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Local bistability under microwave heating for spatially mapping disordered superconductors
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We theoretically study a strongly disordered superconducting layer heated by near-field microwave radiation
from a nanometric metallic tip. The microwaves heat up the quasiparticles, which cool by phonon emission
and conduction away from the heated area. Due to a bistability with two stable states of the electron temperature
under the tip, the heating can be tuned to induce a submicrometer-sized normal region bounded by a sharp domain
wall between high- and low-temperature states. We propose this as a local probe to access different physics from
existing methods, for example, to map out inhomogeneous superfluid flow in the layer. The bistability-induced
domain wall can significantly improve its spatial resolution.
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I. INTRODUCTION

Local probes constitute a powerful toolkit for experimental
solid state physics. Noninvasive local probes of electronic
properties range from the well-known scanning tunneling mi-
croscopy (STM) [1,2] to microwave impedance microscopy
(MIM) [3,4]. Noninvasive local probes of thermal properties
have now emerged, such as scanning thermal microscopy
[5], providing a new window into dissipative processes in
quantum transport [6]. Invasive local probes include scanning
gate microscopy (SGM), which probes the spatial structure
of inhomogeneous 2D electron gases by measuring changes
in global transport properties induced by a local electrostatic
perturbation (a charged tip) [7]. Unfortunately, it cannot probe
systems with high electron density (metals or superconduc-
tors) because they screen out its electrostatic potential very
efficiently. Here we propose to circumvent this difficulty by
applying a local thermal perturbation.

The main idea is to create a local hot spot by applying a
microwave drive to a small metallic tip placed near the sample,
and to subsequently measure the global transport properties
of the sample, see Fig. 1. Such local heating probe might
prove especially suitable for probing thin films of strongly dis-
ordered superconductors with short coherence length (a few
nanometers), where local heating can create a small normal
region. Indeed, while single-electron STM probes the local
superconducting gap [8] and Andreev state microscopy probes
the global superconducting phase coherence [9], a local sup-
pression of superconductivity allows one to map out where
the supercurrent is flowing in the sample. One can do this by
observing if suppressing the superconductivity at a given point
induces a significant change in the global supercurrent.

This spatial mapping of highly disordered superconductors
would resolve whether there are spatial regions which are
bottlenecks for the supercurrent. As an application, it would
distinguish materials where the supercurrent is approximately
uniform, from those in which the superconductivity breaks up
into droplets with the supercurrent percolating through only
some of them. This would clarify when the superconductor-

insulator transition is due to a percolation transition, and
when it is not. This is especially important in view of the
potential application of strongly disordered superconductors
as superinductance, a key element of superconducting circuit-
based quantum technology [10,11]. This probe would also be
a thermal analog of the SGM technique, applicable to a variety
of nanostructured thin-film materials.

The experimental setup would require a low-temperature
scanning probe system equipped with microwaves, similar
to the existing MIM [3,4,12–14] or near-field scanning mi-
crowave microscopy [15] setups. These existing techniques
are intended to operate at low microwave power and leave the
sample’s properties unmodified, while we propose a stronger
microwave power to modify those properties (locally de-
stroying the superconductivity). As we will see below, the
proposed probe can have higher spatial resolution than the
low-temperature scanning laser microscopy [16,17], and can
be more versatile due to two independent control parameters,
microwave strength and frequency.

The probe’s spatial resolution can be improved by a
fundamental physics effect: a local overheating bistability
for subgap microwave frequencies. It occurs because only
quasiparticles get heated by the microwaves, but not the
condensate. Hence, while quasiparticles are rare, the super-
conductor remains cold, and they remain rare. However, once
the number of quasiparticles exceeds a threshold, the gap
shrinks and the microwave can break the Cooper pairs, gener-
ating more quasiparticles, allowing more heating. This heating
is opposed by heat dissipation to phonons, and heat conduc-
tion away from the hot spot. This leads to two different (hot
and cold) stable steady states in the hot spot, similarly to a
global bistability previously known for superconductors sub-
jected to in spatially uniform microwave fields [18–20] or dc
currents [21]. However, we show a spatially local bistability
can exist so long as the thermal conductivity is not too big.
One consequence of the bistability would be the hysteretic
behavior of the electron temperature as the microwave power
is turned on or off. Another consequence, important for the
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FIG. 1. Proposed experiment: the ac driven scanning tip creates
a hot spot on the surface, where the superconductivity is locally
suppressed. When the tip passes over places where the supercurrent
is flowing, it suppresses this current, thereby providing a map of the
supercurrent flow.

local probe application, is a sudden domain-wall-like switch
from the hotter to the colder steady state at a certain distance
from the center of the irradiated region, giving the hot spot a
sharp boundary. Thus the spatial resolution of the microwave
tip is determined by the temperature relaxation length of the
sample (the domain wall width), which can be significantly
smaller (∼20 nm) than the hot spot radius, of the order of the
tip size (∼100 nm).

An important assumption behind our arguments is that mi-
crowave field can heat only quasipaticles, and that the Cooper
pair condensate itself does not have any excitation modes
below the superconducting gap 2� which could absorb mi-
crowave photons. If such absorption by low-frequency modes
is present, this could lead to a significant heating even in the
low-temperature state without quasiparticles (such as heating
by a low-frequency ac current drive observed in Ref. [22]),
which would destabilize the low-temperature state. Then the
presence or absence of the local bistability could serve as a
probe of the subgap modes of the condensate.

The paper is organized as follows. In Sec. II, we describe
the main ingredients of the model, with some bulky explicit
expressions relegated to Appendix A and the derivation of the
heating spatial profile given in Appendix B. Section III treats
the simpler problem of the local bistability in the absence of
heat conduction. Its results are used in Sec. IV to describe
the temperature spatial profile in the full problem, with the
properties of the domain wall discussed in Appendix C. The
short Sec. V briefly summarizes the results for an alternative
heating mechanism: thermal radiation by a hot tip, rather than
an applied microwave; the detailed derivations are given in
Appendix D. Finally, in Sec. VI, we present our conclusions
and some remarks regarding potential limitations of our model
and possible experimental aspects.

II. MODEL

We consider a tip at a distance z0 above a strongly dis-
ordered superconductor (such as InOx or NbN) with short
coherence length ξ . We assume ξ to be smaller than other

length scales of the problem (the tip-plane distance z0 and
the thermal relaxation length � defined later), and adopt a
model where the superconducting gap � and the quasiparticle
distribution function at each point r correspond to a local
equilibrium with a position-dependent electron temperature
Te(r). This implies fast electron-electron collisions and leaves
out microwave-induced nonequilibrium effects [23–27]. The
phonon temperature Tph in the layer is assumed to be fixed by
the cryostat, due to a good contact with the substrate. This
simple model, with its standard ingredients, contains only
three material parameters: the normal state conductivity σN ,
the superconductor critical temperature Tc, and the electron-
phonon cooling strength. They all are assumed to be the same
as in the bulk material, so the role of the layer thickness d is
only to relate bulk and surface quantities.

Taking Te(r) as constant across the layer’s thickness, gives
a two-dimensional heat transport equation;

c(Te )d
∂Te

∂t
= ∇ · [K(Te )d ∇Te] − Q(Te, Tph )d

+ H(r)
I2
0

8π2
Re

1

σ (ω, Te )d
. (1)

We only consider the stationary state (∂Te/∂t = 0), so the
specific heat c(Te ) drops out. The bulk electronic thermal
conductivity K(Te ) is the textbook expression [28,29] (see
Appendix A); it is TeσN/e2 multiplied by a function of only
Te/Tc, and it reduces to the Wiedemann-Franz law for Te > Tc.

Q(Te, Tph ) is the power per unit volume, transferred from
electrons to phonons. We adopt the standard model of
electrons coupled to acoustic phonons [24] in which the
effective electron-phonon coupling is α2(
) F (
) ∝ 
n−3

for phonon energy 
. In particular, n = 5 when the elec-
tron mean free path is much larger than the typical phonon
wavelength, and n = 6 in the opposite limit [30–38]. In
the normal state this model yields Q(Te, Tph ) = �(T n

e − T n
ph )

with a material-dependent coefficient �. The expression for
Q(Te, Tph ) in the superconductor is rather bulky and given in
Appendix A; for each n, Q(Te, Tph ) is given by �T n

c multi-
plied by a universal function of Te/Tc and Tph/Tc. Our results
for n = 5 and n = 6 are qualitatively similar, as expected
[39]; the parameter important for our problem is the dif-
ferential electron-phonon heat conductance at Te = Tph = Tc,
∂Q(Te, Tph )/∂Te|Te=Tph=Tc = n�T n−1

c . It also defines a crucial
length scale in our analysis, the thermal relaxation length
� ≡ [K(Tc)/(n�T n−1

c )]1/2.
The last term of Eq. (1) represents Joule heating of the elec-

trons in the layer by the near-field microwaves at frequency
ω. We parametrize its strength by I0, the amplitude of the
total ac displacement current, flowing through the effective
capacitor formed by the tip and the layer, due to the applied
microwave voltage. The function H(r) is determined by the
spatial distribution of the induced surface currents in the layer;
its exact form depends on the tip shape. Still, for any axially
symmetric tip whose radius Rtip does not strongly exceed the
tip-sample distance z0, H(r) has the same qualitative form:
H(r = 0) = 0, it reaches a maximum value ∼1/z2

0 at r ∼ z0,
and decays at r � z0. In the calculations, we use the expres-
sion corresponding to a spherical tip of radius Rtip � z0 (see
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TABLE I. Material parameters used for the numerical calcula-
tions, typical for InOx and NbN [40,41].

Tc, K 1/σN , 
 m n �, W K−n m−3 �, nm

InOx 3.5 5 × 10−5 6 2 × 109 17
NbN 10.0 4 × 10−6 5 5 × 109 16

Appendix B):

H(r) = r2(
z2

0 + r2
)(√

z2
0 + r2 + z0

)2
. (2)

This approximation Rtip � z0 is not crucial, the shape of H(r)
would have the same qualitative features if one takes Rtip ∼ z0,
and accounts for the tip not being a sphere. When we estimate
the drive strength required for a given heating, we take Rtip ∼
z0 to get its order of magnitude.

The 2D conductivity σ (ω, Te )d of the layer also appears
in Eq. (1), with the bulk conductivity σ (ω, Te ) given by
the standard Mattis-Bardeen expression [42], whose real part
describes the dissipative response of the quasiparticles, and
the imaginary part describes the supercurrent response of the
condensate (see Appendix A). For frequencies of the order of
the gap and temperatures of the order of Tc (which will be our
focus), Re σ and Im σ are of the same order as the normal state
conductivity. Typical material parameters for two commonly
used disordered superconductors, NbN and InOx, are given in
Table I.

III. BISTABILITY IN ABSENCE OF HEAT CONDUCTION

It is instructive to start with the local version of Eq. (1),
setting K = 0. Then, at each point r, the electron temperature
Te is found from the algebraic equation

j2 Re
1

σ (ω, Te )
= Q(Te, Tph ), (3)

with j2 = I2
0H(r)/(8π2d2). Equation (3) contains only bulk

quantities, and is analogous to the heat balance equation for
a superconductor in a spatially uniform microwave field. For
that problem, the heat balance equation may have two stable
solutions for Te [18–20].

The peculiar Te dependence of the heating term on the left-
hand side of Eq. (3), sketched in Fig. 2, is a rather common
origin for bistabilities related to electron overheating [21].
In our case, it is due to the physics of quasiparticle heating,
summarized in the Introduction. As a result, Eq. (3) has three
solutions for Te, as sketched in Fig. 2; only the high- and
the low-temperature solutions are stable, the middle one is
unstable. Figure 2 shows that j2 controls the vertical scale of
the heating curve, so the bistability disappears if j2 is too large
or too small.

When h̄ω and the solutions for Te are all of the order of
Tc, the typical scale of j which governs the bistability, is
j∗ = √

σN�T n
c . It is the current density needed to maintain

the electrons at Te = Tc when the phonons are at Tph = 0.
It is important that j∗ � jc for the critical current density
jc; this condition is necessary to justify the calculation of
the dissipated power using the linear response conductiv-

FIG. 2. A sketch of the Te dependence of the heating and cooling
power, the two sides of Eq. (3) (red solid and blue dashed curves,
respectively). The crossings between the two curves represent the
multiple solutions of Eq. (3) for Te. Solutions in the yellow region
correspond to the normal state.

ity. (When nonlinear effects become noticeable, the physics
becomes much more rich [43], going beyond the scope of
the present study). The condition j∗ � jc is naturally sat-
isfied when electron-phonon coupling is weak. Indeed, we
obtain j∗/ jc ∼ √

h̄/(Tcτph ), using (i) the expression jc ≈
1.5 σN [�0/(2e)](h̄D/�0)−1/2 [44] with 2�0 ≈ 3.53 Tc being
the zero-temperature gap and D the electron diffusion coeffi-
cient, (ii) the Einstein relation σN = 2N0e2D with N0 being
the density of states per spin at the Fermi level, and (iii)
that �T n

c ∼ N0T 2
c /τph where τph is the time the electron with

energy ∼Tc spends before emitting a phonon. The ratio j∗/ jc
must necessarily be small in any material well-described as a
gas of electronic quasiparticles.

Figure 3 shows the results of numerical solutions of Eq. (3).
The curves are universal when plotted in the appropriate units
(Tc and j∗), i.e., valid for any material with the electron-
phonon cooling exponent n = 5 or n = 6. We see that they
are very weakly sensitive to whether n = 5 or n = 6. The
bistable region exists only for frequencies below 2�(Tph ), the
gap at Tph. At low frequencies, (i) it is bounded from below
by the current j∗

√
1 − (Tph/Tc)n, (ii) it extends to high cur-

rents ∝ 1/ω2 since Re[1/σ (ω, Te )] ∝ ω2 is small. Of course,
at high currents the validity of the theory is limited by the
condition j � jc, which is not included in the model. The
high-temperature solution lies below Tc only in a small part
of the bistable region with j < j∗

√
1 − (Tph/Tc)n; at higher j,

the high-temperature solution is normal.

IV. BISTABILITY IN THE FULL PROBLEM

Returning to the steady state of the full Eq. (1), we consider
j = j(r) = I0

√
H(r)/(8π2d2) which vanishes at r → 0,∞,

and reaches a maximum jmax ≈ 0.120 I0/(z0d ) at rmax ≈
1.27 z0. Then, for given h̄ω/Tc and Tph/Tc, the solutions are
determined by two dimensionless parameters, jmax/ j∗ and
�/z0. Dividing Eq. (1) by nd�T n

c and measuring r in the units
of z0, we cast the last two terms of Eq. (1) [those entering
Eq. (3)] in the dimensionless parameters (Te/Tc and j/ j∗) at
each r, while the gradient term is proportional to (�/z0)2.
From the values in Table I we see that � ∼ 20 nm can be
significantly smaller than z0 ∼ 100 nm.
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FIG. 3. Bistability under a spatially uniform microwave drive.
(a) Te as a function of the driving current j for different microwave
frequencies ω and Tph/Tc = 0.3. The curves can have three branches
(indicated for the red solid curve) corresponding to three solutions,
Tl ( j) < Tu( j) < Th( j), the middle one being unstable. Solutions in
the yellow region correspond to the superconductor going normal.
Solid and dashed curves correspond to electron-phonon cooling ex-
ponents n = 5 and n = 6, respectively. (b) The phase diagram in
the (ω, j) plane for n = 5 and Tph/Tc = 0.8. The white regions have
one stable state, superconducting (SC) or normal, as indicated. The
pink/green regions have two stable states of the types indicated
(there is no region where both states are normal). (Inset) Same
plot for Tph/Tc = 0.3, 0.6, 0.8 (solid, dashed, and dotted curves,
respectively).

The total power, needed to maintain jmax = j∗, is
given by the spatial integral of the last term in Eq. (1),
5.5 �T n

c z2
0d ln[(4πσN/ω)(d/z0)] (see Appendix B). This

gives a few nanowatts for InOx and a few microwatts for NbN
of thickness d = 10 nm and z0 = 100 nm.

For �/z0 → 0, the stationary profile Te(r) is determined by
the simple mapping of j(r)/ j∗ to the j/ j∗ axes on Fig. 3. Let
h̄ω/Tc and Tph/Tc be such that the uniform system is bistable
in the interval j1 < j < j2 with some j1, j2; that is, Eq. (3)
has three solutions Tl ( j) < Tu( j) < Th( j) (see Fig. 3(a)) for
j1 < j < j2, only Tl ( j) for j < j1, and only Th( j) for j > j2.
Thus, for jmax < j1, only the solution Tl ( j(r)) is possible
for any r. For j1 < jmax < j2, there are three local solutions
Tl ( j(r)) < Tu( j(r)) < Th( j(r)) in an interval of r around rmax

where j(r) > j1, so the dependence Te(r) consists of a low-
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FIG. 4. Solid curves are numerical solutions of Eq. (1) for
�/z0 = 0.16, n = 5, Tph/Tc = 0.3, h̄ω/Tc = 2. jmax/ j∗ = 1.2 (a) or
1.8 (b). The superconductor goes normal whenever these curves
are in the yellow region. In (a), there are three solutions; high Te

(red), unstable (green), and low Te (blue), in (b), there is only one
solution (black). Dotted curves are the �/z0 = 0 solutions of Eq. (3)
at each r. Domain walls between the low- and high-Te solutions for
�/z0 → 0 (vertical lines) are given by Eq. (4), but are broadened for
�/z0 = 0.16.

temperature branch and a disconnected closed contour [dotted
curve in Fig. 4(a)].

For jmax > j2, only the Th( j(r)) solution is possible around
rmax, where j(r) > j2, but there are two regions with three
solutions on both sides [dotted curve in Fig. 4(b)]. Thus
the system must switch between the stable low- and high-
temperature local solutions creating a “domain wall” (whose
width is vanishing in the limit �/z0 → 0) at some position
r on each side of rmax. This position can be found by noting
that any global stable stationary solution of Eq. (1) represents
a minimum of a certain functional F[Te(r)], explicitly given
in Appendix C. Minimizing the functional with respect to the
domain wall position R, we identify it as the point where j(R)
satisfies the condition∫ Tu( j(R))

Tl ( j(R))

[
Q(T, Tph ) − Re

j2(R)

σ (ω, T )

]
K(T ) dT

=
∫ Th ( j(R))

Tu( j(R))

[
Re

j2(R)

σ (ω, T )
− Q(T, Tph )

]
K(T ) dT, (4)

which resembles the Maxwell construction (equal-area rule)
for the Van der Waals isotherms, as was also noted for
overheated superconductors subject to dc currents [21]. This
construction is valid for �/z0 → 0, but it remains qualita-
tively correct for realistic values of �/z0, as we will see below.

Then for jmax > j2, the system has only one global solution
for Te(r). However, it is the underlying local bistability that
causes the domain walls in that solution, whose width � can
be significantly smaller than the size of the hot spot [solid
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FIG. 5. Solid curves the same as in Fig. 4(a), and dotted curves
have larger �/z0. The high-Te (red) and unstable (green) solutions
approach each other as �/z0 increases, so they meet and annihilate
at a given �/z0 (here �/z0 ≈ 0.6), leaving only the low-Te (blue)
solution at higher �/z0.

black curve in Fig. 4(b)]. This rapid spatial variation of Te(r)
will be useful for creating a local thermal perturbation of
the system with submicrometer resolution. Intriguingly, Te

exceeds Tc in a ring, leaving a small superconducting core
precisely below the tip.

In contrast, for j1 < jmax < j2 the disconnected low-
temperature branch Tl (r) represents a stable global solution
of Eq. (1) in the limit �/z0 → 0. In addition, there is another
stable solution with two domain walls. Then, the system ex-
hibits a global bistability [multiple solutions of Eq. (1) for
the whole profile Te(r)], inherited from the local bistability
(multiple solutions of Eq. (3) for Te at a given point r). The
global bistability is accompanied by a hysteretic behavior of
Te(r) as one changes the microwave strength, jmax/ j∗.

Finite �/z0 causes a broadening of the domain walls; the
solid curves in Fig. 4 show this for realistic parameters. Fig. 5
shows that increasing �/z0 causes the high-temperature and
unstable solutions to approach each other, and annihilate at a
certain �/z0 (e.g., �/z0 ≈ 0.6 for the parameters in Fig. 5).
The low-temperature solution survives at larger �/z0. because
it is favoured by the faster heat evacuation from the below the
tip.

V. LOCAL HEATING WITH A HOT TIP

Finally, we briefly discuss another possible setup, when
the sample is heated not by the external microwave drive, but
by thermal radiation from the tip, held at high temperature
Ttip. The corresponding microwave field can be modelled by
that of a thermally fluctuating electric or magnetic dipole, as
discussed in detail in Appendix D. The heating power is then
given by an integral over all frequencies. Crucially, both the
typical frequency and the strength of the microwave field are
controlled by the same parameter Ttip, while in the previous
setting the microwave strength I0 and frequency ω could be
controlled independently. For typical material parameters, to
produce a noticeable change in Te, one needs Ttip � Tc. Then
the heating is due to absorption of photons with ω � Tc/h̄,
so it is not sensitive to the superconductivity. This results in

a single solution, a smooth profile Te(r) exceeding Tph in a
region whose size is a few z0 at least. Moreover, for realistic
parameters, its effect is too weak to locally destroy the super-
conductivity (unless Tph → Tc), so it would be a much worse
local probe than a tip with microwave driving.

VI. CONCLUDING REMARKS

We propose a local thermal probe based on a
submicrometer-sized hot spot created in a thin superconduct-
ing layer by microwave radiation produced by a small metallic
tip. Our simple model shows how the electron temperature is
locally driven away from the substrate (phonon) temperature,
assuming the electrons remain in local thermal equilibrium
among themselves. We have shown that the hot spot can
have two possible stable states, similarly to a bulk bistability,
discussed earlier for spatially uniform microwave fields.

We have identified the superconductor’s thermal relaxation
length �, and shown that global bistability requires � � z0,
the tip-sample distance (or the tip size, if larger). This is the
case for strongly disordered superconductors such as NbN or
InOx. Then the hot spot has a sharp boundary corresponding
to a domain wall between two local stable solutions. The hot
spot temperature can be tuned to locally destroy the super-
conductivity. We thus propose it as a scanning probe with
submicrometer resolution, ideal for mapping out where the
supercurrent flows in such disordered superconductors.

The proposed probe has an advantage of having two control
parameters (the microwave’s frequency and its strength). The
requirements on the geometry are not very stringent: it is only
important that the tip size and the tip-sample separation are
not too large (50–100 nm). Since the dependence of the field
on the tip-sample distance is not exponential, maintaining
a constant tip-sample distance is not so crucial as, e.g., for
STM. In most cases, a few percent change in z0 will lead
to a few percent change in the temperature or in the domain
wall position, unless one hits the point where a stable solution
disappears.

The model we used in our calculations was devel-
oped for homogeneously disordered superconductors, but
the qualitative conclusions may have wider applicability.
Our calculations were based on the assumption of position-
independent local conductivity, which always breaks down
below some length scale. We had in mind the simple situation
when this scale is given by the superconducting coherence
length, but it can be something else. For granular systems
(such as granular aluminum, a promising material for super-
conducting circuits [45,46]) one can describe the system by
a local conductivity on length scales longer than the typical
grain size. If the grain size happens to be larger than the
thermal relaxation length, then it would be the grain size that
determines the domain wall size.

In a disordered superconductor, the superconducting gap
may fluctuate in space, typically on the scale of the coherence
length. Since the spatial scale of the absorption profile in
Eq. (2) is assumed to be much larger than the coherence
length (the basic assumption behind our local approach), one
can effectively replace the position-dependent Re[1/σ (ω, Te )]
in Eq. (1) by its spatial average. This average will have a
smoother dependence on Te than that at a fixed gap, which

155419-5



KARKI, WHITNEY, AND BASKO PHYSICAL REVIEW B 106, 155419 (2022)

would lead to shrinking of the bistable region in Fig. 3(b).
However, to completely kill the bistability, the disorder must
be sufficiently strong to introduce microwave absorption at
low frequencies, that is, gap fluctuations must be of the order
of the gap itself. Such strong fluctuations may occur in some
rare regions of the disordered superconductor; the proposed
probe could then serve to identify such regions.
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APPENDIX A: ELECTRIC AND THERMAL
CONDUCTIVITY, ELECTRON-PHONON COOLING

Here, we briefly summarize how the various parameters in
Eq. (1) are modeled.

For the temperature dependence of the gap �(Te ) we use
an empirical expression [47],

�(Te )

�0
=

√
cos

(
π

2

T 2
e

T 2
c

)
, (A1)

which agrees within 3% with the BCS expression. �0 is re-
lated to Tc by the weak coupling relation (γ = 0.577 . . . is the
Euler-Mascheroni constant):

�0

Tc
= π

eγ
≈ 1.76. (A2)

The ac conductivity of a superconductor is [42]

σ (ω)

σN
= 1

h̄ω

∫ ∞

�

dε ϒ(ε)

(
tanh

ε + h̄ω

2Te
− tanh

ε

2Te

)

− �(h̄ω − 2�)

h̄ω

∫ −�

�−h̄ω

dε ϒ(ε) tanh
ε + h̄ω

2Te

− i

h̄ω

∫ �

max{�−h̄ω,−�}
dε ϒ(ε) tanh

ε + h̄ω

2Te
,

(A3)

where

ϒ(ε) = ε(ε + h̄ω) + �2√
|ε2 − �2|

√
(ε + h̄ω)2 − �2

. (A4)

Here σN is the bulk electrical conductivity of the material in
the normal state. The electronic contribution to the thermal
conductivity of the superconductor also depends on σN via
[28,29]

K(Te ) = σN

e2

∫ ∞

�(Te )

ε2 dε

2T 2
e cosh2[ε/(2Te)]

. (A5)

The power per unit volume transferred from electrons to
phonons can be written using the collision integral in Ref. [24]
as

Q(Te, Tph ) = �

4(n − 1)! ζ (n)

∫ ∞

−∞
dε

∫ ∞

0
d

n−2

×
(

coth



2Te
− coth




2Tph

)

×
(

tanh
ε + 


2Te
− tanh

ε

2Te

)

× �(|ε| − �)√
ε2 − �2

�(|ε + 
| − �)√
(ε + 
)2 − �2

× [ε(ε + 
) − �2] sign[ε(ε + 
)]. (A6)

APPENDIX B: HEATING BY A MICROWAVE DRIVE

We model the superconducting layer as an infinitely thin
2D sheet with a 2D conductivity σ2D(ω) = σ (ω)d , given by
the standard Mattis-Bardeen expression (A3) multiplied by
the layer thickness d . We represent the tip as a small spherical
particle of radius Rtip, placed at a distance z0 from the layer,
assuming both d, Rtip � z0. While the first inequality is quite
realistic (we have in mind z0 ∼ 100 nm, d ∼ 10–20 nm), the
second will be used to simplify the calculations and obtain
relatively simple final expressions; in the end we will set
Rtip ∼ z0, so these expressions will be valid only as quali-
tative estimates (which would be the case anyway, since in
reality the tip is not spherical). This geometry determines the
tip-layer capacitance Ctip ∼ 4πε0Rtip, where ε0 is the vacuum
dielectric permittivity.

If a microwave voltage is applied between the sample and
the tip, this situation can be analyzed in terms of an effective
circuit which includes, in series with the microwave voltage
source at frequency ω, and the tip-sample capacitance Ctip, an
effective impedance Zs(ω) representing the sample, as well
as an external impedance Zext corresponding to the external
circuit used to connect the voltage source.

Typically, the impedance of the capacitor, Ztip =
−1/(iωCtip ), is much larger than the sample impedance Zs.
Indeed, associating the latter with the resistance per square
1/σ2D of the 2D layer with thickness d � z0, estimating
the capacitance to be of the order of the tip radius, and
taking the latter to be 50 nm, for h̄ω = 1 K, we obtain
Ztip = 1.4 M
. This is much larger than 1/σ2D even for
σ2D = 4e2/(2π h̄) = 1/(6.46 k
), about the smallest possible
sheet conductivity allowed for a superconductor, below which
a superconductor-insulator transition occurs [48,49]. This
means that the oscillating charge distribution in the layer is
mainly determined by the oscillating charge q(t ) on the tip,
so the currents in the layer follow to maintain this oscillating
charge distribution, and the small in-plane electric field is the
one required to drive these currents.

The external impedance Zext depends on the specific
experimental setup. If Zext � Ztip, the tip is effectively
current-biased. An applied current I (t ) = I0 cos ωt = dq/dt
corresponds to the charge on the tip q(t ) = (I0/ω) sin ωt . If
Zext � Ztip, the tip is biased by a voltage V (t ) = V0 cos ωt , so
the charge on the tip is q(t ) = CtipV0 cos ωt .

In electrostatics, a point charge q placed at a distance
z0 from a conducting plane, induces a 2D screening charge
density on the plane [50]

ρ(r) = − q

2π

z0(
r2 + z2

0

)3/2 . (B1)
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where r = (x, y) is the in-plane position, and r = |r|. When
the tip charge q(t ) is oscillating, we assume that the den-
sity ρ(r) simply follows Eq. (B1) instantaneously. This
instantaneous approximation breaks down at sufficiently large
distances where the charges are no longer able to follow.
The charge density relaxation time at a distance r can be
estimated as the RC relaxation time of an effective circuit with
the capacitance ∼4πε0r and the resistance ∼1/σ2D (since in
2D the resistance per square does not scale with the size).
Requiring this relaxation time to be smaller than 1/ω, we
arrive at the length scale ae(ω) = iσ2D/(2ε0ω) [see Eq. (D5)
for the rigorous definition]. Another obvious cutoff scale is
c/ω, which becomes more relevant if σ2D/(2ε0c) > 1. For the
frequencies we are interested in (of the order of the supercon-
ductor critical temperature, a few Kelvins), both cutoff scales
are much larger than z0, the typical length scale of Eq. (B1).
Thus they play almost no role in the physics discussed in this
work, they only enter via a logarithmic cutoff in Eq. (B5)
below.

The 2D current density J(r, t ) = j(r, t )d can be found
from the continuity equation ∇ · J = −∂ρ/∂t with ρ(r, t )
given by Eq. (B1). Since the whole picture is axially sym-
metric, J has only the radial component Jr which satisfies a
first-order ordinary differential equation with I = dq/dt :

∂Jr

∂r
+ Jr

r
− I

2π

z0(
r2 + z2

0

)3/2 = 0. (B2)

The solution of this equation which is finite at r → 0, reads

Jr (r, t ) = I (t )

2πr

⎛
⎝1 − z0√

z2
0 + r2

⎞
⎠. (B3)

For the current I (t ) = I0 cos ωt , the in-plane electric field is
related to this current via σ2D(ω), so the Joule dissipation per
unit area is given by

P(r) = 1

(2πr)2

⎛
⎝1 − z0√

z2
0 + r2

⎞
⎠

2

I2
0

2
Re

1

σ2D(ω)
. (B4)

The total power injected into the sample is the integral of P(r)
over the sample area,∫ ∞

0
P(r) 2πr dr = I2

0

4π
Re

1

σ2D(ω)
ln

min{c/ω, |ae(ω)|}
z0

,

(B5)
where the logarithmic divergence at large distances is cut off
at the scale discussed in the previous paragraph. For a voltage-
biased tip, one should replace I0 → ωCtipV0 in Eqs. (B4) and
(B5).

APPENDIX C: VARIATIONAL FORM OF THE HEAT
TRANSPORT EQUATION

Equation (1) can be written in terms of the variational
derivative of a “free energy” functional F[Te(r)]:

K(Te ) c(Te )
∂Te

∂t
= −δF[Te(r)]

δTe(r)
, (C1a)

microwave 
strength,

electron
temperature, high T  branch; e

unstable branch;

low T  branch; e

position,

position,

domain 
wall

FIG. 6. The situation for which Appendix C explains how to find
the domain wall’s position, R.

F =
∫

d2r
[K2(Te )

2
|∇Te|2

+Q(Te ) − j2(r)R(Te )
]
, (C1b)

Q(Te ) =
∫ Te

0
K(T ′) Q(T ′, Tph ) dT ′, (C1c)

R(Te ) =
∫ Te

0
Re

K(T ′)
σ (ω, T ′)

dT ′. (C1d)

A stable solution of Eq. (1) corresponds to a local minimum
of the functional (C1b).

We now use this to explain the domain wall’s position, tak-
ing the example of the situation sketched in Fig. 6. There we
assume h̄ω/Tc and Tph/Tc are such that the system is bistable
for K = 0 in the interval j1 < j < j2 with some j1, j2. In
other words, for j1 < j < j2, there are three Te which are
solutions of Eq. (3), these being Tl ( j) < Tu( j) < Th( j). Let
R1, R2 be such that j(R1,2) = j1,2, and for definiteness we are
assuming R1 < R2. If we take the limit �/z0 → 0 and neglect
the gradient term, the position R where the switching between
the two solutions occurs can be found by minimizing the “free
energy”∫ R

R1

2πr dr
{

j2(r)R[Th( j(r))] − Q[Th( j(r))]
}

+
∫ R2

R
2πr dr

{
j2(r)R[Tl ( j(r))] − Q[Tl ( j(r))]

}
with respect to R. This determines R as the position where
j(R) satisfies the condition∫ Tl ( j(R))

0

[
Re

j2(R)K(T )

σ (ω, T )
− K(T ) Q(T, Tph )

]
dT

=
∫ Th ( j(R))

0

[
Re

j2(R)K(T )

σ (ω, T )
− K(T ) Q(T, Tph )

]
dT,

(C2)

which is equivalent to Eq. (4).
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Including the weak gradient term, we can estimate the
width w of the transition region by minimizing

min
w

{
2πRw

[K(Th ) Th − K(Tl ) Tl

w

]2

+ 2πRw

∫ Tu

Tl

[
Re

j2K(T )

σ (ω, T )
− K(T ) Q(T, Tph )

]
dT

}
.

If all temperatures are a fraction of Tc, all quantities are of the
same order as in the normal state. Then j2 ∼ σQ, which gives
w ∼ �.

APPENDIX D: HEATING BY THERMAL RADIATION
FROM A HOT TIP

The body of the manuscript described in detail the use
of the tip to apply near-field microwaves to the supercon-
ductor, however we only briefly mentioned heating the tip.
Naively, one would expect the physics to be similar in both
cases, because both processes are intended to locally heat the
superconductor. However, we find that heating the tip is a
very ineffective way of heating the superconductor, compared
to microwave driving. For realistic experimental parameters,
we find that a hot tip does not drive the superconductor into
the normal state, nor create bistability. Here we explain in
detail how we model the hot tip, and how we arrive at these
conclusions.

1. Hot tip as a fluctuating dipole

As in Sec. B, we model the superconducting layer as an
infinitely thin 2D sheet with a 2D conductivity σ2D(ω) =
σ (ω)d , and the tip as a small spherical metallic particle of ra-
dius Rtip, placed at a distance z0 from the layer, assuming both
d, Rtip � z0. The tip material is characterized by its bulk con-
ductivity σtip which we assume to be frequency-independent.

A similar problem was studied in Ref. [51] in the frame-
work of fluctuational electrodynamics [52–54], which we will
also adopt here. Namely, we represent the tip as a thermally
fluctuating dipole (either electric or magnetic), which pro-
duces a fluctuating field which is heating up the electrons
in the sheet. Below we analyze the electric and magnetic
contributions separately, and find them to be of the same order.
To simplify the calculations, we assume the dipole to oscillate
only along the z direction (perpendicular to the sample plane).
Contribution of the in-plane fluctuations is of the same order,
so our results will remain valid as qualitative estimates.

In this Appendix, since we are handling an essentially 3D
problem, we adopt the notation r = (x, y, z) ≡ (r‖, z). In the
rest of the paper, r refers to the in-plane position, that is, the
subscript “‖” is omitted for brevity. For the in-plane wave
vector, we use the notation k ≡ (kx, ky).

2. Electric dipole

According to the fluctuation-dissipation theorem, the elec-
tric dipole moment,

p(t ) =
∫

dω

2π
pωe−iωt , (D1)

subject to thermal fluctuations at temperature Ttip, has the
fluctuation spectrum

〈pω pω′ 〉 = h̄ Im αe(ω) coth
h̄ω

2Ttip
2πδ(ω + ω′), (D2)

where

αe(ω) = 4πε0R3
tip

iσtip/(ε0ω)

iσtip/(ε0ω) + 3
(D3)

is the electric polarizability of a sphere of radius Rtip

with the dielectric function 1 + iσtip/(ε0ω). For a tip made
of a good metal, σtip/ε0 ∼ 1018 s−1 (corresponding to
1/σtip = 1.13 × 10−7 
 m), we have ω � σtip/ε0, so Im αe ≈
12πε0R3

tipωε0/σtip.
To find the induced fluctuating electric field, we use the

quasistatic approximation, since the dimensions of the struc-
ture are much smaller than the thermal photon wavelength.
Namely, we write the Poisson equation for each Fourier com-
ponent of the electrostatic potential ϕkω(z) eikr‖−iωt :(

∂2

∂z2
− k2

)
ϕkω(z) = − pω

ε0
δ′(z − z0)

+ ik2

ω

σ2D(ω)

ε0
ϕkω(0) δ(z). (D4)

The charge density, appearing on the right-hand side, consists
of two parts. The first one, −pωδ′(z − z0) with δ′(z) standing
for the derivative of the Dirac delta function, is that of the
point dipole pω, placed at the point r = (0, 0, z0) and oriented
along z. The second part is the charge density induced in
the superconducting layer at z = 0 by the oscillating in-plane
electric field −ikϕkω(0). Indeed, this field induces the current
−ikϕkω(0) σ2D(ω), which is related to the charge density by
the continuity equation.

A solution of Eq. (D4) is sought as linear combinations
of e±kz in the three intervals −∞ < z < 0, 0 < z < z0, z0 <

z < ∞, decaying at ±∞. The coefficients should be matched
to give the correct jump of ϕkω(z) at z = z0 and the jump in
dϕkω(z)/dz at z = 0, needed to reproduce the right-hand side
of Eq. (D4). The result is

ϕkω(z = 0) = pω

2ε0

e−kz0

1 + k ae(ω)
, ae(ω) ≡ iσ2D(ω)

2ε0ω
. (D5)

Even for a rather small conductivity σ2D = 4e2/(2π h̄) =
1/(6.46 k
) and a rather high frequency corresponding to the
temperature h̄ω = 100 K, we obtain |ae(ω)| = 670 nm, while
the typical k ∼ 1/z0 ∼ (100 nm)−1. Thus we can neglect
unity in the denominator, and obtain the in-plane electric field
E‖ω(r‖, z = 0) by the inverse Fourier transform with respect
to k:

E‖ω(r‖, z = 0) = 1

4πε0

pω

ae(ω)

r‖(
r2
‖ + z2

0

)3/2 . (D6)

Finally, the heating power per unit area at a point (r‖, 0)
is found as 〈J(r‖, t ) · E‖(r‖, 0, t )〉, where the current Fourier
component Jω(r‖) = σ2D(ω) E‖ω(r‖, 0). The averaging is per-
formed using Eq. (D2), and one should subtract the inverse
heat flow from current fluctuations in the superconducting
layer with electron temperature Te, which is given by the
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same expression but with the replacement coth[h̄ω/(2Ttip )] →
coth[h̄ω/(2Te )]:

Pe(r‖) = 3

π

r2
‖R3

tip(
r2
‖ + z2

0

)3

∫ ∞

−∞

dω

2π
h̄ω3 ε0

σtip
Re

ε0

σ2D(ω)

×
(

coth
h̄ω

2Ttip
− coth

h̄ω

2Te

)
. (D7)

3. Magnetic dipole

The fluctuations of the magnetic moment m are fully anal-
ogous to Eq. (D2):

〈mω mω′ 〉 = h̄ Im αm(ω) coth
h̄ω

2Ttip
2πδ(ω + ω′), (D8)

where

αm(ω) = 2π

15
iωσtipR5

tip (D9)

is the magnetic polarizability of a sphere of radius Rtip with
the dielectric function 1 + iσtip/(ε0ω). This expression can be
obtained by calculating the magnetization corresponding to
the circular currents produced by the electric field, which, in
turn, is induced by the oscillating magnetic field, according to
the Faraday’s law.

In this magnetostatic problem, it is convenient to find the
electric field from the vector potential Akω(z). For the mag-
netic dipole mez directed along the z axis with the unit vector
ez, one can seek the vector potential in the form Akω(z) =
ik × ez ψkω(z). Substituting it into the 3D Ampère’s law
∇ × ∇ × A = μ0j (μ0 = 1/(ε0c2) being the vacuum mag-
netic permeability), we obtain the following equation for the
scalar function ψkω(z):

(
∂2

∂z2
− k2

)
ψkω(z) = − μ0mω δ(z − z0)

− iωμ0 σ2D(ω) ψkω(0) δ(z). (D10)

Proceeding analogously to the electrostatic case, we find the
solution

Akω(z = 0) = μ0mω

2

e−kz0

k + 1/am(ω)
ik × ez,

am(ω) ≡ − 2

iωμ0σ2D(ω)
. (D11)

Again, taking σ2D = 4e2/(2π h̄) and h̄ω = 100 K, we obtain
|am(ω)| = 0.8 mm, so 1/am in the denominator can be safely
neglected even for much higher conductivities. The electric
field,

E‖ω(r‖, z = 0) = − iωμ0mω

4π

ez × r‖(
r2
‖ + z2

0

)3/2 , (D12)

determines the heating power per unit area:

Pm(r‖) = 1

120π

r2
‖R5

tip(
r2
‖ + z2

0

)3

∫ ∞

−∞

dω

2π

h̄ω3

c4

σtip

ε0

Re σ2D(ω)

ε0

×
(

coth
h̄ω

2Ttip
− coth

h̄ω

2Te

)
. (D13)

4. Electron temperature profile

As we will see shortly, the most interesting case is Ttip �
Tc. Then one can neglect the frequency dependence of σ (ω)
and take it to coincide with the normal state value. Then,
the frequency integral in Eqs. (D7) and (D13) is calculated
explicitly:

P(r‖) = π2

5

T 4
tip − T 4

e

h̄3c2

r2
‖R4

tip(
r2
‖ + z2

0

)3

×
(

c2

Rtip

ε0

σtip

ε0

σ2D
+ 1

360

Rtip

c2

σtip

ε0

σ2D

ε0

)
. (D14)

Let us estimate the heating power at r‖ = z0/
√

2, corre-
sponding to the maximum of P(r‖). For z0 = 100 nm, Rtip =
50 nm, 1/σtip = 10−7 
 m, σ2D = 4e2/(2π h̄) ≈ 1/(6.5 k
),
and room temperature Ttip = 300 K, we obtain P ≈ 6 W/m2

(the two terms in the brackets equal to 0.09 and 0.03, re-
spectively, the electric dipole contribution being somewhat

(a)

T e
 /

 T
c
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0.22

0.24
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0.3

r/z0

0 5 10 15 20 25 30

(b)

T e
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) /
 T

c

0

0.1
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0.3

0.4

0.5
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0 0.1 0.2 0.3 0.4 0.5

FIG. 7. Heating of the superconductor by a thermal tip for the parameters of InOx given in Table I, σtip = 107 (
 m)−1, Rtip = 50 nm,
z0 = 100 nm, and Ttip = 300 K. (a) Temperature profile Te(r‖) for Tph/Tc = 0.2. (b) The dependence of Te at the maximum (r‖ = 0) on Tph

(solid curve). The dashed line is Te = Tph.
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more important). Balancing it with the phonon cooling power
�(T n

e − T n
ph )d , for the parameters of InOx (Table I of the main

text) and for Tph = Tc = 3 K, we obtain very little overheating,
Te − Tph ∼ 10−4 K, and for NbN it is even smaller. A notice-
able electronic overheating can be obtained for lower Tph �
1 K, when the cooling power is suppressed by the presence
of the superconducting gap (Fig. 7). Still, it is not sufficient
to suppress the superconductivity and create a normal region
in the center. Also, even for low Tph, the tip temperature Ttip

should be quite high, so the heating occurs via absorption of

photons with h̄ω ∼ Ttip � Tc. First, this validates Eq. (D14).
Second, in this regime the heating power does not depend on
Te, which eliminates any bistability.

The typical size of the overheated region is at least z0.
Moreover, at low temperatures the phonon cooling power
Q(Te, Tph ) vanishes faster than the electronic thermal conduc-
tivity K(Te ). As a result, at temperatures significantly below
Tc, the size of the overheated region significantly exceeds z0,
which makes this setting unsuitable for creating a localized
thermal perturbation.
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