively. z′, c, ε0, E f , and En are the coordinate
along the sample thickness, speed of light, vacuum permittiv-
ity, far field, and near field inside the sample, respectively. The
temperature increase and the resulting thermal expansion were
rigorously derived by considering the tip-sample geometries
presented in Appendices A and B.

The largest difference between the two thermal expansions
is the heating volume (Vheat) associated with the absorbing
volume (Vabs). Vheat of the bulk thermal expansion can be
assumed as Vabs of it, which corresponds to the illuminated
IR focal volume. This is because a heat diffusion length
(lp), where lp = √

Dtp and D is the thermal diffusivity, is
typically a few tens of nanometers at a tp of a few tens
of nanoseconds, which is three orders of magnitude smaller
than that of the IR focal spot (a few tens of micrometers).
Thus, lz of a thin sample can be directly proportional to the
sample thickness (d). Conversely, Vabs of the tip-enhanced
thermal expansion can be considered the cross section of
the tip end and the near-field penetration depth inside the
sample. This allows Vheat to be limited by the hemispherical
thermal diffusion volume at tp, expressed as Vheat = 2π

3 l3
p . In

this case, lz is limited to lp with increasing sample thick-
ness.

Figure 2 shows the plots of the calculated bulk and tip-
enhanced temperature rises (�Tb and �Tt , respectively) as
well as the resulting thermal expansions (i.e, �Lb and �Lt ,
respectively) with respect to the thicknesses of exemplar poly-
mer samples [polystyrene (PS), poly(methyl methacrylate)
(PMMA), polydimethylsiloxane (PDMS)]. �Tb increased as
the sample thickness increased to 200 nm, suggesting that
the thin samples (<200 nm) cooled rapidly. Afterward, the
relaxation time (τrel) is much longer than the heating time, i.e.,
tp, and then the sample heating is saturated with an asymp-
totically constant temperature rise. This is well explained
by the effective thermalization time, τth = τrel(1 − e−tp/τrel ),
which considers the heating and cooling times (Appendix A).
Because Vabs of �Lb increased while its temperature became
saturated with increasing sample thickness, �Lb is directly
proportional to the sample thickness (the red solid line in the
upper panels; Fig. 2).

On the other hand, the thickness dependence of �Tt ex-
hibits the peak behavior which is typically caused by the
strong tip-enhanced field (heat source) on the higher dielectric
substrate such as Si [15]. Since the near-field absorption is
saturated owing to the limited absorption volume, the en-
hanced gap field between the tip and Si substrate leads to the
maximum temperature with respect to the polymer thickness.
Note that this peak behavior disappears on a low dielectric
substrate such as glass [21]. The thickness behavior of �Lt is
similar to that of the near-field absorption (the red solid line
in the lower panels in Fig. 2) due to the limited heating length
of �Lt . The saturated magnitude of �Lt indicates that �Ltot

(blue dashed line) is very similar to �Lb with respect to the
thickness as shown in the upper panels in Fig. 2.
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FIG. 2. Calculation of �Tt , �Lt , �Tb, and �Lb with respect to the thicknesses of (a) polystyrene (PS), (b) poly(methyl methacrylate)
(PMMA), and (c) polydimethylsiloxane (PDMS) polymers on Si substrates at their respective IR absorption resonances. PS, PMMA, and
PDMS exhibit the absorption coefficients of aabs = 708.47 cm−1 at 1492 cm−1, aabs = 8045.61 cm−1 at 1730 cm−1, and aabs = 7123.86
cm−1 at 1268 cm−1, respectively [24]. To calculate thermal expansions, we used thermal expansion coefficients and thermal diffusivities of
70 × 10−6/K and 2.5 × 10−7m2/s for PS, 76 × 10−6/K and 3.0 × 10−7m2/s for PMMA, and 907 × 10−6/K and 2.6 × 10−7m2/s for PDMS,
respectively [21,25]. The near-field calculation was conducted using the finite dipole method reported in previous studies [25–27]. The blue
dashed lines indicate the total thermal expansion, which is the sum of the two thermal expansions (i.e., �Ltot = �Lb + �Lt ).

The magnitude of thermal expansions depends on the
thermal properties of the material. For example, the thermal
expansion of PMMA is typically one order of magnitude
higher than that of PS, even though σ and D for the polymers
are comparable, because the absorption coefficient of PMMA
(aabs = 8045.61 cm−1) at 1730 cm−1 vibrational resonance
[24] is one order of magnitude higher than that of PS (aabs =
708.47 cm−1) at 1492 cm−1 vibrational resonance [24]. Ad-
ditionally, the thermal expansion of PMMA is typically one
order of magnitude smaller than that of PDMS, even though
they have similar temperature increases due to their similar
aabs and D. This is because the linear thermal expansion co-
efficient of PDMS (907 × 10−6/K) is one order of magnitude
higher than that of PMMA (76 × 10−6/K) [25].

B. Interatomic tip-sample force change
due to thermal expansions

Thermal expansions change the tip-sample distance, which
eventually changes the interatomic tip-sample force [16]. The
distance-dependent tip-sample force [Fts(z)] can be consid-
ered the sum of conservative [Fc(z)] and nonconservative
[Fnc(z)] forces, that is, Fts(z) = Fc(z) + Fnc(z). The conser-
vative force originates from the distance-dependent potential
between the tip and the sample. There are two types of conser-
vative forces at the tip-sample junction. One is the noncontact
van der Waals force and the other is the DMT contact force,
which are both expressed as

Fc(z) ≈
{ −HeffR

12
1
z2 (z > r0)

−HeffR
12

1
r2

0
+ 4

3 E∗√R(r0 − z)3/2 (z < r0),
(2)

where Heff is the effective Hamaker constant, R is the tip
radius, E∗ is the effective Young’s modulus, and r0 is the
intermolecular distance, which is around 0.3 nm.

The nonconservative force originates from the dissipa-
tion of the oscillator system. The dissipative interaction
in the AFM has been typically modeled using a velocity-
dependent term, which is expressed as Fnc(z) = 
(z)ż, where

(z) is the effective damping coefficient for a particular
viscoelastic behavior [28]. There can be various forms of

(z) that describe many physically interesting interactions
such as surface energy dissipation [28] and capillary menis-
cus forces [29]. Additionally, 
(z) has no single explicit
form of functions because it depends on each experimental
condition. However, it can be reconstructed by solving the
inverse problem of probe motion using experimentally ac-
cessible quantities such as driving amplitude and phase. The
derivation and experimental results are presented in the next
section.

To simplify the analytical calculation, only the conserva-
tive force was considered. This still maintained the typical
behavior of the force-distance curve at the tip-sample junc-
tion. Figure 3 depicts plots of the calculated forces between
the Au tip and the PS film with respect to the tip-sample
distance (blue solid line). The 100 pm thermal expansion
of the PS film decreased the tip-sample distance, and the
force-distance curve shifted to the right (red dashed line).
The variation in the force due to the thermal expansion [i.e.,
�Fts(z) = Fts(z − �Ltot ) − Fts(z)] is plotted as a red solid
line. Note that the 100 pm thermal expansion can generate
additional forces of a few nanonewtons in both the contact
(blue-shaded area) and noncontact (red-shaded area) regions.
In this manner, the PiTF of the organic monolayer can increase
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FIG. 3. Calculation of the curve of the force-distance between
the Au tip and the PS film with respect to the tip-sample distance
z. The red dashed line represents the changed tip-sample force due
to the 100 pm thermal expansion. The red solid line represents the
difference [i.e., �Fts(z) = Fts(z − �Ltot ) − Fts(z)]. The blue-shaded
area represents the repulsive contact region (the negative force gra-
dient) and the red-shaded area represents the attractive noncontact
region (the positive force gradient).

to a few hundred piconewtons in the contact region [30],
which is a hundred times higher than its PiDF [22].

Since the PiTF is mediated by the interatomic tip-sample
force, it also depends on the mechanical properties of the
material, such as Heff and E∗. For example, PDMS has a
similar Heff to the other polymers such as PS and PMMA, but
its E∗ (0.6 MPa) is a thousand times lower. Thus, thin PDMS
layers under a few nanometers is not very detectable through
the repulsive DMT contact force. However, it exhibits a strong
signal in the noncontact region via the attractive van der Waals
force in a previous study [15].

C. Photoinduced thermal force in dynamic PiFM

Cantilevers are dynamically driven at a frequency (ω2) and
an amplitude (A2), while the tip-sample junction is illuminated
using a laser beam with a modulation frequency (ωm). If the
coordinates of the first two eigenmodes, the homodyne motion
at ωm and heterodyne motion at ωs = ωm ± ω2 are z1(t ), z2(t ),
zm(t ), and zs(t ), respectively, then the instantaneous tip posi-
tion can be expressed as z(t ) ≈ z0 + z1(t ) + z2(t ) + zm(t ) +
zs(t ) − �Ltot(t ), where z0 is the average tip-sample distance.
Thus, the time-dependent thermal expansions near the equi-
librium position (z0) under the harmonic approximation may
be derived as follows:

�Lb(t ) ≈ �Lb sin(ωmt + θm),

�Lt (t ) ≈ �Lt (z0) sin(ωmt + θm) + ∂�Lt

∂z
|z0 A2 sin(ωst + θs),

(3)

where �Ltot(t ) = �Lb(t ) + �Lt (t ), ωs = ωm ± ω2 and θs =
θm ± θ2. The calculation details lie in Appendix B.

The frequency-dependent force spectrum is generated
based on the change in the tip-sample force due to the thermal
expansions because the tip oscillates near the sample surface
at ω2. The PiTFs in dynamic tip motion can be obtained using

the Taylor expansion of Fts(z) near z0 as follows:

Fts(z) ≈ Fc(z0) + ∂Fc

∂z
(z1 + z2) − 
(z0)(ż1 + ż2) + Fm + Fs,

(4)
with

|Fm| = �Ltot

√(
∂Fc

∂z

)2

+ (
ωm)2, (5a)

|Fs| = A2

2

√(
∂Fc

∂z

∂�Lt

∂z
+ ∂2Fc

∂z2
�Ltot

)2

+
(


ωs
∂�Lt

∂z

)2

,

(5b)

where Fm is the homodyne PiFM force at ωm and Fs is the
heterodyne PiFM force at ωs = ωm ± ω2 (see Appendix B for
the calculation details). The physical meaning of Eqs. (5a)
and (5b) is that both conservative and nonconservative forces
may act as a driving force (gain) when the thermal expan-
sion periodically modulates the tip-sample distance. Note
that, the modulated nonconservative force originates from the
interatomic tip-sample force rather than the optomechanical
damping force [19].

The homodyne PiFM force is directly proportional to the
total thermal expansion, but the heterodyne PiFM force is
sensitive to the tip-enhanced thermal expansion in the small
oscillation limit, where the first derivative term typically
dominates the second derivative term. This is the reason
why the heterodyne measurement is surface sensitive while
the homodyne measurement is volume sensitive. Conversely,
the second derivative term can be dominant under a large
oscillation in heterodyne PiFM, where the nonlinearity of the
tip-sample force increases. This may cause heterodyne PiFM
to switch from being surface sensitive to being volume sen-
sitive. This expectation is demonstrated by the experimental
results shown in Fig. 5.

The periodic force modulations at ωm and ωs can then act
as driving forces in the cantilever, the motion of which is
demonstrated using the following coupled equations of the
driven damped harmonic oscillator system:

mz̈1 + b1ż1 + k1z1 = F (z), (6)

mz̈2 + b2ż2 + k2z2 = F (z). (7)

The total force can be expressed as F (z) = F2 sin(ω2t ) +
Fts(z), where F2 is the constant mechanical driving force.
Thereafter, a set of trial solutions, zi(t ) = Ai cos(ωit + θi )
with i = 1 or 2, can be substituted into Eqs. (6) and (7) to
obtain the integral forms of the equations of motions for the
following two eigenmodes:

(
ki − mω2

i

)Ai

2
= 1

T

∫
0

T

F (z) cos(ωit + θi )dt, (8)

biωiAi

2
= 1

T

∫
0

T

F (z) sin(ωit + θi )dt . (9)

When all the relevant forces represented in Eqs. (4)–(5b),
including Fts(z), are substituted into the integrands presented
in Eqs. (8) and (9) for the fundamental eigenmode (i = 1), the
homodyne PiFM amplitude (Am) measured at ωm = ω1 and
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the heterodyne PiFM amplitude (As) at ωs = ωm ± ω2 = ω1

can be derived as follows (see Appendix C for detailed calcu-
lations):

Am = |Fm|√
m2

(
ω′2

1 − ω2
m

)2 + (b′
1ωm)2

, (10a)

As = |Fs|√
m2

(
ω′2

1 − ω2
s

)2 + (b′
1ωs)2

, (10b)

where ω′
1 = √

(k1 + kc)/m with kc ≡ − ∂Fc
∂z |z0 account for the

frequency shift induced by the force gradient and b′
1 = b1 +


 is the effective damping coefficient of the fundamental
eigenmode. Am and As are proportional to the homodyne
and heterodyne forces, respectively, and inversely propor-
tional to the conservative force gradient and effective damping
coefficient. This is the reason why the PiFM amplitudes,
not forces, reach their maximum and then return to zero
when the tip approaches the sample, as shown in Figs. 6(a)
and 6(f), rather than when the complex distance is used,
as insisted upon in a previous study [19]. This aspect will
be fully addressed in the experimental results presented in
Sec. III C.

D. Reconstruction of photoinduced thermal force from
observation: Inverse problem

The amplitude and phase of the cantilever motion are ex-
perimentally accessible quantities. These quantities can be
used to extract any conservative and nonconservative contri-
butions to the cantilever. This approach is useful when there
are several types of distance-dependent forces, particularly
nonconservative forces, which are difficult to describe using
a single explicit form of functions. The experimental ob-
servables can be related to the force gradient and damping
coefficient present by evaluating the integrands in Eqs. (8) and
(9) with the conservative and nonconservative forces:

kc(z0) � − F2

A2(z0)
sin θ2(z0) − k2 + mω2

2, (11)


(z0) � F2

ω2A2(z0)
cos θ2(z0) − b2, (12)

where F2 = k2A02/Q2, b2 = k2/(Q2ω2), and A02 is the free
oscillation amplitude at the second eigenmode. The quanti-
ties in Eqs. (11) and (12) can be obtained by measuring the
second eigenmode amplitude (A2) and the phase angle (θ2).
The analytically derived PiTFs can also be reconstructed by
measuring the experimental observables. The following equa-
tion was obtained by implementing Eqs. (10a) and (10b) at the
free space resonances (i.e., ω2

1 = k1/m and ω2
2 = k2/m) after

rewriting the forces in Eqs. (11) and (12) into a single form
with relevant experimental parameters such as A2, θ2, k j , and
Qj ,

|Fj |2 ≈
(

Ajk2

Q2

)2((
A02

A2
sin θ2

)2

+ (
ω j

ω2
)2

(
ω j

ω2

Q2

Qj
+ A02

A2
cos θ2 − 1

)2)
, (13)

FIG. 4. Dependence of the PS thickness on the polarizations and
PiFM measurement modes. Am in the P (b) and S (c) polarizations
and its topography (a). (d) Comparison of the line cuts of Am in the
P (red) and S (black) polarizations as a function of the PS thickness.
As in the P (f) and S (g) polarizations and its topography (e). (h)
Comparison of the line cuts of As in the P (red) and S (black)
polarizations as a function of the PS thickness. The IR power at the
1492 cm−1 PS absorption resonance is 0.5 mW for the P polarization
and 4 mW for the S polarization. The mechanical driving amplitude
is ∼2 nm at the second eigenmode (1.8 MHz) and PiFM detection is
demodulated at the first eigenmode (300 kHz).

where j = m, s, ωm(or ωs) = ω1, and Qm(or Qs) = Q1. The
physical meaning of Eq. (13) is that the manifested photoin-
duced forces in Eqs. (5a) or (5b), which are expended on the
resonant oscillation at the PiFM detection eigenmode and the
interatomic tip-sample interaction, can be reconstructed by
using the experimental observables.

III. RESULTS

A. Polarization dependence

The interesting feature of the tip-enhanced thermal ex-
pansion is the surface sensitive response, showing the peak
behavior with respect to the sample thickness, compared to
the bulk thermal expansion, which shows the gradual increase.
The surface-sensitive measurement can be demonstrated with
respect to the polarization of the beam because the near field
is strongly enhanced at the tip end in the P polarization, while
the field enhancement is reduced in the S polarization.

As shown in Fig. 4, the Am and As of the PS wedge, which
exhibits a thickness of 0–1000 nm, were obtained with respect
to the P and S polarizations using PPP-NCHAu, an Au-coated
noncontact cantilever (Nanosensors Inc.; ω1 = 300 kHz and
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k1 = 30 N/m). The IR power at the 1492 cm−1 PS absorption
resonance for the S polarization (4 mW) was stronger than
that for the P polarization (0.5 mW). The mechanical driving
amplitude was ∼2 nm at the second eigenmode (1.8 MHz)
and the PiFM detection was demodulated at the fundamental
eigenmode (300 kHz). This case is hereinafter referred to
as F2S1 for heterodyne PiFM, also known as a sideband
mode (feedback at ω2 and sideband mode at ω1) and F2D1
for homodyne PiFM, also known as direct mode (feedback
at ω2 and direct mode at ω1). This notation is quite useful
for intuitively understanding the system configuration because
there can be numerous combinations between the eigenmodes
and the PiFM detection modes of the cantilever.

The Am in the P polarization [Fig. 4(b)] shows the contri-
bution of �Ltot when compared to that in the S polarization,
which follows �Lb presented in Fig. 4(c). The difference
becomes apparent when their line cuts are compared with
respect to the thickness presented in Fig. 4(d). Although the
Am values in both polarizations increase with respect to the
PS thickness, the slope at 200 nm in the P polarization (red) is
considerably higher than that at the other sample thicknesses
when compared to the S polarization measurement (black).
The thickness behavior in the P polarization is very similar
to the expected �Ltot (blue dashed line) in Fig. 2(a), while
that in the S polarization corresponds well to the expected
�Lb (red solid line) in Fig. 2(a). This result is well explained
by Eq. (5a). The homodyne PiFM force dominantly follows
�Ltot, which means that �Lt manifests in the P polarization
on top of the thickness behavior of �Lb, while it is suppressed
in the S polarization.

Figure 4(f) shows that the As in the P polarization is
stronger at a small PS thickness but decreases as the thickness
increases. However, the As in the S polarization gradually in-
creases with respect to the PS thickness, as shown in Fig. 4(g).
The difference is more noticeable when their line cuts are
directly compared with respect to the thickness. Figure 4(h)
shows the characteristic peak behavior of the P polariza-
tion (red), while that of the S polarization (black) gradually
increases. This result is well explained by Eq. (5b). The
tip-enhanced thermal expansion behavior (first and third
terms) is dominant in the P polarization because of the strong
tip-enhanced field, while it is suppressed in the S polarization,
making the bulk thermal expansion (second term) dominant.

B. Small oscillation limit: Driving amplitude dependence

The oscillation amplitude can contribute to surface sensi-
tivity. The tip-sample force can expand as Fts(z) ≈ Fts(z0) +
∂F ts
∂z |z0 (z − z0) + 1

2
∂2F ts
∂z2 |z0 (z − z0)2 + O(z3). In the small os-

cillation limit, the first derivative term of the tip-sample force
is typically dominant over the second derivative term. How-
ever, as the oscillation of the carrier (mechanical) motion
increases, the nonlinearity of the force increases and the sec-
ond derivative term can be dominant. This indicates that the
volume-sensitive nature (total thermal expansion) may still be
outstanding in the heterodyne PiFM measurement by increas-
ing the driving amplitude in accordance with Eq. (5b).

To observe the transition from the surface to volume, we
measured the PS wedge in the P polarization by increasing
the mechanical driving amplitude. Figure 5 clearly shows that

FIG. 5. Mechanical driving amplitude dependence with (a) A2 =
1 nm, (b) A2 = 15 nm in F2S1, and (c) A1 = 30 nm in F1S2 for
the P polarization as the PS thickness increases. (d) Normalized line
cuts of the thickness dependence to displaying the transition from the
surface-sensitive phase to the volume-sensitive phase.

the characteristic peak behavior (surface sensitive) included
the gradually increased behavior (volume sensitive) as the
driving amplitude increased from 1 nm [Fig. 5(a)] to 30 nm
[Fig. 5(c)]. F2S1 obtained mechanical driving amplitudes of
1 and 15 nm, whereas F1S2 obtained a driving amplitude of
30 nm. The second eigenmode in our system could not obtain
a driving amplitude of more than a few tens of nanometers be-
cause of the high motional stiffness of the second eigenmode
(1180 N/m). However, the first eigenmode, which exhibited a
stiffness of ∼30 N/m, could obtain such a driving amplitude.
In both cases, the light modulation frequency was fixed at
2.1 MHz, the IR power was kept constant, and the mechan-
ical driving and PiFM detection eigenmodes were simply
switched. Figure 5(d) depicts a plot of the line cuts of the PS
wedge, showing the transition from �Lt (surface sensitive)
to �Ltot (volume sensitive). These results demonstrate that
the surface sensitivity of PiFM requires a small oscillation
amplitude under a few nanometers.

Notably, the probe sensitivity of the ith eigenmode, which
corresponds to the minimum detectable force [31], is ex-
pressed as Fmini = √

4KBT BkiQi/ωi, where ωi, Qi, and ki

denote the resonance frequency, quality factor, and stiffness
of the cantilever, respectively; B represents the system band-
width; KB denotes the Boltzmann constant; and T represents
the absolute temperature. The sensitivity of the fundamen-
tal eigenmode is typically better than that of the second
eigenmode, where ω2 ≈ 6.27ω1, k2 ≈ 40 k1 and Q2 ≈ 1.2 −
1.5 Q1. When B = 10 Hz, the fundamental and second eigen-
modes of PPP-NCHAu exhibit Fmin of 0.08 and 0.18 pN,
respectively, with Q1 = 370 and Q2 = 483. As shown in
Figs. 5(a) and 5(c), F2S1 exhibits a better signal-to-noise ratio
than F1S2.

C. Force-distance curve

The force reconstruction method is highly useful for
understanding the nature of the force when several types
of distance-dependent forces exist. The reconstructed force
formula presented by Eq. (13), which is based on the exper-
imental observables, considers all the forces acting on the
cantilever as conservative and nonconservative forces with
respect to the tip-sample distance. Therefore, any photoin-
duced forces can be quantitatively examined by measuring the
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FIG. 6. Force-distance curves for the 133 nm PS film in the P
polarization with respect to the PiFM measurement modes. (a) Am

(red) and A2 (black), (b) θ2, (c) kc, (d) 
, (e) η (black), and the
reconstructed |Fm| (red) for the PiFM homodyne measurement. (f)
As (red) and A2 (black), (g) θ2, (h) kc, (i) 
, (j) η (black), and the
reconstructed |Fs| (red) for the PiFM heterodyne measurement. Each
inset is the zoomed area near z0 ≈ 0. The red-shaded region is the
noncontact (attractive) region, while the blue-shaded region is the
contact (repulsive) region. The approach/retract speed is 12.5 nm/s.

force-distance curves. Because the force modulation can-
tilever is highly sensitive to the force-distance behavior
with respect to the tip-sample distance, we used PPP-FMAu
(Nanosensors Inc.), with k1 = 2.8 N/m and ω1 = 75 kHz.

The force-distance curves for the PiFM homodyne and
heterodyne measurements of the 133 nm PS film are plot-
ted in Figs. 6(a)–6(e) and in Figs. 6(f)–6(j), respectively.
The curve behaviors of A2, θ2, kc, and 
 are similar to both
the homodyne and heterodyne measurements because they
have suffered from similar conservative and nonconservative
forces. kc decreases when the tip goes to zero (z0 ≈ 0) with a
negative sign (attractive force gradient), as shown in the insets
of Fig. 6(c) and Fig. 6(h), respectively. After surface tapping,
kc rapidly increases with a positive sign, reflecting the strong
repulsive force gradient. This result is quite consistent with the
theoretical expectation of �Fts in Fig. 3. However, since the

magnitude of 
 depends on the approach/retract speed and the
driving frequency of the cantilever, there is a minor increase in

 in the noncontact region, as shown in the insets of Fig. 6(d)
and Fig. 6(i), respectively. Note that this effect does not re-
late to the photoinduced interaction, because it is the same
behavior even without light illumination. This demonstrates
that the optomechanical damping effect that occurred in the
noncontact region is negligible in the PiFM signal, which is
contrary to the claim in a previous study [19].

The reconstructed |Fm| and |Fs| by Eq. (13) are plotted
as a red solid line with a logarithmic scale in Figs. 6(e)
and Fig. 6(j), respectively. Far from the surface, the rel-
atively constant force around 3 pN in |Fm| can be found
to z0 ≈ 1 nm, which is mainly due to the constant
scattering/photoacoustic forces [32,33]. However, the |Fs|
corresponds to the noise level (sub 0.1 pN) in that range.
This is because heterodyne PiFM measures the force gradient
of the light-modulated force, which can remove the constant
photoacoustic/scattering forces. When the tip approaches the
surface, |Fm| and |Fs| gradually increase near z0 ≈ 0 nm,
which corresponds to the PiTF mediated by the attractive
van der Waals force gradient [15]. Am reaches its maximum
while As does near z0 ≈ −1 nm in the repulsive tapping region
(blue-shaded area). Since As is also proportional to A2 as in
Eq. (5b), it can reach its maximum further inside the attractive
(repulsive) region by employing a soft (stiff) cantilever which
is less (more) resistant to the jump-to-contact effect.

The ratio of the conservative to nonconservative force con-
tribution in the reconstructed |Fm| and |Fs|, which can be
expressed as η ≡ k2

c /(
ω1)2, are plotted as a black solid line
with a logarithmic scale in Figs. 6(e) and 6(j), respectively.
Both cases, the conservative force contribution is typically one
order of magnitude higher than the nonconservative force con-
tribution, showing that η is greater than unity in both the at-
tractive and repulsive regions. This demonstrates that the con-
servative interaction is dominant over the nonconservative
interaction in the measured PiFM signal.

IV. DISCUSSION

The thermal expansion at the tip-sample junction can
be described as surface-sensitive (near-field) and volume-
sensitive (far-field) thermal expansions. The change in the
tip-sample distance due to the thermal expansions in dy-
namic PiFM generates homodyne and heterodyne PiFM
forces that can distinguish between surface-sensitive and
volume-sensitive thermal responses. The tip-enhanced ther-
mal expansion (surface sensitive) can be probed via the
heterodyne PiFM measurement under the P polarization. The
bulk thermal expansion (volume sensitive) can be probed via
the PiFM homodyne measurement under the S polarization.
Moreover, we observed that the surface-sensitive response
in the PiFM heterodyne measurement included a volume-
sensitive response when the driving amplitude was increased.
This explains that a small oscillation amplitude (under a few
nanometers) is a critical parameter affecting the high surface
sensitivity of PiFM.

Moreover, the magnitude of the tapping force can con-
tribute to surface sensitivity. When the tip strongly taps the
sample, the strong repulsive force acts as an impulse force

155424-7



JAHNG, KIM, AND LEE PHYSICAL REVIEW B 106, 155424 (2022)

0 200 400 600 800 1000
0.0

0.5

1.0

 

)dezila
m ron ( 

T

time (ns)
0 200 400 600 800 1000

0.0

0.5

1.0

 

 

)dezila
mron( 

T

time (ns)

0 200 400 600 800 1000
0.0

0.5

1.0

 

 

)dezila
mron(

T

time (ns)
0 200 400 600 800 1000

0.0

0.5

1.0

 

)dezila
mro n( 

T
time (ns)

(a) rel >

(c) rel >

(b) rel <

(d) rel <

FIG. 7. Time-dependent temperature rise when (a) τrel > tp and
(b) τrel < tp. Time-dependent temperatures in the repeatable pulses
when (c) τrel > trep and (d) τrel < trep. The rectangular shaded area is
the pulse width.

which increases the nonlinearity of the interatomic tip-sample
force. Thus, a strong tapping force can also increase the vol-
ume response [second derivative term in Eq. (5b)] during the
heterodyne PiFM measurement. Noncontact/gentle tapping
can be another critical condition affecting surface sensitiv-
ity. Note that the tapping-mode PTIR technique, which has
been recently introduced for surface-sensitive thermal mea-
surements in PTIR, is very similar to the PiFM technique,
but it mainly functions in the hard-tapping region [18]. How-
ever, our analysis results points out that the hard tapping may
include the bulk response in the tapping-mode PTIR measure-
ments.

The surface sensitivity of the thermal response can also
be controlled by changing the repetition period (trep) of a
laser beam. The temperature change caused by a laser pulse
should be allowed to cool to zero before illuminating the
next laser pulse. However, when τrel is longer than trep, the
temperature change still remains so thermal modulation depth
decreases, as shown in Fig. 7(c). The calculation details lie
in the Appendix A. Because the heating volume of the bulk
thermal expansion is proportional to the total sample volume,
τrel of �Tb for the thick sample becomes longer than trep

during the high-frequency modulation. Conversely, because
the heating volume of the tip-enhanced thermal expansion
is limited by the thermal diffusion length of �lp, the τrel of
�Tt may still be comparable to trep. This effect makes that
the thermal modulation depth of �Tb is smaller than that of
�Tt . Thus, high-frequency light modulation may be another
condition that affects surface sensitivity.

The high-frequency light modulation effect can occur in
the PiFM measurement modes. The S polarization mea-
surement via the heterodyne PiFM (ωm = 2π × 2.1MHz)
presented in Fig. 4(h) (black) exhibits a lower slope with
respect to the thickness than that via the homodyne PiFM
(ωm = 2π × 300kHz) shown in Fig. 4(d) (black). If the force

gradients and the damping coefficients at a certain tip-sample
distance can be regarded as constant variables because both
PiFM measurement modes only observe �Lb in the S po-
larization measurement as a variable parameter in Eqs. (5a)
and (5b), the reduced response in the high-frequency light
modulation may support this hypothesis. In addition, a re-
cent study [18] claims that the surface sensitivity of PTIR is
caused by the high-frequency light modulation of the thermal
expansions. This result also suggests that the high-frequency
thermal modulation could be the additional reason why het-
erodyne PiFM is much more surface sensitive than homodyne
PiFM.

Lastly, the way to control the thermal responses may al-
low us to separate the PiDF from the PiTF or vice versa.
Since the PiDF is proportional to the polarizability while the
PiTF follows the absorption coefficient, some samples such
as phonon polaritonic materials may have spectrally differ-
ent force curve behaviors. For example, the quartz has the
far-field absorption resonance near 1070 cm−1 [34] while it
has the near-field resonance under the metallic tip-sample
geometry near 1130 cm−1 [35]. Since the quartz typically has
a very small thermal expansion coefficient (0.55 × 10−6/K),
the PiTF of �Lt may be ignorable in the measured IR spectral
range. In this case, the PiDF, which follows the near-field
resonance spectrum, may be spectrally deviated from the PiTF
of �Lb, which follows the far-field absorption spectrum, by
controlling the parameters such as the driving amplitude, tap-
ping force, and light modulation frequency.

V. CONCLUSION

Herein, we present comprehensive theoretical explana-
tions and experimental demonstrations of the PiTFs at the
tip-sample junction for the surface and volume-sensitive re-
sponses when the PiDF is small enough. The near-field
tip-enhanced thermal expansion (surface) and the far-field
bulk thermal expansion (volume) can be distinguished using
the heterodyne and homodyne PiFM measurements, respec-
tively. Moreover, we discovered that the key factors for the
surface sensitivity originated from the field enhancement at
the tip end, the small oscillation of the driving amplitude,
and the magnitude of tapping force. We also discussed some
additional parameters such as the pulse width and the light
modulation frequency. According to our study, any damp-
ing effect including optomechanical damping is ignorable
to the PiFM surface sensitivity in the mid-IR. The exper-
imental results for the polarization, driving amplitude, and
force-distance curve successfully support the theoretically ex-
pected PiTFs. The analysis method used in this paper can
be applied to other spectroscopic nanoimaging tools, such
as resonance-enhanced/tapping-mode PTIR and peak force
infrared microscopy [36]. We believe that our paper can help
understand the nature of the photoinduced forces in optome-
chanical spectroscopic nanoimaging studies.
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APPENDIX A: TIME DEPENDENT TEMPERATURE OF A
HEATED THIN FILM

In general, the temperature rise inside the sample with a
heating source Q0 is described by the heat diffusion equation

ρC
dT

dt ′ − κeff∇2T = Q0

V
, (A1)

where ρ,C and κeff are the density, the heat capacity, and the
effective thermal conductivity. The source Q0 is linked to the
absorbed power from laser irradiation in the sample, given as
Q0 = ∫ tp

0 Pabs(t ′)dt ′. V is the heating volume.
Considering the absorption during tp, the one-dimensional

heat diffusion equation of Eq. (A1) may be solved by using the
separation of variables of the temperature with the product of
the time and position, which can be given as

T −(z′, t ′) = T −
t (t ′)T −

z (z′) (0 < t ′ < tp), (A2)

T +(z′, t ′) = T +
t (t ′)T +

z (z′) (tp < t ′). (A3)

Substituting the above equations into the heat diffusion equa-
tion, the temperature after heating time (tp < t ′) is recast as

1

T +
t (t ′)

dT +
t (t ′)
dt ′ − κeff

ρC

1

T +
z (z′)

d2T +
z (z′)

dz′2 = 0. (A4)

Let’s set the z′-dependent variables as τ+. The time-dependent
temperature is derived as

κeff

ρC

1

T +
z (z′)

d2T +
z (z′)

dz′2 ≡ − 1

τ+ , (A5)

dT +
t (t ′)
dt ′ = − 1

τ+ T +
t (t ′), (A6)

T +
t (t ′) = T1e−t ′/τ+

. (A7)

By setting the t ′-dependent variables as ζ+, the thermal mode
of the position dependent temperature is derived as

1

T +
z (z′)

d2T +
z (z′)

dz′2 ≡ −ζ 2
+, (A8)

T +
z (z′) = T2 cos(ζ+(z′ − z′

0)). (A9)

Considering the low-heat capacity and thermal conductivity
of the air, one can define the boundary condition of no heat
source and no heat flow to the air as below:

j = −κeff
dT

dz′ |z′=lz = 0. (A10)

The substrate is assumed to be at constant temperature, which
without loss of generality, is chosen to be T (−0, t ′) = 0. In
the presence of an interfacial thermal resistance S between
the sample and the constant temperature substrate boundary
(located at z′ = 0), the heat flux is continuous:

j = −κeff
dT

dz′ |z′=0 = −S[T (+0, t ′) − T (−0, t ′)]. (A11)

By considering the above two boundary conditions under the
separation of variables method, the thermal mode of the time-
dependent temperature is calculated as

T +(z′, t ′) = T0e−t ′/τ+
cos(ζ+(z′ − lz )). (A12)

κeffζ+ sin(ζ+lz ) = S cos(ζ+lz ), (A13)

with the variables of

τ+ = ρC

κeff

1

ζ 2+
, (A14)

ζ+ = S

κeff
cot(ζ+lz ). (A15)

For large S, ζ+ ≈ π/2lz.
In the same manner, when the sample is heated up during

tp, the time-dependent temperature (0 < t ′ < tp) is derived as
below:

dT −
t (t ′)
dt ′ − κeff

ρC

1

T −
z (z′)

d2T −
z (z′)

dz′2 = Q0

T −
z (z′)ρCV

.

Then the temperature can be recast as

T −
t (t ′) = P0τ

− + ge−t ′/τ−
, (A16)

with the variables of

1

τ− ≡ −κeff

ρC

1

T −
z (z′)

d2T −
z (z′)

dz′2 , (A17)

P0 ≡ Q0

ρCV
. (A18)

For the initial condition of T (z′, 0) = 0,

T −
t (t ′) = P0τ

−[1 − e−t ′/τ−
]. (A19)

The position-dependent differential equation is recast as

ζ 2
− ≡ − 1

T −
z (z′)

d2T −
z (z′)

dz′2 , (A20)

where ζ 2
− = ρC/κeffτ

−. Then, the solution of the above equa-
tion can be derived as

T −
z (z′) = T3 cos(ζ−(z′ − lz )). (A21)

According to the boundary condition of T −(z′, tp) =
T +(z′, tp),

P0τ
−[1 − e−tp/τ

−
]T −

z (z′) = Ae−tp/τ
+
T +

z (z′),

A = P0τ
−[1 − e−tp/τ

−
]etp/τ

+
T −

z (z′)/T +
z (z′),

T +(z′, t ′) = Q0τ
−

ρCV
[1 − e−tp/τ

−
]e−(t−tp)/τ+

T −
z (z′).

If we assume τ+ � τ− ≡ τrel, the complete time-dependent
temperature change is given as

�T (z′, t ′) =
{

�Tmaxe−(t ′−τp)/τrel cos(ζ (z′ − lz ))(t ′ > τp)

�Tmax
1−e−t ′/τrel

1−e−tp/τrel
cos(ζ (z′ − lz )) (t ′ < τp),
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with the variables of

�Tmax = Q0τth

ρCV
, (A22)

τth = τrel(1 − e−tp/τrel ), (A23)

τrel = 4

π2

ρC

κeff
l2
z , (A24)

where tp, τrel, and ζ are the laser pulse width, relaxation
(cooling) time, and thermal mode shape. The τth can be un-
derstood as the effective thermalization time considering both
the heating and cooling time. Since the temperature is directly
proportional to the τth, the temperature typically shows satu-
rated behavior as the function of the sample thickness, which
is shown in Fig. 2 as black solid lines.

Equations (A22) to (A24) imply that both the heating and
cooling time simultaneously contribute to the temperature of
the sample. There are three important times regarding the
maximum temperature: one is the heating time, which corre-
sponds to the pulse width, another is the relaxation (cooling)
time, which is the time for the sample to reach the equilibrium
with the environment as determined by the thermal diffusion
process. If the relaxation time is longer than the pulse width
(thick sample), the temperature is relatively proportional to
the pulse width as in Fig. 7(a). However, if the τrel is much
shorter than the tp (thin sample) or the tp is much longer than
the τrel (long pulse width), the temperature is saturated as in
Fig. 7(b). This behavior can be understood as the effective
relaxation time τ̄rel in Eq. (A23), which means the time to get
the equilibrium by considering both the heating and cooling
process.

The final important time is the repetition period for the
pulsed laser. When the relaxation time is longer than the rep-
etition period τrel > trel, the sample is not fully cooled down,
so the temperature change gets saturated like as the process
of Fig. 7(c). This means that the high repetition rate reduces
the depth of the thermal modulation. To avoid this issue, the
relaxation time should be smaller than the repetition period as
in Fig. 7(d).

APPENDIX B: FREQUENCY-DEPENDENT THERMAL
EXPANSIONS AND PHOTOINDUCED THERMAL FORCES

IN DYNAMIC TIP MOTIONS

The heating source, Q0, depends on the geometry at the tip-
sample junction. The light-absorbed power at the tip-sample
gap distance, z, can be expressed as below by considering the
optical field as the far-field E f and near-field En,

Q0 =
∫

Pabs(z)dt ′, (B1)

Pabs(z) =
∫

aabs
1

2
cε0|E (z′)|2dVabs, (B2)

E (z′) = E f + En(z′), (B3)

where aabs, z′, λ, c, and E are the absorption coefficient, the
coordinate along the sample thickness, the wavelength, the
speed of light, and the electric field inside the sample, respec-
tively. The absorption coefficient is given as aabs = 4π

λ
Im{n̄},

where n̄ is the complex refractive index. The far field inside

the sample is calculated by E f = (1 − R)E0, where R and
E0 are the Fresnel’s reflection coefficient and the incident far
field. In this paper, we consider a weakly absorptive molecular
vibration that is (1 − R)2 ≈ 9Re{n̄}

(Re{n̄}2+2)2 [37]. The near field
inside the sample is calculated under the air/sample/substrate
geometry by using the finite dipole method reported in previ-
ous studies [26,27].

If we assume that the thermal expansion is proportional to
the temperature change, the calculation of the thermal expan-
sion can be simplified by regarding the temperature change of
�Tmax. In this case, the maximum thermal expansion is given
as below:

�Ltot(z) = σ lz�Tmax (B4)

≈ σ lzτth

ρCVheat

∫
aabs

1

2
cε0(|E f |2 + |En(z′)|2)dVabs

≡ �Lb + �Lt (z), (B5)

with τth = τrel(1 − e−tp/τrel ). σ, lz and τth are the linear thermal
expansion coefficient, the heating length of the sample and
the effective relaxation time. When the laser beam repeatedly
illuminates the tip-sample junction at frequency ωm as I (t ) =
|E |2 sin(ωmt ), the time-dependent thermal expansion with an
harmonic assumption can be given as

�Ltot(t ) = �Ltot(z) sin(ωmt + θm)

= (�Lb + �Lt (z)) sin(ωmt + θm). (B6)

If we consider two eigenmodes of the cantilever system,
when the tip is dynamically driven at a frequency (ω2),
the coordinates of the first two eigenmodes, the homo-
dyne motion at ωm and heterodyne motion at ωs = ωm ±
ω2 are z1(t ), z2(t ), zm(t ), and zs(t ). Then the instantaneous
tip position can be expressed as z(t ) ≈ z0 + z1(t ) + z2(t ) +
zm(t ) + zs(t ) − �Ltot(t ), where z0 is the average tip-sample
distance. The distance dependent tip-enhanced thermal ex-
pansion can be expanded by the Taylor series as �Lt (z) ≈
�Lt (z0) + ∂�Lt

∂z (z − z0) + O(z2) in the small oscillation limit.
By assuming the harmonic motions of z1(t ) = A1 cos(ω1 +
θ1), z2(t ) = A2 cos(ω2 + θ2), zm(t ) = Am cos(ωm + θm), and
zs(t ) = As cos(ωs + θs), the time-dependent thermal expan-
sion can be rewritten as

�Lb(t ) = �Lb sin(ωmt + θm), (B7)

�Lt (t ) = �Lt (z) sin(ωmt + θm)

≈ �Lt (z0) sin(ωmt + θm)

+ 1

2

∂�Lt

∂z
|z0 A2 sin(ωst + θs), (B8)

where ωs = ωm ± ω2 and θs = θm ± θ2.
Because the thermal expansion changes the tip-sample

distance, the tip-sample interaction force can mediate the
response to the tip. The force can be expanded in the small
oscillation limit as below:

Fts(z) ≈ Fc(z0) + 
(z0)ż + ∂Fc

∂z
|z0 (z − z0)

+ 1

2

∂2Fc

∂z2
|z0 (z − z0)2 + .... (B9)
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By substituting z − z0 = z1 + z2 + zm + zs − �Ltot(t ) into the
expanded forces, the frequency-dependent tip-sample force
can be recast as

Fts(z) ≈ Fc + 
(ż1 + ż2 + żm + żs − �L̇tot )

+ ∂Fc

∂z
(z1 + z2 + zm + zs − �Ltot )

− ∂2Fc

∂z2
|z0 z2�Ltot + .... (B10)

Separating the frequency-dependent terms at each frequency
at ωm and ωs by ignoring the higher order derivative terms,
one can obtain the frequency-dependent PiTFs as below:

Fm ≈ − ∂Fc

∂z
�Ltot sin(ωmt + θm) − 
ωm�Ltot cos(ωmt + θm),

(B11)

Fs ≈ − 1

2

(
∂Fc

∂z

∂�Lt

∂z
|z0 + ∂2Fc

∂z2
�Ltot

)
A2 sin(ωst + θs)

− 1

2

ωs

∂�Lt

∂z
|z0 A2 cos(ωst + θs), (B12)

where Fm is the PiFM homodyne force at ωm and Fs is the
PiFM heterodyne force at ωs = ωm ± ω2.

APPENDIX C: EVALUATING INTEGRAL
EQUATIONS OF MOTIONS

Let’s first solve the mechanical driving amplitude and
phase for the second eigenmode (i = 2). The integrands in
Eqs. (8) and (9) can be calculated with high accuracy over the
period T = 2π p1/ω1 = 2π ps/ωs = 2π pm/ωm, where p1, ps,
and pm are the commensurable integers; i.e., ω1/ωs = p1/ps,
ω1/ωm = p1/pm, and ωs/ωm = ps/pm. The physical meaning
of the commensurable integers is to increase the measuring
time. Then, the ω2-dependent force is only survived in the
integrands by one period integration because of trigonometric
relation, which are rewritten as

(
k2 − mω2

2

)A2

2
= 1

T

∫
0

T (
∂Fc

∂z
z2 + F2(t )

)
cos(ω2t + θ2)dt,

(C1)
b2ω2A2

2
= 1

T

∫
0

T

(
ż2 + F2(t )) sin(ω2t + θ2)dt, (C2)

where F2(t ) = F2 sin ω2t . By calculating the integrands with
one period, the equations are recast as(

k2 − ∂Fc

∂z
− mω2

2

)
A2 = −F2 sin θ2, (C3)

(b2 + 
)ω2A2 = F2 cos θ2. (C4)

Then, the mechanically driving amplitude and phase are de-
rived as

A2(ω2) = F2√
m2

(
ω′2

2 − ω2
2

)2 + (b′
2ω2)2

, (C5)

θ2(ω2) = − tan−1

(
m

(
ω′2

2 − ω2
2

)
b′

2ω2

)
, (C6)

where ω′
2 = √

(k2 + kc)/m with kc ≡ − ∂Fc
∂z |z0 and b′

2 = b2 +

.

By substituting the expanded tip-sample forces in
Eq. (B10) into Eqs. (8) and (9), we can calculate the inte-
gral forms of equations at the first eigenmodes (i = 1) for
the PiFM homodyne and heterodyne measurements. Then the
integrand can be recast as

(
k1 − mω2

1

)A1

2
= 1

T

∫
0

T (
∂Fc

∂z
z1 + Fj

)
cos(ω1t + θ1)dt, (C7)

b1ω1A1

2
= 1

T

∫
0

T

(
ż1 + Fj ) sin(ω1t + θ1)dt, (C8)

where j = m, s. For the homodyne measurement at ωm = ω1,
the integrands are calculated as below:(

k1 − ∂Fc

∂z
− mω2

1

)
A1 ≈ ∂Fc

∂z
�Ltot sin(θ1 − θm)

− 
ωm�Ltot cos(θ1 − θm), (C9)

(b1 + 
)ω1A1 ≈ −∂Fc

∂z
�Ltot cos(θ1 − θm)

− 
ωm�Ltot sin(θ1 − θm). (C10)

By squaring and summing the Eqs. (C9) and (C10), the PiFM
homodyne amplitude (Am) and phase (θ̄m) are derived as

Am ≡ A1(ωm) = |Fm|√
m2

(
ω′2

1 − ω2
m

)2 + (b′
1ωm)2

, (C11)

θ̄m ≡ θ1(ωm) = θm + tan−1

(−aA + bB

bA + aB

)
, (C12)

where ω′
1 = √

(k1 + kc)/m, b′
1 = b1 + 
, a = ∂Fc

∂z �Ltot,
b = 
ωm�Ltot, A = k1 + kc − mω2

1, and B = b′
1ω1. With the

same manner, the heterodyne amplitude (As) and phase (θ̄s) at
ωs = ωm ± ω2 = ω1 are derived as

As ≡ A1(ωs) = |Fs|√
m2

(
ω′2

1 − ω2
s

)2 + (b′
1ωs)2

, (C13)

θ̄s ≡ θ1(ωs) = θs + tan−1

(−a′A + b′B
b′A + a′B

)
, (C14)

where θs = θm ± θ2, a′ = A2
2 ( ∂Fc

∂z
∂�Lt
∂z + ∂2Fc

∂z2 �Ltot ),

b′ = 
ωs
1
2

∂�Lt
∂z A2, A = k1 + kc − mω2

1, and B = b′
1ω1.
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