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Detection of single phonons via phonon drag in two-dimensional materials
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The capacity to electrically detect phonons, ultimately at the single-phonon limit, is a key requirement for
many schemes for phonon-based quantum computing; so-called quantum phononics. Here, we predict that by
exploiting the strong coupling of their electrons to surface-polar phonons, van der Waals heterostructures can
offer a suitable platform for phonon sensing, capable of resolving energy transfer at the single-phonon level. The
geometry we consider is one in which a drag momentum is exerted on electrons in a graphene layer, by a single
out-of-equilibrium phonon in a dielectric layer of hexagonal boron nitride, giving rise to a measurable induced
voltage (Vdrag). Our numerical solution of the Boltzmann transport equation shows that this drag voltage can
reach a level of a few hundred microvolts per phonon, well above experimental detection limits. Furthermore,
we predict that Vdrag should be highly insensitive to the mobility of carriers in the graphene layer and to increasing
the temperature to at least 300 K, offering the potential of a versatile material platform for single-phonon sensing.
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I. INTRODUCTION

A key requirement of quantum computing is the on-
demand generation and coherent manipulation of quantum
states. From a practical perspective, the ability to implement
these operations using chip-scale integrated circuits is highly
desired, as it would open up the capability to fully leverage
the many advantages of the mature microelectronics indus-
try. However, a fundamental barrier to solid-state quantum
computing has long been understood to arise from the role of
phonons. At nonzero temperatures, these bosonic modes can
be occupied with broad distributions of energy and momen-
tum, allowing them to function as an efficient “bath” whose
many degrees of freedom can efficiently randomize (or deco-
here) quantum information. Although the manner in which a
densely populated phonon bath destroys quantum coherence
has long been understood, it has only recently become appre-
ciated that phonons may instead provide an effective means
of transmitting quantum information when excited coherently
in sufficiently small numbers [1–7]. The strong coupling of
phonons to other quasiparticles (especially electrons or pho-
tons) makes them well suited to this task. Furthermore, the
physical patterning of bulk crystals can be exploited to imple-
ment phononic crystals [8–10], in strong analogy with their
photonic counterparts, or to realize resonant structures that
can be selectively coupled to single quanta [11,12]. Vari-
ous schemes for phonon-mediated quantum transduction have
been proposed [13–19], and phonons have also been sug-
gested as a means of mediating quantum entanglement [20].
In other work, the development of phononic circuits for appli-
cations in quantum sensing and signal processing has been
emphasized [21,22]. Stark shift measurements as a func-
tion of the number of phonons [3] have been demonstrated
and are based on the real part of the electron-phonon self-
energy. Other phonon detection schemes use optomechanical
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response [23], including the famous LIGO gravitational wave
interferometer [24]. In contrast to these different approaches,
a phonon-drag detection scheme is proposed that utilizes a
two-dimensional (2D) material platform and which takes ad-
vantage of the imaginary part of the self-energy, leading to
high detection efficiency and simplicity of implementation.

For phononic control to approach the levels of sophis-
tication that have already been achieved for electrons and
photons, there are a number of critical issues that need to be
addressed. Key among these is the need to detect phonons in
real time in an electrical measurement, using approaches that
can ultimately be scaled to the limit of single-phonon reso-
lution. In this work, we propose and predict the quantitative
performance of a single-phonon detector that is implemented
in a heterostructure of monolayer (or AB-stacked bilayer)
graphene and multilayer hexagonal boron nitride (hBN). It
has been known for four decades that remote phonon scat-
tering hinders the mobility of semiconductors grown on polar
substrates, in which ionic motion generates an electric field
that extends into the semiconductor [25,26]. In this work,
we propose to make use of remote phonon scattering to im-
plement phonon detectors. Two-dimensional materials such
as graphene have recently attracted increasing interest for
application in quantum computing technology [27]. When
choosing the particular geometry of Fig. 1(a), we are moti-
vated by the fact that hBN is a notable phononic material,
having branches of phonon polariton (near 100 meV and over
the range from 175 to 200 meV) that exhibit a hyperbolic
character due to the strong optical anisotropy. This allows
thin slabs of this material to function as efficient waveguides
for propagating phonons [28–30], a characteristic that has
been exploited [31] to achieve rapid cooling of the hot car-
rier in graphene/hBN-based transistors. At the same time,
the presence of the tunable, high-conductivity electron gas in
graphene renders it well suited for the drag-based detection
of phonons in the hBN. To demonstrate this, we consider
a situation in which a single surface polar phonon (SPP) is
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FIG. 1. (a) Schematic representation of a stacked heterostructure of graphene (green bonds) and hBN (gray bonds) that exploits the phonon-
drag effect for phonon (red arrow) detection. (b) Phase space for electron excitation via e-SPP interaction in monolayer graphene. When
EF < h̄ωph, there are two possible kinds of excitation: Interband (valence to conduction band) and intraband (within the conduction band).
When EF > h̄ωph, the interband transition is no longer allowed.

excited in the hBN and travels along the heterostructure while
interacting with electrons in the graphene layer. This process
leads to the development of the drag-based voltage shown in
Fig. 1(a).

In a heterostructure formed between graphene and mono-
layer hBN, the inherent 2D nature of the materials gives rise
to hybrid plasmon-phonon polaritons that propagate parallel
to the plane of their interface. However, the situation is very
different when graphene is deposited in thicker layers of hBN
(in the range of >1–100 nm), in which the phonon polaritons
exhibit a hyperbolic character, capable of propagation with
large energy and momentum losses. Optical phonons injected
into hBN will initially propagate with a raylike character be-
fore decaying via crystal anharmonicity over a characteristic
distance of a few tens of nanometers, allowing the formation
of long-lived [32,33] SPPs at the boundary between the hBN
and graphene layers. Our calculated results demonstrate that
the drag voltage that develops in such structures is on the scale
of a few hundred microvolts for a device 1 μm wide, well
above the detection limit in typical experimental setups.

II. MODELING APPROACH

The interplay of charge carrier flow with phonon trans-
port (and vice versa) has a long history of discussion in
thermoelectrics [34–36]. At the same time, interest in the
problem of phonon drag has been revived in the context of
low-dimensional materials [37–42]. We assume a quasiparti-
cle picture of electrons and phonons in our study, employing
the Boltzmann transport formalism in our calculations [43]:

e �F
h̄

∂ fk

∂�k =
(

∂ fk

∂t

)
e-ph

+
(

∂ fk

∂t

)
imp

. (1)

Here, fk is the distribution function of electrons in momentum
space; k is the electron wave vector, including the band index;
�F is the external electric field that acts as the driving force; �vk

is the group velocity of electrons, and h̄ is the Planck constant.
The terms on the right-hand side of the equation describe
collision integrals due to electron-phonon (e-ph) and electron-
impurity (imp) scattering.

The collision integral for electron-phonon scattering is
given by(

∂ fk

∂t

)
e-ph

= −
∑

q

|Mkq|2[[ fk (1 − fk−q)(1 + nq)

− fk−q(1 − fk )nq]δ(Ek − Ek−q − h̄ωq)

+ [ fk (1 − fk+q)nq − fk+q(1 − fk )(1 + nq)]

× δ(Ek − Ek+q + h̄ωq)]. (2)

In this equation, nq is the number of occupied phonon modes
with momentum q and energy h̄ωq, Ek is the electron energy,
and the δ function ensures energy conservation. |Mkq|2 is
the coupling constant of the e-ph interaction. The details of
the electron-SPP scattering are given in the Appendix and
intrinsic electron-phonon interactions are taken into account
following Ref. [44].

The collision integral for Coulomb impurity scattering is
added using a standard procedure [45–48]. Unless stated oth-
erwise, we choose the impurity concentration to give a typical
mobility of ∼1000 cm2/V s for the graphene devices.

The problem we consider is one in which the phonon sys-
tems of both materials are initially in thermal equilibrium and
in which we then assume that a single SPP (of wave vector
Q in direction α) is excited in the hBN layer. As a result of
this, the distribution function in Eq. (1) changes by an amount
� fk , leading to an excess current density � jdrag. We define
the resulting drag voltage Vdrag via

� jdrag = e
∑

k � fkvαk

W L
= σ

Vdrag

L
,

(3)

Vdrag = e
∑

k � fkvαk

σW
,

where σ is the electrical conductivity and W and L are the
width and length of the device, respectively. In simulations,
we use a supercell approach such that the k-point mesh Nx ×
Ny of the Brillouin zone defines the corresponding area of the
device in real space, i.e., W × L = Nx × Ny × Ac, where Ac

is the area of the primitive unit cell. According to Eq. (3),
the drag voltage is inversely proportional to the width of the
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FIG. 2. Phonon drag voltage Vdrag as a function of the hBN SPP wave vector, and for various carrier densities in the graphene layer. Panels
(a) and (b) show results for monolayer graphene, while panels (c) and (d) are for bilayer graphene. The legend of panel (a) applies to panel
(c) also, while that of panel (b) applies to panel (d). The calculations assume T = 50 K and thBN = ∞.

conducting graphene channel. In the analysis that follows, we
therefore report the results of the product Vdrag × W . It should
be noted that our choice to characterize the responsivity of
the phonon sensor in terms of the drag voltage Vdrag leads to
a counterintuitive conclusion that the responsivity is indepen-
dent of the quality of the graphene sample and of the strength
of the impurity scattering (see discussion below). This result is
a consequence of the form of Eq. (3), in which the � fk caused
by an out-of-equilibrium phonon is proportional to the electri-
cal conductivity, leading to Vdrag being nearly independent of
mobility. The phonon-induced current is certainly sensitive to
the quality of graphene, however.

III. RESULTS AND DISCUSSION

Through a process of absorption, the out-of-equilibrium
SPP excites an initial electron into a higher energy state (see
Fig. 1). The conservation of energy and momentum require-
ments impose a dependence of Vdrag on the SPP wave vector
and the Fermi energy EF in the graphene. Figure 1 illustrates
two possible electron excitations that can arise from absorp-
tion of the out-of-equilibrium phonon: An interband transition
of an electron from the valence to the conduction band, as
shown in Fig. 1(a), or an intraband transition between two
states in the conduction band, as shown in Figs. 1(a) and 1(b).
Energy conservation prohibits interband transitions once the
Fermi level is larger than the SPP energy, i.e., EF > h̄ωph in
monolayer or bilayer graphene.

In Fig. 2 we plot the variation of Vdrag as a function of
the SPP wave vector, for various carrier densities in both
the monolayer [Figs. 2(a) and 2(b)] and bilayer graphene
[Figs. 2(c) and 2(d)]. In the monolayer case, the drag signal
exhibits two distinct peaks, the first of which, at small wave

vector, is associated with interband excitation of electrons
from the valence to the conduction band. The wave vectors
at which the peaks in the drag signal occur reflect the de-
tails of the phase space for scattering, which is governed by
conservation of energy and momentum and the Pauli block-
ing principle. The amplitude of these peaks is determined
by the strength of the electron-phonon matrix elements. The
finite temperature primarily introduces thermal smearing of
the electronic states. As indicated by the schematic of Fig. 1,
these transitions are able to satisfy energy and momentum
conservation laws at small SPP wave vector. They are cut
off at wave vectors greater than Qc1 = ωph/vF ≈ 0.15 nm−1,
where vF ≈ 106 m/s is the Fermi velocity in the monolayer
and h̄ωph ≈ 100 meV is the phonon energy (see Appendix).
The interband transitions are to be contrasted with those re-
sponsible for the second peak in the drag signal, seen at larger
wave vectors, which instead involve intraband processes.

Turning next to the results for bilayer graphene [Figs. 2(c)
and 2(d)], we see that the small wave-vector peak found in
the monolayer case is replaced now by a shoulderlike fea-
ture for wave vectors Q < Qc2, where Qc2 = (2mωph/h̄)1/2 ≈
0.3 nm−1, m ≈ 0.035 × me is effective mass in bilayer
graphene [49], and me is free-electron mass. The absence
of the interband drag peak at small wave vectors is a con-
sequence of the reduced phase space available for electron
scattering in the parabolic bands of the bilayer. One can esti-
mate the carrier density at which the feature in the drag signal
due to interband transitions should be suppressed, in mono-
layer or bilayer graphene, as nc1 = Q2

c1/π ≈ 7.3 × 1011 cm−2

and nc2 = Q2
c2/π ≈ 2.9 × 1012 cm−2, respectively. These es-

timates are consistent with the trends indicated in Fig. 2.
As doping increases in monolayer graphene, the wave-

vector range over which phonon detection can be achieved
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FIG. 3. Phonon drag voltage Vdrag as a function of a hBN SPP wave vector in (a) monolayer and (b) bilayer graphene. Results are shown
for different hBN layer number m, or thickness thBN = m × 3.4 Å. Panels (c) and (d) depict the e-SPP scattering potential from Eq. (A10) for
monolayer and bilayer graphene, respectively. The weak kink at Q = 0.34 nm−1 in panel (d) is due to the polarization function anomaly at
Q = 2kF [45,46]. The calculations assume T = 50 K and n = 1012 cm−2.

increases, as reflected by the increase in the width of the
peak of the higher moment in Fig. 2(b). Similar phase-space
arguments apply to bilayer graphene. One can estimate a
wave-vector cutoff for the intraband transitions according
to Qmax1 ≈ 2kF + ω

vF
in monolayer graphene and Qmax2 ≈

2kF + mω
h̄kF

in bilayer graphene, where kF ≈ √
πn is the Fermi

wave vector and we have used an effective Fermi velocity
h̄kF /m in bilayer graphene. The largest carrier density of 5 ×
1012 cm−2 used in Figs. 2(b) and 2(d) translates to correspond-
ing estimates of Qmax1,2 ≈ 0.95 nm−1. However, the detection
signal dies at smaller wave vectors of about 0.6 nm−1 in the
case of bilayer graphene, which is due to the decay of the
electron-SPP matrix element at large wave vectors, as dis-
cussed in the Appendix and illustrated in Figs. 3(c) and 3(d).

To provide insight into the dependence of the drag signal
on the thickness of the hBN, we calculated Vdrag (at a fixed
carrier density n = 1012 cm−2) for several values of thBN.
The results are shown in Figs. 3(a) and 3(b), for monolayer
and bilayer graphene, respectively. As the number of layers
is reduced, the electric field associated with the SPP also
decreases. However, this variation is relatively weak, and Vdrag

is reduced by only a factor of 3 relative to the bulk case, by
the time that the single-layer limit is reached. Conversely, as
the hBN thickness increases from the single-layer limit, the
drag signal saturates once the number of hBN layers reaches
around 20.

To better understand the Q-vector dependence of the drag
voltage at large momenta, we note that the electron-SPP cou-
pling is Coulombic in nature. According to Eq. (A10), the
Fourier transform of this coupling has a strong momentum
dependence. In Figs. 3(c) and 3(d), we plot the scaling of the

electron-SPP scattering potential as a function of the phonon
wave vector to vary the number of hBN layers. The momen-
tum dependence of Vdrag reported here is a consequence of
the product of the electron-SPP coupling and the phase space
available for electron excitation due to the nonequilibrium
phonon.

The trend apparent in Figs. 2(b) and 2(d), for the amplitude
of the higher moment peak to decrease with increasing car-
rier density, can be attributed to the dependence of electrical
conductivity on density, i.e., σ = enμ = e2nτ/m, where μ

is the carrier mobility and τ is the effective scattering time.
According to Eq. (3), Vdrag is inversely proportional to σ ,
which accounts for the reduction mentioned above of Vdrag

with increasing density. At the same time, one should keep
in mind that the increase in the distribution function (� fk)
due to the excitation of the single out-of-equilibrium phonon
is proportional to τ . This means that the influence of impurity
scattering on the drag voltage should be relatively weak. In
fact, in Fig. 4 we show that Vdrag is almost independent of
μ, whose value is largely determined by the concentration of
impurities.

We have also explored the dependence of the drag signal on
the equilibrium lattice temperature. The influence of this pa-
rameter is illustrated in Fig. 5, for both monolayer and bilayer
graphene. (The calculations are performed for a representative
density n = 1012 cm−2, and for thBN = ∞). Due to the large
SPP energy (∼100 meV), Vdrag is reduced by only about
30% in monolayer graphene (and 50% in bilayer graphene),
when the temperature increases from 50 to 300 K. This robust
character opens up the possibility of realizing single-phonon
detectors that are capable of functioning at room temperature.
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FIG. 4. Phonon drag voltage Vdrag in monolayer and bilayer
graphene as a function of the Coulomb-scattering limited mobility,
which is controlled by the impurity concentration. The fixed pa-
rameters here are T = 50 K, n = 1012 cm−2, thBN = ∞, and Q =
0.20 nm−1/0.27 nm−1 in monolayer/bilayer graphene.

When considering schemes for single-phonon detection, it
is important to keep in mind the fact that phonons have a finite
lifetime due to phonon-phonon decay, and a transit time that is
determined by the transistor size and the phonon velocity vph.

FIG. 5. Phonon drag voltage Vdrag as a function of a hBN SPP
wave vector in (a) monolayer (blue) and (b) bilayer (red) graphene,
for four different temperatures [indicated in panel (a)]. The calcula-
tions assume n = 1012 cm−2 and thBN = ∞.

For a field-effect transistor with channel length L ∼ 1 μm,
the transient time can be estimated as τtr = L/vph ∼ 1 ns,
setting an upper bound for the limited lifetime of anharmonic
decay τph. Transient effects can therefore be modeled by the
Boltzmann transport equation as follows:

∂� fk (t )

∂t
= � fk (t )

τ
+ exp

(
− t

τph

)(
∂ fk

∂t

)
NQ

, (4)

where, without loss of generality, we have used the relaxation-
time approximation to describe electron-impurity scattering
in terms of an effective scattering time τ . The NQ subscript
for the collision integral denotes the contribution to electron
scattering due to the single out-of-equilibrium phonon. The
solution of Eq. (5) is given by

� fk (t ) = � fk
τph

τph + τ
exp

(
− t

τph

)
, (5)

where � fk is the steady-state solution of Eq. (1). According
to Eq. (3), the drag voltage will be reduced by a factor of
τph/(τph + τ ) and will have the same exponential time depen-
dence as appears in Eq. (5). The steady-state solution for the
drag voltage corresponds to the limit τph → ∞ in the transient
solution:

Vdrag(t ) = Vdrag
τph

τph + τ
exp

(
− t

τph

)
, (6)

where Vdrag is given by Eq. (3) and reported in Figs. 2–5.
While counterintuitive, Eq. (6) suggests that lower-mobility
graphene, with shorter scattering time, should perform better
in measuring transient phonon-drag voltage signals.

An important parameter for sensor characterization is
the noise equivalent power (NEP), which characterizes the
signal-to-noise ratio of the phonon detectors. Phonons follow
Bose-Einstein statistics, meaning that the noise considerations
relevant to single-photon detectors should also be applica-
ble to the single-phonon detector proposed here. Following
Ref. [50], we can estimate the NEP due to the Johnson-
Nyquist noise contribution as a ratio of Johnson noise√

4kbT R and voltage responsivity, where R = L/(Wenμ) is
the resistance of the device. The voltage responsivity can be
estimated as Vdrag/(h̄ωph/τtr ), where the transient time τtr ∼
1 ns. Using realistic device parameters W = L = 1 μm, n =
1012 cm−2, μ = 1000 cm2/V s, and a typical Vdrag = 100 μV,
we thus estimate the NEP to be 0.16 fW Hz−1/2.

Fluctuations in the phonon distribution are not taken into
account in our Boltzmann transport approach, and any tem-
perature dependencies arise from the thermal smearing of
the electron distribution function. Fluctuations in the phonon
population are known to cause noise in conductivity [51]. We
emphasize that here we consider phonon drag due to a single
SPP phonon in hBN, a mode whose thermal population is very
small at room temperatures.

IV. CONCLUSIONS

In conclusion, we have shown theoretically that the
phonon-drag effect in two-dimensional layered materials can
enable the sensitive, quantum detection of phonons, with the
potential of operation down to the single-phonon level. The
strong coupling between electrons and SPPs in the coupled

155415-5



KEFAYATI, BIRD, AND PEREBEINOS PHYSICAL REVIEW B 106, 155415 (2022)

conductive and dielectric layers is predicted to give rise to a
drag voltage as large as a few hundred microvolts per phonon,
well above the experimental detection limit. The drag voltage
is, moreover, predicted to be relatively insensitive to variation
in the mobility of the graphene layer and should exhibit only
a weak temperature dependence. These characteristics relax
the need for high-mobility detectors that operate at ultralow
temperatures. By varying the Fermi level in graphene using
a suitable gate, the phonon detectors described here should
act as efficient energy-resolved phonon sensors, since mo-
mentum conservation laws set stringent requirements on the
range of phonon wave vectors that can be detected. Our study
provides further evidence of the outstanding potential of 2D
heterostructures for use in quantum information science and
quantum sensing [27].
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APPENDIX: ELECTRON-SPP MATRIX ELEMENT

To determine the electron-SPP coupling, we solve
Maxwell’s equation for the spatial dependence of the electric
potential ϕ due to the SPP, using the following ansatz [26]:

ϕ(ρ, z, t ) =
∑

q

ϕ(z)ei(q·ρ−ωpht ). (A1)

Here, q and ρ are the two-dimensional phonon wave vec-
tor and the spatial coordinate, respectively, and ωph is
the phonon frequency. In isotropic materials, the Poisson
equation ∇ε∇ϕ = 0 requires ϕ(z) ∝ e±qzz with qz = q. How-
ever, in an anisotropic dielectric qz = q

√
ε‖/ε⊥. Following

Ref. [44], we treat monolayer (bilayer) graphene as a di-
electric layer of thickness 2hs, as shown in Fig. 6, where
hs = 1.7 Å (hs = 3.4 Å) for monolayer (bilayer) and accounts
for the size of the electron cloud of the πz orbitals of carbon
atoms. The thickness hBN thBN = t − d is placed at the van
der Waals distance d = 3.4 Å (d = 5.1 Å) for monolayer
(bilayer) graphene. Perpendicular to the plane, we choose the
dielectric constant ε⊥ = 6, as appropriate for the interface of
bilayer graphene [52]. Within the plane, we choose a static
dielectric function ε‖ = 1 + vc�(q, EF ), where vc = 2πe2/q,
�(q, EF ) is the polarization function from the random phase
approximation, and we use the zero temperature limit [45,46].

The solution for ϕ(z) in Eq. (A1) has the form

ϕ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A eq(z+hs ), z � −hs

B eqz (z−hs ) + C e−qz (z+hs ), |z| < hs

D eq(z−d ) + F e−q(z−hs ), hs � z < d
E eq(z−t ) + G e−q(z−d ), d � z < t
H e−q(z−t ), t � z.

(A2)

The coefficients A–H and the dispersion relation for the
SPPs are found using the boundary conditions ϕ+ = ϕ−,
ε+dϕ+/dz = ε−dϕ−/dz at z = ±hs, z = d , and z = t , where

the superscripts “+” and “−” indicate functions to the right
and left of the boundaries, respectively.

The dielectric function hBN ε(ω) is given by

ε(ω) = ε∞ω2 − ε0ω
2
TO

ω2 − ω2
TO

, (A3)

where ε0 = 5.09, ε∞ = 4.575, and h̄ωTO =
97.3 meV [53,54]. (We omit the higher energy SPP branch at
∼200 meV.) The resulting solution for the SPP frequency is
given by

ωph(q) = ωTO

√
ε0 + α(q)

ε∞ + α(q)
, (A4)

where α(q) = −ε(ω) is the solution of the dispersion rela-
tion. To find the coefficients in Eq. (A2) and the dispersion
relation, we define εave = √

ε‖ε⊥ and introduce the following
variables:

Cd = cosh[q(d − hs)], Td = tanh[q(d − hs)],

Ct = cosh[q(t − d )], Tt = tanh[q(t − d )],

Cz = cosh(2qzhs), Tz = tanh(2qzhs). (A5)

The coefficients are given by the following:

B = A
εave + 1

2εave
Cz(1 + Tz ), C = A

εave − 1

2εave
,

D = B(εave + 1) − C(εave − 1)Cz(1 − Tz )

2

× Cd (1 + Td ),

F = B(1 − εave) + C(εave + 1)CZ (1 − Tz )

2
,

E = D[ε(ω) + 1] + F [ε(ω) − 1]Cd (1 − Td )

2ε(ω)

× Ct (1 + Tt ),

G = D[ε(ω) − 1] + F [ε(ω) + 1]Cd (1 − Td )

2ε(ω)
. (A6)

FIG. 6. Schematic illustration of the cross section of the
graphene/hBN heterostructure. The monolayer or bilayer graphene
is taken to be of thickness 2hs, with an anisotropic dielectric func-
tion ([ε⊥, ε‖(q)] and centered around z = 0. The hBN of thickness
thBN = t − d , and dielectric function ε(ω), supports the SPP.
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The dispersion relation is obtained from the condition for
the coefficient H :

E + GCt (1 − Tt ) = −ε(ω)[E − GCt (1 − Tt )]. (A7)

After rearranging Eqs. (A7) and (A6), we find that ε(ω) =
−α(q), where α(q) is given by

α(q) = b ± √
b2 − 4ac

2a
,

a = Tt
[
εave + Tz + Td

(
εave + Tzε

2
ave

)]
,

b = (1 + Td )
(
2εave + Tz + Tzε

2
ave

)
,

c = Tt
[
Td (εave + Tz ) + εave + Tzε

2
ave

]
. (A8)

The two different solutions of α(q) are due to the two surfaces
of the finite thickness hBN.

To find the form of the SPP potential that interacts with
electrons in graphene, i.e., ϕ0 ≡ ϕ(z = 0) = (B + C)e−qzhs

according to Eq. (A2), we apply the normalization condi-
tion [55,56]:

1

L2

h̄

2ω
=

∫
1

4π

1

2ω

(
∂ε

∂ω
|E⊥|2 + ∂ε

∂ω
|E‖|2

)
dr, (A9)

which allows us to solve for the magnitude of the coefficients
E2 + G2. In Eq. (A9), E(r) = −∇ϕ(r), L2 = NkAc is the
sample area, Ac is the unit cell area, and Nk is the number
of k points. Finally, the e-SPP coupling constant Mkq can be
obtained as

|Mkq|2 = (eϕ0)2|〈ψk|ψk+q〉|2/Nk,

(eϕ0)2 = 2πe2

qAc
h̄ω

(
1

ε∞ + α(q)
− 1

ε0 + α(q)

)

× (B + C)2

E2 + G2

Cz(1 − Tz )(1 + Tt )

2Tt
. (A10)

Here, ψk is a single-particle wave function and the inner
product in Eq. (A10) should be understood as correspond-
ing to the wave function overlap in a primitive unit cell,
not the entire sample. In the low-energy model, the wave-
function overlap between two states in the conduction band is
|〈ψk|ψk+q〉|2 = [1 + cos (θkk+q )]/2 for monolayer graphene,
and |〈ψk|ψk+q〉|2 = [1 + cos (2θkk+q)]/2 for bilayer, where
θkk+q is the angle between the two wave vectors k and k +
q [57].

We note that the unscreened potential can be obtained by
setting hs = 0 in the above equations and that the two SPP
branches become degenerate in the absence of screening and
infinitely thick hBN, i.e., hs = 0 and t − d = ∞. However, in
this case, the electron-SPP coupling for each phonon branch
would be half of the conventional coupling for semi-infinite
hBN [54,58]. SPPs in the above solution form symmetric and
antisymmetric linear combinations of two localized phonons
at the two surfaces, with each of them contributing half of
the coupling to electrons. The screening of graphene breaks
the symmetry and the SPP branch, which corresponds to the
larger root α(q) in Eq. (A8) (or smaller SPP energy), gives
the dominant electron-SPP coupling. At the same time, the
smaller root of α(q) in Eq. (A8) gives negligible contribution
at large values of q and is consistently below 25% throughout
the range of values of q and thBN reported in this study. To
address that artifact of the model, which does not include
losses in hBN, we use the larger root for α(q) in Eq. (A8)
for the phonon energy, and contributions (B + C)2/(E2 + G2)
from both branches of SPP for the electron-SPP coupling.
Note that in the limit of small q, α(q) = ∞ and according
to Eq. (A4) ωph = ωTO, whereas in the opposite limit q = ∞,
α(q) = 1 and the conventional result for the SPP frequency
corresponding to semi-infinite hBN and unscreened potential
are obtained: ωph = ωTO

√
(ε0 + 1)/(ε∞ + 1). Consequently,

the overall SPP dispersion width, h̄ωph(q = ∞) − h̄ωph(q =
0) ≈ 4 meV, is much smaller than the typical SPP energy
h̄ωph ≈ 100 meV.
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