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Intense high-frequency laser-field control of spin-orbit coupling in GaInAs/AlInAs quantum wells:
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The Rashba spin-orbit (SO) coupling can flexibly be controlled via an external gate, while the Dresselhaus
term, which mainly depends on quantum confinement, is in general immune to electrical control. Here we
theoretically report optical manipulation of the SO coupling by resorting to an intense high-frequency laser field,
which “dresses” the confining potential for electrons as a result of optical stark effect and enables a flexible and
simultaneous control of the Rashba and Dresselhaus couplings. Focusing on ordinary GaInAs/AlInAs quantum
wells with two occupied subbands subject to both laser and gate fields, we perform a self-consistent Poisson-
Schrödinger calculation in the Hartree approximation to determine electro-optical control of the intrasubband
(intersubband) Rashba αν (η) and Dresselhaus βν (�) SO terms with ν = 1, 2. Under the impact of laser field,
we find that the Rashba terms of the two subbands α1 and α2 may remain locked to equal strength in a broad gate
range, providing a means for unified manipulation of the two-subband Rashba couplings. Further, as the laser
field varies, we observe that α1 and α2 may have either the same or opposite signs, or even α2 vanishes while α1 is
finite, greatly fascinating for selective SO control of distinct subbands. For the Dresselhaus coupling, we disclose
two distinct scenarios depending on the interplay of the well width and the laser field strength, and reveal that β2

may decrease rapidly when the laser field strengthens, even though β1 remains essentially constant. Regarding
the intersubband Rashba (η) and Dresselhaus (�) terms, which mainly depend on the overlap and parity of the
wave functions of the two subbands, they have relatively weak dependence on the laser field. Moreover, the
combined effect of intra- and intersubband SO terms may lead to crossings and avoided crossings of the energy
dispersion of multiband spin branches and may even trigger the spin polarization of an originally spin degenerate
(unpolarized) band, tunable by the laser field. Our results should stimulate experiments probing the laser field
mediated multiband SO control and further enables its spintronic applications.
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I. INTRODUCTION

Spin orbit (SO) coupling, which arises from the relativistic
Dirac equation, links the electron spin and spatial degrees of
freedom, enabling coherent spin (magnetic moment) manip-
ulation by purely electrical means [1–3]. Further, SO effects
underlie various physical phenomena such as the SO torque
[4,5], spin galvanic effect [6], topological insulators [7], Ma-
jorana fermions [8–10], and Weyl semimetals [11].

There are mainly two types of SO contributions in
semiconductor heterostructures, i.e., the Rashba [12] and
Dresselhaus [13] types, arising from the breaking of struc-
tural and crystal inversion symmetries, respectively. While
conveniently facilitating coherent spin manipulation [1,3],
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the SO interaction also inherently causes spin relaxation
[14,15]. A unique situation, i.e., persistent spin helix (PSH)
[16–20], arises when the Rashba and Dresselhaus SO fields
are matched, strongly protecting spins from relaxation. Ko-
ralek et al. first observed a PSH via transient spin grating
spectroscopy [18]; Walser et al. imaged PSH using time-
resolved Kerr rotation [19]. Following these, the PSH has
been exploited in many different forms, including the drifting
PSH driven by an in-plane electric field [21–24], the spin
relaxation anisotropy mediated by an external magnetic field
[25–27], and the phase diagram of interacting PSH states
[28]. Also, Kammermeier et al. determined PSH symmetry of
general crystal orientation [29] and even addressed persistent
spin textures and currents in nanowire-based quantum systems
with wurtzite structures [30]. Yoshizumi et al. demonstrated
gate-controlled switching between a PSH state and inverse
PSH state [31]. Alidoust reported a beautiful proposal for
probing a PSH state via the critical supercurrent and ψ0 state
in two-dimensional (2D) Josephson junctions [32] and further
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with collaborators revealed dominant cubic SO coupling and
anomalous Josephson effect [33]. By combining theoretical
simulation and experimental (magnetoconductance) measure-
ments, we achieved continuous locking of the Rashba and
Dresselhaus couplings to equal strengths, bringing about the
concept of the stretchable PSH [34,35]. Our recent proposal
on the persistent skyrmion lattice hosted in quantum wells
with two subbands [36], which can be realized by fine tuning
the SO strengths, also manifests the importance of SO effects
in semiconductor nanostructures. For comprehensive reviews
of the PSH, see Refs. [37,38].

For controlling PSH symmetry and various other spintronic
applications (e.g., spin-field and spin-Hall effect transistors),
it is essential to achieve flexible SO control. The Rashba
coefficient is essentially proportional to the external electric
field, and thus can be tuned with the doping profile or by using
a gate voltage [39,40]. Flexible control of the Rashba coupling
in quantum heterostructures of either single [18,19,25,41,42]
or double [43–49] occupancy for electrons has been well
established. Moreover, we recently considered a triple-well
structure, which favors the triple electron occupancy, and un-
veiled intriguing SO control triggered by the band crossing
and anticrossing as well as the charge transfer among distinct
subwells [50]. In contrast to the Rashba coupling, the Dressel-
haus term mainly depends on quantum confinement (e.g., well
width) [18,51] and hence is in general immune to electrical
manipulation [52]. Considering practical applications of SO
effects in various spintronic devices, for which the Rashba
and Dresselhaus terms usually coexist [24,53–55], it is highly
desirable to accomplish independent and simultaneous tuning
of the two types of SO couplings both in a broad range.

Here, we aim to achieve a flexible and full manipula-
tion of both Rashba and Dresselhaus terms in semiconductor
heterostructures. To this end, we theoretically determine the
laser field mediated electro-optical control of SO terms by
combining the electrical and optical means [Fig. 1(a)]. Specif-
ically, we resort to intense high-frequency laser (IHFL) fields
[56–60], which by virtue of the so-called dressing effect
greatly alters the confining potential [61] and further the
quantized energy levels (i.e., optical stark effect [62–64]) for
electrons confined in quantum wells, facilitating flexible con-
trol of the Dresselhaus coupling. This is far beyond the means
of manipulating the Dresselhaus term by varying the well
width, which involves distinct quantum systems. Focusing on
ordinary GaInAs/AlInAs quantum wells having two occupied
subbands for electrons, subjected to both laser and gate fields,
we solve the coupled Schrödinger and Poisson equations to
calculate the self-consistent outcome about laser dressed po-
tential in the Hartree approximation, and further determine
electro-optical control of all the relevant two-subband SO
couplings, including the intrasubband (intersubband) Rashba
αν (η) and Dresselhaus βν (�) terms, with ν = 1, 2.

With the mediation of laser field, we demonstrate the
continuous locking of α1 and α2 to equal strength as the
gate voltage varies. This enables unified electro-optical ma-
nipulation of the two-subband Rashba couplings. Further, by
adjusting the laser fields, we observe that α1 and α2 may have
either the same or opposite signs, or even α2 vanishes while
α1 is finite, greatly fascinating for selective SO control of
distinct subbands. In addition, for the Dresselhaus coupling,

FIG. 1. (a) Schematic diagram of a Ga0.47In0.53As/Al0.48In0.52As
quantum well subject to the gate (Vg) and intense high-frequency
laser (IHFL) fields, with Lw denoting the well width. The dashed
(red) regions inside the barriers (Al0.48In0.52As) represent the doping
layers with a symmetric doping condition. The polarization of laser
field is in line with the well growth direction. (b), (c) Laser dressed
structural potential (Vw) of the 13-nm well, manifesting two distinct
scenarios for the change of effective well width seen by the two-
subband electrons, with the energy levels E1 and E2 being both below
Ec (b) and Ec sandwiched between E1 and E2 (c). The dotted (black)
curve representing the structural potential in the absence of laser field
(i.e., αL = 0) is shown alongside, for highlighting the laser dressing
effect. The horizontal blue (green) line inside the well indicates the
energy level E1 (E2) of the first (second) subband. (d) E1 and E2

versus the laser parameter αL. In (b)–(d), the horizontal pink (dashed)
line across the well refers to the critical energy Ec, below (above)
which the well width is effectively quenched (enlarged). (e) Total
self-consistent potential Vsc and wave function profiles ψν (ν = 1, 2)
for the 13-nm well at zero gate bias. The horizontal pink (dashed)
line refers to the critical energy Esc

c with self-consistence, an analog
to Ec in (b)–(d) without self-consistence.

we disclose two distinct scenarios of SO control depending on
the interplay of the well width and the laser field strength. We
find that β2 may decrease rapidly as the laser field strengthens,
even though β1 essentially remains constant. Regarding the in-
tersubband Rashba (η) and Dresselhaus (�) SO terms, which
mainly depend on the overlap and parity of the wave functions
of the two subbands, we find that they have relatively weak
dependence on laser field. Moreover, the combined effect of
the intra- and intersubband SO terms may lead to crossings
and avoided crossings of the energy dispersion of multiband
spin branches and may even trigger the spin polarization of an
originally spin degenerate (unpolarized) band, tunable by the
laser field. Our results should stimulate experiments probing
the laser field mediated multiband SO control and further
enables its spintronic applications.

This paper is organized as follows. In Sec. II, we first
present the laser dressed potential for quantum wells due to
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the IHFL fields. Then, we derive an effective 2D Rashba and
Dresselhaus SO Hamiltonian from a three-dimensional (3D)
form for quantum wells with two occupied electron subbands.
Further, we show the expressions of all the relevant intra- and
intersubband SO interactions (both Rashba and Dresselhaus).
The model system that we consider is introduced in Sec. III. In
Sec. IV, we present our self-consistent results and discussion
about the laser dressing effect mediated electro-optical SO
control. We summarize our main findings in Sec. V.

II. THEORETICAL FRAMEWORK

Here we first outline the dressing effect of the IHFL field
on the confining potential for electrons residing in quantum
wells. Then, we present the derivation process of transforming
the electron Hamiltonian from a 3D form to an effective 2D
form. The relevant expressions of the Rashba and Dresselhaus
SO terms of both intra- and intersubband kinds are also pre-
sented.

A. Laser dressed potential energy

The ultrashort (femtosecond to attosecond) laser pulses
have enabled the generation of an intense light field, whose
magnitude can even far exceed that of the atomic Coulomb
field [65,66]. Thus, light, which had long been used only
as a probe for matter, has now achieved such huge inten-
sity that the electronic states bound in atoms, molecules,
clusters, and solids could be strongly modified, namely the
laser dressed electronic states (or potentials) [65–70]. We
adopt a similar approach that has been developed to describe
atomic behavior under the impact of IHFL fields. Specifically,
in the dipole approximation, we consider that the radiation
field, which is assumed linearly polarized, is represented by a
monochromatic plane wave of angular frequency ω. With this
consideration, the electrodynamic potential of the wave reads
A(t ) = A0 cos(ωt )eP, with A0 the potential amplitude and eP
the unit vector pointing along the polarization direction. By
applying the Kramers-Henneberger space translation transfor-
mation to the Schrödinger equation, one obtains [56,57,71–
74]

− h̄2

2m∗ ∇2ψ (r, t ) + V (r + α(t ))ψ (r, t ) = ih̄
∂ψ (r, t )

∂t
, (1)

where m∗ is the effective electron mass and α(t ) =
αLsin(ωt )eP stands for the quiver motion of electrons sub-
jected to the laser field. Here αL = eA0/m∗cω denotes the
laser parameter and V (r + α(t )) represents the laser dressed
potential energy, with e the electric charge and c the light
speed. In terms of the time-averaged intensity I of the laser
field, we rewrite the laser parameter αL:

αL = (I1/2/ω2)(e/m∗)(8π/c)1/2. (2)

Following the Floquet approach [65], the space trans-
lated version of the Schrödinger equation [Eq. (1)] can
be transformed into coupled time-independent differential
equations in terms of the Floquet component of the wave
function ψ , for which a Floquet state is the analog to a
Bloch state when replacing a spatially periodic potential to a
time-periodic one. To solve the resulting coupled differential

equations, an iteration scheme, which essentially proceeds in
inverse powers of ω, can be utilized. To the lowest order in
ω, i.e., in the high-frequency limit, the set of coupled equa-
tions reduces to a single one [65,74,75],(

− h̄2

2m∗ ∇2 + V (r; αL)

)
ψ0 = Eψ0, (3)

with ψ0 the zeroth Floquet component and V (r; αL) the
dressed confinement potential depending on ω and I through
αL.

Regarding ordinary quantum wells grown along the
z||(001) direction under the IHFL field, for which the
polarization orientation is set in line with the growth direc-
tion of the well [Fig. 1(a)], the confining square potential
seen by electrons, i.e., V 0

w (z) = δc[�(z − Lw/2) + �(−z −
Lw/2)], arising from the band offset at the interfaces, is cor-
rected by the laser dressed one (V 0

w (z) → Vw(z; αL)) [61,76],
with

Vw(z; αL) = δc

π

[
�(αL − Lw/2 − z) arccos

(
Lw/2 + z

αL

)

+�(αL − Lw/2 + z) arccos

(
Lw/2 − z

αL

)]
. (4)

Here we have defined δc the conduction band offset, � the
Heaviside function and Lw the well width. Clearly, in the limit
of the laser parameter αL approaching zero, Vw recovers the
original square well potential (i.e., V 0

w).
So far, the laser dressing effect with IHFL field has ex-

hibited strong experimental evidence and has been widely
adopted in various experiments and applications, e.g., atomic
stabilization [67], molecular dissociation [68], higher-order
harmonic generation [77], and control of electronic and op-
tical properties in semiconductor heterostructures [69,78,79],
justifying our proposed approach for SO control is experimen-
tally attainable.

B. SO Hamiltonians: From 3D to 2D

We consider GaInAs/AlInAs quantum wells grown along
the z‖(001) direction. Based on the 8 × 8 Kane model
involving conduction and valence bands, an effective 3D
Hamiltonian only for conducting electrons is obtained through
the folding-down procedure [80,81],

H3D = h̄2k2

2m∗ − h̄2

2m∗
∂2

∂z2
+ Vsc(z) +H3D

R +H3D
D , (5)

where m∗ is the effective mass of the electron and k is the
in-plane electron momentum. The third term Vsc = Vw + Vg +
Vd + Ve refers to the total electron confining potential, which
is determined self-consistently by solving the Schrödinger and
Poisson equations in the Hartree approximation. Here Vw is
the structural potential arising from the band offset but with
the laser dressing effect being accounted for [Eq. (4)], Vg

refers to the contribution from the external gate potential, Vd

denotes the modulation doping potential, and Ve stands for the
purely electronic Hartree potential [34,36,49,81]. The last two
terms H3D

R and H3D
D correspond to Rashba and Dresselhaus

SO interactions, respectively. The Rashba term reads H3D
R =

η(z)(kxσy − kyσx ), where η(z) = ηw∂zVw + ηH∂z(Vg + Vd +
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Ve ) determines the Rashba coupling strength and σx,y,z are the
spin Pauli matrices. The parameters ηw and ηH are related to
the bulk quantities of materials [49,81,82]. The Dresselhaus
term has the formH3D

D = γ [σxkx(k2
y − k2

z ) + c.p.)] with γ the
bulk Dresselhaus parameter and kz = −i∂z [13,80].

Now we are ready to derive an effective 2D model starting
from the 3D Hamiltonian [Eq. (5)]. For this purpose, we
first determine (self-consistently) the spin-degenerate eigen-
states of the quantum well in the absence of SO interaction
|kνσ 〉 = |kν〉 ⊗ |σ 〉, 〈r|kν〉 = exp(ik · r)ψν (z) and the spin-
degenerate eigenvalues εkν = Eν + h̄2k2/2m∗, with ν = 1, 2.
Here, Eν (ψν) is defined as the νth quantized energy level
(wave function), k the in-plane wave vector, and σ = (↑,↓)
the electron spin component along the z direction. Then, by
projecting Eq. (5) with SO onto the spin-degenerate basis set
{|kνσ 〉}, we can obtain the effective 2D form of the Rashba
and Dresselhaus SO Hamiltonian with both intra- and inter-
suband terms for quantum wells of double electron occupancy.
Specifically, under the coordinate system [x‖(100), y‖(010)]
with the basis set ordered by {|k1 ↑〉, |k1 ↓〉, |k2 ↑〉, |k2 ↓〉},
our effective 2D model with two subbands reads

H2D =
(

ρ11 ρ12

ρ21 ρ22

)
, (6)

where ρνν = εkν1 + αν (σykx − σxky) + βν (σyky − σxkx ), ν =
1, 2, ρ12 = η(σykx − σxky) + �(σyky − σxkx ) and ρ21 = ρ

†
12,

with 1 the 2 × 2 matrix in both spin and orbital (subband)
subspaces, σx,y the spin Pauli matrices, kx,y the wave vector
components along the x‖(100) and y‖(010) directions, and
the parameters αν (η) and βν (�) represent intrasubband (in-
tersubband) Rahsba and Dresselhaus SO coefficients, as we
specify below.

Note that the effective 2D SO Hamiltonian [Eq. (6)] is
written in the basis set of the two subbands (with spin), with
ν = 1, 2 the subband indices. Thus, the diagonal elements
(ρ11 and ρ22) are the intrasubband terms belonging to the
subbands 1 and 2, and the off-diagonal terms (ρ12 and ρ21)
refer to the intersubband SO terms connecting (coupling) the
two subbands. Also, for either the intra- or intersubband SO
terms, both Rashba and Dresselhaus couplings are included.
Further, all the SO terms belong to the overall well, rather
than to a local region of the system, as they are determined by
the self-consistent potential and wave functions of the whole
system, below see Eqs. (7) and (8). For more details on how
to derive Eq. (6) from Eq. (5), see the Supplemental Material
(SM) [83].

Further, we should emphasize that the quantum tunneling
effect has been intrinsically (implicitly) taken into account in
our self-consistent calculation, since we solve the Schrödinger
equation of the whole system comprising both the well and
barrier layers. Thus, our approach is valid for various kinds of
quantum wells; see also our recent works about single wells
[81], double wells [36], and even multiple wells [50]. The
key is that we solve the Schrödinger equation in a rigorous
way, i.e., for the overall system, instead of just considering
the scattering problem from a local barrier. And, for realistic
considerations, the confining potential for electrons includes
not only the structural potential Vw but also the doping poten-
tial Vd, the electron Hartree potential Ve and the external gate
potential Vg.

C. Rashba and Dresselhaus SO coefficients

The Rashba SO coefficients appearing in Eq. (6) can be
expressed as the matrix elements 〈· · · 〉 of the weighted deriva-
tives of the potential contributions,

ηνν ′ = 〈ψν |ηw∂zVw + ηH∂z(Vg + Vd + Ve)|ψν ′ 〉, (7)

and the Dresselhaus SO coefficients read

�νν ′ = γ 〈ψν |k2
z |ψν ′ 〉, (8)

with the intrasubband (intersubband) Rashba coefficients
αν ≡ ηνν (η ≡ η12) and the Dresselhaus coefficients βν ≡ �νν

(� ≡ �12). Here we have defined the intrasubband Rashba
term αν as the sum of several constituent contributions,
i.e., αν = α

g
ν + αd

ν + αe
ν + αw

ν , with α
g
ν = ηH〈ψν |∂zVg|ψν〉 be-

ing the gate contribution, αd
ν = ηH〈ψν |∂zVd|ψν〉 the doping

contribution, αe
ν = ηH〈ψν |∂zVe|ψν〉 the electron Hartree con-

tribution, and αw
ν = ηw〈ψν |∂zVw|ψν〉 the structural (plus

laser-field) contribution. Note that here αw
ν is beyond the usual

structural term, as it contains contributions not only from the
structural profile of a square well (interface effect) but also
from the laser field (dressing effect) following from Vw rep-
resenting the laser dressed potential [Eq. (4)]. Similarly, the
intersubband Rashba term is written as η = ηg + ηd + ηe +
ηw, while with ηj (j = g, d, e, w) being the matrix elements
between different subbands (cf. ηj and α

j
ν). For convenience,

we also use α
g+d
ν = α

g
ν + αd

ν and ηg+d = ηg + ηd.
For realistic wells, both the Rashba (αν) and Dresselhaus

(βν) couplings only implicitly depend on the gate potential
Vg (and the laser parameter αL). In other words, these SO
terms not only depend on Vg (and αL) but also on the doping
potential Vd, the electron Hartree potential Ve, and the laser
dressed structural potential Vw. Therefore, for each value of Vg

(and αL), one has to self-consistently (numerically) determine
the total confining potential Vsc = Vw + Vg + Vd + Ve and the
eigenenergy (and wave functions) of the system, and further
the relevant SO coefficients [Eqs. (7) and (8)].

Despite the numerical restraint, one can still rewrite the
Rashba coefficients in a more physical way for functional
form by introducing an effective force field, F ν

eff = F ν
gate +

F ν
e + F ν

d , in which F ν
gate = −〈∂zVg〉ν , F ν

d = −〈∂zVd〉ν , and
F ν

e = −〈∂zVe〉ν . Specifically, since the total force on bound
states is zero (Ehrenfest’s theorem) [80], i.e., 〈∂zVsc〉ν =
〈∂z(Vw + Vg + Vd + Ve )〉ν = 0, the Rashba coefficients in
terms of the bulk Rashba parameters ηH and ηw [81,84] and
the effective force field can be rewritten as

αν = (ηw − ηH )F ν
eff . (9)

In particular, we turn to the change of αν due to a vari-
ation of F ν

eff , e.g., a variation of Vg, giving rise to δαν =
(ηw − ηH )(δF ν

gate + δF ν
e + δF ν

d ). In our model, the variation
of δF ν

d 
 0 since the doping potential does not vary with both
the gate and laser field. Also, in a special case of constant
electron density [85], δF ν

e is expected to be small [86] since
the rearrangement of the quantum mechanical distributions
of electrons may be negligible. With these particular con-
siderations, we have δαν 
 (ηH − ηw )δF ν

gate, depending on
external gate fields. Similar treatment can be used for deter-
mining the dependence of αν on αL, the effect of which is
contained in the laser dressed potential [Eq. (4)]. Regarding
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the Dresselhaus coefficents βν [Eq. (8)], with the help of the
Schrödinger equation, it is straightforward to rewrite βν =
γ (2m∗/h̄2)[Eν − 〈Vsc(z)〉ν], with Eν the νth subband energy
level.

In addition, for better understanding the effective 2D SO
model that we construct, in the SM we show a schematic with
both spin and subband degrees of freedom (Fig. S4), pictori-
ally illustrating all the relevant SO terms, of the intrasubband
(αν and βν , within each subband) and intersuband (η and �,
connecting the two subands) SO terms with both Rashba and
Dresslehaus couplings.

III. SYSTEM AND PARAMETERS

We focus on ordinary (001)-grown Ga0.47In0.53As quan-
tum wells of width Lw sandwiched between Al0.48In0.52As
barriers [Fig. 1(a)], similar to the experimental sample of
Refs. [81,87,88]. The structure is subjected to both the exter-
nal gate bias (Vg) and the IHFL field, allowing for combined
(electro-optical) control of the SO coupling by electrical
and optical means. The ionized dopants of width 6 nm in
Al0.48In0.52As barrier layers sit 10 nm away from either side
of the well with the same doping density ρ = 8 × 1018 cm−3,
ensuring symmetric doping condition. The band offset at the
Ga0.47In0.53As/Al0.48In0.52As interfaces is set as δc = 0.52 eV
[49,89]. The temperature is 0.3 K. Note that the effect of
temperature in the self-consistent procedure mainly enters the
Fermi-Dirac distribution [34,49,81], which favors the occu-
pation of higher-energy subbands at elevated temperatures.
Thus, our results are essentially also valid for temperatures
above 0.3 K within a regime that the higher third subband
remains unoccupied.

We consider both a relatively narrow well and a relatively
wide well, of the width of Lw = 13 and 20 nm (unless stated
otherwise in Sec. IV E), respectively, for covering a more
complete picture of the laser dressing effect mediated SO
control. The Fermi level EF, with which one can adjust the
subband occupations, is pinned at a constant for a given quan-
tum well to determine our self-consistent outcome [34,90],
and the gate bias Vg is utilized for a simultaneous tuning of
the electron occupancy and the structural inversion asymmetry
(SIA) of the system. Further, by means of the laser field, which
dresses the confining potential for electrons hosted in quantum
wells, one can alter the extent of quantum confinement. For
the two widths of wells, all the relevant parameters are the
same except for the Fermi level, which determines the areal
electron density. In order to make our system sustain the
condition of double electron occupancy in the whole range
of gate and laser fields considered, we set the Fermi level
EF = −0.45 and −0.40 eV for the well of width Lw = 13
and 20 nm, respectively. Note that the Fermi level is readily
tunable in experiments, e.g., via electrical means [91,92].

Referring to the IHFL field, the effect of which depends on
both the laser intensity I and its frequency ω of oscillation.
For quantum wells exposed to laser field, the high-frequency
regime, in general, means that the condition of ωτ � 1 satis-
fies [93], where τ ∼ ps denotes the transit time of electrons,
so the electron could see an evident effect of the laser dressed
potential. The frequency in such a regime could range from
several to even thousands of THz, depending on specific ap-

plications [94,95]. In contrast, in the low-frequency regime of
ωτ � 1 (not the focus of this paper), the electron is too fast
for the transit process to see the laser dressing effect [96]. We
restrict ourselves to SO properties without optical transitions,
and only consider a scenario that the laser is tuned to be
off resonance with both intersubband (condution-conduction
bands) and interband (conduction-valence bands) transitions
[97].

Besides the laser frequency, for ensuring a pronounced
laser effect, we also consider the intense-laser regime, in
which the amplitude of the electron oscillation (i.e., laser
parameter αL) is of the same order of (or greater than) the
characteristic size of the bound system, namely, the effec-
tive Bohr radius α∗

B = h̄2εr/m∗ke2 [57,98], with e the free
electron charge, εr the relative dielectric constant, and m∗
the effective electron mass. This directly yields I ∼ Ic =
m∗2α∗

B
2ω4cε0ε

1/2
r /2e2. For our GaInAs wells, α∗

B = 14.5 nm
and Ic = 9 × 1011 W/cm2 at ω/2π = 100 THz, for which the
high-frequency dielectric constant of εr = 11.7 and effec-
tive electron mass m∗ = 0.043m0 are considered [89,99,100].
Here the laser parameter range that we consider is αL = 0 − 7
nm, corresponding to the maximum light intensity of about
2 × 1011 W/cm2 [101], comparable to Ic.

Note that both the high frequency of hundreds of THz and
the intense field of about 1012 W/cm2 are widely adopted in
experiments [58,102–105]. Further, even a laser field with a
huge light intensity of about 1022 W/cm2 and high frequency
of about 1000 THz has also been attainable in experiments
[106,107]. All these justify the laser field range that we con-
sider as well as our theoretical prediction being feasible for
future experimental verifications.

With all these considerations, we are ready to discuss our
self-consistent outcome and combined (electro-optical) con-
trol of SO couplings by gate and laser fields.

IV. RESULTS AND DISCUSSION

Below we discuss the laser field mediated electro-optical
control of the SO couplings. To proceed in a systematic way,
we first present our self-consistent outcome for quantum wells
in the presence of IHFL field. Then, we discuss the cases
of SO manipulation by purely electrical and optical means.
Further, we dig into the combined impact of gate and laser
fields on the Rashba and Dresselhaus SO terms.

A. Self-consistent outcome about laser dressed potential:
Effective well width and band offset

Before performing the self-consistent calculation, we first
look into how the laser field alters the pure structural po-
tential Vw for electrons [Eq. (4)]. In Fig. 1(b), we show the
structural potential for the 13-nm well in both cases of the
laser parameter αL = 2 nm (solid curve) and 0 (dotted curve),
for highlighting the impact of the laser field. As expected,
the IHFL field by virtue of the laser dressing effect, which
varies the effective width of the well, greatly alters the poten-
tial profile. Specifically, there emerges two distinct scenarios
characterized by a critical energy Ec = δc/2 (i.e., half of the
band offset), as indicated by the horizontal pink (dashed)
line across the well. In the first scenario, which refers to the
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electron energy being below Ec (i.e., Vw < Ec), the laser field
tends to shrink the width of the well. On the other hand, in the
second scenario of Vw > Ec, the effective well width appears
to be enlarged, cf. dotted and solid curves in Fig. 1(b). The
dressing effect induced two scenarios of the variation of the
effective well width directly alters the quantum confinement,
facilitating flexible control of the Dresselhaus coupling via
laser field.

Now we examine the ordering of the critical energy Ec and
the energy levels E1 and E2 for the 13-nm well to determine
which scenario the two-subband electrons are subject to. For
a lower value of the laser parameter with αL = 2 nm, we find
that the energy levels of the two subbands are both below Ec,
cf. E1, E2, and Ec [Fig. 1(b)]. Thus, both subbands comply
with the aforementioned first scenario, in which the quantum
confinement for electrons intensifies with the increasing laser
parameter due to shrinking of the effective well width. Con-
sequently, as αL grows, the energy levels of both subbands E1

and E2 tend to increase. Thereby, it is rational to conjecture
that E2 will eventually match with Ec [108], the value of which
is pinned at δc/2, and further rise above it, resulting in Ec

being sandwiched between E1 and E2, as shown in Fig. 1(c)
with αL = 5 nm. In other words, for a relatively larger value of
the laser parameter, the two subbands may pertain to different
scenarios, with the first- and second-subband electrons seeing
the effective well width being quenched (first scenario) and
widened (second scenario), respectively. The evolution of E1

and E2 against αL reflecting the optical stark effect [62–64] is
shown in Fig. 1(d), from which one can find that E2 and Ec

match at about αL = αL,c = 4.8 nm.
To unveil the laser dressing effect on our self-consistent

outcome, we perform a detailed calculation by solving the
Schrödinger and Poisson coupled equations for 2D electrons
residing in quantum wells within the Hartree approximation.
In Fig. 1(e), we show the self-consistent laser dressed poten-
tial Vsc and wave functions ψν of the two subbands for the
13-nm well with the laser field αL = 5 nm (solid curves). The
self-consistent potential in the absence of laser field (i.e., αL =
0) is also shown alongside (dotted curve) for highlighting the
laser dressing effect. In addition to the quenching and widen-
ing of the effective well width inherited from the structural
potential Vw, we observe that the laser field also effectively
lowers the barrier height (i.e., an effective or self-consistent
band offset) of the total self-consistent potential Vsc seen by
electrons, cf. dotted and solid (red) curves in Fig. 1(e). The
overall reduction of the self-consistent barrier height, which
leads to the weakening of quantum confinement for electrons,
is attributed to the laser field modulated electron density
and further the resulting electron Hartree potential Ve, see
the SM.

The horizontal pink (dashed) line in Fig. 1(e) represents
where the critical energy with self-consistence lies, i.e., Esc

c as
indicated by the superscript sc, an analog to Ec in Figs. 1(b)–
1(d) without self-consistence. Even though both the energy
levels and the critical energy in their magnitudes are different
between the cases of with (e.g., Esc

c ) and without (e.g., Ec)
self-consistence, the underlying physics about the two scenar-
ios for the change of the effective well width is clearly the
same. We should emphasize that the self-consistent Esc

c varies
with the laser field parameter αL, in contrast to the Ec, which is

FIG. 2. (a), (b) Rashba αν and Dresselhaus βν (ν = 1, 2) co-
efficients as functions of the gate potential Vg at zero laser field
(a) and of the laser parameter αL at zero gate bias (b), for the
Ga0.47In0.53As/Al0.48In0.52As well of width Lw = 13 nm. (a) and
(b) refer to the cases of SO manipulation by purely electrical and
optical means, respectively. (c), (d) Dependence of the corresponding
SO coefficients on Vg for the well at the laser parameter αL = 3 nm
(c) and on αL at the gate potential Vg = −0.16 eV (d). In (d), the
shadowed region indicates that the Rashba α1 and Dresselhaus β1 co-
efficients for the first subband essentially match in their magnitudes
when αL ranges from 0 to 2.5 nm.

only related to the structural potential Vw (no self-consistence)
and thus maintains a constant of δc/2 for all values of αL.

The above features of our self-consistent dressed potential
are helpful in understanding the electro-optical control of SO
couplings by gate and laser fields. To unveil the underlying
physics systematically, we first examine the SO manipulation
by purely electrical and optical means below in Secs. IV B and
IV C, respectively.

B. Usual electrical SO control

In Fig. 2(a), we show the gate Vg dependence of the Rashba
αν and Dresselhaus βν coefficients of the two subbands (ν =
1, 2) for the 13-nm well with αL = 0. At zero gate bias,
since the well is lack of the SIA, the Rashba coefficients
α1 and α2 for both subbands identically vanish. When Vg is
switched on, the gate bias induced SIA arises, giving rise to
nonzero Rashba couplings. As expected, it is found that α1

and α2 exhibit similar gate dependence, for which they have
the same sign and both increase in magnitude with increasing
Vg. Also, the sign of α1 and α2 simultaneously reverses when
Vg is across zero, as a result of flipping of the gate-induced
SIA. Physically, the sign change of αν reflects the reversal
of the direction of force field [i.e., derivative of potential
energy, Eq. (7)] seen by electrons, corresponding to flip of SIA
[50,81,90]. In general, the Rashba terms of the two subbands

155420-6



INTENSE HIGH-FREQUENCY LASER-FIELD CONTROL … PHYSICAL REVIEW B 106, 155420 (2022)

have different strengths, which we mainly attribute to the con-
tribution of the electron Hartree potential Ve [Eq. (7)]. Since
the electron Hartree force field (i.e., Fe = −∂zVe), in general,
has opposite signs on the left and right sides of the well (see
the SM), it leads to a compensating effect on contributing to
Rashba couplings of the two subbands.

In contrast to the Rashba coupling, the Dresselhaus terms
β1 and β2, which mainly depend on quantum confine-
ment [e.g., well width], instead of the SIA, are in general
barely controlled through electrical means [52], as shown in
Fig. 2(a). Below, we resort to the laser field for manipulating
the Dresselhaus SO coupling in an optical manner.

As a remark, contrasting values of α1 and α2 arise from
distinct local symmetries seen by electrons of the two sub-
bands. Further, α1 and α2 may even possibly have opposite
signs [36]. Similarly, the two-subband electrons may also
see distinct quantum confinements, giving rise to β1 and
β2 of the two subbands being different. Note that there is
also experimental evidence of the distinction of the Rashba
(and Dresselhaus) coefficients between the two subbands, see
Refs. [46,109,110].

C. Pure laser-field control of Dresselhaus SO coupling

Figure 2(b) shows the Rashba and Dresselhaus strengths
for the 13-nm well with Vg = 0, as functions of the laser
parameter αL. Since the laser field maintains the inversion
symmetry of the well at zero gate bias [Figs. 1(b) and 1(c)],
the Rashba coefficients of the two subbands are zero for all
values of αL. In contrast, for the Dresselhaus coupling, we find
that even though β1 remains essentially constant as the laser
field strengthens, β2 starts to exhibit a considerable reduction
when αL is greater than about 3 nm. The contrasting laser-field
dependence of the Dresselhaus terms of the two subbands
directly follows from our self-consistent solutions about the
two distinct scenarios, which are associated with the ordering
of three typical energies of E1, E2 and Esc

c (analog to Ec)
(Sec. IV A), as we analyze next.

For electrons occupying the first subband, since the cor-
responding energy level E1 constantly lies below the critical
energy Esc

c in the whole range of laser field strengths consid-
ered [108], they will see the quantum well with a shrinking
width. Meanwhile, the laser dressing effect leads to an overall
weakening of quantum confinement of the well because the
effective (self-consistent) barrier height is reduced. These two
compensating contributions to quantum confinement are the
resources that lead to β1 remaining essentially constant as the
laser parameter varies.

For the second-subband electrons, the circumstance is in
stark contrast. On the one hand, for a lower value of the laser
parameter αL, the relation E2 < Esc

c holds (Sec. IV A). This
situation is similar to that for the first subband, resulting in
β2 also being weakly dependent of the laser parameter for
αL less than 3 nm, a value at which E2 and Esc

c essentially
match. Note that due to the self-consistent correction, here
the laser field needed (i.e., αL = 3 nm) to match E2 and Esc

c
deviates from the one of αL = 4.8 nm, which is based on an
illuminating (though lack of self-consistence) estimate for the
structural potential Vw only. On the other hand, when αL is
greater than 3 nm, i.e., E2 > Esc

c , the electrons occupying the

second subband will see the well having not only a widened
width but also a lowered offset, both of which weaken the
quantum confinement, giving rise to considerable reduction
of β2 with increasing αL.

D. Unified electrical Rashba SO control of distinct subbands
mediated by the laser field

Having the knowledge of SO control by purely electrical
(Sec. IV B) and optical (Sec. IV C) means, we are ready to
turn to the manipulation of SO coupling by both gate and laser
fields. We first look into the laser-field mediated electrical
control of the Rashba coupling. Figure 2(c) shows the Rashba
coefficients of the two subbands as functions of Vg for the
13-nm well with the laser parameter αL = 3 nm. We observe
that, in a certain range of laser field strengths, the dressing
effect may balance the SIA seen by electrons of the two
subbands, resulting in α1 and α2 of essentially equal strength
at αL = 3 nm. Remarkably, the equality condition of α1 = α2

remains in the whole range of gate voltages considered here.
This continuous locking of α1 and α2 to equal strength with
varying gate fields provides a means for unified manipulation
of the two-subband Rashba SO couplings.

For unveiling how the laser field triggers the locking of the
Rashba terms of the two subbands, in Fig. 2(d) we show the
dependence of SO terms on the laser field for the 13-nm well
at Vg = −0.16 eV. Note that at zero gate bias both α1 and α2

identically vanish due to lack of SIA of the well (symmetric
doping condiction), independent of the laser field [Fig. 2(b)].
When the gate potential deviates from zero, we find that α1

tends to decrease (though very slightly) while α2 increases as
the laser field strengthens. Since α1 at zero laser field is greater
than α2 because of the distinction of local symmetry seen by
electrons of the two subbands, the latter will eventually be
equal to the former as αL increases and further exceeds it.
This indicates that even though the laser field does not break
the inversion symmetry of a symmetric well at zero bias, it
indeed alters the degree of SIA of the well when the gate
field is present. The underlying reason is that the dressing
effect results in a change of quantum confinement, which
alters the energy levels E1 and E2 and further the environment
(symmetry) felt by the first- and second-subband electrons.
Here the matching of α1 and α2 at αL = 3 nm indicates that
when the laser field parameter ranges from 0 to 3 nm, it
tends to balance the SIA of the well seen by electrons of
the two subbands. We should emphasize that the opposite
laser-field control of the two-subband Rashba couplings with
more intriguing SO features (e.g., sign change) becomes even
more distinct in wider quantum wells, as we will analyze more
deeply in Sec. IV F.

E. Matching Rashba and Dresselhaus SO strengths

The Rashba and Dresselhaus SO couplings for electrons
act as effective magnetic fields with momentum-dependent
directions. This causes spin decay as the spins undergo ar-
bitrary precessions about these randomly oriented SO fields
due to momentum scattering [3,80], which usually occurs in
2D diffusive systems. However, when the strengths of Rashba
and Dresselhaus terms match, the competing effects of the two
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types of SO interactions can (partially) cancel each other out
so the total SO field becomes unidirectional, thus rendering
the electron spin immune to decay. In this case, a helical
spin-density wave excitation, i.e., PSH [17–19,55], emerges
for 2D electron gases. Also, for quantum heterostructures with
two occupied subbands, we recently revealed that the system
can sustain an intriguing spin texture of persistent skyrmion
lattice with topological properties [36] when the relevant SO
strengths satisfy the condition of α1 = β1 and α2 = −β2 [36],
under which the SO fields of the two subbands are crossed.

The matching condition of the Rashba and Dresselhaus SO
strengths is usually achieved by resorting to electrical means
[34,36,55], as also shown in Fig. 2(d) with α1 = β1 at Vg =
−0.16 eV. Alternatively, from Fig. 2(d), here we reveal that
the state of PSH can also be realized in an optical manner, i.e.,
via laser field. Remarkably, for the first subband, as both the
Rashba and Dresselhaus strengths exhibit weak dependence
on αL, the condition of α1 = β1 essentially remains for a broad
range of laser field strengths, see the encircled (shallowed)
region in Fig. 2(d). This greatly mitigates the stringency of
the matching condition of the Rashba and Dresselhaus SO
strengths at a unique value of laser field, highly desirable
for practical applications. Further, the essential independence
of the α1 = β1 condition (referring to the first subband) on
αL also facilitates the formation of the PSH states for both
subbands, as one can just match the Rashba and Dresselhaus
strengths of the second subband by fine tuning the laser field.

Note that the locking of matching condition between α1

and β1 becomes more distinct for even narrower wells. In the
SM, Fig. S2(e) shows the laser field control of Rashba and
Dresselhaus SO terms in a 10-nm well, for which the α1 = β1

condition essentially satisfies in an even broader laser field
range. Notably, the matching between α1 and β1 and between
α2 and β2 are both achieved at about αL = 3.27 nm, allowing
for the simultaneous formation of persistent spin helices for
the two subbands. Also, here we mainly focus on the general
picture of the laser field controlled PSH, for which the linear
Dresselhaus term, in general, dominates over the cubic one,
with the latter breaking the SU(2) symmetry of the PSH state
and leading to spin decay. Strictly speaking, one also needs
to take into account the detrimental cubic term to determine
a more precise condition that the PSH forms by introducing
a renormalized linear Dresselhaus term as we did in recent
works [34,36,81].

We should emphasize that the two ways, i.e., the electrical
(gate field) and optical (laser field) means, are complementary
to each other in facilitating control of various SO terms. For
purely electrical means, since the linear Dresselhaus terms
βν mainly depend on quantum confinement (rather than the
symmetry of the system) and is essentially immune to elec-
trical control, this to a certain extent restrains the flexibility
of controlling the PSH [34]. The advantage of the laser field
is that it is feasible to achieve flexible control of the lin-
ear Dresselhaus term, in particular, for the second subband,
in addition to the Rashba and cubic Dresselhaus terms. On
the other hand, when the gate bias is zero, the system is in
the symmetric configuration, under which no matter what
the light intensity and laser frequency are, the Rashba term
maintains zero. Remarkably, by combing the two ways, it even
eases the difficulty of simultaneously achieving the PSH states

FIG. 3. (a) Zero-bias self-consistent potential Vsc and wave func-
tions ψν for the 20-nm well at αL = 5 nm, with the dotted (red) curve
referring to Vsc at αL = 0. The horizontal blue (green) line inside the
well indicates the energy level E1 (E2) of the first (second) subband,
and the horizontal pink (dashed) line across the well refers to the
critical energy Esc

c with self-consistence. (b) Rashba αν and Dressel-
haus βν SO coefficients versus αL for the well at Vg = −0.28 eV.
The left (right) black circle indicates α2 = 0 (α1 = α2) occurring at
αL = 1.19 nm (5.42 nm). (c), (d) Distinct contributions to the Rashba
strength of the first (c) and second (d) subbands as functions of
αL, including the gate plus doping contribution αg+d

ν , the electron
Hartree contribution αe

ν , and the structural contribution (with the
laser dressing effect) αw

ν .

of the two subbands. The key is that one can just tune α2 and
β2 to equal strength since α1 and β1 turn to essentially remain
locked to equal strength as the laser field varies [cf. Figs. 2(d)
and S2(e)], providing an ideal platform for exploring two
copies of PSHs in quantum systems.

F. Electro-optical SO control for a relatively wide well

Now, we move to another regime of electro-optical control
of the SO terms in a relatively wide well of Lw = 20 nm.
In Fig. 3(a), we show the self-consistent potential and wave
functions of the two subbands for the 20-nm well at zero
gate bias. It is found that the general feature of the laser
dressing effect on the potential profile is similar to that for the
13-nm well, cf. dotted and solid (red) curves for the potential
profile with the laser parameter αL = 0 and 5 nm, respectively.
However, due to weak quantum confinement in a wide well,
here the energy levels E1 and E2 of the two subbands are
both below the critical value of Esc

c , which characterizes two
distinct scenarios for the change of the effective well width
due to the laser dressing effect, even at a higher laser field
strength of αL = 5 nm, cf. the horizontal blue (green) lines
inside the well for E1 (E2) and the pink (dashed) line across
the well for Esc

c . This indicates that the two subbands both
comply with the first scenario (Sec. IV A) in the whole range
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of laser field strengths considered, in contrast to that for the
13-nm well.

Figure 3(b) shows the Rashba and Dresselhaus SO coeffi-
cients as functions of the laser parameter for the 20-nm well at
Vg = −0.28 eV. We first look into the laser field dependence
of Dresselhaus terms. Since both subbands comply with the
first scenario, in which the energy levels E1 and E2 and the
critical energy Esc

c are in ascending order, the compensating
effect of the effective well width and the self-consistent band
offset on quantum confinement (Sec. IV A), results in β1 and
β2 remaining weakly dependent of the laser field for all values
of αL considered. This is in contrast to that of the 13-nm well
for which E2 could be either below or above Esc

c , depending
on the strength of laser field, cf. Figs. 3(b) and 2(d). On the
other hand, for the Rashba coupling, as the laser parameter
varies, we reveal that the Rashba coefficients α1 and α2 of the
two subbands could have either the same or opposite signs,
or even α2 vanishes while α1 is finite, greatly fascinating for
selective SO manipulation. Below we analyze these features
in more detail.

We reveal two contrasting regimes for the laser field control
of the Rashba coupling, marked off by the laser parameter at
αL = αL,R ∼ 1.19 nm, as indicated by the left (black) circle
in Fig. 3(b). Specifically, for αL being greater and lower than
αL,R, we find that the Rashba coefficients α1 and α2 have the
same and opposite signs, respectively. This makes it feasible
for tuning the persistent spin helices of the two subbands
[17–19] being collinear or “crossed” through the laser field,
with the latter crossed case even resembling the topologically
nontrivial skyrmion-lattice spin density excitation, i.e., per-
sistent skyrmion lattice [36]. Further, in the first regime of
αL < αL,R, the amplitudes of α1 and α2, which have opposite
signs, reduce as the laser field strengthens, while in the second
regime for αL > αL,R, they have the same sign and exhibit
opposite dependence on αL, greatly fascinating for selective
control of the SO couplings of distinct subbands.

Right at the point of αL = αL,R bridging the two regimes,
it is clear that α2 identically vanishes while α1 is finite, see the
left (black) circle in Fig. 3(b). We first proposed in Ref. [81]
that the condition of α1 �= 0 and α2 = 0 could simultane-
ously hold. Here we achieve this condition by fine-tuning the
laser field. To better understand this, in Fig. 4(a) we show
the self-consistent outcome for the well at αL = αL,R. It is
found that ψ1 and ψ2 of the two subbands tend to localize
on opposite sides of the well. Specifically, the electrons of
the first-subband are apt to be localized on the right side
of the well, while the second-subband electrons tend to be
concentrated on the left side, cf. ψ1 and ψ2 in Fig. 4(a). This
enables the feasibility of vanishing α2 even for an asymmetric
quantum well, due to the delicate cancellation of contributions
from the electron Hartree potential and the gate plus dop-
ing potential to the Rashba coupling [Eq. (7)]. And, within
the second regime of αL > αL,R, as a result of contrasting
dependence of α1 and α2 on the laser field, we reveal that
they match with not only the same sign but also the same
magnitude at about αL = 5.42 nm. Further, it is remarkable
that when αL is around 5.42 nm, due to a delicate interplay of
the laser and gate fields, we find that even though the quantum
well at Vg = −0.28 eV is structurally asymmetric, it attains a
seemingly symmetric configuration, as shown in Fig. 4(b) for

FIG. 4. Self-consistent potential Vsc and wave functions ψν (ν =
1, 2) for the 20-nm well at αL = 1.19 (a) and 5.42 nm (b). The
horizontal blue (green) line inside the well indicates the energy level
E1 (E2) of the first (second) subband. (c), (d) Dependence of the
intersubband Rashba η and Dresselhaus � coefficients on αL for the
well at Vg = 0 (c) and −0.28 eV (d). In (a) and (b), the gate potential
is chosen as Vg = −0.28 eV; in (c) and (d), several contributions to
η are also shown, including the gate plus doping ηg+d, the electron
Hartree ηe and the laser dressed structural ηw contributions.

the self-consistent solutions. From Fig. 4(b), we can see that
the electrons occupying the two subbands are almost equally
distributed on the left and right sides of the well, despite the
potential in its profile embracing an overall inversion asym-
metry. This indicates that, as the laser field increases, it may
to a certain extent balance the electron distributions between
the left and right sides of the well, cf. Figs. 4(a) and 4(b).

To further explore the underlying physics beneath the
electro-optical control of the Rashba coupling, in Figs. 3(c)
and 3(d), we show the Rashba coefficients of the two subbands
and the corresponding constituent contributions as functions
of αL for the 20-nm well at Vg = −0.28 eV. For the gate plus
doping contribution α

g+d
ν , since the corresponding potential

Vg+d is linear across the well region (see the SM), which refers
to a constant force field of Fg+d = −dVg+d/dz, it is straight-
forward that the equality α

g+d
1 = α

g+d
2 follows. In contrast to

α
g+d
ν , the electron Hartree contributions αe

1 and αe
2 essentially

have opposite signs, cf. αe
1 [Fig. 3(c)] and αe

2 [Fig. 3(d)]. This
is because the electrons occupying the first and second sub-
bands tend to reside in different sides of the well. As a result,
the electron Hartree force field Fe = −dVe/dz felt by the two-
subband electrons are mostly opposite in the sign across the
well region. Clearly, it is the electron Hartree contribution αe

ν

dominating why the total Rashba coefficients α1 and α2 may
have opposite signs. Further, both αe

1 and αe
2 basically vanish

around αL equal to 5.42 nm, following from that the system
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FIG. 5. Rashba band dispersion (scaled by a factor of 100 for visibility) with both intra- and intersubband SO terms versus kx [|| (100)]
of the AlInAs/GaInAs well, for {α1 > 0, α2 < 0} (a), {α1 > 0, α2 = 0} (b), and {α1 > 0, α2 > 0} (c). The dotted curves correspond to the
uncoupled (η = 0) bands, and for η �= 0 the bands exhibit avoided crossing (a), (b), or maintain crossing (c), depending on the combined effect
of intra- and intersubband terms. (a)–(c) refer to three distinct scenarios, which can be tunable via varying the laser field. The magnitudes of
Rashba coefficients are chosen for the 20-nm well at Vg = −0.28 eV and αL = 5.42 nm [Figs. 3(b) and 4(d)], i.e., α1 = −α2 = 1.3 meV nm
for (a), α1 = 1.3 meV nm, α2 = 0 for (b), and α1 = α2 = 1.3 meV nm for (c), and η = −4.15 meV nm. In (b), the combined effect of intra-
and intersubband SO terms triggers the spin polarization for the second subband from an initially spin degenerate (unpolarized) one.

features a seemingly symmetric configuration [Fig. 4(b)], as
expected. Regarding the constituent contribution from the
laser dressed structural potential, i.e., αw

1 and αw
2 , we find that

the former decreases while the latter increases as the laser field
strengthens, arising from the laser field modulated electron
redistributions between the left and right sides of the well.

Now we further analyze how α2 can be zero for
a well with the SIA in terms of its constituent con-
tributions. According to Ehrenfest’s theorem, there’s al-
ways 〈∂zV 〉ν = 〈ψν |∂z(Vw + Vg + Vd + Ve )|ψν〉 = 0, namely,
〈ψν |∂zVw|ψν〉 = −〈ψν |∂z(Vg + Vd + Ve )|ψν〉, from which the
Rashba term given in Eq. (7) rereads αν = (1 − ηH/ηw)αw

ν .
That means that αν is equal to αw

ν up to a constant pref-
actor, implying that when the structural contribution is zero
the total Rashba coefficient is bound to vanish, cf. αw

2 and
α2 in Fig. 3(d). The vanishing Rashba coupling for a given
subband can in principle be used to selectively suppress the
SO-induced spin relaxation mechanisms among distinct sub-
bands.

G. Intersubband Rashba and Dresselhaus couplings

Figures 4(c) and 4(d) show the intersubband Rashba cou-
pling η including its constituent contributions ηg+d,e,w and
the Dresselhaus coupling � for the 20-nm well at Vg = 0
(−0.28 eV). At zero gate bias, the well is structurally sym-
metric. Thus, due to distinct parities of the wave functions
ψ1 and ψ2 of the two subbands, the Dresselhaus strength
�, independent of the strength of laser field, maintains zero
[Fig. 4(c)]. On the other hand, when the gate bias is switched
on with Vg = −0.28 eV, even though � is mostly finite as the
laser parameter varies, we observe that it vanishes again at
about αL = 5.42 nm [Fig. 4(d)], for which the well embraces
a seemingly symmetric configuration [Fig. 4(b)]. And, as the
laser parameter further increases, the sign of � is even re-
versed, similar to the gate dependence of intrasubband Rashba
terms [Fig. 2(a)].

Regarding the Rashba strength |η| = |ηg+d + ηe + ηw|, it
mainly depends on the overlap of the wave functions of the
two subbands. As a result, η is even approaching its maximal
value at about αL = 5.42 nm, for which the distributions of
the two-subband wave functions are essentially symmetric.
This is in stark contrast to the intersubband term �, which
identically vanishes in symmetric configuration due to distinct
parities of ψ1 and ψ2. And, because of the orthogonality
condition of ψ1 and ψ2, the gate plus doping contribution ηg+d

remains zero in either case of the gate bias being switched on
or off [Figs. 4(c) and 4(d)], following from the gate plus dop-
ing potential Vg+d being linear (i.e., ∂zVg+d is constant) across
the well region (see the SM). Therefore, the intersubband
Rashba term essentially only depends on the electron Hartree
ηe and the structural ηw contributions. Despite detailed SO
features, we should emphasize that the intersubband terms are,
in general, weakly dependent of the gate or laser fields.

For a complete picture of the gate dependence of inter-
subband SO couplings, in the SM we show the full electric
swing (αL = 0) of � and η within both positive and negative
Vg ranges (Fig. S3). When Vg varies from positive to negative
values, we reveal that the sign of � will be switched, similar to
intrasubband Rashba coefficients αν [see Figs. 2(a) and 2(c)].
This is in contrast to intrasubband Dresselhaus coefficients
βν , which mainly depend on quantum confinement and are
essentially immune to electrical control [see Figs. 2(b) and
2(d)]. Referring to η, which mainly depends on the overlap
of wave functions of the two subbands, it together with its
constituent contributions (i.e., ηj, j = g + d, w, e) remains the
same sign in the whole range of gate fields considered.

H. Combined effect of intra- and intersubband SO terms

By adjusting the laser field, as we have already revealed,
the Rashba coefficients α1 and α2 of the two subbands may
have the same or opposite signs, or even when α2 vanishes
while α1 is finite [Figs. 3(b)–3(d)]. This together with the
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intersubband SO term may lead to intriguing SO effects.
For simplicity, here we mainly focus on the Rashba band
dispersion. A neat form of the 4 × 4 matrix form of the
two-subband Rashba model with analytical solutions is given
in the SM. In Figs. 5(a)–5(c), we show the Rashba disper-
sions with both intra- and intersubband SO terms, in the
cases of {α1 > 0, α2 < 0}, {α1 > 0, α2 = 0} and {α1 > 0,
α2 > 0}, respectively. It is found that the combined effect of
intra- and intersubband SO couplings may lead to avoided
crossings among distinct spin branches of the two subbands,
when α1 and α2 have opposite signs [Fig. 5(a)] or even when
α2 vanishes while α1 is finite [Fig. 5(b)]. In contrast, when
α1 and α2 have same sign, the crossing feature remains as
compared to the uncoupled (i.e., η = 0) bands [Fig. 5(c)].
Notably, in the case of α2 = 0 [Fig. 5(b)], the second subband
which is initially spin unpolarized [dotted (blue) curves for
spin-degenerate branches], may become spin polarized [solid
(yellow and blue) curves for spin-split branches], entirely
because of the interplay of intra- and intersubband SO interac-
tions. Specifically, the intersubband term behaves as a media
between the two subbands and transfers the spin polarization
of the first subband to the second one.

The intersubband SO interaction induced avoided cross-
ings have been experimentally verified in Rashba surface
states of Bi/Ag(111) and Bi/Cu(111) [46,111] even with hy-
bridized spin textures. Very recently, Song et al. put forward
an unconventional two-band Rashba model with distinct sym-
metries between intra- and intersubband terms, giving rise to
giant inverse Rashba-Edelstein Effect [112]. In addition, the
intersubband term also underpins several other spin-related
phenomena including the intrinsic spin Hall effect [47,113],
spin filtering [114], and unusual zitterbewegung [115,116].
Also, when the Rashba and Dresselhaus SO terms (both intra-
and intersubband terms) coexist, the underlying physics about
hybridized spin textures and the resulting novel SO features
may even be enriched. As future works, it would be interesting
to explore these various intriguing possibilities.

V. CONCLUDING REMARKS

The Dresselhaus SO coupling mainly depends on quan-
tum confinement (e.g., well width), thus it is, in general,
hardly controlled by electrical means, in contrast to the
Rashba term, which is associated with the SIA of the system.
Here we have theoretically reported the optical manipula-
tion of SO couplings by resorting to IHFL, which features
the so-called dressing effect and greatly alters the confining
potential for electrons. This enables a flexible and simultane-
ous control of the Rashba and Dresselhaus couplings, highly
desirable for practical considerations. Focusing on ordinary
GaInAs/AlInAs quantum wells with two occupied subbands
subject to both laser and gate fields, we have performed a self-
consistent Poisson-Schrödinger calculation within the Hartree
approximation to determine electro-optical control of the in-
trasubband (intersubband) Rashba αν (η) and Dresselhaus βν

(�) SO terms with ν = 1, 2.
With the mediation of laser field, we have achieved con-

tinuous locking of the Rashba terms α1 and α2 of the two
subbands to equal strength in a broad gate range, providing
a means for unified manipulation of the two-subband Rashba

couplings. Further, as the laser field varies, we observe that α1

and α2 may have either the same or opposite signs, or even α2

vanishes while α1 is finite, greatly fascinating for selective SO
control of distinct subbands. For the Dresselhaus coupling, we
disclose two distinct scenarios depending on the interplay of
the well width and the laser field strength and reveal that β2

may decrease rapidly when the laser field strengthens, even
though β1 remains essentially constant. Regarding the inter-
subband Rashba (η) and Dresselhaus (�) terms, which mainly
depend on the overlap and parity of the wave functions of the
two subbands, they have relatively weak dependence on the
laser field. Moreover, the interplay of intra- and intersubband
SO terms may lead to crossings and avoided crossings of the
energy dispersion of multiband spin branches and may even
trigger the spin poarlization of an originally spin degenerate
(unpolarized) band, tunable by the laser field. Our results
should stimulate experiments probing the laser field mediated
multiband SO control and further enables its spintronic appli-
cations.

Further, we are restricted to either the high-frequency
regime of ωτ � 1 or the high-intensity regime of I ∼ Ic =
m∗2α∗

B
2ω4cε0ε

1/2
r /2e2 (see Sec. III). On the one hand, the

laser-field range with frequency of hundreds of THz and inten-
sity of about 1012 W/cm2 that we consider are widely adopted
in experiments [58,102–105], ensuring our results are feasible
for future experimental realizations. On the other hand, while
here we focus on a nonresonant laser field, i.e., without both
intersubband (conduction-conduction bands) and interband
(conduction-valence bands) transitions [97], the SO-mediated
linear (and nonlinear) spin-dependent optical properties as
well as the spin dynamics and transport in the near-resonance
scenario with phonon relaxation (depending on the detuning
of laser field frequency with intersubband energy separation)
and even impurity scattering may be interesting. More work
is needed to explore these possibilities.

As a final remark, we recently explored in detail the Rashba
and Dresselhaus SO interactions for wide-gap semiconductor
heterostructures in the wurtzite phase (e.g., GaN/AlNGa) in
Ref. [117]. Due to strong built-in fields (spontaneous and
piezoelectric) in such quantum systems, it is even unreason-
able to achieve through electrical means a flexible control
of the Rashba term, let alone the Dresselhaus coupling. By
resorting to the IHFL field that we proposed here, it may
even enable full control of the two types of SO couplings in
heterostructures with strong built-in electrical fields .
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