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Why experiments fail to detect the finite linear Rashba spin-orbit coupling of two-dimensional holes
in semiconductor quantum wells: The case of Ge/SiGe quantum wells
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The magnetotransport experiments based on the weak antilocalization (WAL) effect have confirmed the
common belief that the Rashba spin-orbit coupling (SOC) of two-dimensional (2D) holes in semiconductor
quantum wells (QWs) is a k-cubic term as the lowest order with negligible linear terms. However, an emerging
finite linear Rashba SOC was recently found in 2D holes by semiempirical pseudopotential method (SEPM)
due to the direct dipolar coupling of an external electric field to the valence subbands in the presence of
heavy-hole–light-hole (HH-LH) mixing. Here, we resolve this discrepancy by illustrating that the hole densities
in the experiments are so high that the emerging linear term becomes undetectable since its strength declines
substantially as increasing the wavevector k. Taking the example of a strained Ge/Si0.5Ge0.5 QW utilized in the
experiment [Phys. Rev. Lett. 113, 086601 (2014)], we demonstrate that the hole density must be reduced by
a factor of 5 to below 2.1 × 1011cm−2 in order to probe the k-linear term. We also evaluate the possibility to
achieve WAL at low hole densities in order to measure SOC. These findings shed new light on the experimental
measurement of Rashba SOC.
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I. INTRODUCTION

Rashba spin-orbit coupling (SOC) is a k-dependent rel-
ativistic effect entangling the spin and orbital degrees of
freedom, manifesting as the spin splitting of energy bands in
terms with odd powers of k as required by the time-reversal
invariance [1–3]. It was believed that, in 2D heterostructures,
the Rashba SOC of conduction subbands and light hole (LH)
subbands are k-linear terms as the leading order, whereas
heavy hole (HH) subbands possess a tiny k-linear term [2–4].
Thus, in 2D holes, the k-cubic term was usually regarded as
the lowest-order term of the Rashba SOC [2,3,5,6]. This is
because the carrier density in most applications is so low that
the Fermi wavevector kF is in a small k range where a finite
k-linear term, if existing, will usually overwhelm the cubic
term. On the other hand, the k-linear and k-cubic Rashba SOC
differ strikingly, e.g., in their effective magnetic fields and
resulting spin-momentum locking-induced spin textures [7].
Although a third-order k-linear Rashba SOC originating from
the anisotropic coupling between bonding and antibonding
p-orbital states was proposed [2,3], it can be neglected due to
its less than 1% contribution to the total spin splitting [4]. The
absence of k-linear Rashba SOC in HH subbands prevents 2D
holes from many potential applications in spintronics [6,8–
16] until we recently found a first-order k-linear Rashba SOC,
called the direct Rashba SOC, in 2D holes based on the
semiempirical pseudopotential method (SEPM), originating
from the heavy-hole–light-hole (HH-LH) mixing in a combi-

*shan_guan@semi.ac.cn
†jwluo@semi.ac.cn

nation of a direct dipolar subband coupling [17]. For instance,
this k-linear Rashba SOC supplies a theoretical foundation
for experimentally achieved fast manipulation of hole spin
qubits confined in Ge/SiGe quantum wells (QWs) [18–20].
Despite the emergent k-linear Rashba SOC being relatively
weak (with respect to its electron counterpart) with a small
linear Rashba parameter αR = 2.0 meV Å, it, and only it, can
offer a high Rabi frequency of 108 MHz [21] achieved in the
experiment [19]. It provides efficiently the admixture of the
spin-opposite states with magnitude depending linearly on αR

of the electric dipole transitions for the electric dipole spin
resonance (EDSR) in a hole spin qubit. This weak k-linear
Rashba SOC can be further enhanced by increasing the exter-
nal electric field and Ge well width, decreasing the in-plane
biaxial strain, and engineering the barrier potential [17,21,22].
Particularly, the strongest linear Rashba SOC with strength
exceeding 120 meVÅ was found in the [110]-oriented Ge
QWs [23].

However, this k-linear Rashba SOC of 2D holes in QWs
has never been probed in previous experimental measure-
ments. Instead, experiments can only detect the k-cubic
Rashba SOC, e.g., in Ge QWs, via the magnetotransport pro-
cess [24,25] or the Shubnikov–de Haas (SdH) effect [26–28],
in agreement with the previous common belief [2,3,5,6]. It is a
puzzle why experiments fail to probe the recently theoretically
proposed k-linear Rashba SOC.

In this work, we uncover that the discrepancy arises from
the high k-dependence of the Rashba SOC in 2D holes,
which manifests as the finite Rashba parameter of the k-linear
term obtained in the extremely small k-range becoming neg-
ligible as the Fermi wavevector kF moves away from the
�̄-point. Whereas, the hole densities involved in all exper-
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TABLE I. Summary of typical values of quantities in experiments with only k-cubic Rashba parameters detected at a high hole density in
Ge QWs [24–29].

k-cubic Rashba Ge well Compressive
parameter γR Hole density nh Fermi wavevector width strain in

Reference (eVÅ3) (1011 cm−2) kF ( 2π

a ) (nm) Alloy barrier Ge layers (%) Method

Ref. [24] 20 10 0.022 20 Si0.5Ge0.5 2.1 WL-WAL
Ref. [25] 30 6 0.017 24 Si0.15Ge0.85 0.6 WL-WAL
Ref. [26] 100 5.9 0.017 11 Si0.2Ge0.8 0.8 SdH
Ref. [27] 100 4 0.014 22 Si0.2Ge0.8 0.8 SdH
Ref. [28] 100 5.9 0.017 11 Si0.2Ge0.8 0.8 SdH
Ref. [29] 50, 120 5.9, 2 0.017, 0.010 11, 22 Si0.2Ge0.8 0.8 Cycolotron resonance

imental measurements (summarized in Table I) are in the
range of 0.010-0.022 × ( 2π

a ) [24–29], giving rise to Fermi
wavevectors kF in the k-range where the k-linear term is al-
most vanished and leaving behind k-cubic term as the leading
term. To directly compare with experimental measurements
[24], we first calculate the spin splitting of energy subbands
in strained Ge QWs using the SEPM. We then investigate
the characteristics of the conductivity change by varying the
fitting parameters and clarify how the weak localization (WL)
and weak antilocalization (WAL) regions change with these
parameters. We also illustrate that one has to increase the
k-linear Rashba SOC for its detection in the WAL region at
low hole densities.

II. DISPERSION OF SPIN SPLITTING: k-DEPENDENT
RASHBA PARAMETERS

Considering that the QW structure adopted in the exper-
iment [24] has a 20 nm thick Ge well embedded inside the
Si0.5Ge0.5 alloy barrier, we construct a supercell containing
a 140 monolayer (ML) Ge well and 70 ML Si0.5Ge0.5 alloy
barrier which is thick enough to avoid the artificial image
interaction caused by periodic boundary condition utilized in
the calculation. To capture the randomness of atomic alloy
configurations in the Si0.5Ge0.5 alloy barrier, we augment the
supercell in the in-plane directions to 5 × 5 by taking one ran-
dom configuration for calculation of the electronic structures
and thus the spin splitting, where the randomness induced
fluctuations are systematically investigated in Ref. [22]. We
utilize the atomistic SEPM, which has been broadly used
in the electronic structure calculation of quantum structures
[30–38], to compute the electronic structures of Ge/SiGe
QWs whose relaxed atomic configurations are obtained by
minimizing the strain energy using the valence force field
method [detailed in Ref. ([17])].

Figure 1 shows the atomistic pseudopotential calculated
spin splitting of the first HH subband for the Ge/Si0.5Ge0.5

QW with 20 nm thick Ge well upon application of a moderate
electric field of 100 kV/cm. Here, the obtained spin splitting
is fully caused by Rashba SOC due to the Dresselhaus SOC
absent in centrosymmetric Si and Ge. We can formulate the
spin splitting using �ESS = 2αRk + γRk3, where αR and γR

are the k-linear and k-cubic Rashba parameters characterizing
the strength of k-linear and k-cubic Rashba SOC, respectively.

We obtain αR = 1.6 meVÅ and γR = 1.1 eVÅ3 after fitting
the spin splitting �ESS to above formula for k < 0.01( 2π

a ).
Whereas we get αR = 0.8 meVÅ and γR = 9.4 eVÅ3 if we fit

FIG. 1. Direct comparison between SEPM calculation and exper-
imental results. Spin splitting �ESS at different Fermi wavevectors
kF along the [100] direction with the lattice constant a being 5.54 Å
in the 20 nm strained Ge/Si0.5Ge0.5 QW. The red dots denotes the
SEPM results. The blue and orange lines are the fitting curves of the
red dots (SEPM results) fitted by the purely k-cubic term at a large kF

and the purely k-linear term at a small kF , where the parameters are
γR=12.5 eVÅ3 and αR=1.6 meVÅ, respectively. The green region
shows the Fermi wavevector kF corresponding to the hole density
nh where the k-cubic Rashba SOC is obtained in the experiment. The
inset shows the spin splitting within a smaller kF range, and the black
dashed line represents the Fermi wavevector kF of 2D gate-defined
QDs. The external electric field applied to the Ge QW is 100 kV/cm.
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the spin splitting for k < 0.025( 2π
a ). The remarkable change

in αR and γR indicates that the spin splitting is highly k-
dependent. Indeed, the spin splitting exhibits two different
dispersion models: a linear dispersion for k < 0.01( 2π

a ) and
a sublinear dispersion for k > 0.015( 2π

a ).
To demonstrate such two-model dispersion, we fit the spin

splitting to a purely k-linear term for k < 0.01( 2π
a ) and to

a purely k-cubic term for 0.015( 2π
a ) < k < 0.025( 2π

a ). We
obtain αR = 1.6 meVÅ (the orange line as shown in Fig. 1),
manifesting a negligible k-cubic term in this k-range. This
finite k-linear Rashba SOC originates from a direct dipolar
subband coupling induced by the external electric field in the
presence of the HH-LH mixing at the Brillouin zone center
[17]. We have demonstrated that it offers the fast manipulation
of spin qubits in 2D gate-defined Ge quantum dots (QDs)
[21], in which the Fermi wavevector kF was estimated to be
0.0025( 2π

a ) within the small k-range (the black dashed line
in the inset of Fig. 1). Figure 1 shows that, for 0.015( 2π

a ) <

k < 0.025( 2π
a ), we fit the spin splitting well to a purely k-

cubic term with γR = 12.5 eVÅ3 (the blue line as shown in
Fig. 1), manifesting a negligible k-linear term in this k-range.
In the magnetotransport experiment [24], the hole density nh

in the Ge/SiGe QWs is in the range of 10–15 × 1011 cm−2,
corresponding to the Fermi wavevector kF between 0.022
and 0.027( 2π

a ) (marked by the green area in Fig. 1). At this
k-range, our atomistic method predicted Rashba SOC of the
first HH subband is indeed k-cubic dominated with a negligi-
ble k-linear term. Our predicted γR = 12.5 eVÅ3 is in good
agreement with the experimentally deduced values γR=14–
20 eVÅ3 [24]. The slight deviation of the k-cubic Rashba
parameter γR may originate from the inhomogeneity of the
electric field provided by the gate voltage in the experiment.
To assess the predicted k-linear Rashba SOC, one has to
reduce kF below 0.010 × ( 2π

a ), as shown in the inset of Fig. 1.
It means one has to substantially decrease the hole density to
nh < 2.1 × 1011 cm−2. Unfortunately, as shown in Table I, all
the experiments [24–29] are conducted at a high hole density
larger than 2 × 1011 cm−2, leading to the failure of probing
this k-linear Rashba SOC. At this point, we can understand
why previous experiments fail to observe the linear Rashba
SOC.

III. REPRODUCTION OF THE MAGNETOTRANSPORT
EXPERIMENTAL DATA: INCLUDING BOTH LINEAR AND

CUBIC TERMS

To further demonstrate it, we now turn to examine the mag-
netotransport experiment, which utilizes the WL and WAL
effects to fit the conductivity change under external mag-
netic fields [24–29,39–44]. The WL effect originates from
the constructive interference of two coherent partial waves
of charge carriers propagating along a looping trajectory in
opposite directions in disordered systems, leading to an en-
hanced backscattering and hence suppression of conductivity
[39,40]. An external magnetic field will break the constructive
interference and enhance the conductivity due to the existence
of a phase difference arising from the magnetic flux. In the
presence of a strong SOC, the interference of charge carriers
will reduce the backscattering, leading to an enhanced con-

FIG. 2. Conductivity change �σ under external magnetic fields
B in the strained Ge/Si0.5Ge0.5 QW with 20 nm thick in Ge well.
The black circles are the experimental data extracted from Ref.
([24]) with the red lines fitted by considering both the k-linear and
k-cubic Rashba SOC. The k-cubic Rashba parameters γR are 15.3,
15.6, 16.0, and 17.0 eVÅ3 for gate voltage VG= −0.4, −0.1, +0.1,
and +0.3 V , respectively, as deduced in Ref. ([24]). The corre-
sponding hole densities are 14.3 × 1011, 13.0 × 1011, 12.1 × 1011,
and 11.2 × 1011 cm−2, respectively. The utilized k-linear Rashba
parameter αR is 0.8 meVÅ as obtained from our SEPM results at
such high hole densities.

ductivity beyond the WL effect, which is called the WAL
effect. A peak will appear on the curve of conductivity change
as a character of the WAL effect [39,40], as shown in Fig. 2.
The WL-WAL effect is described by the Iordanskii, Lyanda-
Geller, and Pikus (ILP) model, where the conductivity change
�σ is a function of four effective magnetic fields: Bφ for the
characteristic magnetic field for the phase coherence, Btr for
the elastic scattering, BSO1 for the k-linear SOC, and BSO3 for
the k-cubic SOC (see Appendix A for details). These four
effective magnetic fields are defined as follows [39,40]:

BSO1 = 4m2
hα

2
R

h̄3e
,

BSO3 = 4π2γ 2
R m2

hn2
h

h̄3e
,

Bφ = m2
h

4π h̄enhτtrτφ

,

Btr = m2
h

4π h̄enhτ
2
tr

,

(1)

where, nh is the hole density, mh is the hole effective mass,
τφ is the phase coherent time, and τtr is the elastic scattering
time.
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In the experimental measurements, Btr is straightforward to
obtain since the hole density nh, effective mass mh, and elastic
scattering time τtr can be directly measured. One can then
acquire BSO3, Bφ , and BSO1 by fitting the analytic formula of
the conductivity change �σ to experimentally measured data
(See Appendix A for details). Once one gets BSO3 and BSO1, it
is ready to have the purely k-cubic Rashba parameter γR and
k-linear Rashba parameter αR according to Eq. (1). Figure 2
shows the experimentally measured conductivity change �σ

(the black circles) against the external magnetic field at differ-
ent hole densities tuned by the gate voltage [24]. Moriya et al.
have demonstrated [24] that one can only consider k-cubic
Rashba SOC in the fitting of conductivity change �σ because
the k-linear term will make the fitting deviate significantly
from the experimental data at the high magnetic field region.
From the spin splitting induced by Rashba SOC as shown in
Fig. 1, we can now be ready to understand why the experi-
ment fails to probe the k-linear Rashba SOC, regarding the
experiment was conducted at high hole densities where the k-
cubic Rashba SOC dominates with a negligible k-linear term.
Specifically, in the Fermi wavevector range accounting for
such high hole densities, our SEPM predicted that the k-linear
term becomes very weak with a k-linear Rashba parameter
αR=0.8 meVÅ. Figure 2 shows that we can still reproduce
well the experimentally measured conductivity change both at
low and high magnetic field regions even if we consider such
a weak k-linear term (the red lines). Note that in the original
experimental paper [24], the conclusion was drawn based on
the fitting considering solely either k-linear or k-cubic Rashba
SOC term rather than their combination. The detailed fitting
parameters are given in Appendix B.

IV. EVALUATION OF THE WEAK-ANTILOCALIZATION
EFFECT

The WAL in the magnetotransport arises from a predom-
inant effect of strong SOC in correcting the conductivity
change [43]. This is because the negative correction at low
magnetic fields will appear if and only if the SOC-induced
magnetic field BSO = BSO1 + BSO3 is so strong that it is larger
than the phase coherence field Bφ . Otherwise, only the WL
effect appears. The WL-WAL transition reflects the appear-
ance and controllability of the SOC, which is an important
phenomenon in obtaining the Rashba parameters αR and γR.
We define a parameter r2 = BSO/Bφ to characterize the WL-
WAL transition: r2 < 1 indicates the WL effect and r2 > 1
represents the WAL effect. The hole density plays an essen-
tial role in this transition via controlling the SOC strength.
As shown in Fig. 2, the WAL effect diminishes and finally
transforms into the WL effect with the reduction of the hole
density.

We have demonstrated that experiments can only detect the
linear Rashba SOC at low hole densities. The key question is
whether it is possible to have the WAL at low hole densities
in Ge QWs. To address this issue we examine the WL-WAL
transition by varying the hole density nh. To do it, we rewrite
r2 as

r2 = 16πτtrτφnh

h̄2

(
α2

R + π2n2
hγ

2
R

)
, (2)

FIG. 3. Dependence of the WAL and WL regimes as charac-
terized by the parameter r2 = BSO/Bφ on the hole density nh and
k-linear Rashba parameter αR. The blue lines represent the WL-WAL
transition (r2 = 1) by fixing the k-cubic Rashba parameter γR to 12.5
eVÅ3 (the solid line) and 1.1 eVÅ3 (the dashed line), respectively.
We set τtr × τφ=2.5 ps2.

and change hole density nh and the k-linear Rashba parameter
αR but fix the k-cubic Rashba parameter γR and the product of
the elastic scattering and phase coherent time τtr and τφ . Fig-
ure 3 shows that the WL-WAL transition (r2=1, see the blue
lines) could occur at both both high (nh > 10 × 1011 cm−2)
and low hole densities (nh < 3 × 1011 cm−2) as varying αR.
Specifically, as reducing the hole density nh, the k-linear
Rashba parameter αR has to be increased to achieve the WAL.
As we discussed above, in the investigated Ge QW the k-linear
term becomes visible and dominant over the k-cubic term only
when the hole density is smaller than 2.1 × 1011 cm−2 with
regard to the high k-dependent Rashba SOC in 2D holes. The
corresponding k-linear Rashba parameter αR is 1.6 meVÅ,
which is too small to achieve the WAL, as shown in Fig. 3,
unless one increases the hole density nh to, for example,
12.6 × 1011 cm−2 in which the k-cubic Rashba SOC was
found to be around γR = 12.5 eVÅ3 (see the blue solid line).
Hence we observe the WL-WAL transition in Fig. 2. Whereas
if the k-cubic Rashba SOC is also weak, e.g., γR=1.1 eVÅ3,
the WAL will never appear even at high hole densities, unless
one could enhance the k-linear Rashba parameter αR above
4.7 meVÅ (see the blue dashed line). Figure 3 shows that to
achieve the WAL at the hole density nh of 2.1 × 1011 cm−2

one has to enhance the k-linear Rashba parameter αR above
12.6 meVÅ. One could vary the QW orientation to, for exam-
ple, [110] direction [17,23], and engineer the barrier potential
[22] to significantly enhance the k-linear Rashba parameter αR

in 2D holes. Note that the k-cubic Rashba SOC has negligible
effects in the WL-WAL transition at low hole densities. We
also discuss the conductivity change in different ratios of
k-linear and k-cubic terms in Appendix C.

155421-4



WHY EXPERIMENTS FAIL TO DETECT THE FINITE … PHYSICAL REVIEW B 106, 155421 (2022)

TABLE II. Fitting parameters of four characteristic magnetic fields BSO1, BSO3, Bφ , and Btr for the conductivity change in Fig. 2 in the main
text.

Gate voltage (V) BSO1 (mT) BSO3 (mT) Bφ (mT) Btr (mT) r2 = (BSO1+BSO3 )
Bφ

−0.4 0.0190 1.40 0.72 28.69 1.98
−0.1 0.0200 1.27 0.94 39.14 1.37
+0.1 0.0214 1.24 1.17 59.71 1.08
+0.3 0.0205 1.14 1.48 75.98 0.79

We notice that 2D electrons in narrow bandgap semicon-
ductor quantum wells usually have such a strong k-linear
Rashba SOC, that it is large enough to be probed frequently in
experiments. For example, Koga et al. deduced experimentally
the k-linear Rashba parameter αR being 12 to 40 meVÅ from
the WAL in InGaAs/InAlAs QWs [43]. It is interesting to
note that for αR = 2 meVÅ they could only observe the WL
at electron density of 7 × 1011 cm−2. The large change in αR

might be attributed to the k-linear Rashba SOC in 2D electrons
being regulated by interface [45] and gate voltage.

V. CONCLUSION

In summary, we explain why experiments fail to probe the
recently found k-linear Rashba SOC. We illustrate that the
hole densities involved in the experiments are so high that
the emerging k-linear term becomes negligible and the highly
k-dependent Rashba SOC becomes almost purely k-cubic.
We demonstrate that the k-linear term must be larger than
4.7 meVÅ to be detectable at high hole densities in magne-
totransport experiments. We also evaluate the possibility of
achieving the WAL at low hole densities. This work bridges
the theoretically discovered k-linear term and the experimen-
tally observed k-cubic term alone for Rashba SOC in 2D
holes.
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APPENDIX A: EXPRESSION OF THE CONDUCTIVITY
CHANGE UNDER EXTERNAL MAGNETIC FIELDS IN THE

ILP MODEL

In the ILP model, the conductivity change can be written
as [7,24,39,40]

�σ (B)

= − e2

4π2h̄

[
1

a0
+ 2a0 + 1 + BSO1+BSO3

B

a1
(
a0 + BSO1+BSO3

B

) − 2 BSO1
B

−
∞
n=1

{
3

n

− 3a2
n + 2an

BSO1+BSO3
B − 1 − 2(2n + 1) BSO1

B(
an + BSO1+BSO3

B

)
an−1an+1 − 2 BSO1

B [(2n + 1)an − 1]

}

+ 2ln

(
Btr

B

)
+ �

(
1

2
+ Bφ

B

)
+ 3C

]
, (A1)

where the parameters are

an = n + 1

2
+ Bφ

B
+ BSO1 + BSO3

B
,

BSO1 = h̄

4eD
2|�1|2τtr,

BSO3 = h̄

4eD
2|�3|2τtr .

Bφ = h̄

4eDτφ

,

Btr = h̄

4eDτtr
.

(A2)

Here � is the digamma function, C is the Euler constant, e
is the electron charge, h̄ is the reduced Plank’s constant, D
is the diffusion constant, τφ is the phase coherent time of the
carrier, and τtr is the elastic scattering time. The parameter
BSO1 (BSO3) is the k-linear �1 (k-cubic �3) effective mag-

TABLE III. Fitting parameters nh, kF , mh, τtr , τφ , αR, and γR for the conductivity change in Fig. 2 in the main text.

Gate voltage (V) nh (1011 cm−2) kF ( 2π

a ) mh (m0) τtr (ps) τφ (ps) αR (meVÅ) γR (eVÅ3)

−0.4 14.3 0.0264 0.081 0.25 9.96 0.8 15.3
−0.1 13.0 0.0256 0.083 0.23 9.58 0.8 15.6
+0.1 12.1 0.0247 0.086 0.20 10.21 0.8 16.0
+0.3 11.2 0.0238 0.084 0.18 9.24 0.8 17.0
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netic field in frequency unit, Bφ and Btr are the characteristic
magnetic fields for the phase coherence and the elastic scat-
tering, respectively. When the external magnetic field B is
much smaller than the characteristic magnetic field for the
elastic scattering Btr , the magnetotransport is in the diffusive
region, where the Rashba parameters are obtained by fitting
the conductivity change against B according to Eq. (A1) in
experiments. The k-linear (k-cubic) spin splitting �ESS1 =
h̄|�1| (�ESS3 = h̄|�3|) is equal to �ESS1 = 2αRkF (�ESS3 =
γRk3

F ), where αR (γR) is the k-linear (k-cubic) parameter and
kF is the Fermi wavevector determined by the hole density

nh. The diffusion constant D = v2
F τtr

2 is related to the Fermi
velocity vF , where vF = h̄kF

mh
. Thus, according to Eq. (A2), we

can obtain Eq. (2) in the main text.
From Eqs. (A1) and (A2), we learn that the conductivity

change �σ (B) is determined by four parameters of charac-
teristic magnetic fields BSO1, BSO3, Bφ , and Btr . These four
parameters can be further expressed as functions of the k-
linear and k-cubic Rashba (or Dresselhaus) parameters αR and
γR, the elastic scattering time τtr and the phase coherent time
τφ , the hole effective mass mh, and the hole density nh. A
large hole density nh will result in a small k-linear Rashba
parameter αR and a large k-cubic Rashba parameter γR. Hence
Rashba parameters αR and γR are related to the hole density
nh. Furthermore, since τtr , τφ , and mh (actually mh changes
little at different hole density) are also influenced by the hole
density nh, the hole density nh lies in the central position in
the conductivity change �σ (B).

APPENDIX B: FITTING PARAMETERS OF THE
CONDUCTIVITY CHANGE

The fitting parameters of the conductivity change in the
figures of the main text are given here. Table II and Table III
show the parameters of Fig. 2 in the main text.

APPENDIX C: CONDUCTIVITY CHANGE AT DIFFERENT
RATIOS OF k-LINEAR AND k-CUBIC TERMS

The conductivity changes have different curve shapes at
different ratios of k-linear and k-cubic Rashba terms. Hence

FIG. 4. Conductivity change �σ under external magentic fields
B with different parameters r1 = BSO1

BSO3
and r2 = BSO

Bφ
. We keep

BSO=3.6 mT unchanged and change Bφ in (a) Bφ=2.0 mT
(r2=1.8), (b) Bφ=3.0 mT (r2=1.2), (c) Bφ=4.0 mT (r2=0.9), and
(d) Bφ=6.0 mT (r2=0.6). The red, blue, green, and purple lines
denote r1=3.5 (k-linear term dominates), 0.8, 0.3, and 0.0 (purely
k-cubic SOC), respectively. Here we set Btr=40.0 mT, which is much
larger than external magnetic fields.

we can define r1 = BSO1
BSO3

to describe their competition. Figure 4
shows the conductivity change at different r1 with r2 fixed,
where we keep BSO unchanged and change Bφ . A large r1

increases the slope of the conductivity change at high mag-
netic fields and suppresses the WAL effect [Fig. 4(a)–4(c)] or
enhances the WL effect [Fig. 4(d)]. From Fig. 4(a) to Fig. 4(d),
the conductivity change diminishes with the reduction of r2.
Because the parameter r1 can be further written as

r1 = α2
R

π2n2
hγ

2
R

, (C1)

a low hole density nh in a combination of a large k-linear
Rashba parameter αR and a small k-cubic Rashba parameter
γR will increase the slope of the conductivity change.
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