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The optical force density as a function of position and time provides fundamental information to model
local and, through integration, macroscopic kinetic motion of condensed matter. Here, the boundary condition
associated with the optical force density is developed and investigated using an expression stemming from the
work of Einstein and Laub, and in conjunction with Maxwell’s equations to describe the electromagnetic fields.
Consequently, a constraint is formed that allows a unique relationship between the total force and the force
density, one that is achieved by virtue of the conservation principles for physical materials and described by
locally homogenized constitutive parameters. Further insight can be garnered from new experimental studies, as
summarized. The mathematical steps presented form a basis for modeling various optomechanical phenomena,
including optical forces in and on solid-state systems such as membranes, beams, cantilevers, and waveguides,
and can be interpreted in terms of a suite of related theoretical work. This specification of the force density
boundary condition is relevant for basic scientific fields including those involved with various quantum cooling
issues, molecular optomechanics, photochemistry, and biophysics (including mechanotransduction). The tech-
nologies impacted encompass integrated optomechanics (silicon photonics, where new optical device concepts
can be enabled), communication systems (in which optical forces could supplant electronic switching), remote
control and actuation, propulsion, sensing, and navigation.

DOLI: 10.1103/PhysRevB.106.155423

I. INTRODUCTION TO OPTICAL FORCES

While there have been many important papers written on
the theory of electromagnetic forces, we still lack complete
understanding of how photons interact mechanically with
materials. This has consequences for the interpretation of ex-
perimental data and for optomechanics in condensed matter,
as well as for a range of applications. In the work presented
here, a force density theory that has been used to explain key
experiments and is based on the work of Einstein and Laub [1]
is used to develop the boundary conditions that are appropriate
at material interfaces and for optical frequencies. This leads
to a theory for the total force and pressure that can be further
evaluated through various experiments, and the concepts can
be applied to other models.

Since a prediction of an optical force by Maxwell [2]
and subsequent measurement [3,4], many basic developments
have occurred. Notable among these, after the invention
of optical tweezers in the 1980s [5], optical manipula-
tion has become important in biology, physical chemistry,
and condensed-matter physics [6]. Optical rheology and
mechanotransduction in cells has enabled new experimen-
tal regimes [7], and the range of forces realizable [6,8—
13] are useful for biological and macromolecular systems
research [14-16]. In addition, optomechanics has led to
surprising findings in classical statistical mechanics [17],
including anomalous attraction [18], oscillatory colloidal
interactions [19-22], and hydrodynamic fluctuations [23]. Op-
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tical traps have been studied extensively for use in achieving
Bose-Einstein condensates [24,25] and in regards to pho-
ton momentum exchange [26]. Nonclassical states have been
investigated using optical traps as a means to enhance sen-
sitivity [27] and for atomic clocks [28]. There have been
studies of ways to regulate the phonon spectra in solid-
state materials and devices during the past decade or so.
Membrane cooling for cavity optomechanics facilitates im-
proved sensing or a platform for quantum signal processing
[29,30]. In Tamm plasmon resonators, efficient light-sound
transduction has been shown [31], as has been found in dis-
tributed Bragg reflector GaAs/AlAs vertical cavities [32].
Such optical-phonon interactions can facilitate nonreciprocal
elements, important in realizing optical isolators (a challenge
for integrated photonics) [33-35] and directional amplifiers
[36]. More generally, there are interesting lines of physics
related to topological phases of sound and light [37].

Optical forces in nanostructured media are relevant in a
variety of technologies. Nano-optomechanical actuators have
been demonstrated that have the potential to impact op-
tical signal processing [38], and a Si microdisk provided
high-frequency signal processing, sensing, and metrology
[39]. Other opportunities in quantum information process-
ing [40], thermal and humidity sensing [41], optical logic
gates [42], channel routing or switching, dispersion compen-
sation, and tunable lasers [43] have also been considered.
In addition, concepts for applying all-optical control to
mechanical or physical devices present exciting opportuni-
ties for optomechanical systems. For example, the energy
consumed in the electronic control of optical communica-
tion networks has driven interest in all-optical means of
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communication between computers [44] and in radio fre-
quency photonics [45].

Based on the aforementioned and other related achieve-
ments, it is indeed remarkable that more than one century
after the first measurements of optical force there remains
such uncertainty with regard to force densities in condensed
matter. By contrast, Maxwell’s equations projected in Poynt-
ing’s theorem is widely accepted as a means to describe
electromagnetic energy. As an illustration, the physics behind
photon drag with surface plasmons has recently been brought
into question [46], despite the relatively long history of this
phenomenon. To resolve open questions related to optical
force density, a combined basic theoretical and experimental
effort is needed. The key interface problem treated here relates
to this goal.

Section II provides background on the force density model,
and the specific boundary issues developed are introduced.
The mathematical treatment in Sec. III is the key contribution
of this work. Section IV considers mathematical and physical
interpretations in relation to experiments, including sugges-
tions for studies to evaluate the theory, as well as broader
impacts in current application spaces. Following some con-
clusions in Sec. V, acknowledgments are presented.

II. OPTICAL FORCE DENSITY AND MODEL

To understand how light imparts a force throughout con-
densed matter, one must build a theory for the force density. In
this way only, can a model be formed to determine mechanical
mode excitation, as a result of the spatially dependent optical
force density. The rigorous way to obtain the total force on
a region of material is to integrate the force density over
volume. With suitable boundary conditions, this integration
can be moved across material interfaces with complete rigor.
One should anticipate that there is a unique force density
for a particular electromagnetic field distribution and physical
problem, and hence a unique result from integration, based on
the physics. The goal of the present work is to evaluate the
requirement of the optical force density at material interfaces,
in order to correctly connect the force density internal to
a material to the external force, for example, to obtain the
pressure.

The force density theory considered here stems from work
done by Einstein and Laub [1], yielding results of note for
the conservation of momentum in physical materials. This
theory correctly predicts the important water experiment done
by Ashkin and Dziedzic [47], as verified by us and previously
described [48]. In that experiment, the fluid moved according
to the local force density, and this was measured to produce
a bulge or squeezing effect that is independent of incident
laser direction [47]. This is the theory for force density that
has been used to describe forces (deflections) in structured Au
on SiN membranes [49]. It or related theory has been widely
studied [S0-54], but not in the sense of the boundary condition
treated here.

At optical frequencies, where magnetism (impacting the
magnetization) is negligible, it is the locally homogenized
polarization (exhibited in the complex electric susceptibility
or dielectric constant, possibly in tensor form) that describes
the material in both an electromagnetic and force density

sense. All force formulations must contend with a spatially
varying dielectric and hence interfaces. By way of example,
the laser optical trap model with dielectric beads relies on a
gradient force involving the spatial derivative of the electric
field, E [5]. Relevant is the dipole force density of the form
(P - V)E, where P is the polarization [51,52]. Treatment of
this dipole term is important in such inhomogeneous material
systems, as will become apparent here.

In the theoretical development that follows, the basis for
the force density is derived from electromagnetic principles to
make clear how kinetic force (that moves condensed matter)
can be related to the field description in a way that is meaning-
ful for optical materials. This allows boundary conditions that
conserve momentum to be developed, leading to the primary
contribution of the present work.

III. FORCE DENSITY BOUNDARY CONDITION
A. Electromagnetic fields and related mathematics

The starting point is assumed to be Maxwell’s equa-
tions and a stationary reference frame. Consequently, a
nonrelativistic form of the kinetic force density is derived
using the classical form of the Abraham momentum. Using
the standard assumption of sufficient boundary smoothness to
allow a locally planar assumption for an interface, the usual
field boundary conditions are extended to those that apply
to the momentum density. As a result, a boundary condition
applicable for the force density is obtained, assuming physical
materials and optical frequencies. Resulting is a kinetic force
density with Cauchy principal value integration to obtain local
forces, including at boundaries. The implications in relation to
experiments are addressed in Sec. I'V.

Maxwell’s equations are written with all source terms on
the right-hand side, leading to

V x E'HtoE = —Moy, ()
Jat ot
VaxH-E_% .y @
Jat ot
V- -E=—V.P+p, 3)
V.H=-V.M, (4)

with H being the magnetic field, M the magnetization, J the
source electric current density, p the electric charge density,
o the permeability of free space, and €, the permittivity of
free space. Taking the cross product of €yE with (1) and uoH
with (2), and adding the resulting equations, gives

eE x (V X E)+ uoH x (V x H)

n E oH u oE
E X — — uopegH x —
Ho€o Y MHo€o o

oM )
= —ppeoE x T + noH x = +uoH < J.  (5)

With a little work [51], the triple cross product terms in (5)
can be written in the form

eE x (V X E)+ uoH x (V x H)
=V -Tg +€(V-EE + uo(V-HH, (6)
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with
Tr = 1(6E - E + poH - H)I — ¢ EE — ugHH  (7)

being the so-called Maxwell stress tensor [55], and where I is
the identity matrix. Here, the divergence of the tensor in the
(x1, X2, x3) coordinate system is

9Ty, 4 0Ty + T3

dxg dxp 0x3
_ 8T12 3T22 BTSZ
V ’ T - 3)(1 + sz + 3){3 ’ (8)

9Ti3 Ve T3
3}6] + 3x2 + 3X3

and the dyadic product of two vectors is defined according to
(ab);; = a;b; [50], giving, for example,

E? EE; EE;
EE = | L,E,  E}  EE;|. )
EsE, E;E, E}

Substituting (6) into (5) gives
V. -Tg +€(V -E)E + uo(V - HH

E 8H+ H oE
= —o€oE x — eoH x —
Ho€o o1 Ho€o o1

oM oP
— no€gE x — 4+ uoH x — + uoH x J. (10)
at ot
We shall consider the Abraham momentum density, which
is given by

1
g=—ExH, (11)
C

with ¢ being the speed of light in vacuum. In free space, all
forms of the photon momentum give fiky, with i = h/(2m), h
being Planck’s constant, and k) = w/c the free space wave
number at circular frequency w (see Appendix). In back-
ground media, the description of a photon has been the subject
of considerable attention (see Ref. [26], for example).

Taking the time derivative of (11), we have

og oH oE
— = Ex —— Hx —. 12
o = MocoE X = — puo€oH x = (12)
Using (10) and (12),
og
V - T + €(V -E)E + uo(V -H)H+5

oM oP
= —/,L()G()E X — +I‘LOH X — +/LOH x J. (]3)
ot ot
The Einstein-Laub momentum flow or stress tensor is de-
fined as [51,53]

T = 1(¢E - E + 1oH - H)I — DE — BH, (14)

with D = ¢oE + P being the electric flux density and B =
wo(H + M) the magnetic flux density. One arrives at (14) by
considering the free space contribution, in the form of (7), and
those due to polarization and magnetization, as described by
a number of people (see Ref. [51]). This amounts to writing
TE + Tp + TM = T, with Tp = —PE and TM = —[,L()MH
providing the polarization and magnetization contributions,
respectively (i.e., the material effects).

With use of the vector identities

—(V-P)E=-V.(PE)+ (P-V)E, (15)

—(V-MH=-V.-(MH)+ (M- V)H, (16)
and incorporating (14) into (13), we have the key result

vor+2_ g2 Ex M HxJ
. — = X — — o€ x — X
Y Mo ar Ho€0 ar Mo
—oE—(P-V)E — (M- V)H, a17)

which we draw upon throughout the remainder of this devel-
opment. Equation (17) provides a basis to consider arbitrary
material responses (nonlocal in time and with material and
geometric dispersion). For source-free (where the incident
field, that without the material, is due to some remote source),
nonmagnetic materials, (17) becomes

g

ar
where loss and hence free charge motion is incorporated into
the temporal Fourier form for the polarization, which for
isotropic materials becomes P(r, w) = €y xg (r, )E(r, w) =
€ole(r, w) — 1JE(r, w), with complex electric susceptibility
xe and dielectric constant €.

aP
—V-T—[E XM0H+(P-V)Ei|, (18)

B. Boundary conditions

Maxwell’s curl equations applied to boundaries with suf-
ficient smoothness and for physical materials (precluding a
perfect electric conductor) yield the tangential field boundary
conditions

iy x (H —Hp) =J, =0, (19)

iy x (E; —Ey) =0, (20

with fiy; being the unit normal vector directed from Region
2 into Region 1. These follow from Ampere’s law (2) and
Faraday’s law (1), respectively, transformed into integral form
with use of Stokes’ theorem, and then applied to a small (rect-
angular) domain spanning the interface, in the usual manner.
The boundary conditions in (19) and (20), i.e., continuity of
tangential magnetic and electric fields, combined with the
momentum density in (11), yield

fy - (g —g)=0 21

as a momentum density boundary condition. Equation (21) is
quite interesting, because it implies that the normal compo-
nent of the Abraham momentum density is preserved across
an interface, by virtue of the field boundary conditions. It
also indicates that the momentum density in media with xg
other than zero has the same form as that in vacuum (or some
other material), as expected for the Abraham form. Of course,
the normal components of the Poynting vector (S = E x H)
are also preserved across interfaces, a statement of energy
conservation based on Poynting’s theorem,

oD oB
f(EXH)-dS:—/(E-g-{-H-E)dv, (22)

applied here to a source-free region (J = 0) containing lo-
cally homogenized material parameters [dictating D(r, #) and
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B(r, )] and derived from Maxwell’s equations with use of a
vector identity and the divergence theorem.

Let us assume that the condensed matter experiencing an
optical force is fixed in position for a time that is large relative
to the temporal period of the optical wave. This is discussed in
some detail in Sec. IV, but is reasonable for material having
a spatial support on the few-nanometer scale or larger (with
significant mass and where a classical field description with
locally homogenized parameters can be applied). Mathemati-
cally, we can simply assume that the material is fixed in space
during some time interval. As a result, the complex spatiotem-
poral optomechanics problem can be simplified in a manner
representative of many experimental situations. Integrating
(18) over suitably small spatial and temporal supports results

mn
og
—Zdvdt = — V - Tdvdt
v t at v t

P
— //[5 x woH + (P~V)E:|dvdt.
v Jt

(23)

More specifically, the constraint underlying (23) would be
that, given a specific spatial support, a time interval is spec-
ified as being sufficiently short. Computationally, this would
relate to a numerical convergence criteria. With these caveats,
we proceed with evaluation of (23). Within any domain, it is
straightforward to evaluate (23) using computational electro-
magnetics, once the locally homogenized material parameters
[e(r, w) for all w] are defined.

One can apply the divergence theorem to (23), assuming a
locally smooth surface that is fixed during the relevant time
interval, allowing the first term on the right to be expressed as
a closed surface integral for the region defining the volume.
Therefore, with consideration of an infinitesimally small re-
gion that spans an interface between Regions 1 and 2, (23)
becomes

0g
f dvdt = — T;;dsidt
vJi 0t ‘

oP
—//[—X;LOH+(P~V)E}dvdt,
o Ji L ot

(24)

where the appropriate permutations of the surface integral
variables are implied. Assuming finite fields [sufficient local
boundary smoothness, as used to arrive at (19) and (20), and
thus finite E and H and hence g and P], we have

d
lim { / / —gdvdt} =0, (25)
v—>0 | J, J; ot
lim { — f /T[jdskdt
v—0 '
oP
—//|:— x woH + (P - V)E]dvdt}
vJe Lot
= lim {—f/T[jdskdt — [/(P . V)Edvdl}
v—=0 t v Jt
=0.

(26)

Equations (25) and (26) are key to evaluating boundary-
condition requirements for the kinetic force density, yet to be
formed.

Selecting the normal components from (26) yields

lim {ﬁm . f /Tl'jdskdl}
v—>0 ¢

If we assume that fi;; = ¥ and two-dimensional (2D) Carte-
sian coordinates (no field variation in the third dimension),
then

lim {‘(ﬁ /(T),Xdydz + T}ydxdz)dt}
t

v—>0

= lim {f / Tyydxdzdt} (28)
v—> t

=lin}){//—y-[(P~V)E]dvdt}. (29)

The point here is that a Dirac § function term that exists from
the spatial derivative [formation of (P - V)E at the interface]
is associated with the step in Ty, so that

1in(1){yg/Tyydxdzdurf/y-[(P.V)E]dvdz} =0.

(30)

Physical materials are dispersive, so (27) is correctly in-
terpreted in the temporal Fourier domain and with spectral
superposition. In phasor form, (P - V)E is complex and fre-
quency dependent, as is the Dirac § function coefficient at an
interface.

C. The Kkinetic force density

We now ascribe a kinetic force based on the electro-
magnetic field description, with consideration of the relevant
physics and with the goal of predicting experimental obser-
vations. This development will utilize (17) and the associated
boundary conditions that assume local smoothness.

At the interface between two materials, say free space and
some solid-state material, there is in general an electric-field
component normal to the interface. In the mathematical (and
nonphysical) case of a perfect electric conductor, an unlimited
charge can respond instantaneously, and fi;; - D| = p;, with
ps the local surface charge density. Here, Region 2 is the
perfect conductor and p in (17) exists at the surface and is
described as a Dirac § function with respect to the normal
direction. This surface charge would experience a force just
as Lorentz described [56]. The angle-dependent force on a
mirror, as presented by Planck [57], also follows. Likewise,
for the electrostatic case with free charge (w = 0), one asso-
ciates a similar force density with the surface charge density
from the normal electric flux density boundary condition (and
Gauss’ law). We can consider both of these situations as being
a local force on a charged surface, at least in the context of
(17). In such situations, charge is experiencing a force, and to
the degree that a local solid-state material contains such net
(local) charge, one might anticipate a resulting force.
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What about interfaces with neutral materials and at optical
frequencies? While an electric-dipole moment is established
in a material (resulting in the local, average dipole moment
per unit volume, i.e., the polarization P, a complex quantity
in the temporal Fourier domain), moving this material with a
kinetic force requires collective motion of these dipoles (the
neutral material picture) or free charge motion over length
scales large relative to an underlying atomic or lattice di-
mension (thereby achieving a locally charged material, most
rapidly from electron transport). One could speculate that the
ability to translate material relates to local neutrality and to
the distance and timescale for local charge transport. At op-
tical frequencies, a simple charge transport analysis (Lorentz
force with a practical laser beam power and the associated
electric field that accelerates an electron) indicates that the
femtosecond-timescale displacement of charge (local electron
motion, within a unit cell, or free, with the timescale involved
for an optical wave that moves charge back and forth) is very
small. By small, this means relative to atomic scales, as can
be verified for the electric field from a high-power laser and
with use of the rest mass and charge for an electron [58].
Because the free charge does not respond fast enough to the
optical field (a phenomenon that results in kinetic inductance),
one arrives at the conclusion that free charge motion can be
neglected in the boundary representation for optical forces
(but not in longer-range force density phenomena, because
this is exhibited in loss and hence the imaginary part of the
dielectric constant [59]). The charge-neutral material at the
interface will respond as an electric dipole over the atomic or
unit cell (with homogenization) length scales that are small
relative to the penetration depth for optical fields. One thus
arrives at the conclusion that there will be no net force on
these dipoles very close to the interface for physical neutral
materials, and hence zero force density as the boundary is
approached. Equivalently, the atoms in an infinitesimally thin
material slice will be predominantly forward scattering, re-
sulting in vanishingly small momentum transfer. All of this
suggests that the force density at the interface cannot be
infinite physically (in such neutral materials), and that any
Dirac delta terms associated with (P - V)E would not exist
in reality in this situation at optical frequencies (despite the
presence of a polarization surface charge density). A separate
question might be whether this Dirac delta term represents an
equivalent effect that is not captured classically by another
means, but that position is unsatisfying. Physically, then, and
at optical frequencies, we might be inclined to reject a Dirac
delta term in the kinetic force density, that involved in creating
motion of material and associated with the electromagnetic
description.

The electromagnetic momentum density g in material has
a long history of debate. Without belaboring the point, this is
of relevance because of the boundary treatment. We consider
here a mathematical-field interpretation that, when folded into
a conservation condition related to momentum, can be inter-
preted in a physical sense without ambiguity. Equation (21)
presents a requirement on (the normal component of) the
momentum density on either side of an interface based on
electromagnetic boundary conditions. The momentum flow
(stress) tensor (T) can have discontinuous components at an
interface if the force density has a Dirac delta term, and this

can only come from (P - V)E in (18) for dielectric media.
If one considers that photon momentum must flow across
an interface, then the relevant components of T have to be
continuous across the interface, i.e., the 7;; are conserved
quantities. If one accepts an infinite Dirac delta force density
at the boundary, then T can have discontinuous steps. To
force continuity in T and hence momentum flow, one can add
the Dirac delta contribution from (P - V)E to the integral of
V - T. Doing so requires consideration of the external stress
tensor elements while adhering to momentum conservation
requirements.

This backdrop leads to an interpretation of the electromag-
netic expression in (17) for the description of kinetic force
density as

g

[V -Tlpy + — = uoH x

op Ex M. L HxJ
_— € X — X
ot gr | HocoR X T T Ho

—pE — [(P - V)E]py — [(M - V)H]py
= —f, (1)

with f;, being the kinetic force density and the implication of
[-]pv, the principal value in the Cauchy sense with integra-
tion, is that the Dirac delta boundary contributions from the
right have been separated and added to the divergence of the
momentum flow tensor on the left, if the boundary is moved
across the interface. Consequently, the kinetic force density,
that associated with collective material motion, becomes

oP oM
fi = Yl poH — ar X po€oE +J x pwoH + pE
+[(P- V)Elpy + [(M - V)H]py. (32)

Equation (32) is the key result developed here.

At optical frequencies and for physical materials, we might
conclude that the force density in (32), without boundary
Dirac delta terms and hence within the spatial support of ma-
terial media, be applied. Electromagnetic momentum flow in
the field sense is thus preserved across boundaries, as is shown
in (25) and (26), in a manner that is physically satisfying. This
implies that the total kinetic force becomes

¥ ][/‘ P H oM E
= — X — — X Q€
k AR Ko Y MHo€o

+J x noH + pE
+(P-V)E+(M~V)Hi|dvdt, (33)

where the volume integral is interpreted in the Cauchy prin-
cipal value sense (so the PV subscripts are removed from the
relevant terms in the kernel). Both the temporal and spatial
integration requirements are addressed in Sec. IV. Briefly, the
normalized time integral (preserving units) is over a period or
an interval that is sufficiently small relative to the kinetics of
the system, and could be over the carrier period for modulated
light, so the force becomes a function of the modulation time
variable (see, for example, prior work on force [52] and en-
ergy [60] in dispersive materials). The volume integral also
assumes that the spatial distribution of material is fixed over
the time interval considered.

It is important to note that (32) and (33) impose all relevant
boundary conditions and momentum flow is conserved. That
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model was matched to subsequent experimental studies with
membrane deflection that supported the existence of enhanced
optical pressure [49]. The broader implications of this theory
holding physically, and hence (32), are significant, as outlined
in Sec. IV.

IV. DISCUSSION

Interpretations of the optical force boundary-condition the-
ory developed in Sec. IIT are described in relation to material
properties and how solutions to optomechanical problems can
be formed to describe experimental situations. The role of new
experiments in exploring the forces near interfaces and at the
nanometer length scale is explored, and the impact on several
current research trends is outlined. Throughout this section,
published numerical simulation results and data from exper-
iments are noted because they relate to the central theme of
a boundary constraint for optical forces, i.e., electromagnetic
force theory in condensed matter and at optical frequencies,
as would be the case with use of lasers.

A. Motion of solid-state media

Consider a condensed-matter system with mass, as would
apply in the laboratory setting with, say, membrane motion.
Flexural modes generally accessed in SiN membranes of typ-
ical dimensions used in optomechanics experiments [49,61]
have lower-order resonances below the MHz range. A thin
plate model for the eigenmodes for a 100 nm thick, low-stress
SiN membrane [62,63] suggests that the local linear velocity
is of the order of 10° m/s. In one optical cycle, say 10~ s,
the membrane moves 10~'2 m (102 A). The quality factors
in Au plasmonic cavities are modest, less than 100 typically
[64], which results in a cavity lifetime of less than 10713 s.
During this time (10~ s), the membrane will move about
1071 m (1 10\). Both these timescales (optical period and
cavity excitation time in plasmonics [49]) suggest material
motion might be neglected in the optomechanical analysis
for such solid-state systems over these periods. This leads to
a practical interpretation for (32) and (33) in experimental
situations involving membranes, beams, cantilevers, beads,
etc. Consequently, and as done previously [60], a temporal
average over the carrier period presents the modulated light
description and the plausible time frame for a mechanical
response. Hence, the time variation measured with a sensing
system for membrane deflection measures (at or below) the
modulation temporal profile for the (laser) light.

B. Time-averaging in force density

The time integrations in Sec. III and specifically in (32)
and (33) can be written more precisely. Modulated light and a
local average over the optical (carrier) having period 7y can be
described as

1 ty+to/2

(f@O)) (@) = —/ f(0)dt, (34
0 Ji,—19/2

where f(z) is a scalar function that varies with time (and

position), such as a component of the vector force density, and

t, is the time variable relevant for the mechanical system. With

this definition, averages of the force density [(f(r,7))(,)]

and total force or pressure can be formed to achieve time-
dependent results that vary with the modulation temporal
envelope. This produces a (modulated-light) time variation
in the force quantities that is commensurate with mechanical
motion timescales [52].

C. Implications regarding the total optical force
and conservation of momentum

The fundamental way we should view optical forces in ma-
terials is through the spatially and temporally dependent force
density, as exhibited in (32). This forms the basis to obtain
components of force and torque through integration, and to
predict motion in three-dimensional (3D) space. Conservation
of momentum is thus point-wise and comes from (31).

All materials must have continuity of the normal com-
ponent of the Abraham momentum density, based on the
field boundary conditions and as given in (21). Likewise, the
constraints involving dg/dt and T;;, (25) and (26) respec-
tively, must hold at interfaces, as well as along any contour
within a locally homogeneous domain. Equation (25) fol-
lows directly from the constraint in (21). In a sense, more
interesting is the conservation condition in (26), where the
integral of a (possible) Dirac delta force density term (from
(P(r,1) - V)E(r, 1), with a normal component of the electric
field) must be precisely compensated by the surface integral
of respective stress tensor elements 7;;(r, ). What appears
not to have been widely appreciated is that the condition in
(26) holds with either: (i) a Dirac delta component of the
force density at all dielectric interfaces added to the bulk force
density, or (ii) with the Dirac delta contribution added to the
stress tensor (so that the force density is integrated to form the
total force without the Dirac term). Both precisely satisfy all
mathematical constraints, but only one should be physically
meaningful in a given situation. The point made in Sec. III C
is that only case (ii) conforms to the physics of the system
(with optical frequencies and physical, neutral materials), thus
driving the choice of the principal value representation and
the form for the kinetic force density [fi(r, 7)] in (32) with-
out the Dirac delta contribution. In special cases like normal
incidence on a planar interface, interpretations (i) and (ii) are
identical. Therefore, based on charge transport time constants
and at optical frequencies, the total kinetic force, that which
can move a structure in a manner measured by spatial motion
or matter, would appear to be dictated by (33).

D. External momentum flow tensor

Equations (32) and (33) are applied within the spatial sup-
port of the medium. From the left of (31), the result from
[V - T]+ dg/or or its integral, respectively, gives the iden-
tical result. In this case, T from (14) is that in the material.
If one moves the integration just across a material interface
with, for example, free space, T assumes its free space value,
resulting in (7). Then, the result from the integration of the
Dirac delta at the surface is added to the stress tensor integra-
tion to obtain the same result as from the spatial integration
within the material. This produces a consistent internal and
external description of the kinetic force and allows correct
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interpretation of the time-dependent momentum flow into the
material.

E. Nonlocal-in-time fields and impact on the force density

The fields in all physical materials are a result of current
and all earlier excitations in time, making the description non-
local in time (see Ref. [65], for example). Likewise, a nonlocal
temporal response should also apply for the optical force in
material and in (32), where the force at each point in matter is
the result of the excitation history as conveyed by the nonlocal
field responses. The same nonlocal-in-time situation holds for
geometry-based means to store optical energy, such as cavities
in materials [66], which opens new opportunities for optical
force control, such as with optimization-based aperiodic struc-
tures [67]. On this basis, the established principles of nonlocal
fields in materials is reviewed, as relevant to understanding the
impact in (32).

The (locally homogenized [68]) polarization is correctly
written in the frequency domain at each point in space as

P(r, w) = eoxe(r, w)E(r, o), (35)

with the simple case of a scalar complex electric susceptibility
xe being assumed for the constitutive parameter. Material
responses in the form of (35) are how materials are modeled
either quantum mechanically or through a classical picture,
and generally how they are characterized experimentally. Tak-
ing the inverse Fourier transform of (35), we have

1 oo .
P(r,t) = E/ eoxe(r, o)E(r, w)e ™ dw  (36)

o0

“+00
= / €oxe(r, T)E(r,t — t)dr. 37
—00

Equation (37) is of course the standard treatment of dielectric
materials expressed in convolution form [65] and subject to
causality associated with the velocity ¢, where we assume
a local space result. However, here the relevance is that the
force density in condensed matter is also the result of the
time history of the excitation. The nonlocal-in-time concept
for optical forces is thus important and essential in the correct
theoretical description, and it is incorporated into the theory
in (32) and (33).

The fact that materials respond nonlocally in time requires
consideration of this phenomenon in all optomechanical situ-
ations, including those described by modulated light and in
sinusoidal steady state (with monochromatic illumination).
Because materials store energy, this impacts both the energy
exchange with the outside world [60] and also the force
imparted. Optical cavities in various forms provide energy
storage and this impacts the force [49,66]. Materials with gain
(optical activity) can have negative pressure [52,59], also by
virtue of the time history of the system.

F. Momentum flow into a volume

While the force density, i.e., a pointwise result as a function
of time, provides a fundamental path to kinetic information,
it is instructive to reflect on on a widely disseminated pre-
sentation of momentum flow into a volume and conservation
conditions in relation to the results in Sec. III. For this pur-

pose, Jackson [65] (third edition, Sec. 6.7, pages 260—261)
is primarily drawn upon. That material follows the argument
in Stratton [69] (pages 156—159). By starting with the devel-
opment in Sec. III, we shall arrive at Eq. (6.122) in Jackson
[65], then interpret the result in terms of what is and is not
implied in this volume-based conservation result. In Jackson
(pages 260—261), the simple situation of charges (p) and
current density (J) in free space is treated, avoiding interfaces
and nonlocal-in-time phenomena associated with physical
material (physical atomic and molecular states), where the es-
tablished Lorentz force density (f = pE + J x B) is utilized.
Here, we use the more general Einstein-Laub description
(Sec. III) because of an interest in condensed matter, but the
same general expression [Eq. (6.122) [65] ] can be found.
Following this, we consider the meaning of each term in light
of the spatiotemporal boundary conditions for force density to
ensure momentum flow.
From (31) and suppressing the PV, we have

og(r,t)
ot

fi(r, 1)+ = -V . .T(,t). (38)
Integrating (38) over some volume and applying the diver-
gence theorem (under the assumption that a fixed boundary
is meaningful, implying some local time picture), we have

/ (fk(r,t) + %)dv =— % T;;(r, t)dsy. 39

Using the notation of Jackson, (39) can be written as

dt

which (in mathematical form) is Eq. (6.122) in Ref. [65].
Here, dPpecn(t)/dt = f fi.(r, t)dv is the sum of all mechani-
cal momenta associated with the optical field in the volume
at each instant of time and Pgeq(¢) is the integral of the
(Abraham) field momentum g(r, ¢). In words, (40) says that
the momentum flow into the volume (described by the right-
hand side) is exactly the time rate of change of the sum of
the total mechanical and field momenta in this volume. There
are two important points to note about (40). One is that this
conservation condition relates to the total time rate of change
of mechanical plus field momenta and does not in general
allow the two to be distinguished, or at least the mechanical
component of the force is not uniquely determined without a
suitable forward model. This means that, except with specific
assumptions of the situation being modeled, one cannot deter-
mine the mechanical force from photon momentum flow. The
other is that, beyond this ambiguity, there is no information
about the spatiotemporal distribution of the forces in the vol-
ume. This prevents a general interpretation of how matter is
translated by photons (e.g., there could be a number of regions
within the volume or a contiguous material that could move
in some fashion). Related momentum challenges in materials
has been broached in a long line of papers, and, for example,
Shockley proposed the concept of hidden momentum [70,71].
Without doing justice to the enormous scope of related papers,
another example is the question of whether the Abraham or
Minkowski momentum may hold in materials, and preserva-
tion of the total momentum was proposed as being implied
through the kinetic and canonical momenta of the light [72].

d
L Preen(t) + Praa(t)] = — f Ty(r,ds (40)
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We should also note that the relevance of the boundary de-
scription has been presented [73].

In Sec. III, we considered boundary conditions that must
hold at interfaces, and a special case is a condensed-matter
boundary with vacuum. Equation (27) specifies the require-
ment for continuity of the normal component of momentum
flow. Applying (40) to a small domain spanning the vacuum-
material interface produces exactly the same conclusion.
Thus, in a vacuum environment, the right-hand side of (40)
would have elements from the free space stress tensor in
(7), but in the presence of a material boundary [defined as
being sufficiently close with regard to the temporal character
of T(r,?), in a causal sense], continuity of momentum flow
may require adding the contribution from [P(r, ¢) - V]E(r, 1),
assuming a dielectric interface. In the sense that (40) provides
a statement of momentum conservation by flow into a volume,
the boundary conditions developed in Sec. III B must hold,
including when the photons are incident from vacuum with a
well-defined photon momentum (%kg). This result is implicit
in the boundary condition of (27) and with application of the
resulting spatiotemporal force density in (32). Without this
step and when ny; - [P(r, 1) - V]E(r, t) # 0, momentum flow
in this context would not be enforced (with application of
Tg). One can thus preserve photon flow, as in the free-space
example treated in Jackson. In the case of free space and with
some charge and current distribution in the enclosed volume,
the momentum flow integral on the right-hand side of (40)
is simply given by the time domain form of the elements
of the Maxwell free-space stress tensor in (7) [65], but with
an optical pulse overlapping a physical boundary, Sec. III
shows that additional considerations are needed to preserve
the momentum flow from vacuum into and out of the material.

The electromagnetic system described by (40) may be
open, so other forces can be involved [50], and we consider
two such situations. The first is mathematical, where the
material is fixed in position, so, referring to (39), fy(r, 1) =
—f,(r, t), with f; being a force due to the (coupled) system
which negates dPcn/dt associated with optical fields in
(40); this will be used here. The second is where a physical
system is involved, and inertia, tension or structure support
diminishes the net kinetic force density inducing motion. Such
coupled system forces need to be considered to solve the
kinematic problem in relation to experiments. Thus, use of
the right-hand side of (40) and photon momenta through an
external boundary does not provide the fundamental conser-
vation condition related to motion of media, i.e., in general,
it is not possible at that level to separate field and mechanical
parameters (but some simple cases of practical interest can be
treated in this manner).

With pulsed light, we could have the right-hand side of
(40) be zero and only dPgeq(¢)/dt gives rise to nonzero
dPrecn(t)/dt. This illustrates the need to specify temporal ini-
tial conditions to determine motion, and emphasizes the role
of nonlocal material temporal responses. This prior informa-
tion would incorporate earlier excitation and energy storage.
Also, causality exists with the densities (through the fields)
but not locally from the volume integrals—because the local
field-matter interactions are not measured. We now have a
sense that care is needed in applying the time domain form
in (40) to infer the kinetic force. However, for ideal charges

and currents in vacuum, which are described as being local in
time (Lorentz in the case of the picture in Jackson [65]), the
interpretation of (40) is reasonably straightforward.

G. Sinusoidal steady state

The sinusoidal steady-state case having a single circular
frequency o is mathematically and computationally conve-
nient and provides access to the basic constitutive parameters.
Such a model could also be of practical importance because
relatively coherent laser light or low-frequency modulated
light may be involved. In practice, the time frame for exci-
tation to a quasimonochromatic case may need only be long
compared with a measure such as the average photon lifetime
in the material, possibly encompassing structured resonances
[66,74]. The mathematical requirement is that the system
modeled be linear and time invariant. This means, strictly
speaking, there can be no motion and hence no momentum
exchange. Assuming the momentum density in (11), one can
show that (dg/dt) = 0O, regardless of the material properties
(see the Appendix of Ref. [54]).

With time dependence exp(—iwt), used in the inverse
temporal Fourier transform, and considering the source-free
dielectric (nonmagnetic material case), the time-average si-
nusoidal steady-state kinetic force density, from (32), can be
written as

(f) = %Im{P x H*) + %Re{(P VIE), (41

where (-) is the temporal average (which does not vary with
time because there is no modulation), Re{-} is the real part and
Im{-} is the imaginary part, and P, E, and H are (the polariza-
tion, electric field, and magnetic field) phasors, with complex
conjugates indicated by the superscript asterisks. The average
total force (or pressure with area normalization) becomes

(F}) :][ [%Im{P x H'} + %Re{(P . V)E*}]dv, (42)

with principal value interpretation of the integral.

The physical situation described by (42) is one where the
entire constellation of materials (at each point in space) has
been invariant for infinite time. This implies that all points
in the material are fixed in space (at least in the mathemat-
ical description). In practice and in an experiment, at some
time, the local laboratory time or with reference to the optical
modulation or mechanical time, the system could be consid-
ered released and to respond mechanically. Prior to this time,
nothing is free to move in this mathematical description as a
result of the time history of momentum transfer. Upon (math-
ematical, physical, conceptual) release, a kinematic problem
would be addressed in a different model with the initial con-
ditions presented by geometry, material, and the excitation
conditions, all resulting from particular field and force density
distributions. The local time average from (41) (force density)
and (42) (force) would then provide an estimate of this aver-
age over the optical period at the initiation of motion. The
external excitation field after this release time point would
lead to a relativistic consideration.

Returning to (40), we can understand the relevance of the
sinusoidal steady-state situation in this context. The integrated
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parameters over some volume in (40) leads to

(Fk> _ <deech(t)

" > =— f(T,-j(r, t))ds, (43)

because (dPfe1a(t)/dt) = 0. This result can now readily be in-
terpreted based on the results of Sec. III, notable here in terms
of boundary conditions for momentum flow. To conform to a
steady-state field solution, the media must be immobilized,
so we have an additional force (related to a system force,
so (Fs) = —(Fy)). After having been excited for an infinite
time, consider that we allow release. Equation (43) no longer
holds and we must return to the form in (40) for a volumetric
description. However, (40) does not allow determination of
kinetic motion in and of condensed matter, so we need to
apply the force density in the time domain. Conceptually, the
field energy stored in material at release now contributes to
the field momentum, so the kinetic force is the result of this
plus the flux of incident and scattered photons expressed by
the right-hand side in (40).

Equation (43) cannot be applied in isolation, otherwise
the sinusoidal steady-state condition is violated, and requires
the additional force (F,). Consequently, regardless of the in-
cident photon flux with corresponding momentum (%ko per
photon), the structure is fixed in space (mathematically). The
boundary condition for the photon flow must be imposed
on the right of (43), and this is the frequency-domain form
of (27). Doing so means that the light is correctly treated
at the boundary, regardless of whether it is in free space.
Without including contributions from ([P(r, ¢) - V]E(r, t)) =
Re{[P(r) - VIE*(r)}/2 into the right-hand side of (43), the
physical material boundary condition (such as at a vacuum
interface) is violated (Sec. III). The point here is that even
though motion is strictly precluded, the field-based transfer of
energy into the material needs to be preserved. Rather than
(43), it is the time harmonic force density in (41) that presents
a more useful result in relation to experiments and through
(fi(r, w)).

H. Modeling the general time-dependent optical force

Optomechanics involves the coupled electromagnetic and
mechanical problems where momentum is transferred from
fields to matter, and the time and space domain differential
operators are not in general independent. However, one can
take simplifying steps based on either the physical situation
of macroscopic objects (composed of a substantial number of
atoms in a condensed state) having mass and hence inertia or
numerical discretization descriptions for the differential op-
erators and hence time steps. Practical aspects of mechanical
timescales broached in Sec. IV A are drawn upon here.

Consider the discretized domain typical of finite differ-
ence and finite element solutions (computational physics, in
this case, computational electromagnetics), for the solution of
Maxwell’s equations. By way of example, solution of the two
coupled curl equations (Ampere’s and Faraday’s laws) repre-
sented in point form has become known as the finite difference
time domain (FDTD) method [75]. In FDTD, the Yee algo-
rithm utilizes displaced Cartesian grids for formation of the
curl operators and finite difference representations (leading to
central differences from Taylor-series expansions). While not

necessarily the most computationally efficient approach, the
simplicity of this algorithm and the broad availability of inex-
pensive computational resources have led to its popularity, and
it serves the purpose of illustrating the time-step issues in op-
tomechanics of interest here. Materials are specified only at a
set of discrete points. At each time step, a spatial grid problem
is solved, and the staggered grid arrangement allows updates
according to the time step. Convergence can be proven in
electromagnetics with a time step (times the background wave
velocity) that is sufficiently small relative to the spatial grid
size (the so-called Courant condition). One can consider that
the optomechanical problem is treated in this manner. Any two
time steps must be small relative to all other timescales. The
object can be translated only in the time step after the wave
(the field) enters the material, and as a result of the momentum
transfer. As a result, one can assume that the condensed-matter
system is fixed in space at some time step and all the boundary
conditions are enforced, both electromagnetic [(19) and (20)]
and optical force density, reflected in (32). Obviously, ei-
ther a fixed medium or a coupled mechanical-electromagnetic
problem needs to be addressed over the relevant timescales.
Extensions of the FDTD approach may in fact be a simple way
to implement an algorithm for the general coupled optical and
mechanical problem, although material dispersion needs to be
implemented as a temporal convolution, as in (37).

I. Forces in relation to the energy density picture from Maxwell

It is interesting to read Maxwell’s description of the force
(on a planar surface) as being related to electromagnetic en-
ergy, leading to the “stress of radiation” [2] (pages 440—441).
While this was before the mathematical details were devel-
oped, including by Lorentz [56] and Einstein and Laub [1],
the position still stands true in the sense of the underlying
meaning of (31), where an electromagnetic field result is
equated to the negative of the kinetic force density. Later,
the “Maxwell-Bartoli” pressure was presented by Nichols and
Hull [4] and Lebedev [3] (because of the joint conclusion both
Maxwell and Bartoli made related to special cases), with the
form

Aus = 1 40, (44)
where (S;) is the magnitude of the time-average normally
incident Poynting vector (a positive quantity) and I" is the field
reflection coefficient. Neither Maxwell nor Bartoli write the
precise form of (44), but rather they consider situations that al-
low this result to be inferred (at least in certain circumstances).
The form in (44) has been widely used for understanding the
pressure on opaque (nontransmissive) materials.

Equation (44) can be derived for the sinusoidal steady state
(single w) situation and under the assumption that there is
a single plane wave (normally incident and reflected) from
an infinite planar material interface in vacuum. This involves
writing the field as a superposition of incident and reflected
plane waves (in the frequency domain), with field reflection
coefficient magnitude |I"|. Thus, the frequency domain forms
of (7) or (14) (free space) or the right-hand side of (43) provide
for this result. Again, there can be no motion and hence no
momentum exchange. With the assumption that the closed
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surface integral of the components (T;;(r,?)) has nonzero
contributions only along the incident or reflected (planar)
boundary, (44) results. The maximum pressure from (44) is
thus 2(S;)/c, the case for a perfect mirror.

What we now understand from the treatment in Sec. III
is that (44) applies in a specific set of situations and that,
depending on factors involving excitation, geometry, and
time-history, pressures outside of [0, 2(S;)/c] are in principle
possible (see Secs. IV C and IV E). Systems offering optical
gain can have negative pressure [52] and hence do not con-
form to (44). Separately, asymmetric plasmonic cavities were
found numerically to have a pressure greater than 2(S;)/c,
based on application of (32) [66] and experiments were sup-
portive [49]. In addition, there is a proposal for a system with
surface wave modes induced on the back that may yield a
negative pressure [54].

Let us again return to (43), offering the relevant conditions
(assuming the immobilizing force is added). With imposition
of the momentum flow boundary conditions implied by (25)
and (26), resulting in a modified external region description
for continuity of momentum flow at surfaces, it becomes
possible to exceed 2(S;)/c (depending on the geometry and
incident-field conditions). Again, this can be established from
the right-hand side of (43) with the enforcement of momentum
flow continuity across boundaries. This frequency domain re-
vision to momentum flow is legitimate because the material is
fixed in position for infinite time and the resulting fields, force
density, force and momentum must satisfy these constraints.
Strictly speaking then, (44) comes from a momentum flow de-
scription and not conservation of momentum, where the latter
would require specifics of the pointwise momentum exchange
and hence motion. With release, this single planar interface
situation (which needs to be redefined in an experimental con-
text, where infinite geometries are not possible), having some
time-average pressure (Pyg, for example), would then move
according to a kinetic problem solution. With motion, we no
longer have the sinusoidal steady-state condition. However,
what about slow motion where we approximate this to be
case? In situations where only the planar interface contributes
to the reflected photons and all those incident on the medium
are either reflected or eventually absorbed, and a single plane
wave incident and reflected, then we expect (44) to continue
to apply. This is the case for planar mirrors, making the
result of great practical importance. Notably, this implies a
local-in-time material description (and in that manner being
analogous to p and J in free space and the situation treated
in Jackson [65]). We are thus left with a position that (44) is
a statement of momentum flow through a surface (a mathe-
matical boundary in free space) and for a single-plane-wave
problem with a local material response—and not a general
conservation statement.

J. Experimental studies

The theory in (32) and (33) conforms with early pressure
measurements [3,4], the Ashkin-Dziedzic water experiment
[47], the extracted pressure on nanostructured membranes
from deflection measurements [49], and the picture introduced
by Maxwell for the situation he considered [2]. However,
additional experimental studies are important to evaluate (32)

for materials at optical frequencies. Such experiments are
not easy, and there is a need to extract the relevant optical
force density information from measurement of the physical
observable, displacement, for example.

An optomechanics experimental effort we pursued in-
volved a SiN membrane with patterned Au that supported
a surface-plasmon mode [49]. The resonance-enhanced plas-
mon modes were contributors and the surface waves involved
have an electric-field component perpendicular to the inter-
face, conforming to the mathematical situation involving a
Dirac § function at the interface due to (P - V)E (Sec. III).
Results from those experiments (with multiple measurements
and statistical and error studies) were found to be consistent
with an enhanced optical pressure, one that exceeded that with
the same incident-field power density normally incident on a
perfect mirror. The enhancement follows from application of
(32), so the consistency of the model and the experiments is
notable. However, consistency is distinct from uniqueness in
the force density, and additional validation experiments are
in order. Physically, this enhancement involves the dimension
perpendicular to the “interface” and the nonlocal-in-time ex-
citation of the asymmetric cavity modes—and hence energy
storage in the material (over a timescale short relative to that
associated with mechanical motion but long compared with
the optical period).

Separately, we know that the force density in (32) describes
the bulging water experiment done by Ashkin and Dziedzic
[47]. However, this does not specifically address a force the-
ory at interfaces. Likewise, despite the important experiments
done by Jones and Leslie [76], more studies are needed.

From an electromagnetic field basis, the force density and
pressure calculations applied within a resonant plasmonic cav-
ity and yielding enhancement [49] can satisfy all physical
requirements. Interestingly, this also allows for the possibility
of pulling structures with light [54] in a manner that is funda-
mentally different from optical tweezing of beads in a trap [5].
In this case, it is the promotion of a plasmon surface wave on
the back of a membrane that could produce pulling, something
that is yet to be shown experimentally. Thus, evidence of
pulling would provide further support for (32).

New experiments are needed to allow evaluation of the
force density with optical electric fields normal to interfaces.
These could involve a laser beam illuminating a planar mem-
brane and a suitable measurement of displacement that is
then calibrated to determine relative force and hence allow
inference of the force density in the appropriate region. Al-
ternatively, experiments could focus on various 3D objects
that have the appropriate modes excited. While it is rea-
sonably straightforward to obtain subnanometer displacement
precision, based upon the success achieved in sensing mo-
tion in atomic force microscopes (motion of a sensing laser
on a quadrant detector was used in Ref. [49] to monitor
nanometer-scale membrane displacement), the challenge here
is a set of experiments that provides a uniquely interpretable
force density result. Meaningful conclusions require beam
characterization, adequate measurement diversity, and the ad-
justment of key parameters (such as polarization, position,
beam angle, and material). In addition, either through the
calibration or separately, parametrized models (mechanical,
electromagnetic, force) may need to be utilized that also re-
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quire careful consideration. A pragmatic approach would be
to perform a set of experiments and apply (32), along with
any necessary thermal and mechanical model, to fit to the
experimental data over a substantial parameter range. The
ability of a theory to explain such a suite of experiments
would then lead to a position on the optical force density in
condensed matter and near to interfaces.

K. Contemporary applications

Several developing application domains are presented
where improved understanding of the theory for the optical
force density in condensed matter will have immediate ram-
ifications. The set summarized here is anecdotal but serves
the role of illustrating the need in contemporary physics to
develop a rigorous optical force density theory.

Rather than optical cooling in a vacuum chamber to reduce
vibrational modes, patterned silicon nitride (SiN) membranes
have been studied [77]. To reduce external coupling and
achieve low mass, tethered trampoline geometries have been
recently considered [61]. With a goal of achieving high Qf at
room temperature, where Q is the mechanical quality factor of
aresonance and f is the operating frequency, photonic crystals
were fabricated in SiN membranes to achieve mechanical
mode band gaps [77]. A design approach based on topology
optimization has been pursued and related to trampoline-like
geometries [78]. In all of this work, the structure of the
material has been modified to achieve a desired mechanical
property. Understanding of the theory describing optical force
density could enable structured material with optical force
control to better regulate vibrational modes at higher tempera-
tures. This might also prove valuable for control with exciton
condensates in bilayer transition-metal dichalcogenides [79].

Substantial use has been made of optical tweezers, traps
with a high-power laser to manipulate beads, for example,
and calibration procedures related to trap stiffness have been
developed [80]. With a suitable model for the optical force
density in a bead in solution, additional information useful for
characterizing the force and torque on biological molecules
[16,81] should become available.

The field of nanophotonics has been driven in large part
by the small mode volumes possible with cavities formed
with metal-insulator-metal (MIM) modes. Notably, the field
of molecular optomechanics [82-84] offers promise to em-
ploy such plasmonic cavities filled with molecules whose
assembly arrangement is enabled through laser illumination.
Understanding the spatially and temporally dependent optical
force density in such situations is clearly important. Plas-
monic cavities in various configurations have been shown to
provide enhanced Raman-scattering signals [85,86], allowing
more sensitive (surface-enhanced Raman scattering—SERS)
measurements for molecules in the neighborhood of these
cavities. With molecular optomechanics, enhanced Raman
scatter in such picocavities is proposed as a platform for
coherent control, optomechanics, and quantum signal pro-
cessing [82]. Coherent Raman-sideband up-conversion with
a few hundred molecules in a picocavity has been presented
at the terahertz-midinfrared to visible light [83], illustrating
tailorable molecular or plasmonic properties within small
cavities. Molecular oscillators in small cavities, a new fron-

tier, could benefit from knowledge of the force distribution
throughout the picocavity and in the constituent molecules
or nanoparticles. All of these domains have a need for an
established optical force density theory.

Light [87,88] and electric field [89] can induce motility
(chemical reconfiguration in polymers, resulting in motion),
and this has been found to be related to chemical structure and
be reversible. Photoisomerizable rods can bend upon absorp-
tion of photon energy and then be returned to the original state
(molecular trans <> cis) [87]. However, the regulation and
speed of this process might be improved with optical forces
in additional to optical-energy-induced chemical forces, such
as through a way to initiate the motion. Optical forces in
nanostructured material may thus aid photomotility, hence the
need to build insight.

L. Relationship to enhanced pressure

Among the interesting optical force phenomena that results
from the force density in (32) and total force in (33) is an en-
hanced optical pressure, that exceeding the Maxwell-Bartoli
result in (44), and this depends on both polarization and struc-
ture. This result follows directly from the boundary-condition
development in Sec. III. It was discovered through sinusoidal
steady-state simulations with surface-plasmon mode cavities
in Au [90], and then found to conform to a set of experiments
with a laser illuminating patterned Au on SiN membranes
and measurements of deflection (incorporating a statistical
treatment and with use of optical force density and thermal
models, and with parameter fitting) [49]. This effect, being
nonlocal in time and associated with an asymmetric cavity,
requires an excitation time that is long relative to the cavity
lifetime (Sec. IV E). This is of course satisfied in sinusoidal
steady state, where there can be no motion and hence no
photon momentum exchange inducing such motion (Sec. III).
In relation to the experiment, there is thus the requirement of
a system force (Secs. IVF and IV G) that resists motion over
timescales commensurate with the optical period and cavity
lifetime, and these relate to the mechanical system (tension,
membrane frame mount, attachment to an optical bench that
also supports the laser) [49]. Section IV G considered in sub-
stantial detail the requirements for the sinusoidal steady state
model and how this might relate to experimental situations.
Notably, enhancement is not evident based on (44), which can
easily be established from related plasmonic cavity reflectance
measurements [74] for structures similar to Ref. [90], as re-
viewed in Sec. IV L.

A recent comment [91] on Ref. [90] describes inter-
nal force density calculations that indeed have an enhanced
pressure for resonant plasmonic cavity modes, but also calcu-
lations with application of the free-space stress tensor in (7)
produce no pressure enhancement (a point made previously
[54]), a result that was confirmed with application of the
Maxwell-Bartoli form in (44). This should be no surprise,
because the free space stress tensor (7), in the frequency
domain (sinusoidal steady state), and under the assumption of
a single, normal plane wave incident and a single (normal)
propagating plane wave reflected, leads to (44) mathemati-
cally. Earlier measurements for reflected power from similar
structures (nano-imprinted Au plasmonic cavities) [74], in
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conjunction with (44), takes us precisely to this result (as
does any consideration of a plane-wave reflection coefficient).
Based on (44), it was concluded that any pressure beyond
2(§;)/c is a violation of momentum conservation. However,
sinusoidal steady-state conditions preclude direct inference
of (44) in regard to conversation of momentum (see the pre-
ceding discussions in this section, including Sec. IV G). The
correct way to think about this is with optical momentum flow
subject to the steady-state motionless requirement. Separately,
interpretation of a sinusoidal steady-state force model to an
experimental situation (Secs. IV G and IV J) needs to be con-
sidered in relation to the specific situation (see Secs. IVF,
IV G, and IV I). Section III develops a force density boundary
condition that, when interpreted in the frequency domain,
leads to a meaningful way to consider the vacuum-Au in-
terface in Ref. [90]. This leads directly to a conclusion that
enhanced pressure (beyond 2(S;)/c) is possible without viola-
tion of conservation principles.

The specific situation considered in Refs. [90,91] is a peri-
odic slot array in a thick Au film supporting plasmon modes
and in free space [90,91], with a normally incident plane
wave (transverse magnetic 2D simulation for the fields, with
magnetic field out of the plane), under sinusoidal steady-state
conditions. The structure is thus infinitely wide and thick
enough for there to be negligible penetration. Scatter from
the structure excites metal-insulator (MI) surface waves on
the top and metal-insulator-metal (MIM) modes in the slot
within the unit cell. With adjustment of the geometry and fixed
wavelength, the waveguide modes can resonate, resulting in
substantial fields in the material and hence energy density,
with a corresponding impact on the force density. With regard
to further investigation of this situation, the salient points from
Ref. [91] are extracted and considered in the following:

Momentum. There is a sense that maximum momentum
exchange with fiky per photon leads to 2(S;)/c being the
maximum force density for opaque materials [91]. We learn
from Sec. III that this is true only in specific situations and not
that considered in Ref. [90] (see Secs. IVC, IVF, IV G, and
IV I). Rather than in an integral sense, the fundamental way
to enforce momentum conservation is pointwise throughout
space and through the force density in the time domain, as in
Sec. III. This is how (40) is developed from the Lorentz force
density through integration over a volume in free space [65].
While the stationarity and boundary-condition arguments are
clear for the sinusoidal steady-state situation, projecting these
in the volume description of Secs. IVF and IV G is perhaps
illustrative—although we need to take care in inferring con-
servation conditions related to kinetic force. Importantly, (32)
appears to satisfy requirements for the correct force density, as
developed here and based on necessary boundary conditions.

What is known. It is assumed in Ref. [91] that the measure
of force from the electromagnetic description in a free space
region around any object is established and irrefutable—but
there may be debate about the force in the material itself.
In general, this cannot be correct, because the internal and
external descriptions are coupled (Sec. III). The exterior math-
ematical picture comes from various steps stemming from the
(presumably unique) force density in material and so cannot
be independent of the result inside the material. In so far as the
theory related to the mechanical interaction of photons with

material remains open, so too does the exterior description,
because of this exact relationship from superposition. More
precisely, what has been established would be the photon mo-
mentum flow in free space. Distinct is a relationship between
this and kinetic motion of material.

Physical picture. In describing the maximum momentum
exchange between a photon and an object as the interpreta-
tion for the sinusoidal state state simulations presented, the
assumptions in the model (see Sec. IV G) and the relationship
to an experimental situation is misstated in Ref. [91]. With
a monochromatic field solution and corresponding force de-
scription used, it is implicit that the object is fixed in space
and unchanged for infinite time. By using the term “floating”
in Ref. [91], a physical situation that violates the requirements
of the mathematical model is implied, which is misleading.
A distinction is made between forces on part of the object
(say the interior) and the total force [exterior, forced to adhere
to some restriction, as from (44)]. To be precise, there is an
electromagnetic field formulation that leads to a vector force
density and hence components of a total force through integra-
tion (Sec. III). The object moves most fundamentally due to
the spatiotemporal mechanical force density, and this provides
the basic link between photons and induced mechanical action
(flexural and longitudinal modes in a membrane, for instance).

Mathematics. The sentiment in Ref. [91] that using the ex-
ternal, free-space stress tensor [the frequency domain form of
(7)] to circumvent a nonphysical Dirac § function at surfaces
[91] is fundamentally wrong. The line of mathematics starts
with an electromagnetic field description, ascribes a meaning-
ful force density, and then, through integration, one arrives at
a force or, with a suitable structure and area normalization,
the pressure (Sec. III). With condensed matter described by
a dielectric constant, the free space stress tensor implies the
presence of a Dirac delta term when the normal component of
the electric field is discontinuous and there is a spatial deriva-
tive with respect to that direction—see Sec. I1I for the details.
There is concern in Ref. [91] about numerically evaluating
a Dirac term (under FDTD) [91], driving implementation of
a Lorentz force density evaluation that involves V - P (that,
incidentally, does not describe correctly the Ashkin-Dziedzic
water experiment [47]). However, there remains a Dirac delta
term at dielectric interfaces (from the derivative of a Heaviside
step function describing the spatial extent of a well-defined P),
i.e., this does not circumvent the influence of spatial deriva-
tives of fields at interfaces, should they be relevant. One must
conclude that the total force results in Ref. [91] are effectively
determined using one approach, that involving a free-space
stress tensor in the frequency domain [which leads to (44)],
rather than there being distinct approaches, and these identical
results are presented in separate figures. The point to consider
here is that the mathematics (in the frequency domain here)
has a firm basis that does not benefit from loose concepts
of what the incident momentum per photon implies in this
situation with stationary material and infinite excitation time,
and that physical and experimental interpretation then has a
viable foundation.

To summarize in regard to Ref. [91], Sec. III makes it clear
why the enhanced pressure result in Ref. [90] satisfies mo-
mentum and boundary-condition requirements when treated
in the sinusoidal steady state where the periodic plasmonic
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cavity is fixed in space. As described earlier in this section,
the experimental situation would relate to some release point
in time, and motion dictated by both the incident and internal
fields. The situation in Ref. [90] is incorrectly portrayed in
Ref. [91].

Consider now some broader conclusions in relation to the
possibility of enhanced optical pressure (beyond 2(S;)/c).
The theoretical development of the force density boundary
condition (the key contribution here) in Sec. III, with subse-
quent analysis (Sec. IV), proves that pressure enhancement is
possible. It would seem prudent to emphasize force density
in a path forward and not rely on inferences from a free
space stress tensor (momentum flow) description in order to
understand how material moves in response to electromag-
netic fields. This is important when describing experimental
situations involving laser illumination. Of course, formally,
the purpose of a mathematical model is to describe experi-
mental observations. Conveniently, the standard description of
momentum flow into a volume can be adapted [65].

V. CONCLUSIONS

This work probes the fundamental way in which light in-
teracts with condensed matter and transfers momentum from
the photon to the material, as exhibited in the electromagnetic
force density applicable in physical materials and at optical
frequencies. A boundary condition relevant for the force den-
sity in materials and inhomogeneous condensed matter that
provides a basis for the unique interpretation of total force is
derived and motivated to be interpreted in the Cauchy princi-
pal value sense, using an example force theory that presents
a representative field interface situation [(32) and (33)]. The
physical argument relates to neutral materials and to the trans-
port of free charge during the period of the electromagnetic
wave to provide an interface screening charge. How far the
frequency range for the application of (32) and (33) extends
into the terahertz and microwave domain is both temperature
and material dependent, but certainly for statics and even
cryogenic temperatures, the interface surface charge densities
should be considered in force calculations. New experiments
are needed that allow extraction of force (density) information
near to the surface in solid-state materials, and these will need
to be carefully designed. With this new experimental infor-
mation, it should be possible to not only better understand
optical forces at nanometer length scales, but also arrive at
a force theory that can be used with generality to consider
systems with material and spatial dispersion. Such a model
could then be broadly applied in the physical sciences and for
the development of related technologies.

The momentum of a photon in vacuum is understood to be
kg, as can be readily found from energy principles and based
on classical electromagnetics. Application of (32) enforces
momentum flow across boundaries (mathematical and phys-
ical), and the boundary conditions in (25) and (26) do this for
the general interface situation while allowing for the accepted
vacuum photon momentum. As the optical pulse enters the
material from vacuum, the theory developed here describes
the boundary condition that allows momentum flow, Poynting
vector, and field boundary conditions to be simultaneously
satisfied. It is interesting that measurement of the photon

momentum requires interaction with a sensor of some kind,
and likely this involves a flux of photons entering a material
that can be described by locally homogenized electromag-
netic constitutive parameters (such as the spatially dependent
dielectric constant). This means that the vacuum-matter in-
terface is an essential part of sensing. Also, all macroscopic
electromagnetic force densities utilize homogenized material
systems. Thus, regardless of the description used, the prin-
ciples developed here should apply, where the force density
boundary condition is shown to be an essential part of the
correct description of interfaces. This work therefore impacts
the mechanical attributes of various photonic applications.

A point of note in the treatment of optical forces in con-
densed matter is the implication of the model in relation
to motion. Frequency domain models describing sinusoidal
steady state preclude motion, i.e., the system must be spatially
fixed over the infinite time period. Motion is then at some
initiation time and with the appropriate initial conditions that
exist. In the laboratory, the complex and coupled electromag-
netic and mechanical problem is greatly simplified through
the assumption that measurable motion of macroscopic ob-
jects (like membranes) cannot occur during the optical period,
nor during even low quality factor cavity excitation times
(that exist in nanophotonic systems like plasmonic cavities).
There are thus coupled force systems to consider in regard
to laboratory settings, where, for example, one may have a
mounted membrane being deflected by a laser beam with local
material tension and a support frame on a stage on an optical
bench on which a laser is mounted, i.e., the electromagnetic
system is not closed. These situations have been treated here.
Finally, one aspect of optomechanics that may not be widely
appreciated is that the material and the structure both provide
nonlocal-in-time contributions to the optical force density,
meaning that the temporal history dictates the mechanical
response at any given time.
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APPENDIX

The development of the photon momentum, a quantum
phenomenon [92], is reviewed for a free-space plane wave.
This follows a classical field description [93].

From (22), Poynting’s theorem, and in vacuum, gives

] oE oH
1o =¢E- — +puH- —.

— Al
ot ot ot (A

Ignoring the spatial dependence and for a monochro-
matic plane wave, we set E =&Fycos(wt) and
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H= ﬁ(Eo /no) cos(wt ), where the free space wave impedance
is no = /Mo/€o, and the energy density can be written from
(Al) as

up(t) = 1eE* + tpoH* = €oE>. (A2)
The free space momentum density is
1 A A €0E2
goz—zEtzex (A3)
c c

From the instantaneous momentum density in (A3), we write
the peak value as

€E;  Nho
c N c

gop = = Nhiko, (A4)

with N photons per unit volume. This gives the vacuum pho-
ton momentum as
po = hko, (AS5)

in accordance with quantum theory [92].
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